
Flexible Dataspace Management
Through Model Management

Cornelia Hedeler, Khalid Belhajjame, Lu Mao, Norman W. Paton,
Alvaro A.A. Fernandes, Chenjuan Guo, and Suzanne M. Embury

School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK

(chedeler,khalidb,maol,norm,alvaro,guoc,embury)@cs.manchester.ac.uk

ABSTRACT
The vision of dataspaces has been articulated as providing
various of the benefits of classical data integration but with
reduced up-front costs, which, combined with opportunities
for incremental refinement, enables a “pay as you go” ap-
proach to the data integration problem. However, results
that seek to realise the vision tend to make design commit-
ments, often to meet quite specific application assumptions,
that are likely to restrict their wider use. Instead of pre-
committing to a specific solution, we build on research in
model management and present a generic framework con-
sisting of a collection of types and operations for dataspace
management systems that can be instantiated in various
ways. The key extension for dataspaces is the integration
of user feedback as annotations to model management con-
structs, and the development of operations that take ac-
count of these annotations. The flexibility of the framework
is demonstrated through various case studies that meet dif-
fering requirements.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
dataspaces, model management

1. INTRODUCTION
Integrating multiple autonomous and heterogeneous data

sources is a challenging task [11]. This stems in significant
measure from the fact that the development and mainte-
nance of mappings between schemas has proved to be labour
intensive. Furthermore, it is often difficult to get the map-
pings right, due to the frequent occurrence of exceptions
and special cases, as well as autonomous changes in the
sources that require propagation to the mappings. As a
result, classical data integration technology occupies a po-
sition at the high initialisation cost, high-quality end of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2010, March 22–26, 2010, Lausanne, Switzerland.
Copyright 2010 ACM 978-1-60558-945-9/10/0003 ...$10.00.

data access spectrum, and is less effective for numerous, or
rapidly changing, resources, or for on-the-fly data integra-
tion.

In contrast, the vision of dataspaces [10] is that various of
the benefits provided by planned, resource-intensive data in-
tegration could be obtained at much lower initialisation cost,
thereby supporting integration on demand and in changing
environments, albeit with a lower initial quality of integra-
tion. For this to happen, dataspaces would be expected to
use techniques that infer relationships between resources,
and that improve these relationships in the light of user or
developer feedback. As such, a dataspace can be seen as
a data integration system that exhibits the following dis-
tinguishing features: (i) low/no initialisation cost, and (ii)
support for incremental improvement.

However, to date, no reference framework for the data
types and operations that are required to support a generic
dataspace management system (DSMS) has emerged. In-
deed, the dataspace vision has so far principally given rise to
various proposals addressing specific parts of various phases
of the dataspace lifecyle [12], such as initialisation (i.e., the
initial integration of data sources, e.g., [6]), usage (i.e., query-
ing, e.g., [16]) or the improvement of the dataspace over
time utilising user feedback (e.g., [13]). Where complete
proposals have been made these either make simplifying as-
sumptions or provide minimal support for at least one of
the distinguishing features (e.g. [17, 20, 9]). This paper
presents a generic framework, consisting of data types and
operations for a DSMS, covering the complete lifecycle of a
dataspace, including initialisation, usage, improvement and
maintenance.

The integration of autonomous data sources utilising het-
erogeneous data models requires the manipulation of schemas
and of the relationships between schemas, as well as the
translation of schemas and data from one data model into
a different one. These challenges have been addressed by
the model management community in the form of high-level
algebraic operations [3, 4]. It has been recognised previ-
ously [10] that a DSMS could utilise model management
operations, e.g., for schema integration within the initiali-
sation phase, and for schema evolution during the mainte-
nance phase. However, the precise role of existing model
management operations, and the additional requirements of
dataspace management, have not previously been identified.

The framework presented in this paper builds on existing
model management operations (e.g., [3, 4]), extending and
supplementing them with additional operations to support
more phases of the dataspace life cycle. This approach en-

ables us to defer commitment to specific implementations
of the operations, and to provide instead a framework from
which components can be used selectively and within which
it is possible to experiment with a range of specific tech-
niques.

