INTERNATIONAL ISO/IEC
STANDARD 14882

Second edition
2003-10-15

Programming languages — C++

Langages de programmation — C++

Adopted by INCITS (InterNational Committee for Information Technology Standards) as an American National Standard.
Date of ANSI Approval: 12/29/2003

Published by American National Standards Institute,
25 West 43rd Street, New York, New York 10036

Copyright 2003 by Information Technology Industry Council (ITI).
All rights reserved.

These materials are subject to copyright claims of International Standardization Organization (1SO), International
Electrotechnical Commission (IEC), American National Standards Institute (ANSI), and Information Technology Industry Council
(IT1). Not for resale. No part of this publication may be reproduced in any form, including an electronic retrieval system, without
the prior written permission of ITI. All requests pertaining to this standard should be submitted to ITIl, 1250 Eye Street NW,

Washington, DC 20005.

Printed in the United States of America

Reference number
ISO/IEC 14882:2003(E)

© ISO/IEC 2003

ISO/IEC 14882:2003(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +41 22749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

i © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

Contents

R €T 1 1< - | SO ST PO OPTPTRPTRRPP 1
S oo o= PP SURPRTRT PP 1
1.2 NOIMELIVE FEFEIEINCES. ...ttt ettt ettt et a e st e et b et b e bt e b e bt s e bt st e st st e st st ene b e b s 1
1.3 TermMSand AEfiNITIONSc.ceuriieeieerieietee sttt bbbttt 1
L3 @IQUMENT ...ttt et r e e et h R e R R R R R R R e e e 1
1.3.2 diBgNOSHIC MESSAGE ... ecvereeeiieeiereeieetee sttt ettt ettt b e bt eea e b st et b e b e b e bt e e bt se e bt et es e b st b ene b e s s 2
I TG T 0 1Y/ 7= 10 0T ol 1Y o =TSSP 2
134 (11-TOIMEA PIOGIaIMN.....cueeetireetereetertete sttt ettt b e b e et se bt se e bt se bt se e st s b e st eb e st e b e e e b e neebeseebeseebereebesnene e 2
1.35 implementation-defined DENAVIOTccoouiiiiiieiee s 2
1.3.6 iMPIEMENALION TIMITS.....ciuiiieiiiieiiee et bbbt sb e b b enes 2
1.3.7 10CAlEe-SPECITIC DENAVIONceeeiicie e 2
1.3.8 MUILIDYIE CEIECTENo.ecvieeiecc bbbt 2
L1.3.9 PAIBIMELET ..ottt e e R R R e n e 2
IS I (O [7= U (=TSRSS 2
IR T = = (] o 1Y o= TSSOSO SRR 2
1.3.12 UNAEfINEA DENAVIOLooeiiieiiie ettt e bbb 2
1.3.13 UNSPECITIE DENAVION ...t 3
1.3.14 WEl-TOrME PrOGI@IMc.ecviieeiiieiiiteest ettt ettt e et b s b eb s b e bt se bt e bt sbese b nenn s s 3
1.4 Implementation COMPIIANCE.........cciiiieirie ettt b e b e b e b e b e s e 3
1.5 Structure of thisInternational StANAard............ccooeirieireiiere s 4
1.6 SYNEBX NOLBEION ...ttt ettt sttt b e b e b e bt e st s e st e e e b e e b e s eb e bt e e bt se e bt e b eb e b e s e b ene b e b s 4
1.7 The GH MEMOIY MOUE ...ttt bbb s b et e bbb bbb e nbenes 4
1.8 The CH ODJECE MOUELcviieeiiieeiiee et b bbbt bbbttt b e b enes 4
1.9 PrOQram EXECULIONcuieetieeterteterteststee sttt b et see bt sees s e esesseaeseeae b eaeeb e e eb e s e bt s ebeaeeb e s b esesb e st b ene b enensenes 5

© ISO/IEC 2003 — Al rights reserved iii

ISO/IEC 14882:2003(E)

1.10 ACKNOWIEOGMENTS ...ttt b bbbt b et bbb 8
2 LEXICEl CONVENTIONS.c.citiiitieeteseete sttt sttt b et b et b e b e se bt e bt e bt b et bt b et b et et et b 9
2.1 Phases Of TrANSIAIONceiueiiteiecie ettt bbbttt b et bt bbb 9
2.2 CRAIACIES SALS.....uieitiieteiet ettt ettt b bt e bt b st h e s b b e b e e e Rt b e R e R bt R Rt b et e b et bt b e e e 10
2.3 TrIQraph SEOUEINCEScuieetieettrteeere ettt ettt b et bbbt st b st bbb et b et b et et e b e 11
24 PreproCeSSING TOKENScc.oiieeirieeire ettt b e bbbt et b st R st bt bbb e e 11
2.5 AREINELIVE TOKENS. ..ottt bbbt bbbt bttt b e e 12
2.8 TOKENS. ...ttt ettt bbbt bt e bt e b e b e e s R e R e R £ e SR EeE £ R R R R R R R e R e R e R e e R Rt n e n s 12
2.7 COMIMENES.......eieiiiitietire ettt e et et e bt b e e R e R e e R s Rt s R e e R e R e s e e ee e s e e e e e e e ae et e aeenesbesbeereerenrenre s 12
2.8 HEAOEN NMAIMES.......eiieiiitieet ettt h bt e st b st bbb e bbb R b st bbb et e b et e b e e b e b e 13
2.9 PreproCeSSiNG NUMIDEISoouciieiie ettt ettt b st bbbt b e b e b e 13
P O T T (= 0L 1= OSSOSO RO PTSPPI 13
200 I R (= ATV o SRR 14
212 OpPErators aNd PUNCLUBLONSc.crveuerreuerueesseessesesessesessesessesesseessesessesssesesessesessesesbenesbeesse e ssensssessns 15
203 LITEIAlS etttk E R AR R R Rt Rt Rt bt b e e b e 15
2131 INEEOEN HEEIEIS .. ccvieeeeeeeieet ettt bbbttt bbbt b e b 15
2.13.2 CharaCLer [TEIAIS.c.eieeuieeeirieeeiee ettt bbbt et b et ettt e 16
2.13.3 FlOGHNG ITEIAIS ... ceieeeieeiete et b et bbbt ne e 18
2134 SHING HEIAIS. ...ttt b st bbbt b e b e e 19
2.13.5 BOOIEAN TITEIAIS ... ittt 19
3 BASIC CONCEPES ...ttt bbbt b st bbbt bt b e e 21
3.1 Declarations and defiNitiONSoceriiriiiri ettt b e e 21
3.2 ONEAEFINITION TUIE....c.eieictieee bbbt bbbt b e e b e e 22
3.3 DeClarative regions 8N0 SCOPES.curuierrireruirietirtesessestssesessesessenesseessessses s st ssesesbe st be st sbe e sbe e sbenessesens 24
3.3. 1 POINE Of AECIAIALION.ccuieeiieeeire ettt ettt 25
332 L OCEI SCOPEcviuetiaeeteeete ettt ettt bbb st b s b bR e R AR R R Rt bRt R b e e 26
3.3.3 FUNCLION PrOLOLYPE SCOPE.euveuieeuerreuestesesteeettsesesse st st st st st e e b e b s e bbb st b st st e st b et b et e b e e 26
3314 FUNCLION SCOPE.....cviueitiietieetestete sttt b bbb s bbb b e bt e st b e bRt b et b et b et et ne b e 27
3.3.5 NAIMESPACE SCOPE.....c.eevirireriiiriare st sttt r s bbbt s b s e R e Rese e s e e s e e e e e e e s e e et er e s b e sbesreerenresreas 27
O X G O = = oo o TSSOSO 27
337 NAME NIAING. ..ttt bbb bbbt e bt e bbbt b st e e e b en bt e enees 28
34 NBIME TOOKUP.cveeeetieeetet ettt bbbt b et bea R s b et b et b e e et e e b e 29
34.1 Unqualified NAME TOOKUDcoveueriieireiirtiestee ettt bttt 29
3.4.2 Argument-dependent NAME TOOKUP.eoviuiririiieiie et 32
3.4.3 Qualified NAME TOOKUDoveuiieiirie ittt ettt e 34

iv © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

O e N R O =] 1 1< 1171 1= £ TSSOSO 35
3.4.3.2 NAMESPECE MEIMDENS ...ttt b et b et b et b et b et b e e e b st bbb 35
3.4.4 Elabhorated tyPe SPECITIENS.couiiieieeiirteere et 39
345 ClaSSMEMDES BCCESSc.eiuiertiietitetertett sttt ettt e bbbt s bt b st b et s b et s b et s b e e b e s e b e b e st b st b et erens 40
3.4.6 Using-directives and NAmMESPaCce @liGSES.........ccurueurieririririirieese ettt 41
3.5 Program and lINKAGE.........ccciuiiriiei ettt 41
3.6 SHAIT AN LEIMINALION.e.eetieeeiieteee ettt b et bbbt b e b e b 43
361 MAIN TUNCHION. ...ttt bbbt b et bbbt bt ne et e s 43
3.6.2 [Initiaization of NON-10CEl ODJECES.........ciiiiirieiee e 44
36.3 TEIMUNGLION. ...ttt ettt ettt bbb st b st bbb e b b e bbbt bbb et b et b e b e b e 45
3.7 SHOrAOE AUIBLION.......ceetieeeeiest ettt bbbt b bbbt b et b et bt b e b e et b bbbt e 46
371 SHAliC SIOTAOE AUIBHIONc.veueeieeeeeeet ettt e bbbt e 46
3.7.2 AULOMELIC StOragE AUIELION.cueitiueetieetireetese ettt ettt b st se st se e sa e b e b b e s s 46
3.7.3 DYNamiC StOrage QUILION.cceuireeeieeiereeierteiesteest ettt bbb e et bt b e 47
3.7.3. 1 AlIOCELION FUNCLIONS......c.ecviieeieeiirt ettt 47
3.7.3.2 DeallOCation fUNCHIONS........ouiiiiiieiiieiiriese ettt bbbt 48
3.7.4 DUration Of SUD-ODJECES.........ceiuirirteietinieteriet sttt b bbbt bbbt s e bbb s es 48
3.8 ODJECE LITEIIME. ...ceceiteeiieeert sttt bbbt e bbbt e 49
e T 1Y/ o T TSSOSO USTPRPRPRN 52
3.9. 1 FUNAAMENTE TYES. .. ettt bbbt b et b e e bbbt 53
3.9.2 COMPOUND TYPEScuveueteuirtinerteeetee ettt ettt ettt b e b e s e b e bbbt b st b et b et s b e s b e e b e e bt b e st ne bt b 55
.93 OV -QUATIENS ettt bbb bbbt b et bt bt et bt b n e 55
310 LVAIUES 8NGO TVAIUES ...ttt bbbt bbbt n e 56
4 SEANCAIT CONVEISIONS......eviuiiteuiiteeetete bt se et sttt ebe e st e e st b e st b e st e b et e b e e e b e st ek e seebese e bt ae e bt es st e b e st s b et b et nrens 59
4.1 LVAlUE-TO-IVEIUE COMVEISION ...ttt et sttt sttt se ettt b ettt b et b e st b e e b e b et es et bbb e 59
4.2 Array-t0-POINTEN COMVEISIONoiiteuiiteeetereeteseete sttt seete et et b et bt b e b e st st e seeb e e e b e seebessesesbe st sbe st s beneenens 60
4.3 FUNCLiON-tO-POINEEN CONVEISIONvuitiieteseete sttt ettt sre s bt sttt b e st b e st eb e e bt e b s se s bt b et bt nnens 60
4.4 QUEITICELION CONMVEISIONS......uiitiiiieieieecetee ettt sttt sttt ettt esseebesaesbesbesbeseessenseseeneeneeneeneenens 60
A5 INEEGIal PrOMOLIONS.civeueiteueiteeeteeete et sttt sttt st ebe e st ae bbbt b et s b e st e b e st ebese e b e ne e b e sbeae s bt s b et b e 61
4.6 FlOoating POINE PrOMOLIONcouiiiteieterietese ettt sttt b et b e sttt b e e b e e b ss s bbbt nnens 61
A7 INEEYIAl CONVEISIONS.c.viuiiteuiitee ettt et sttt st et se et e st a st e st b et b et b et e b e st e b e st e b e s e ebese e bt ee st s b e st s b et e b et nnens 62
4.8 FlOAtiNG POINT CONMVEISIONS.....cuiiiteiiterieteseeteseete sttt saesessesesaesesbese s b et b e e sbe st st e seebeseebeaeebessesesbenesbenesbeneerens 62
4.9 Floating-iNtegral CONVEISIONSccuitiriiteriete sttt ettt sttt sttt st be st b e e b e bt e bt ss e bbb nnens 62
410 POINEEY CONVEISIONS....c.ecutiteutiteueeteteteseete st eteseeteseeteseesessesesaesesbeseabe st sbe e ebene et e seebeseebeasebeasenesbenesbenesbenennens 62
411 POINtEr 10 MEMDEN CONMVEISIONSetiieteeetereete sttt sttt saese st ste e bt st se b st st e seebe e b e ssesessesesbe st s b et b e srens 63