The remainder of the paper is organised as follows: Sec-
tion 2 introduces the types and operations of the framework,
Section 3 instantiates the framework to create dataspaces
with varying properties and Section 4 concludes.

2. TYPES AND OPERATIONS
In the following we define the types and introduce the

operations that form the framework.
Building on generic data models that subsume those of

specific systems (e.g., [1]), we use the term construct to refer
to one of the following elements of a schema: (i) entities, e.g.,
tables in relational schemas, classes in object schemas, (ii)
attributes, e.g., columns in relational schemas, attributes in
object schemas, and (iii) relationships, e.g., foreign keys in
relational schemas, associations in object schemas. A set
of constructs is denoted as C, or Csi

where the constructs
are part of the schema si. To represent the relationships
between constructs in various schemas at varying levels of
abstraction, we introduce the following types:

• A match mtsi−sj
= 〈Csi

, Csj
〉 is an association be-

tween sets of constructs in two schemas si and sj , as
might be identified by a matching algorithm. A set of
matches is denoted as MTsi−sj

.

• Associations returned by most matching algorithms,
however, tend not to provide enough information for
the automatic derivation of mappings. Therefore, we
define semantically richer schematic correspondences
as follows: crsi−sj

= 〈kind, Csi
, Csj

〉 is a schematic
correspondence of a given kind between constructs in
two schemas si and sj , e.g., describing a many-to-many

equivalence relationship between constructs [18]. Ex-
amples of kinds include ‘missing attribute’, ‘name con-
flict’, ‘horizontal’ or ‘vertical partitioning’. A set of
schematic correspondences is denoted as CRsi−sj

.

• A mapping mpSs→si
= 〈qsi

, qSs〉 is an executable pro-
gram that specifies how data structured under a set of
source schemas can be combined into data structured
according to an integration schema, where qsi

is a
query over an integration schema si and qSs is a query
of the same arity over a set of source schemas Ss. A set
of mappings is denoted as MPSs→si

and specifies that
the concepts represented by the two queries qsi

and qSs

are semantically equivalent [15]. Note, for example,
that in the case of so-called global − as − view map-
pings [15], which relate one concept in the integration
schema si to a query over the set of source schemas Ss,
a mapping could be defined as mpSs→si

= 〈csi
, qSs〉,

where csi
is a concept, e.g., a relation, in the integra-

tion schema si and qSs is a query over a set of source
schemas Ss.

• A query result is a set of result tuples Rqsi
of a query

qsi
posed over a schema si, where a single result tuple

rqsi
= AttV . AttV is a set of attribute-value pairs

〈attl, vl〉 where attl is an attribute and vl is its respec-
tive value.

We call the union type over these types MM − Type. In-
stances of the four above types characterise the state of the
integration effort at a point in time. As such, consistent with
the idea of user-driven gradual improvement that is implicit
in the ‘pay-as-you-go’approach, we expect that instances of
the above types will be annotated with assessment and feed-
back outcomes. Instances of all four types can have annota-
tions of the form 〈source, value, ontology〉 where source is
the provenance of the annotation, e.g., the user providing the
feedback or the matching algorithm, and value is an instance
of a concept in the ontology. The use of an ontology enables
different implementations of the operators introduced below
to identify the corresponding annotation from a potentially
wide range of annotations associated with a MM − Type

that can be recognised and processed by them. This generic
representation of annotation acts as an extension point and
allows us to handle annotations from various sources (e.g.,
user feedback) of different forms on any of the model man-
agement types. Indeed, several proposals have been made
for approaches that obtain feedback on and that annotate
different model management types. For example, [5] obtain
feedback on properties of mappings, and use the feedback to
select which mappings participate in query evaluation. By
contrast, [2] obtain feedback on query results, and use the
feedback to select mappings that meet user-specified preci-
sion or recall targets, and to generate new mappings.

The operations introduced below can be combined in var-
ious ways to create dataspace management systems, as illus-
trated in Section 3. The operations extend those that have
previously been proposed in model management systems [3,
4] to extend their applicability to the dataspaces life cycle.
The majority of them are defined on schematic correspon-
dences (as in [4, 14]) rather than matchings. The signatures
of the operations that we will use in case studies are listed
in Table 1 with optional parameters in square brackets, and
are described below:

• Match: Given two schemas si and sj , return a set of
matches between them.

• Merge: Given two schemas si, sj , a set of schematic
correspondences CRsi−sj

between them, and a kind

which indicates whether a union or a merged schema
should be created, merge the two schemas into a third
schema sm, also returning the set of schematic corre-
spondences between the two source schemas and the
merged schema (CRsi−sm , CRsj−sm).

• ViewGen: Given an integration schema si, a set of
source schemas Ss and a set of schematic correspon-
dences CRsi−Ss between si and the source schemas,
produce a unified set of mappings MPSs→si

that is
consistent with the correspondences and that defines
how to transform instances from constructs in the set
of source schemas Ss into instances of the constructs
in the integration schema si.

There are also aspects of the functionality to be provided
by a DSMS that require the definition of new operations.
The signatures of these operations can also be found in Table
1.

• InferCorrespondence: Given a set of matches MTsi−sj

between constructs in schemas si and sj , infer the
schematic correspondences CRsi−sj

between them.

Table 1: Signatures of Operations

Operation Signature Types of parameters Types of results

Match Match(si, sj , [CP],
[MT an

si−sj
]) → MTsi−sj

Schemas si, sj , optional set of control pa-
rameters CP , optional annotated set of
previous matches MT an

si−sj

Set of matches MTsi−sj

Infer-

Correspondence

InferCorrespondence

(MTsi − sj , [CP],
[CRan

si−sj
]) → CRsi−sj

Set of matches MTsi − sj , optional set
of control parameters CP , optional an-
notated set of previous correspondences
CRan

si−sj

Set of correspondences CRsi−sj

Merge Merge (si, sj ,
CRsi−sj

, kind, [CP]) →
〈Sm, CRsi−sm , CRsj−sm 〉

Schemas si, sj , set of correspondences
CRsi−sj

, kind indicating whether to cre-
ate union or merged schema, optional set
of control parameters CP

Resulting schema Sm,
Sets of correspondences
CRsi−sm , CRsj−sm between
Sm and each of input schemas
Si, Sj

ViewGen ViewGen(si, Ss,
CRsi−Ss , [CP],
[MP an

Ss→si
]) → MPSs→si

Schema Si, set of source schemas Ss, set of
correspondences CRsi−Ss between source
schemas Ssand schema si, optional set
of control parameters CP , optional anno-
tated previous set of mappings MP an

Ss→si

Set of mappings MPSs→si

AnswerQuery AnswerQuery(qsi
,

[CP], [MPSs→si
], [Ss])

→ Rqsi

Query qsi
over schema si, optional set

of control parameters CP , optional set of
mappings MPSs→si

to be used for an-
swering query over optional set of source
schemas Ss

Set of result tuples Rqsi

Annotate Annotate (Mi, A |
Man

j , [CP]) → Man
i

Set of instances of MM-Type Mi, anno-
tation A or annotated set of instances of
MM-Type Man

j , optional set of control pa-
rameters CP

Annotated set of MM-Type
Man

i

• AnswerQuery: Given a query qsi
posed over an inte-

gration schema si, translate the query into sub-queries
over a set of source schemas Ss, execute the sub-queries,
and combine and rank the results. Query answering
can be parameterised further by providing the set of
mappings (MPSs→si

) to be used for answering the
query or a set of source schemas (Ss) over which the
sub-queries are to be generated and executed.

Additional operations not used here include Compose,
Extract, and Diff, which have been shown to be use-
ful for schema evolution and thus are applicable during the
maintenance phase [4]. An additional operator that is not
considered in the scenarios presented here is IdentifyIn-

stancesForFeedback which returns the subset of the in-
stances of an MM − Type provided as input for which user
feedback is requested. For example, the candidate set can
be chosen using a utility function that identifies instances of
an MM − Type, which annotated, would provide the most
benefit to the dataspace system [13].