© ISO/IEC 2003 — All rights reserved \

ISO/IEC 14882:2003(E)

412 BOOIEAN COMVEISIONS. .. ccuieitireetereetersestasesestestssestabe st sbe st ebeseebeseebeseebeseebeseesesbe st sbeneabeneebe st ebe e ebeneebe e ebenens 63
B EXPIIESSIONS. ...ttt ettt ettt bbbt bk E R R R R R R R AR R R Rt Rt Rt b e b e b e 65
5.1 PriMary EXPIESSIONS. .. .cueeeuieetertesertesersesessesesseesstsesessesessesessesessesesseaessesseseseseaseseabestabenesbenesbenesbenessenens 66
5.2 POSHIX EXPIESSIONS ...ttt ettt b ettt bbbt b st b st b et b et b e b e b e 68
B2 1 SUDSCIIEING ... evtueteueeteeeteseetesiete sttt b et b bbbt s st b et b e b e e b e e e bt b e bbbt b et b et e b e et e e b e 68
B5.2.2 FUNCHON CAlL ...ttt bbbt bbb 68
5.2.3 Explicit type conversion (functional NOELION)c.eereeriererienereesese e 70
5.2.4 PSRUAO ESITUCLOr Callo.eeeiieiiieiiree ettt et 70
B5.2.5 ClaSSIMEMDES BCCESScuiieeuirieierieiireeier ittt ettt b ettt b st bttt e bbb st bbb et b et b et e e b e 70
5.2.6 INCrement and GECTEMENT.ciiuiireiirteeri ettt bbbt et b et 71
B.2.7 DYNBIMIC CASE ...ttt sttt sttt bt bt e st b et bbb e e bt b bbbt b et b et e b e e st e e b e 72
5.2.8 TYPEIENLTICAIION.eeetieetireeiire ettt et b e e 73
I S - 1] ol o= OSSOSO RO RPN 74
B5.2.10 REINIEIPIEL CASLeueivieetireetirietere ettt sttt b ettt et b b e bt b bt b st b et b et b et ne b e 75
5,211 CONSE CASE....ueueivieririisii ettt sttt h Rt e r e e e et r et r e renrenre 76
5.3 UNBIY EXPIESSIONS. .. .c.eivieetieeterietestestrsesessesessee st ts bt s et ese s st b e e b e e b e e e b e s e st s e bt b e st b e st s b et e b e e s be e b e ns 78
5.3.1 UNGIY OPEIBIOIS......viitiiuierisrestesriaressess et se et sre s ss e s a e r b se e s e sese e ss e s e s e e e e e ae et s st eresbesbeereerenrenreas 78
5.3.2 INCrement and GECTEMENT.ceiuiiriiirieiriee ettt b ettt b et 79
5,38 SIZEOT .. R R R Rt bR e b 79
5.3 INBW ..ttt h e h R R R R R R R R AR R R ARt bR e b e b e 80
B35 D ELE. ...ttt bR R AR R R Rt Rt bt b e b b 83
5.4 Explicit type conversion (Cast NOLELION)cccirieerieirieirieesiesesiee e 84
5.5 POINtEr-t0-MEMDES OPEIGIOIS.c.eiveuiieeierteirtee ettt b et b et b et bbb e b 85
5.6 MUILIPIICALIVE OPEIGLIOIS.c.c.veveeeeireeiireeiestesesiee sttt b ettt bbb et b st b st bt bt b b e e b e 85
B5.7 ACUITIVE OPEIBIOIS ...ttt ettt b e bbbt b st b st b et s b et e b e b e b e 86
5.8 STt OPEIAIONS.iueieieeeteeet ettt bR h R et 87
5.9 REIBIHONA OPEIBLOIS.eeeuieeeirtetirteiireeiest sttt b et b st e b b e b e s st s st b st b et s b et s b e et e e b e 87
5,10 EQUAIITY OPEIBIOIS.cuieeeieetireeieitet ettt ettt bbbt bbb st bbb et ne b e 88
511 BilWiSE AND OPEIGIOcueeeeieeuireesereeuestesesseesstsesesse st esessesesb et b e e s b e e b e s e se s e st b e st b e st s b et sbe e s be e ebe e ees 89
512 BitwWiSe EXCIUSIVE OR OPEIEIONc.civeuertiuiriiestiiesesesestesessesesse e bee e s s bt b be et e st e b e 89
5.13 BitWiSE iNCIUSIVE OR OPEIGLOLc..cueiviuiiuineriiesiiieiissesestesessesesse e e e s et b ettt b et e b e b e 89
514 LOGIiCEl AND OPEIGLOLcueeeuieeuireesereeuestesesseesstsesesse st ssesessesesse e s eaesseessesese s esesbese e b e st s be st sbe e sbeneebeneens 89
515 LOGICE OR OPEIEIONc.ecuieeeieeuertesireeuessesesseessesssessesessesessesesse e sesesseesse s e st s esesbe st s b e st s be st sbe e sbeneebeens 90
5,16 CONAItIONGl OPEIBIONcuieeeiieiereeiireei sttt e ettt b et b st b st b et bt bt ne b e 90
B5.17 ASSIONMENT OPEIGIOISveueeviieiireetereeiesteses ettt s ettt e st b et b e e b e e b e e b e s e st b e st b et b et e b e et e e e b e 91

Vi © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

5.18 COMMEBOPEIGLONeiviieierirreitessisreste sttt r e sb et r b e se e s e s e s e e se e s e e e e e e ebe e st e st sresresbesneerenresreas 92
5,19 CONSLANT EXPIESSIONSeviueetieetireetertesessesesseesseessesesessesessesesbe st sbese s s e e s b e e e s e s ese s ebe b enesbe st ebe e sbe e ebe e ens 92
B SEAIEIMENTS. ...ttt e e et r R r e renrenrea 95
6.1 LaDEEO STAIEMENT ...ttt bbb 95
6.2 EXPIrESSION SEAIEIMENTceitieetiietire ettt bbbt bbbt bbb b s 95
6.3 Compound StALEMENT OF DIOCKcuiriieirieiriiricr e 95
6.4 SEIECHION SLAEIMENTS.cvieeieieeiertee ettt e et e e bbb e bbbt e bt e st b se b b e s s 96
B.4.1 ThE T T SEBIEIMENL.....citiiitiece ettt e bbbt b ettt b et 97
6.4.2 TheSW T CH SEBIEMENTcuiiiiece ettt b 97
6.5 [LEralioN SEALEIMENES.cuiietieceieet ettt e et bbbt bt sttt e b 97
6.5.1 TheWNi | © SLAEMENT......cceiiieiee ettt e 98
6.5.2 ThEUO SEAIEIMENLcouiiieieet ettt bbbt bbbt bbb b 98
6.5.3 Thef OF SBEMENT. ..ottt b et nn s 99
6.6 JUMP SLALEIMENTS.eitiitiieier ettt st e e e e e et e e b et r e renb e sr e renrenneas 99
6.6.1 The DI €Ak StAEMENT.......c.c ittt b s 99
6.6.2 TheCONT i NUE SIAIEMENT......ciiiiieetiieet ettt ettt b et se b e b e b e 100
6.6.3 Ther €L UI N SEEIMENLovieieieeeereee et b bbb bbbt e b et neens 100
6.6.4 ThE gOL O SIAEMENTooviiitie ettt bbb et n et nnens 100
6.7 DECIaralion STAIEMENTc.oieiuiiitireetereet et b b e e n e e 100
6.8 AMDIGUILY FESOIULION ...ttt ettt b et b et b e b e b e b e b st e 101
T DECIAIALIONSeceeeeueteeet ettt ettt bt h et a bbbt b et b e b e e b e e b e e s e e e st R e e b e e e bt e b s b et n e st e ens 103
T 1 SPECIHTIEIS ..ttt b bt b et b e bt e bR bR R R R R e Rt R e bt n Rt et e ens 104
711 StOrage Class SPECITIEISciri ettt ettt b et s e n b et e 105
7.1.2 FUNCLON SPECITIEIS. ..ttt ettt bbb bbbt b e b e bbbt e b bt nn s 106
7.1.3 Thet ypedel SPECITIE . ..o 107
714 Thef ri €N SPECITIEN ..ot n et 108
715 TYPE SPECHTIEIS. ...ttt b bbbt e bbbt e et e et b e b e b e bt e bt ne e ens 108
7151 ThE CV-QUAITIENS. ..ottt bbbt s bbb et e 109
7152 SIMPIETYPE SPECITIEIS. ..ttt n et 110
7.1.5.3 Elaborated type SPECITIEIS.....c.oiueuirieiirieerteert ettt 111
7.2 ENUMEration ECIAIEIIONSc.eveuiieuirietirt ettt sttt ettt b e eb e s b n b et nn s 112
7.3 NAIMESPACESoouiiviiriiteiti ettt b e bbbt r e E e se e e R e s e s e e s e n e se e e e aeese et e b e e b e sbeeneerenre s 114
7.3.1 NamMeSPaCe AEfiNITIONccovireiuirietirietiree ettt e 114
7.3. 11 UNNGMEU NAMESDACES.cveeeveeetereeserseseseesessesessesessessesessesessesessesessesessesessesessesesseasesesesessenesseseseenes 115
7.3.1.2 Namespace Member defiNitiONS..........coiiiirir e 115
7.3.2 NAIMESPECE @lIBS.....cueeveueetieetire ettt ettt b bt b e bt e bt s bbbt s e et b et b e e b e e bbbt s b et st e ens 117
7.3.3 TheUST NQ ECIAIALIONcveeeuiieeirieiirtee ettt s e n et e 117
734 USING QIFECHIVE.eeueitiiitieet ettt b b bt b bbbt e et b et b e b s b e e b e st e ens 123
T4 ThEASMUECIBIEIION ...c.vieitieetee ettt b bbbt e bbb bbb s bt e b e s e ens 126