Several of the model management operations listed can
be extended further to act on annotated instances of MM −
Type. Match, InferCorrespondence and ViewGen have
an optional parameter which allows the passing in of previ-
ous results of the operation that may be annotated. If anno-
tation is provided, it can be taken into account when gener-
ating updated instances of the MM −Type, e.g., matchings
with a score below a certain threshold could be excluded.
Annotation can be used for incremental improvement of
the overall integration, as illustrated in Scenario 3 in the
next section using the annotation obtained by gathering user
feedback. To associate annotations with their corresponding
MM −Type and to propagate the annotation, the following

operation is introduced:

• Annotate: Given instances Mi of an MM − Type

and a set of corresponding annotations A, annotate the
instances with A. This can be used, for example, to
annotate the query results with the feedback provided
by the user. As an alternative, annotated instances
Man

j of a (different) MM − Type Mj can be provided
and Annotate used to propagate the annotation.

Similar to the way we extend the MM−Types with anno-
tations of the form 〈source, value, ontology〉, we extend the
operations with optional control parameters CP of the form
〈value, ontology〉 where value is an instance of a concept
in the ontology. Examples of control parameters include
a threshold on the scores associated with matches or the
precision- or recall-target that should be met by result of a
query. Using these generic representations of control param-
eters and annotations enables us to provide various different
implementations of the operators that recognise and are able
to process various different control parameters and annota-
tions of the MM − Types provided as input.

3. CASE STUDIES
To demonstrate the flexibility of the approach, we indicate

how the operations presented could be useful in the datas-
pace life cycle through a number of scenarios. Previous work
[12] has shown that DSMS can vary to a great extent along
a number of dimensions. For illustrative purposes, we have
chosen to instantiate the framework by varying the following
dimensions as summarised in Table 2:

• Initialisation phase: Correspondences: these can ei-
ther be provided manually or inferred automatically,

Table 2: Characteristics of Case Studies
Dimension Scenario 1 Scenario 2 Scenario 3

Initial lim-
ited integra-
tion

Well known
domain,
some im-
provement

Incremental
improve-
ment

Correspondences manual automatic automatic

Integration
schema

automatic,
union

manual automatic,
merged

User feedback none on results on results

1: {Intitialisation – Create union schema si of schemas s1

and s2 utilising manually defined matchings and corre-
spondences and generate mappings between s1, s2 and
si:}

2: 〈si, CRs1−si
, CRs2−si

〉=Merge(s1, s2, CRs1−s2
, union)

3: MPSs→si
=ViewGen (si, {s1, s2}, {CRs1−si

, CRs2−si
})

4: {Usage – Query:}
5: Rqsi

=AnswerQuery(qsi
, MPSs→si

)

Figure 1: Scenario 1

e.g., from matchings, which we assume are derived au-
tomatically using schema matching tools (e.g., COMA++
[8]). Integration schema: the integration schema is ei-
ther provided manually, or derived automatically. It
can either be a union schema or a merged schema.

• Improvement phase: User feedback is one of many
kinds of annotation; optional user feedback can be ob-
tained at various stages of the integration process by
asking users to specify which matchings, correspon-
dences or mappings they agree or disagree with or
which query results they expected to see. User feed-
back can be utilised to improve the integration incre-
mentally. Here, we will focus on user feedback on query
results.

Scenario 1: The first scenario could be used for an initial
quick set-up of a dataspace with a limited degree of inte-
gration (simple union schema) and with manually provided
correspondences. This scenario can be compared to iMeMex
[7], [20], in which a union schema is created and the integra-
tion is improved gradually by manually providing so called
iTrails, which could be loosely compared to schematic corre-
spondences. A union schema is also created in PayGo [17].
The matchings in PayGo, however, are inferred automati-
cally, which is part of our Scenarios 2 and 3.

Here, we assume that two sources with schemas s1 and s2

are to be integrated. The integration schema si is inferred
automatically from the source schemas by generating the
corresponding union schema. Schematic correspondences
CRs1−s2

between the sources are provided manually.
The steps required for this scenario are listed in Figure 1.

As the schematic correspondences are provided, the integra-
tion consists of creating the union schema of s1 and s2 by
calling Merge with kind = union (Line 2) and the genera-
tion of the mappings between each of the source schemas and
the integration schema (Line 3). AnswerQuery uses the
generated mappings to translate the query into subqueries
over the sources (Line 5).

1: {Initialisation – Integrate sources with schemas s1 and
s2 by matching them with si, infer schematic correspon-
dences and generate the corresponding mapping:}

2: MTs1−si
=Match(s1, si)

3: MTs2−si
=Match(s2, si)

4: CRs1−si
=InferCorrespondence(MTs1−si

)
5: CRs2−si

=InferCorrespondence(MTs2−si
)

6: MPSs→si
=ViewGen (si, {s1, s2}, {CRs1−si

, CRs2−si
})

7: {Usage – Query:}
8: Rqsi

=AnswerQuery(qsi
, MPSs→si

)
9: loop

10: {Improvement – User provides feedback on results in
form of annotation A, which is used to annotate the
query results and the mappings:}

11: Ran
qsi

=Annotate(Rqsi
, A)

12: MP an
Ss→si

=Annotate(MPSs→si
, Ran

qsi
)

13: {Usage – Query using annotated mappings:}
14: CP = 〈0.8, precisionTarget〉
15: Rqsi

=AnswerQuery(qsi
, CP, MP an

Ss→si
)

16: end loop

Figure 2: Scenario 2

Scenario 2: The second scenario fits situations where the
domain or the required information is well understood, i.e.,
the integration schema can be designed manually; exam-
ples include personal information management (e.g., SE-
MEX [9]), or disaster management. For this case study, we
assume that the integration schema si is provided and that
the sources with schemas s1 and s2 are to be integrated. In
addition, we gather user feedback on the query results, which
is used to annotate the mappings with quality information,
which, in turn, may be used to choose only the mappings
with sufficient quality to answer subsequent queries.

The steps required to integrate the sources and query
them are listed in Figure 2. The integration process consists
of the operations Match (Lines 2 and 3), which matches
source schemas s1 and s2 to the given integration schema si,
and InferCorrespondence (Lines 4 and 5), which infers
the schematic correspondences between the source schemas
and the integration schema. This is followed by the genera-
tion of the mappings between each of the source schemas and
the integration schema (Line 6) and the answering of queries
posed over the integration schema using the generated map-
pings to translate the query into subqueries over the sources
(Line 8) (same as Lines 3 and 5 in Figure 1). A user who
issues a query can provide feedback on the results, in the
form of annotations indicating, e.g., which results were ex-
pected (true positives), which were returned in error (false
positives) and which were expected but not returned (false
negatives). The feedback is used to annotate the query re-
sults accordingly (Line 11), which in turn are used to anno-
tate the mappings that were used to produce them (Line 12).
Examples of mappings annotations include estimates of the
precision and recall of the mappings based on the user feed-
back provided. The annotated mappings are then used to
answer subsequent queries (Line 15), e.g., by choosing only
mappings with precision and recall above a certain threshold
(a possible implementation for this mapping selection pro-
cess can be found in [2]). As indicated in Figure 2 by the
Loop ... EndLoop block around Lines 10-15, the process of
annotating query results, propagating that annotation to the

1: {Initialisation – Integrate sources with schemas s1 to sk

by matching them, inferring schematic correspondences,
creating a merged integration schema and generating the
corresponding mappings:}

2: MTs1−s2
=Match(s1, s2)

3: CRs1−s2
=InferCorrespondence(MTs1−s2

)
4: 〈sm, CRs1−sm , CR(s2 − si)〉 =

Merge(s1, s2, CRs1−s2
, merge)

5: MPSs→sm =
ViewGen (sm, {s1, s2}, {CRs1−sm , CRs2−sm})

6: loop

7: MTsi−sm=Match(si, sm)
8: CRsi−sm = InferCorrespondence(MTsi−sm)
9: 〈sm′ , CRsi−sm′