© ISO/IEC 2003 — Al rights reserved vii

ISO/IEC 14882:2003(E)

7.5 LinKage SPECITICALIONScuevevireeeirieiirie sttt b et b bt n e e s 126
ST DI o K= = () £ TR 131
R Y/ 01T =1 1= TSSOSO 132
8.2 AMDIGUILY FESOIULION ...ttt ettt ettt bbb bt b e bt s bt e s e e s 132
8.3 MeEANING OF JECIAIAIOISveueevieetirieie etttk nb et e et e e s 134
TR0 R = 01 01 (=, £ F RO 135
R I = < 1< (= 010 135
8.3.3 POINTEISTO MEIMDETS ...ttt ettt e et e e s e e e e st b e e s eaae e s sabe e s ebeessbeeesssbessenbesssarees 136
B34 AITAYS ottt R E R R R R R R R e ettt r e r s 137
SRR T = U1 0 To: o RO 138
8.3.6 DEfAUIT BIQUMENTS.......eeitieetiiectereeie ettt b bbb bbb bt e b s bt n s e e s 141
8.4 FUNCHON AEFINITIONS. ...ttt ettt e e e e s et e e et e e s st e e e e bt e s seaaeessabeessbeessbeeesssbessenbenssanes 144
R I 1 a 1L E= L= £ 145
8.5 1 AQOIEOALESueeiiitirieiti ettt R R r R e et r e r e s 147
8.5.2 CNBIBCIES BITAYS . ..vieetieetereetere ettt ettt b b bt e bt e bbbt e bt b s s b e bt b e e bt s b e b bt e e s e e ne e s 150
B.5.3 REFEIENCES..... . eeieieteie ettt ettt et e ettt e e et et s st a e e e eab e e s eaee s s beessasteesasaeessabeesebeeesaabeessabeeeebenesarees 150
L T O =S RO 153
L TN R O = o 7110 1= 153
L O - =R 1 01< 1 4] 1 £ TR 155
LRI Y, L=l 0] 0TI R 10] aTox 1) TR 157
9.3.1 NONStAtiC MEMDEL FUNCHIONS.......eiiiiieieieeie et e et e e e e e et e e e eee e s s e e e s stbessesseessbeessbeessansessssbessesesssasees 158
9.3.2 THET NI S POIMLEN ...ttt b bbb bbbt e b b bt n st n e s 160
L TS = (1ol 101510010 = £ 160
9.4.1 StatiC MEMDE TUNCLIONSeiiiiiie ittt ettt et e et e s s e e e s at e e s eaaeessabeessbeessneeesssbessebesssares 161
0.4.2 SEAliC HaLA MEMDETS......oeiiieeee ettt ettt e e e e s et e e s te e s st e e s sestessasaeessabeessbeessabsessssbeesensesssanees 161
LRSI O 14 10 0TS 162
L T =11 1= [LR 163
0.7 INESLEA ClasSS AECIAIAIIONS........eeiieteie ittt et e e e e e e et e e s ree e s s e e s ssateesasaeessabeessbeessabeeesssbessesesssarees 164
0.8 L OCA ClasS AECIArGLIONS.........ceeiieiiieieeie et ete e ettt e e e e e et e e e s ae e s st e e s s sttesssaaeessabeessbeessssessssbessesesssarees 165
9.9 NESIEU LYPE NAIMES ...ttt sttt eb b bt b e bt e b e bt b e s s b e e b e b e e b e s b e b bt e en e e ne e enes 166
1O DENVEA CIASSES ...ttt ettt e e et e ettt e s ettt e s et e s e saeessbeeesssbessessaessabeessstessansesssbeeesssbessessnsssares 167
10.1 MUIIPIEDESE CIASSES ...ttt b e e b ettt sa et b et b e b e re e 168
10.2 MeEMDEr NAME TOOKUPcitiiiteieteriet sttt st b b e bt se st saese b sesbe e eb e e ere e 169
ORI AT ¢ (8 = I8 {0 g Tor (T o) TR 172

viii © ISO/IEC 2003 — Al rights reserved

ISO/IEC 14882:2003(E)

O A o = o o = LTSS 176
R (V1= g o= g o orc Y oo o SR 179
L1 ACCESS SPECIHTIEIS...eeeceiieeieit ettt ettt sttt b et b et b et b et b e se b e se et e seeb e se bt naenesre e sbe e ere e 180
11.2 Accessibility of base classes and base Class MEMDELS..........ooiiriinnine e 181
IR N oo Yo L= o == 1 o T 182
I T oo ST 183
11.5 ProteCted MEMDEN BCCESS.......ciiiiiriirierieseeteie et et ettt sttt re st e sbe st sbe e see e e se e e e eneeseeneesesbesaesaeereneas 186
11.6 ACCESSTO VIrtUal TUNCLIONS.......couiiiiiiiciesiesie sttt sttt s sresbenae e 187
117 MUITIPIE GOCESS ...ttt ettt ettt ettt sttt sttt b et h b se bt b et b e e e b e se b e se ekt seeb e seebeseenesbe st sbeneereneas 188
11.8 NESIEU ClASSES ...ttt ae bt e b e st e b e s e e st e e se e e et et et eneeneeneenesbenaesaeereneas 188
12 Special MEMDEN FUNCLIONS........coiieiiieiiee ettt st 189
N R ©0 0 1 (U Tox (0] £ TSP USSP USRI 189
122 TEMPOIAIY ODJECESeieiuirteueiteeetestet st se ettt sttt se st s st se s b et b et b e seebeseebeseebeseebeseebeseesesbenesbeneereneas 191
G T ©o 01V = T oL 192
12.3.1 CONVErSioN DY CONSITUCTONoueiitiietiieetereete ettt st r e sre e 193
12.3.2 CONVEISION FUNCHIONS.......iitiiieiieitisiesie ettt ettt st st s a et e e e et et et ene e e enesbesaesnesreneas 194
D2.4 DESITUCKONS. ...ttt ittt sttt ettt et he ettt e s et s ae e sbe s et e sh e e aee b e eabesheeaeeebeeabeeae e bt eaeesaeeaeesaeensesaeenbeseeans 195
T o (= 1 (o] £ SRR U USRI 198
A ST 1 ol (= 2 o o S 199
12.6.1 EXPlICITINITIAITZALTIONoviueieeieieieteeet ettt e b e st st s s e e n e sre e 200
12.6.2 Initializing baseS and MEMDETS..........coiiiieirereeere bbb 201
12.7 Construction and ESITUCHTIONc..iiuerie ettt st sbesaesnesreneas 204
12.8 COPYING ClaSS OIJECEScoveuiiieiiieiet ettt et b e et e e n e re e 207
13 OVEIOBHING -.veetiieetiieei ettt et b et b et b et b e s e bese b e se b e se ekt sae bt e e st nre e b e e nre e 213
131 Overloadable deClarations....... ..o ereeierieeeierere sttt st be e saesbesbe e seenbeseeseenean 213
13.2 DeClaration MEIChING.......c.couiteirierieterete ettt b e b et se b e s e b e sre e 215
RS @ V7= g or="o [== ! V11 To] o IS 216
13.3.1 Candidate functions and arguMENt [ISES........coueuirieireirerere e 217
13.3. 1.1 FUNCLION CBII SYNEAXviueiteuerteieteniete sttt ettt b e b e e b e bt e s e s sn et sne e sre e 218
GG 00 It I R = | I (o B =000 N {01 o1 o TSP 218
13.3.1.1.2 Call 10 ODJECE OF ClASSIYPR. ... ettt et re e 219
13.3.1.2 OpPEratorSin EXPrESSIONS.ceueierereerereetereetersesereesessesessesesseesseseeseseeseseebeseeseseesesaesessesessesessenesseneas 220

© ISO/IEC 2003 — Al rights reserved iX

ISO/IEC 14882:2003(E)