, CR(sm − sm′)〉 =
Merge(si, sm, CRsi−sm , merge)

10: MPSs→s
m′

=
ViewGen (sm′ , {si, sm′}, {CRsi−s

m′
, CRsi−s

m′
})

11: end loop

12: {Query:}
13: Rqs

m′
=AnswerQuery(qsm′

, MPSs→sm′
)

14: {Improvement – User provides feedback on results in
form of annotation A, which is used to annotate the
query results and the mappings:}

15: Ran
qs

m′

=Annotate(Rqs
m′

, A)

16: MP an
Ss→sm′

=Annotate(MPSs→s
m′

, Ran
qs

m′

)

Figure 3: Scenario 3

mappings used to answer the query and then re-running the
query utilising those annotated mappings can be executed
multiple times for incremental improvement of the datas-
pace by applying feedback (e.g., [2]). When applying the
AnswerQuery operator the second and subsequent times,
different implementation strategies can be chosen that take
account of control parameters CP (e.g., specifying which
precision target the query results should meet) and anno-
tated mappings MP an

Ss→si
as input. For example, utilising

the user feedback provided on the query results, mappings
can be annotated with precision and recall values, which in
turn can then be utilised to select the mappings to be used
for answering the query [2].

Scenario 3: The third scenario is similar to UDI [6], in that
the source schemas are matched and a merged integration
schema is created automatically. This initial integration is
improved further by gathering user feedback on the results
of queries posed over the integration schema and propagat-
ing the annotation to the mappings, correspondences and
matchings.

Here, we assume that sources with schemas s1 to sk are to
be integrated by automatically deriving the matchings and
correspondences between two source schemas and generat-
ing the merged integration schema sm. Once an integration
schema is generated, the remaining sources are integrated
incrementally by automatically deriving the matchings and
correspondences between the next source schema si and the
current integration schema sm. Using those generated corre-
spondences, a new integration schema is generated by merg-
ing the current integration schema with the newly integrated
source. The integration is improved by gathering user feed-
back on the query results, which is then propagated.

The steps required for this scenario are listed in Figure

3. The integration process starts by matching S1 and S2

(Line 2), inferring the schematic correspondences from the
matches (Line 3), merging the two schemas (Line 4) and
generating the corresponding mappings (Line 5). Additional
sources are integrated incrementally by repeating the steps
listed in Lines 2 - 5, using the data source to be added
with schema si and the current merged schema sm as in-
put and creating a new integration schema sm′ (Lines 7 -
10 in Figure 3). For an example of an implementation of
Merge that is commutative and associative, see [19]. The
authors show under which circumstances the order in which
the various schemas are merged has no effect on the result-
ing schema. Over the integration schema, a query is posed,
which is translated into sub-queries and executed over the
sources, utilising the mappings generated (Line 13) (same as
Line 5 in Figure 1). The user can then annotate the query
results by providing feedback (Line 15 - same as Line 11 in
Figure 2). The annotation of the query results is then prop-
agated accordingly to the corresponding mappings that pro-
duced the query results (Line 16 - same as Line 12 in Figure
2). This can be followed, for example, by using Annotate

to propagate the annotation from the mappings to the cor-
respondences and the matchings, and using these annotated
MM − Types as input to the extended model management
operators for incremental improvement of the integration.

4. CONCLUSION
Model management define a range of operations, that have

been shown to be useful in a range of data integration scenar-
ios [4]. Model management is important in significant mea-
sure because it identifies operations that have been shown
to be reusable in different contexts. This paper has explored
the extent to which existing model management operations
can be used to support the development of dataspaces. In
so doing, the paper has made the following contributions:

• A small number of additional operators have been iden-
tified (InferCorrespondence, AnswerQuery, Iden-

tifyInstanceForFeedback, Annotate) that reflect
new requirements from dataspaces.

• Conservative extensions to the existing model man-
agement operators have been proposed that accommo-
date incremental refinement, building on annotations
that can be associated with query results, matchings,
schematic correspondencies or mappings.

• Three scenarios have been described that demonstrate
how the extended model management proposal can be
used to support the functionalities supported by exist-
ing proposals for dataspace management systems.