13.3.1.3 Initialization DY CONSITUCLONcovcuiiieiieeiiiee ettt 222
13.3.1.4 Copy-initialization of class by user-defined CONVEISION.........cccoeeieiiennereeseee e 222
13.3.1.5 Initialization by CONVErSION fUNCHION........cciviiiieiieesieeeeree et 222
13.3.1.6 Initialization by conversion function for direct reference bindingcccoeeeveineinenncnnenens 223
13.3.2 ViI@D@FUNCLIONS.......citiiitiiiteiete ettt b e e b b e bt se st sn et b e e b e e e b e e ere e 223
13.3.3 BeSt VIiahl@ FUNCHION ...ttt b e ene e 223
13.3.3.1 IMPIiCit CONVErSION SEOUENCES.cuteeuereeiereeserreiestesesseessesesseseeseseebesaebesaesessesessesessenesreneereseesesens 225
13.3.3.1.1 Standard CONVErSION SEOUENCEScuerveuerrererreerreesseessesesseseeseseeseseesesseseseesessesessensssesesseseeseseas 227
13.3.3.1.2 User-defined CONVErSION SEQUENCES.........coueutrueerieerreesreseereseeseseeseseesessesessesessesessesessessssessesesens 227
13.3.3.1.3 EllipSiS CONVErSION SEQUENCES.......covieetireeuereeuesteuessesessesessesesbesessesesbesessesessessesessesessesessesessenessens 228
13.3.3.1.4 REFEENCEDINAINGc.coeiteeetereeteriete ettt ettt sr et sa et b et b e b e ere e 228
13.3.3.2 Ranking impliCit CONVErSION SEQUENCES........c.uetrieuerteerteestee sttt st st se i e s se s ssese e s srenesnens 228
13.4 Address of overloaded fUNCHION..........cociieirieirieiriees ettt er e 230
13.5 OVEI0B0EI OPEIBIONS.c.civeeeteeetereete sttt sttt b ettt b et bt b et eb e e eb e e b e sa e bt seesesaese s b e e sbe e ebeneebeneas 232
1351 UNGBIY OPEIBIOIS.oiuiiuiieieririerii st sr ettt b e b sb e s r e R e se s e e e e e e s s e e aeerenseeneerenns 233
13.5.2 BINAIY OPEIGIOIS....c.ecueiteutrteieteeeteseete st ete st et seeae e eaessesesbesesbe st b et s be e e b e st eb e st ebeneebeseebeseesesbe st s be st sbeneebens 233
13.5.3 ASSIGIITIENLouviiiieieiteiet ettt sttt ettt se bt e st b et b et e b et eb e st e b e seeb e s e ebeseeb e se e bt seebenbe st e b et ebe e ebe e ere e 233
1354 FUNCHON CAL ...ttt ettt e b e e b e bt e bbbt sa et b e e s b e e e b e e ere e 234
13.5.5 SUDSCIIEING ...eveuerreuerteieeteneeteseete st et sttt seete st bt e st sb ettt b et ebeseebeseeb e s e ebesaebesaebeseebesaeseebe e ebe e ebeneereneas 234
13.5.6 ClasSIMEIMDES BCCESSccviiiiterietereetereete sttt seeiese et ste e b et st et et e st ebese et e seebesaebesaeseseesesaeseebenesbe e ebeneereneas 234
13.5.7 INCrement and AECTEMENT.oirierireetereet ettt ettt a e b e b e b e e ere e 234
13.6 BUIIT-IN OPEIBIOIS.ecueiteieiteeet ettt ettt b et b et bbb e b e e b e sa bt se e st sb et b et e b e e ebe e ere e 235
T4 TOMPIALES......ceeieeeeee ettt et b et b et b e s e R e se b e s e e bt se b e e bt e e n e Rt R et b e e ne e ere e 239
141 TEMPIAIE PAIGIMELENS.ceitiieetereetese ettt ettt ettt sb et b et bt bt b e se b e seebeseebesa bt sb e bt sre st s b e e sbe e ebeneebe e 240
14.2 Names of template SPECIAlIZALIONS.c.eiveuireeiirieirieeree ettt ere e 242
143 TEMPIGIE BIGUMENES......cctiiiteieteeetereete sttt sttt sttt st b et b et b e st b e b e bt e st nb et bbb 244
14.3.1 Template tyPe rQUIMENLS.ccereerereeeereetereete sttt sttt sr et ebe e b e ebese et saebeseebeseesesaesesbenesbe e ebeseereneas 245
14.3.2 Template NON-tYPE AIGUIMIENLSc.eiverireeeireeiereesereeestee st et sbe e b e b se b seebesaebeseesesaesesbenesbeseereneereseas 246
14.3.3 Template template arQUIMENTS.......ceiveverieeirieeree ettt eb et et sae e b e b e b e ere e 248
T4.4 TYPE EUIVBIENCE.......cueitiuiiteeeteseete sttt stttk sttt b ettt et b e st b e se ek e s e eb e se b e ne e bt sb e bt see st e b eneebe e ebe e ere e 248
145 Template deClaralionsS.........cccireerieerietereee ettt b ettt sa et b et b e b e ere e 249
TA5.1 ClasSTEMPIAIESceieeerteieeteseete sttt sr ettt et b e b se b e st b e se b e sa e bt see st see st eb e e ebe e ebe e ere e 249
14511 Member functions Of Class tEMPIELES..........cociiieiirieiieee e 249
145.1.2 Member classes Of ClasstEMPIALEScciiiiieirieeee e 250
145.1.3 Static datamembers of Class tEMPIALES..........cccoeiieriiiieneeereee e 250
1452 MEMDEr tEMPIALESceitieiteeete ettt b e e b e b et e st se et b e e b e e eb e e ere e 251
TA5.3 FHIONOSceeectieeeete ettt e et b et b et b e e b e s e bt s e e bt se b e ne bt s e e bt s e e st b et b e e b e ere e 252
145.4 Classtemplate partial SPECIAliZELIONS..........ceiveuirieirieirteeete et ere e 254
145.41 Matching of classtemplate partial SPECialiZatioNScoceereeereereeree e 256
145.4.2 Partia ordering of classtemplate SPeCialiZations...........coooeereereerieeneere e 257
145.43 Membersof classtemplate SPECIaliZatiONS.........cccoieiriierereeree e 257
1455 FUNCHON TEMPIAEES......c.citieitieete ettt sttt b et se et e et sa et b et b e b e e ere e 258
14551 Function template OVErTOadingcoeiieiiieiieeseeee e 259
1455.2 Partia ordering of fUNCLION tEMPIELESccveiieiiieereeeeeee et 260

X © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

146 NAME TESOIULION. .. .ceeuiieiiiteieetee ettt ettt sttt e ettt b et b et b e s e e b e se b e se et e seebeseebeneenesre st ebeneereneas 261
14.6.1 LOCElY AECIArEA NAIMESoeuiiieiiteeet ettt b e bbbt e bt se s sn e b ere e 264
14.6.2 DEPENUENE NBIMES.ocuiitiirteietentet et et sttt se et se et se et e st sbesesb et s b et e b e seebeseebeseebeseebesaebeseesesrenesbeneereneas 267
14.6.2.1 DEPENUENE LYPES......eveutreeuirteiirteeete et sttt st et s ebe st ae et e et s b et b et b et e b et e b e st e b e seebene b e e be e sennns 268
14.6.2.2 Type-dependent EXPIrESSIONS........cccerereriererrerereeierresestese sttt se b seebeseebeseebesaesessesessenessenesreneas 268
14.6.2.3 VaUue-dependent EXPrESSIONScoereeriereriereriesestesesseesseessesesseseeseseeseseeseseesesaesessesessesessenssseneas 269
14.6.2.4 Dependent template argUMENTS.........coceireririeirieirieeseee ettt s b e be e b snesesne e sn e sre e 269
14.6.3 NON-OEPENAENT NBIMES......c.eitiiiteietereet ettt r et b ettt b e s e b e se et e seebeseebeseebeseesesrenesbeneereneas 270
14.6.4 Dependent NAME FESOIULIONccviririeririeiereetere ettt sttt b et s be e b e be e esesee e sne e sreneas 270
14.6.4.1 POINt Of INSEANTIALTION.civeiriiieteieetese ettt b e et et se b e bt sa s e e ne e sre e 270
14.6.4.2 Candidale FUNCHIONS......c.ciuiiiieieteriete ettt st b e s b e e b e sn e n e sre e 271
14.6.5 Friend names declared within aclass template............ccoeieiierrennree e 271
14.7 Template instantiation and SPECIAlIZELION............cvreerieirieerieeeeree et 272
1471 IMPlICITINSEANTIALION.eeiteieieeet ettt s b e et e bt se e sn e ne e nre e 273
14.7.2 EXPlICIT INSEBNTIALION.eeiteieieieteeete ettt b e et b e e b e s sr e n e ere e 276
14.7.3 EXPliCIt SPECIAIIZALION.c.eiveueiieieteieete ettt b e bt se b e b se s sn e n e ere e 277
14.8 Function template SPECIAli ZALIONS.........cereeuireeterietireee ettt 282
14.8.1 Explicit template argument SPECITICALIONc.erveirieirieiriee e 283
14.8.2 Template argument EUCTIONcoireeirieiirieiirieereee ettt b e sn e sre e 285
14.8.2.1 Deducing template arguments from afunction Callcoceoeeiiencincinc s 287
14.8.2.2 Deducing template arguments taking the address of afunction template.............cccccveeveineens 288
14.8.2.3 Deducing conversion function template argUMENTS...........ccoieereereereiesenesesesresesre s seereseenens 288
14.8.2.4 Deducing template argumentS from A tYPe.......ocereireiiierrereeseee et 288
14.8.3 OVE108 FESOIULIONoviueiteiiiteieteseet ettt b e b e et b e e st saese e et ne e nre e 293
15 EXCEPLON NANAIING ...cviiiieiiiieeestee ettt bbb e bt b e e bt e s n e n e re e 297
151 THIrOWING 8N EXCEPIIONoviuiiteirieietereet ettt sttt se ettt b e b e b e b et seebeseebesaebeseesesrenesneneereneas 298
15.2 CONSLrUCLOrS 8N ESIIUCIONS........coveuiiteertereete sttt sttt sttt ettt se e e n e 300
15.3 HandliNg @ EXCEPLIONcveueiueiiieietere ettt sttt b e b e b e b e bt seeb e e esesr et sne e ereneas 300
15.4 EXCEPLiON SPECITICALIONS.....c.civiirtiieteieetereete ettt b e bbbt e bt sa s r e n e nre e 302
155 SPECIAI FUNCLIONS.......cuiiiiiitieiteeetet ettt b et b e e b e s bt se bt se bt seesesre e s b e e nre e 304
1551 Theterm nat @() FUNCHIONcooiirieiieeee et 304
1552 TheuneXpecCt @d() FUNCLION ... 305
155.3 Theuncaught _excepti on() fUNCLON.........cccoiiiiiiieiee e 305
15.6 EXCEPLIONS BNU GECESS.......ueeiteuirteieteneeteseete sttt seetesee e se st ese st et s bt beseebese et e seebeseebesaesesaesesrenesneneereneas 305
16 PreproCesSiNg GIFECHIVESccuiueirieietere ettt ettt b et b et b et b e e b e b se b saesesaesesbe e sne e ere e 307
16.1 CoNitioNal TNCIUSION......c.civiiiteirieietere ettt sttt b e b e b et e b sa s e e ebesre e sne e ereneas 308
16.2 SOUCE FIlETNCIUSION ...ttt e b e e b et se bt sa s et n e re e 309
16.3 MACTO FEPIACEIMENTeveiiiteiiteiete ettt ettt sttt r et b et b et b e e eb e se et e seeb e seebeseebeseesesre e sreneereneas 310
16.3.1 Argument SUDSHTULTIONc.civiiiiiiitiietereet ettt b ettt n e ere e 311
16.3.2 THEH OPEIGLONc.ecueeeuiiteieeteeste ettt ettt ettt sttt sttt b et b et b e st b e se b e seebeseeb e saebeneenesre st sbeneereneas 311
16.3.3 TREHH OPEIGLONcueeeieiteeeteee ettt sttt b et b et b st b e se b e se bt seeb e se bt seenesre e sbe e ereneas 312

© ISO/IEC 2003 — Al rights reserved xi

ISO/IEC 14882:2003(E)

16.3.4 Rescanning and further replacement...........oooi e e 312
16.3.5 Scope of MACrO defiNItIONS.ccuiiiieeeireeere et 312
3 A T 0= oo g1 (o] SR 314
T (o g0 1= Y TS 314
16.6 PragmMadifECliVEc.eiuiiiieeiteeete ettt b et b e b e e b e b e se bt se bt sa st s b e st sb e e b e e ere e 314
A 1011 o = ot (= SR 314
16.8 Predefined MAECIO NAIMES.cciiiiiiieiereete ettt sttt se et s ebese b se b e seebesaese b enesbe e sbe e ere e 315
17 LibDrary iNrOTUCTION..........ceitiiiteieieseet ettt ettt b e b e bt e bt sa bbb e b e e b e 317
0 R B T oo < S 317
17.1.1 arbitrary-poSitioNal SLIEAM.......ccoiiiirietirieteie ettt b e bbbt et e b b e ere e 317
A v o o £ SR 317
17.1.3 CharaCter CONTAINES TYPE.....coveeeierietereete st re ettt ettt b et se b e b e b e bt se bt sa st e et s b e e b e e ere e 317
17.1.4 COMPATSON FUNCHION ...ttt ettt b e b e bt e bt sa e a e sb e b e e ere e 317
17.1.5 COMPONENE......citiitiitiiriererte sttt ettt sr s se e b e e e e e e et se b e e et e r e er e b e seesr e rennesnennas 318
17.1.6 defAUIT DENAVIOL ..ottt b ettt se et a e b et b e re e 318
0 T A o= oo [0T o SR 318
17.1.8 10Stream ClasS TEMPIALESccceuirieierietereet ettt st be et et b e b e ere e 318
17.1.9 MOGIfIEr FUNCLION ...ttt b ettt se et b e b e b b 318
17100 ODJECE STecveeeeeeeeieet ettt ettt b et b et b et b e e b e ekt e bt e bt b et R e r e re e 318
17.1.11 narrow-oriented iOStrEaM ClASSES.........ciieirieirieerie sttt r e b re e 318
L7002 NTCT Sttt b e bt b e b e bt b st b e st e b et e E e e e bt s e e b e seeb e se e bt se e bt se e bt e b enesb e e ebe e ere e 318
17.1.13 ODSEIVEL FUNCLION ...ttt b e b e bt e bt sa e a e b e b e b e 318
17.1.14 replaCement FUNCLION.c.oi ittt b et r e b ere e 318
17.1.15 reqUIred DENAVIOc.oiviiiieieeet ettt b e et b e bt et bbb e re e 318
17.1.16 rePOSITIONE] SLIEAIM......ciuiiiteeitiiete ettt sttt b et b e e b e b se bt se bt saese b enesbe e ebe e ere e 319
T A == Y=o I 11 o o o SR 319
Tt T 1 1 (= o TP 319
17.1.19 wide-oriented iOSream ClaSSEScoieiieirieriee ettt 319
17.2 Additional defiNItiONS.........ccoiiiiirieiiree bbb 319
17.3 Method of description (INFOrMELTVE)coreirieirieereereeeee e 319
17.3.1 Structure of @aCh SUBCIAUSE..........coviiiiiicesee e b e e eb e 319
L17.3. 1.1 SUMIMBY .ottt h bbbt r s bt s e R e R se e s e R e e e e e et st er e ne e nneerenrs 320
17.3. 1.2 REQUITEIMENTS ...c.viuiiteiiiteeeteseete st sttt se et se et se st se et st sesbesesb e e e b e ne e b e seebeseebeseebeseebeseesesbenesbenesbe e ereneas 320
17.3.1.3 SPECITICAIIONS. ... ecueeeieiteieteitete ettt sttt sttt b et b et b et b e s e b e e b e se bt seebesa st sbenesbe e ebe e ere e 320
L17.3. 14 G LIBIaIY oottt b e bbbt e bt et n et bt b e r e 321
17.3.2 Other CONVENTIONS.......cuiitieiteietesiet sttt sttt sttt et bttt b et b et b e s e ebeseebeseebeseebesaesesbenesbe e ebe e ere e 321
17.3.2.1 TYPE UESCIIPLIONS.civiueireietereeteseete sttt sttt se et se et e ettt b et b e e b e st b e seebeseebeseebesaeseseenesbe e ere e ene e 321
17.3.2.1.1 ENUMETGEEA YPES......eiveuiiteeeteietereet ettt ettt sttt st st b ettt e b e e b e b et nn et b nrene 322
17.3.2.1.2 BiIlMASK TYPES.....cveueiteeeteeeteniete sttt sttt sttt se st se et b ettt b et bese b e se b e se b e se bt seebesae st s b enesb e e ebe e ere e 322
17.3.2.1.3 CharaCter SEOUENCES.ccveeeteeetereetereeteseeteseesessesesse st sbesesbesesbeseebeseebeseebeseebeseebesaesesbenesbeneebeneereneas 323
17.3.2.1.3. 1 BYLE SHINOS ettt sttt ettt b et b e e b e b se b se bt se e bt sa st b e e s b e e b e ere e 323
17.3.2.1.3.2 MUILIDYLE SIINGS. .. .cueiveeiteietereet ettt b et r e b ere e 324
17.3.2.1.3.3 Wide-CharaCler SEQUENCES.........cerueuirieiireeterieiesie sttt ettt st st e b e bt sae s sa e sne e sbe e ene e 324
17.3.2.2 FUNCHONS WIthin ClASSES........cueiiiiiiietiieeti ettt re e 324
17.3.2.3 PriVaE MEMDEIS ...ttt b e b e bt e bt sa ettt b et r e ere e 324

Xii © ISO/IEC 2003 — Al rights reserved

ISO/IEC 14882:2003(E)

17.4 Library-Wide reQUITEIMENTScoeirieiieetereeie ettt sttt et e et e et b et bt bbb 324
17.4.1 Library contentS and OrganiZationcccoeerieierienisienese ettt re e ebe s 325
17400 LiDrary CONTENES....ccitiiietirietereetereete sttt sttt sttt sttt b e e b e se b se b s e bbbt b e st s be st s b et st et be e b 325
L7402 HEBOEIS ...ttt b et bt b e st b e s e bt s e bt e bbbt e e st bbbt et b s 325
17.4.1.3 Freestanding implementalionS..........cccoeiieiieirieseesere ettt 326
1742 USINGENETIDIAIY ...cviiiteeeeeeeteee ettt bt bbb b 326
L7421 HEAOEIS ...ttt ettt bbbt b et b e e b s e bt e bbbt b e st bbbt et b s 326
L7.4.2.2 LINKAOE .. .eiveueiteeeteeetest ettt ettt sttt sttt et st b et b et b et b et e b s e e b s e e b e e bt e b bt e b e st e bt e b et e b et b e e b 327
17.4.3 CONSITAINIS ON PrOGIAIMIS.....c.eevieetereeteseeteseeueseesesseessesesseesse st ebe st ebeseebeseebesseseasesessesesbenesbe e sbenesbeneebens 327
17431 RESEIVEU NAIMIES ..ottt sttt sttt sttt sttt b et bt b e st b s e e b e s e e b e s e e bt e e e bt e b e st e b e st sbe e be et e e b 327
17.4.3.1. 1 IMBEIO NAIMIES.....c.virieeieteie ettt r st sr e e e se e se et b e bt e Rt bRt R e sb e sr e n e n e sn e n e e e e e eneas 327
17.4.3.1.2 GlODEl NAIMES ...ttt ettt b et b e e b e bbb s b st s b et bt b et b e b 327
17.4.3.1.3 EXIENG HINKAGE......e ittt ettt b 328
L7.4.3. 014 TYPES ettt ettt ettt sttt b et bt b et b e e bt s e bt e e bt e e e R e R e R SRRt SRRt SR e Rt R et b e b e bt e b e R nnne 328
L7.4.3.2 HEBOEIS ...ttt bbbt bt b e e bt e bt e bbbt bbbt bbb 328
17.4.3.3 DEIVEL ClBSSES ...ttt b et b et b e e b e s b et b bbb st b et bt sttt b s 328
17.4.3.4 ReplaCcamMent fUNCLIONS..........ooiiiieeiee ettt ettt 328
17.4.35 HaNAIEr fUNCHIONS......couiiitiietereeteree ettt ettt b e 329
17.4.3.6 OLNEN TUNCHIONS ...ttt sttt sttt b e st b e s b e bbb bbbt bbb b 329
17.4.3.7 FUNCEON @IQUIMENTS ...ttt sttt sttt sttt b et b e e b e b e st b bbbt bt b et st e b 330
17.4.3.8 ReqUIred Paragrapi........coveuirieeirieie ettt bbb 330
17.4.4 Conforming imMPIEMENTALIONS.........ciieirieiriee ettt sttt eb s 330
L7441 HEAOEIS ...ttt bbbt b et b e s e b s e bt e bbbt e b e st bt bt b et b b 330
17.4.4.2 Restrictions 0n Macro defiNitiONS..........ccoveiiiiireineese e 330
17.4.4.3 Globa or NON-MemBer fUNCLIONS...........ccoiiiieeeeee e 330
17444 MeMDEY FUNCHIONS......ccoitiiitieetiet ettt bbb b 331
L17.4.45 REENMIANCY ..ocveiviieiiririiteee ettt et b e bbb e r e R e s e e se e R e b ne e s e e e e e e eneas 331
17.4.4.6 ProteCtion WIthin ClASSES........cceiitiirierene sttt bbb 331
17447 DEIMVEL ClBSSES ...ttt b et b et b e e b e s b e e bbbt e et bt s bt b et et e b 331
17.4.4.8 Restrictions on exception NANAIING........c.ccoeiieiineinee e 331
18 Language SUPPOIT TIDIEIYcoeieiireeiieie ettt sttt eb 333
T 1Y/ o= TP OO PSP STROTTRUR PSP 333
18.2 IMPIEMENtEtiON PIrOPEITIES......cevieerereete sttt sttt sttt sttt e et bt bbb b 334
18.2.1 NUMENIC HIMITS ..ttt ettt b e e b bbbt bt bbb b s 334
18.2.1.1 Classtemplate NUMET i C_l i M TS oot 334
18212 NUNMBII C_I T M 1S MEMDEIS. ..ottt sttt et eneas 335
18.2.1.3 Typefl oat _roUNd_St Y] € . e 339
18.2.1.4 Typefl oat _denor M St Yl @ e 340
18215 numeri c_|im ts SPECIAliZatIONS.........ccuieiirieirieisieree et 340
18.2.2 G LIBIaIY ..ot bbb 341
18.3 Start @and tEIMINGLION.c.eiveuerteerreteteie ettt sttt b et b et b et b ettt be e b e e b e b e s nnne 342
18.4 DynamiC MEMONY MENAGEMENTcirieireetrieit ettt sttt sbe s sbe e b e seseesessesesbe st sbe e be e sbe e ebens 343
18.4.1 Storage alocation and deallOCALIONcciveirieirieiereeee e 343
18.4.1.1 SINGIE-OLJECE TOMMS......eitiiitirieteieet ettt ettt b et b et bt bbb b s 343
18.4.1.2 AITAY FOMMIS. .ottt ettt b et b et b e e b e s e b e e bt e bt e b e st e b st e bt b et b e et 345
18.4.1.3 PlaCamMent FOMMIS . ..ottt ettt b et e et e et bbbt b e 345
18.4.2 StOrage @llOCALION BITOIS......ccuiieeuereeiereeie ettt sttt e eb bbbt bt bbb b 346
18.4.2.1 ClaSSDAU_Al | OC .ottt sttt et e e eneas 346
18.4.2.2 TypPeNeW_NANAI €I oo e bbb 347

© ISO/IEC 2003 — Al rights reserved Xiii

ISO/IEC 14882:2003(E)