These results also demonstrate that an approach to datas-
pace management that builds on model management defers
commitment to certain decisions that have previously tended
to be hard wired in dataspace platforms. However, applica-
tion requirements have been shown to be diverse in practice
(e.g., requirements and constraints are very different in per-
sonal data management and in web scale data integration),
so it seems unlikely that a one-size-fits-all approach will be
broadly applicable. Thus, the increased flexibility that is of-
fered by building on model management opens the door to
the development of dataspaces tailored to meet application
requirements, while building on a manageable collection of
generic components.

5. ACKNOWLEDGEMENT
This work is funded by the EPSRC under Grant EP/

F031092/1. We are grateful for this support.

6. REFERENCES
[1] P. Atzeni, L. Bellomarini, F. Bugiotti, and

G. Gianforme. Mism: A platform for
model-independent solutions to model management
problems. J. Data Semantics, 14:133–161, 2009.

[2] K. Belhajjame, N. W. Paton, S. M. Embury, A. A. A.
Fernandes, and C. Hedeler. Feedback-based
annotation, selection and refinement of schema
mappings for dataspaces. In EDBT, pages 573–584,
2010.

[3] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A
vision for management of complex models. SIGMOD

Record, 29(4):55–63, 2000.

[4] P. A. Bernstein and S. Melnik. Model management
2.0: Manipulating richer mappings. In SIGMOD,
pages 1–12, 2007.

[5] H. Cao, Y. Qi, K. S. Candan, and M. L. Sapino.
Feedback-driven result ranking and query refinement
for exploring semi-structured data collections. In
EDBT, pages 3–14, 2010.

[6] A. Das Sarma, X. Dong, and A. Halevy.
Bootstrapping pay-as-you-go data integration systems.
In SIGMOD, pages 861–874, 2008.

[7] J.-P. Dittrich and M. A. Vaz Salles. idm: A unified
and versatile data model for personal dataspace
management. In VLDB, pages 367–378, 2006.

[8] H.-H. Do and E. Rahm. Matching large schemas:
Approaches and evaluation. Inf. Syst., 32(6):857–885,
2007.

[9] X. Dong and A. Y. Halevy. A platform for personal
information management and integration. In CIDR,
pages 119–130, 2005.

[10] M. Franklin, A. Halevy, and D. Maier. From databases
to dataspaces: a new abstraction for information
management. SIGMOD Record, 34(4):27–33, 2005.

[11] A. Halevy, A. Rajaraman, and J. Ordille. Data
integration: the teenage years. In VLDB, pages 9–16,
2006.

[12] C. Hedeler, K. Belhajjame, N. W. Paton, A. A. A.
Fernandes, and S. M. Embury. Dimensions of
dataspaces. In BNCOD, pages 55–66, 2009.

[13] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy.
Pay-as-you-go user feedback for dataspace systems. In
SIGMOD, pages 847–860, 2008.

[14] D. Kensche, C. Quix, X. Li, and Y. Li. Geromesuite: a
system for holistic generic model management. In
VLDB, pages 1322–1325, 2007.

[15] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[16] J. Liu, X. Dong, and A. Halevy. Answering structured
queries on unstructured data. In WebDB, pages 25–30,
2006.

[17] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy,
S. R. Jeffery, D. Ko, and C. Yu. Web-scale data
integration: You can afford to pay as you go. In
CIDR, pages 342–350, 2007.

[18] L. Mao, K. Belhajjame, N. W. Paton, and A. A. A.

Fernandes. Defining and using schematic
correspondences for automatically generating schema
mappings. In CAiSE, pages 79–93, 2009.

[19] R. Pottinger and P. A. Bernstein. Associativity and
commutativity in generic merge. In Conceptual

Modeling: Foundations and Applications, pages
254–272, 2009.

[20] M. A. Vaz Salles, J.-P. Dittrich, S. K. Karakashian,
O. R. Girard, and L. Blunschi. itrails: Pay-as-you-go
information integration in dataspaces. In VLDB, pages
663–674, 2007.