18.4.2.3 Set _NEW _NANAI B oot se e bt e nean 347
185 TYPEIENLITICAION. ...cuieitireeeiieetereet sttt bbbt b e b e b e b e ebeseebe s 347
18.5.1 ClaSST YPE_i N O oottt b e b e b e b b 347
RS A O = 5] o - o [o= T} ST 348
18.5.3 ClassDad_t YPEI ..ottt b e b e e b ebesnene s 349
18.6 EXCEPLION NANAIINGeeeteiitiieet ettt ettt eb ettt b et se b e b e b nnebe s 349
18.6.1 ClBSS EXCEPL I ON ceeiitiiiiiieeteriete ettt b et b e e bt e b e bt e st b et b et b e e e b e neebeseebeneebesneben 349
18.6.2 Violating exception-SPECifiCaLiONS...........cieirieiiiieirerere e 350
18.6.2.1 Classhad_@XCEePL i ON ..ottt b e e b e ebesnene s 350
18.6.2.2 TypeuneXpecCt @d_handl ©r ... e 351
18.6.2.3 SEL _UNEXPECT U .ottt b et b et b e b e b e b e b neebe 351
18.6.2.4 UNEXPECT B0 ittt b et b e bbbt e st bt b et b et et e e b e seebeneebennene s 351
18.6.3 ADNOrMal tEIMINGLIION.cuiieetirietirieiere ettt b et b et b et b et b et b e b e b e e b seene s 351
18.6.3.1 Typeterm nat €_handl €5 ... e 351
R I Y= R A =Y o 4 I = 1 TP 352
18.6.3.3 1 I M NAL @ et b e bbbt e st b et b et b e b e b e b e b nnebe s 352
18.6.4 UNCAUGNT _EXCEPL T 0Nttt b e b et b e e b e ebesnebe s 352
18.7 Other FUNTIME SUPPOIT.c.eivereetirietereeiereeie sttt ettt et se et e bt e bt s e st b e e b et e b e ne e b e e ebeseebeseebesnebens 352
19 DiagnOStiCS [IDrarYc.cucuiiiiiciii e 355
19.1 EXCEPLION CIASSES.....ccuieitieeteieet ettt ettt bbbt e et b et b et b et et se b e e b e ne b e neebe s 355
1911 ClBSS| OQI C_BI T OF oottt sttt b et b e bt b st b et b et bt et seebeseebeneebennebens 355
S 2 O =SS o Lo T ¢ VI o T = g] TP 356
19.1.3 Classi NVal i d_8r QUITENT ..ottt sb e e eb e ebesnene s 356
19.1.4 ClasS| ENQGE N_BI T OF ittt b ettt be e b e b neebe s 356
1915 ClaSSOUL _Of T ANGE ittt e et a et ae b be e see st e saeseenean 357
19.1.6 ClBSST UNT T MBI T OF eiieieieeeee ettt ettt st e et e e e e e e e e e e e seeaesaesaeebesbeseesbenbeseeseenean 357
1O.1.7 ClBSST ANQGE_EI T OF eereiuiieetereetirtetestei sttt ettt se et se et e st ebeseebeseebeseesesbeseebe st eb e e ebeneebeseebeseebennerens 357
19.1.8 ClaSSOVEI f I OW _BF I OF ittt ettt aeeaesaesbesbesre st e beseeseenean 357
19.1.9 ClasSUNAET f I OW_BF T OF .ottt b e s bt saeseenbe e seenean 358
1O.2 ASSEITIONS ...ttt ettt ettt ettt h et a bbb et b e b se ke s Rkt sE bR Rt R Rt R e R e R e e R e e b et b e e ebe e bt neebe s 358
1O.3 ETON NMUIMDEIS ...ttt sttt ettt ettt b et b ek se b e se ke s e eb e s e e bt s b ehe e b e st e b et e b e e e b e e ebeneebeneebennenens 358
20 General UHTTIES TIraryco.ciiiiee e 359
20.1 REQUITEIMENTSctiietiieetireeterees sttt b e bbbt e e s e e s e s ea e es e e b e e e b e e eb e e e bt seeb e seeb e s e ene s b e e b ene e e e enis 359
20.1.1 EQUAlILY COMPEBITSON ...c.vcuiteuerteuesteestieetese et seeb et se s e s s s s ss e b e s bt s e bt se bt seeb e snese s b ene b ene s e e nnin 359
20.1.2 L ESSThaN COMPAITSONciveuiieuirieirtieetese et seet ettt se ettt s b bt s st s bbbt e bt e eae b e e b enesne e nnin 359
20.1.3 COPY CONSIIUCTION.......ueuveuieeuestenestesesteeetese et se et esaeseseese s ese s esesseaees e s e b e s ebessesesees e seeseseesenbene s enesse e enan 360
20.1.4 DEFAUIT CONSLIUCTION.cveueieeiirieiirteieet ettt sttt sttt b et b e b e b e b et neebeseebesnebesneneas 360
20.1.5 AllOCAIOr FEOQUITEMENESviueveiirteeetieet ettt st ettt se et e et se e b b e b s bt s bt se bt e bt e e ae b e e b ene s e e enas 360
20.2 ULIIITY COMPONENES.cueieeuireeierteesteeet ettt sttt st ettt se et e s e s eae b e b s bt sese s ebeseeb e seesesaeae s e e nenesne s enin 363
P N R O 0 = 0] £SO PPR PR 364
20.2.2 PITS ..ttt ettt bt bt bR b e R R R R AR £ R £ R R R R Rt R bR e bt R e Rt R R e e enn 364
20.3 FUNCHON ODJECES.cveeeeieei ettt bbbt b bbbt e b e a et bbb e e 365
20.3. 1 BBSE.. ittt bbb E e E R e R R R e Rt R Rt ARt e R Rt R e Rt R e Rt R et R et b e ere e 367

xiv © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

20.3.2 ATtNMELIC OPEILHONS ..ottt ettt ettt et b et re et b et b e bt b e e b e se et e seebeseebesnene e 367
20.3.3 COMPAITSONScueetereetereeteseetereeteseesestesesbeseabe st esessebeseebeseebeseebeseebeseeh e s e eseebene e b et e b e aeebeneebeseebeseenesnenennas 368
20.3.4 L OQICAl OPEIELIONSveueeveeetereeiesietestest st ettt se b seebese et e seebeseebeseese s b e st sbe st e b e e ebeseebeseebeneebeseeneseene e 369
20.3.5 NEQAIOS. ..ottt e ettt R e R R R e e 369
20.3.8 BINUEIS.. .ottt b e bbb e bR R R R R e b e R ek e b e b nnene e 370
20.3.6.1 ClasstemplaleDi NAET LST ..o e e 370
20.3.6.2 DI NALST ottt e b e b e e et e e R b e b e b e b e b e ene e 370
20.3.6.3 Classtemplate Di NAET 2Nd ..o 370
20.3.6.4 DI NAZ2NA ...ttt b ettt b et b et b e e b e b e b e ne e 371
20.3.7 Adaptorsfor pointersto fUNCLIONS..........ccciiriiririeereete ettt et eb e e 371
20.3.8 Adaptorsfor pointersto MEMDENSciiiiiiiieere et eb e e eb e s ebe e 372
20.4 MBITIONY ...ttt b e et a e R e R s R e R e R e Rt AR R R se e e ettt r Rt rers 374
20.4.1 The defallt @lIOCALOTccciieiirieiieeee ettt ettt b et b e b e st s eb e e b srene e 374
20.4.1.1 al | 0CAt OF MEMDENS.. ..o e b e e eb e e b e 375
20.4.1.2 Al | 0CAL OF GIODAIS....cecuiiieiirieiiriee ettt ettt b e e b e et e b srene e 376
20.4.2 REW StOrAQE ITEIELONcveieevereeiestetiet ettt ettt st b et se et r et b et b et b e e ebese et e seebeseebeseene e 376
20.4.3 TEMPOIArY DUFFEIScuiiciiieeteeee ettt b e e b e st st se b srene e 377
20.4.4 SPeCialized Al gOMNIMS. ..ottt b e et s eb e s ebesrene e 377
20441 UNi NiETi Al T ZEU_COPY toeeiriiiiteiest ettt s eb e s eb e srene e 377
20.4.4.2 Uni Nitial i ZeA_F i T e et 378
20443 uni NitialiZed Fill N e 378
20.4.5 ClasStemplate QUL O_PE I ..ottt b e et st se b srene e 378
20.4.5.1 QUL O_PE T CONSIIUCLOIS.....c.uiiriireteieee ettt e erenes 379
20.4.5.2 QUL O_PUT MEMDES ..ottt ettt b et b e e b et e b e b srene e 379
20.4.5.3 QUL O_PUT CONVEISIONS....c.ocuirieiiieeuiiteesteseeteseeteseeteseebeseeseseesesaesessesesaesesbe e ebeseebeseebeseebeseenesneneseas 380
20.4.8 C LIDIANY ..ottt bbbt e bt e bR h e Rt R R e R e R ek e b e b e e ene e 380
20.5 D AN TIMIE.....cuiiitieeteieet sttt ettt b e e b e b e se b e e bt e bt e e e st e b e st e b et e b e st ebeseebeneebeseebesnene e 381
21 SHNGS TIDIAIY ...ttt b et b e bt e bt b st b et b et b e se b e ne ek e seebeseebesrene e 383
211 CRArACLEN TrAITS. . ..eeeteeetereet ettt ettt b et e eb s e bt e bt e bt e e st b et e b et e b e seebeseebeseebeseebesnene e 383
21.1.1 CharaCter traitS reQUITEIMENTS.ceiteeiteirteriereseete sttt se et et se et r e r e b e b e b seebeseebeseebesnene e 383
2112 trAtSTYPEUESS. ...ttt e bbb ne e 385
21.1.3 char_trai tS SPECIaliZaliONSccieiirierieierieie ettt e b e s eb e e b e 385
21.1.31 struct char _trai t SKChar > . e 385
21.1.3.2 struct char_trai t SSWChAr T > e 386
21,2 SHING ClASSESeveeetereete ettt sttt sttt sttt b et b et bese b e se ek e seeb e se e bt sa e bt s b e st e R e st e b et e b e seebeneebeseebeseebesnene e 387
21.3 ClassStemplate DAST C_ST i NQ iiiiiiiieieieieeeree ettt b et s b e e 389
21.3.1 DAST C_St T i NQ CONSITUCTOIS.c.eitiuirieuerterirtereeteseeteseetese st seeie et st s e be e b e e ebeseebeseebeseeneseeneseas 393
21.3.2 Dasi C_Stri NG itErator SUPPOIT........ceierreriererietereete s etese et re e se et se e ebe e b se b seebeseene e 396
21.3.3 DAST C_StTi NG CAPBCITY ...evevireeuiieeierteiet ettt ettt et sr et b et b e e b et e b e ebesrene e 396
21.3.4 DaSi C_Stri NG ElOMENt BCCESS......cciuiirreieteriete ettt se b et se b e ebesrene e 398
21.35 Dasi C_Stri NG MOUITIErS. ...cooiiiiirieietereeee et b e et b e e b e 398
21.35.1 basi C_StriNg: i OPEI Al OF Fo ettt e b e e b e 398
21.35.2 Dbasi C_StriNg: i @PPENG cciiiieeeeeee et r e bbb e 398
21.35.3 DASI C_STTiNQG: I @SST GIN toeciiiiiiiiieieieetereee ettt et s eb e s ebesrene e 399
21,354 DaSi C_STTiNg: DI NSEIT ot st s b e e b s 400
21.355 DASI C_ST I i NI I BF ASE ittt bbb et e b srene e 401
21.35.6 DaSi C_StriNg: i FEP] ACE .ot e b e 401
21.35.7 DASI C_ST T T NI I COPY torruirieiirieisieiet ettt ettt sa et b e b e e b et seeb e e ebeseene e 402

© ISO/IEC 2003 — All rights reserved XV

ISO/IEC 14882:2003(E)

21.35.8 DAST C_STT i NOI I SWAP wovereeuerieiirieiirieert sttt se b e bt es e bbb b e b e b e s bbb e s ene e enesnenes 403
21.36 basi C_Stri NG StiNG OPEraliONS........cceciivirerririeiereerereet ettt s e se e snenes 403
21.36.1 Dasi C_StriNg: : fiNd . 403
21.36.2 DAST C_StriNg: i FTi N0 404
21.3.6.3 basic_string: :find_first _Of e 404
21.3.6.4 basic_string::find_|ast _Of e 405
21.3.6.5 basic_string::find_first_Not _Of . 405
21.3.6.6 basic_string::find_last_Not _Of .. 406
21.3.6.7 DAST C_StriNQG: i SUDST I it 406
21.3.6.8 DAST C_StTiNQ: I COMPAI € .ottt b e n e n e 406
21.3.7 basi c_string non-member fUNCHIONS.........cooiirieirieirere s 407
2 G I A0 B o T =T =Y 0] e TSSOSO 407
21.3.7.2 OPEI AL OF T ittt E e e R e R e et r e nr s 408
21.3.7.3 0PI AL OF I = e e 408
A A A S o] o =] = L o] ST 409
AR A ST o] o] - U o] SRRSO 409
A A ST o] =] = L o] GRS SUPTR 409
A A A o] o =] - L o] U STURUSURPTR 410
20.3.7.8 SV ceveeeuerteuieteeetereet st ettt b st bt e bt eeae b e st b s b e R £ R R bR R e AR R R R £ R E R e e R e Rt e R R bt R Rt e ne e 410
21.3.7.9 INSErtErSANd EXITACIOIS ... c.eeueeeuereeeirteiertee sttt et e bt b e e e bbb bt e b b bt n st e e e 410
214 Null-terminated SEQUENCE ULHTTTIESc.civiiieiereieteete e 411
22 L OCEIIZAIION TTDIAIY ...ttt bbbt b et n st e e 415
221 LOCAIES... ettt ettt sttt b et bbbt h e b £ bR R R R R AR R e e Rt e Rt e R R bt n Rt e ne e 415
2211 CUBSST OCAI © ..t 416
22111] OCAl € IYPES ottt b bR b bt e bt e 418
221111 Typel 0Cal €: 1 CAL BUON Y .ottt 418
22.1.1.1.2 Class] 0CAl €: 1 TACET ..o 420
22.1.1.1.3 ClasS] 0CAl €1 11 Qe 420
22.1.1.2 | ocal e constructors and AESIIUCTONevruiireerieririeiiseei s 421
22.1.1.3] OCAl € MEIMDEIS ...ttt s bbb b b s b e bbbt e nnenes 422
22114] OCAI € OPEIBIOIS. ...veueetieeterieuereet sttt b et bt b e b e bt se bbbt b e b e e e b e e s e s bt b bt e nennenes 422
22115 | 0cal € StatiC MEMDENS.......oo i 423
2212 1 0CAl € GIODAIS ...ttt 423
22.1.3 CONVENIENCE INTEITACES ... cuieeueieetiriet ettt b ettt b e bbbt bbb s e e 423
22.1.3.1 CharaCter ClasSifiCaLION.c.eirieirieeiieisi ettt n e se e nn s 423
22.1.3.2 ChalaCler COMVEISIONS. . c.eveuerteuereeutrteuertesessesessesesessesessesesseseseesessesessenesseaesbeneeb e s ese s esessenesnenesnenes 424
222 Standard | OCAl € CALEJONES......ccueiiueerreirtii ettt b st sn e a e s s s 424
2221 TRECT YPE CAEYOIY ...cveeetireeuereeiereettrteit sttt sb e b e bt b e es b e s bt s e b e b e e bt b bt b s e st nnenes 424
22211 ClasSTEMPIELE CT Y PO ...cvieeeerieierieieriee ettt ettt b e bbb bbb s e e 424
222111 CLYPE MEMDELS. ...t b bbbttt e e 425
222112 Ctype VIrtual FUNCHIONS.ceiieiiriiiieeest ettt 426
22212 Classtemplate Ct YPE_DYNAITE ...oooiiiiiiiieteeeee et 427
22.2.1.3 CLYPE SPECIAHZALIONS.c.ecueeeeiieeiirteieit ettt b bbbt n e 428
222131 CtYPE<CNAr > UESIIUCION.....couiiitiiieeiit ettt 429
222132 CLYPE<CRAr > MEMDEIS. ..ot sn s 429
22.2.1.3.3 ctype<char > static MEMDBENS........ccociiiriiciee e 430
22.2.1.34 ctype<char > Virtual fUNCHIONS.........cocoriioieeiee e 430
22.2.1.4 Class Ctype DYNAMESCRAScociiiiiriiiiteeeiee ettt 431
22215 ClasStemplate COUECVT ..ottt nn s 431
222151 COUECVE MEMDEIS. ..ottt sttt b e bbbt b e bbb s bt n s e s nnenes 432

XVi © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

222152 cOodeCVt Virtual fUNCHIONScorueirieiriierteist sttt 433
22216 Classtemplate COAECVE _DYNAIME ..o 435
22.2.2 THENUMESTIC CBLEJOTYeueitieitirietereettrteierteie st sttt b e bt e bt e bbb s et e e b e e b e e s e s b e s ene s nennens 435
22221 ClasStemplaie NUIML GET ..ottt se s 435
222211 NUM GO MEMDEIS. ...ttt b bbb bbb s e e b ae b e b s b e s b s s e ens 437
222212 num get Virtual TUNCHIONScoiueirieiieiirieisie sttt 437
22222 ClasStemplaie NUIM PUL ..oiicieieereere st b e s e e 439
222221 NUM_PUL MEMDEIS. ...ttt s st se bt se s e e b bese b e e s e s b e s en e s sesnens 440
222222 nUM _PUL Virtual TUNCHIONSc.couiieeieieeicieecrieest ettt 440
22.2.3 Thenumeric PUNCIUBLTION FACELcoiueiriiiriiirieet ettt 443
22.2.3.1 Classtemplale NUITPUNCT ...oociieiiieiirieieie ettt s b s s n s e 443
222311 NUNPUNCE MEMDES ..ottt b b s b b e n e 444
22.2.3.1.2 nuNPUNCE VIrtual FUNCIONS.......coviiiieiiriiiriest et 445
22.2.3.2 Classtemplale NUIMPUNCT _DYNAITEc.oiiiiiiiieceieeet et 445
2224 THE COIAE CAEJONYcoviueitieetirtetereet sttt ettt b bbb bbb bbb s bt n b e st e 445
22241 Classtemplale COl | At € ..o 445
222411 COl T Al € MEMDEIS. ..ottt bbb e e 446
222412 coll at e Virtual TUNCHIONSccoueerieiieeirieist ettt 446
22242 Classtemplate Col | at @_DYNAME ..o 447
2225 TRETIME CAEJOIYeeitieetieetiriettriet sttt ettt b e b e bt st b e bt s s st e e b e e b e b e s b e e b s st nnens 447
22251 ClasStemplalet | IMB_gOT .ottt 447
222511 tiMB_gel MEMDES ..ot b et 448
222512 tinme_get VIrtual FUNCHIONS..... ..ottt 449
22252 Classtemplatet i ME_get _DYNAITE ..o 450
22253 Classtemplalet | IMB_PUL ..ottt 450
222531 11 MB_PUL MEMDES ..ottt b e n e se s 451
222532 timMe_put VIrtual FUNCHIONS.......cociiiiiieiiitirie et 451
22254 Classtemplatet i ME_PUL _DYNAITE ..o 451
2226 THEMONELAIY CAIEJOIYeoveieerireetireetirteseseeie sttt b e bt e bbb e s e et b e e b e e s e e e s e s b s b e s s e s 452
22.2.6.1 Classtemplale MDNEY gL ..ottt 452
22.26.1.1 nmONEY_get MEMDEIS. ..o 452
22.2.6.1.2 noney_get Virtual fUNCHIONScooiiiiiiiiieeeeesee s 452
22.2.6.2 ClasStemplale MDNEY _PUL ..ottt se s 454
222621 NMONEY_PUL MEMDEIS. ..o 454
22.2.6.2.2 nmoney_put Virtual fUNCHIONSccooiiiiiiiiiieee e 454
22.2.6.3 Classtemplaie MDNEY PUNCT ..ooeeirieirieirieerieest sttt e e e 455
22.2.6.3.1 NMDNEYPUNCT MEMDEIS. ..ottt b et eb e b et b e sb e sb e bbb s s s s snens 456
22.2.6.32 nmoneypunct Virtual fTUNCHIONS..........cciiiiiieeee e 456
22.2.6.4 Classtemplate MONeYPUNCE _DYNANME ..o 457
2227 Themessage retrieval CAEJOIYcuieireirieirieertee sttt sttt st e b e se e e b e b e b e e erenea 458
22271 ClasStemMpPlale MBS SATES ..uiiieuireeiirieierteie sttt sttt ettt b e eb b s se et b b e e b e b s b s b e s s nnens 458
222711 MESSAQGES MEMDES ..ottt b bt e bbb et e e b e e b b s bt s b s st nnens 458
22.2.7.1.2 mesSages Virtual FUNCIONS. ..ottt 459
22272 Classtemplale MESSAJES _DYNAITEocoiiiiiiiiet et 459
22.2.8 Program-defiNed FACELS. ..o 459
223 CLIDIaNY LOCAIESccoeeiteeeteeeteseet ettt bbbt bbb s b n bt e e 463
23 CONLAINEIS HDIBIY ...c.viueitiiiteeet ettt bbb b bbbt bbb b e bt n b et e ens 465
231 CONLAINES FEOUITEIMENTS.e.eitieetereetereettreese sttt sb e sb e b e bt seebeseebeseeseseese s s e e sbeae b e s eb e s e b e s ene s e st snens 465
2311 SEOUEIICEScueviirirteite st st se et e ss ettt s et b e Rt b e s h e R e R Se e R e R e R e e e e e R Rt R R R r e re s 468
23.1.2 ASSOCIAIVE CONTAIMENScvieeueeetireetireeie sttt st sr et b e st e bt se bt sb e s s e e st s e e b e e b e s e b e s e b e s en e e e st e s 471

© ISO/IEC 2003 — Al rights reserved XVii

ISO/IEC 14882:2003(E)

23,2 SEOUEIICEScviretitire st se et e et r e b bt a e r s b s R e R R e se e e e e R e e e e e e E e R e R R R Rt Rt R R r e e n e r s 474
2321 ClasSTEMPIEE DEQUEooueueieeiiteiet ettt sttt b bbbt e bbbt e s bbb e nns 477
23.2.1.1 deque constructors, COpY, and 8SSIGNIMENLcerreerrirerrirerreeereseeseseese s e s seenas 479
23.2.1.2 JEQUE CAPACITY .eeeveeeeireeierieesteeet ettt sttt st et ettt se st se s s e b e b e b e e e bt s e bt se bt seeb e s s e ae e e e b enenne e nnas 480
23.2.1.3 deQUE MOUITIEIS.coveuiieeeiiieieteeet ettt bbbt e et a e b b 480
23.2.1.4 deque specialized Al gOrithmsScooeirieirere e 480
23.2.2 ClaSSTEMPIALE | T ST ..ottt e bbbt e b 481
23.2.2.1 |i st constructors, Copy, and aSSIGNMENT........ccieerieirrierrieriee e 483
23.2.2.2 11 ST CAPBGITY eoveeeeieetireeee ittt ettt sttt ettt b b bt h bR bt e h et bR 484
23.2.2.3 11 St MOUITIENS ..ottt bbb bt e e b b 484
23224 11 ST OPEIELIONS.c.eveuereeuerteiesteeet ettt ettt se et se st s s eae b e b e b e e bt s e bt sb bt seeb e s e e ne e e e n e n e enan 484
23225 i st specialized algorithms.........cociieiieiree s 486
23.2.3 CONLAINET BHAPIOIS.eeceeieeierteeet ettt ettt ettt re et e et et b bt b e bt e e bbbt e bt seese b e e s e s e e nnas 486
23.2.3.1 ClasStEMPIEIE QUEUEc.ciuiirtieetieet ettt ettt ettt s b b e bt s b se bt se bt aese b e b e b e e nnas 486
23.2.3.2 ClasstemplatePri OF i 1Y _QUEUE ...ocecuieceiieeereee ettt 487
232321 Priority_(QUEUE CONSIIUCIOIS.......cirieririerireeseriesessesesseesseesseseese s s sseseseeseseesessenesnenesseesnas 488
232322 Priority_QUEUE MEMDEIS. ...ttt 488
23.2.3.3 Classtemplafe St ACKccoiiiii s 488
23.2.4 ClaSSTEMPIEIE VECT OF ..ooviiiiiiiiiietiietereet sttt ettt b bbbt se st e bt a e b b ene s e nas 489
23.2.4.1 vect or constructors, copy, and 8SSIGNMENT........c.creerrirerrirerririer et 491
23.2.4.2 VECT OF CAPACITY . ..c.eieeuireeuirieisieie ittt ettt ettt b et et b b b e bt e bt se bt sb bt e e st b e e b ene b e e nnas 492
23.2.4.3 VECT OF MOITIEIS.....ciiiiiteiiteiiteeet ettt b e b e b et e b sn s sn e nneneas 492
23.2.4.4 vect or speCialized algorithmS........coociriiiriee s 493
23.2.5 ClassVECT OF SDOOI S ..ottt bbbt st sttt 493
23.3 ASSOCIALIVE CONTAINENScueeeierteierteestet ettt sttt se st se st seese s eeb e e b e e b e e eb e s s e st sbeb e seebe s e eae s e e e s ene s e e enas 495
23.3. 1 ClasSTOMPIBLE MBI ...c.eiveeereeeerteerteeet ettt sttt sttt se et se et seese s ese b b e b e e es e s e bt se bt seeb e s e eae s b ene s enn s e e enas 497
23.3.1.1 rmap constructors, COpY, aNd @SSIGNMENTceieerieirreeri et 499
23.3. 1.2 ITBP ElOMENT BOCESSueiveeereeuesteseetee ettt ete st ettt e seeseseese s eaees e e eb e s b e s eb e e s e bt sbeb e seebe s e eaenbeae b ennsne e enas 500
23.3. 1.3 ITBP OPEIEIIONS ...cuvevieetireeierteesteee s et se et se et se bt sees e sees e s s e eseae b e s e b e s eh e s e bt seeb e seeb e s e ese s b e ne b ene e e e enin 500
23.3.1.4 map specialized algorithmS ..o 500
23.3.2 ClassStemplate MUI T i MBI ...coeiieieee ettt 500
23.3.2.1 MUl T IMBP CONSITUCTOIS......citieetieetereetese ettt sttt b e b et se b e bt sae e sn e b e b e e ere e 503
23.3.2.2 MUl T 1 ITBP OPEIBLIONS ...ttt ettt ettt sttt s e b bbbt s bbbt st b e se b ne b enesn e e enas 503
23.3.2.3 rmul ti map specialized algorithms.........cociieiiiri s 503
23.3.3 ClaSSIEMPIALE SO ...ueeceiieeiiieeerteeet ettt b bbbt e bbbt e bbb 503
23.3.3.1 set constructors, Copy, aNd @SSIGNMENTeereirieireeerreesr e enas 505
23.3.3.2 set speCialized algorithmS ..o 506
23.3.4 ClassStemplate MUI T ST ..ottt 506
23341 MUl T SET CONSITUCTOIS......cotiiitireetereetere ettt ettt sttt e bt se bt sa e sn e b e b e e ere e 508
23342 nul tiset specialized AgOrithms.........coeiieiiiiii s 508
23.35 ClassStemplate Di T SO ... 509
23.35.1 Di 1 SEL CONSIIUCIONSeueeeuerieietieet ettt ettt b bbbt sb bt b e b b ene e e s 510
23.35.2 DI 1 SEE MEMDEIS ..ottt bbbt b bbb bt e b b s s 511
23.3.5.3 DI 1 SEE OPEIAIOIS. ..c.ecuiieeiiieeieteirt ettt ettt b et b et b e bt e bt e bt b et e b 514
24 TEIAIOIS TIDIAIY ...ttt b bbbt e bt et b e b e b e nnn 515
241 [LEraOr FEQUITEIMENTS.eveuerteuerteuesteeet ettt et se et se et seesereese st eseeseaeeb e e b e e eb e s e bt seeb e seebeseeae s b e e b enenne e enn 515
24. 1.1 INPUL TTEIAEOIS. ...c.eeteeetireetereeee ettt ettt b e eb e bt se s e e es e s ea e e b et b e s b e s eb e s e bt seeb e seebe s e ene b e e b ene s e e ens 516
24.1.2 OULPUL TTEIAEOISc.eeevieeeiseeeestee sttt ee ettt et b bt se st e s e s s e es e e b s e b e e e bt s e bt seeb e seeb e s e ese s b ese b enense e enin 517
24.1.3 FOIWEIT ITEIBIOIS. ... ecveeeeireeuesteestee ettt ettt se et se et se st e s e s ae s b e b et bt e bt se bt seeb e s e e st b e e b enenne e enin 518
24.1.4 Bidir€CtioNal ITEIBIOISciveuiieeirteietie ettt ettt b et e bt e bbbt e bt a e b b ene s e e enas 519
2415 RANCOOM BCCESS ITEIBIONS. ... c.eiveuerteuerrieeteseetereete sttt reese st st st ssee b e b e s e bt s e st sees e seeseseese b enennenesseeenas 519

XViii © ISO/IEC 2003 — Al rights reserved

ISO/IEC 14882:2003(E)

24.2 Header <i T 5 Al OF > SYNOPSIS....cutrueririeuerieerteerteessesestese st se st st es s st ss e b e b ese b e s ebe s s e ssenesneseseenes 520
24.3 [TErEION PrIMITIVESeitieetieet ettt bbb e bbb bbb b e e bbbt e bt st e ens 522
G T R | (= (] g 1= €= 522
N T A = - S Lo 1 (= - (o 523
24.3.3 StANAAIT ITErAION TAUS .. v eueeveeerereetereetert ettt b st b bt e bt e bbb s et e e b e b e b e s b n b e s s nnens 524
24.3.4 [TEXALOr OPEIEIIONS. ... e.eiteueetieetereetereesereese sttt sb e b e b e ebeseeb e seeb e sb e s e se e st s s e e b e e eb e s e b e s eb e s en e e enennens 525
e o (o T g T=o WU (] =T 525
o R S (= Y= s oY L = = (0] £ 525
24411 Classtemplaler @VEr SE_i T 5 Al OF ..ot 526
24412 reverse_iterat Or reQUINEIMENTS.ot 527
24413 reverse_iterat Or OPEralONS. ...ttt seens 527
244131 reverse_iterat Or CONSITUCTON.......cccoiiriririiieese st eesie st seeee e e e e sae e e e b e e 527
G 1 0 01V =T o o T 527
24.4.1.3.3 OPEI AL OF ¥ oot e r e re s 527
O R S o] o 1Y - L 0] G USSR 528
24.4.1.3.5 OPEI AL OF oottt ettt r e re s 528
24.4.1.3.6 OPEI AL OF = = ittt e r e ettt r e re e 528
2 T N A o T o =T o= A o] e TSSOSO 528
24.4.1.3.8 OPEI AL OF F7 oottt ettt r e re s 528
24.4.1.3.9 OPEI AL OF = oiiiiiieriee ittt e et r e r e s 529
2441310 0PI AL OF = = oottt e ettt r e re s 529
o e B R o T o =Y o= A o] [TS U TP PO SRTPSUTI 529
2 e T A o] o T=T = A 0] USSP 529
o G 0t I B o T o 1T = A o USRS 529
2440314 0PI AL OF I = e e e s 529
o G Tt LS T o T o 1T = A0] USSR 529
o Gt (G B 0T o 1T = L A 0 USSR 530
o T Nt A o T o 1T = L A o TSRS PUSPR 530
2 T T S o] o T=T =Y S 0] TSSOSO 530
2 T T L o] o T=T =Y S o] e TSSOSO 530
N 01 < 1 = = 0] £ 530
24421 Classtemplateback i NSert it erat OF . e 531
24422 back_insert _iterat Or OPEratioNS.......cccoiiiiirinieierese e seesiesee et see e 531
244221 back_insert _iterat Or CONSLIUCIONcccciiiiiirirerise e 531
244222 back_ insert _iterator:: OPerat OF S .. e 531
244223 back _ insert_iterator:: Operat Or * . e 531
244224 back_ insert_iterator:: operat Or . e 531
Y N N SR o T- Lot G I 4 == g] S 532
24423 Classtemplatef ront i NSert it erat OF .. e 532
24424 front_insert _iterator OPEralioNS........ciiiiiiiiineniene et 532
244241 front_insert _iterator CONSITUCLON........cccoiiiriiirinieresiesiese et 532
244242 front_insert_iterator:: Operat Of Su et 532
244243 front_insert _iterator:: Operat Or * ... 532
244244 front_insert_iterator:: operat Or ++ ... 533
A R B o | A T K=Y =Y g A =Y T 533
24425 Classtemplatei NSErt _i T €5 At OF .o 533
24426 TiNSErt _iterat or OPEIaliONS.ttt sb e ss e n e seens 533
244261 inSert _iterat Or CONSIIUCIONccooriiiririrere ettt st e a e sae st see e 533
244262 inNSert_iterator: : OPer Al OF T ... 533
244263 insert_iterator: i OPeral O * .. 534
244264 insert_iterator:: Operal Of . . 534
N SN S T 4 =Y = g = 534

© ISO/IEC 2003 — Al rights reserved Xix

ISO/IEC 14882:2003(E)

245 SHEAIM ITEIIOIS. .. e ecteeeeeieeeert ettt ettt ettt b et b e st b st b e b e b e e bt e e bt s e eb e se e bt s e e ne b e e b ene s e e enis 534
2451 Classtemplatei St ream it 5 Al OF ... 534
24511 istream.iterator constructorsand deStrUCLOr.........ccocorerieiriieienerere e 535
24512 istream.iterat Or OPEIEHONS.ccococireireerieere ettt b b enas 535
2452 Classtemplate 0St I eam i t €5 Al OF ...ciiciiieiieeeere s 536
24521 ostream.iterator constructorsand deStrUCLOr.........ccoerieeeirierieneeere e 537
24522 oOStream it erat Or OPEIEHONS. ..o ireireereeere sttt s e n e sn e enas 537
2453 Classtemplatei StreamDuf it rat OF ... s 537
2453.1 Classtemplatei streambuf _i terat Or: @ ProXY . 538
245.3.2 istreanbuf iterator CONSITUCIOIS.......ccoiiiiiiiriiee e 539
24533 istreanbuf _iterator:: Operat Or * ... 539
24534 istreanbuf _iterator:: Operat OF 4 ... 539
24535 istreanbuf _iterator::equal ... 539
24.5.3.6 OPEI AL OF T7 .ottt e r e e r e n s 539
24.5.3.7 OPEI AL OF | = et e e e 539
2454 Classtemplate 0St reamDuf _i t r At OF ... s 540
24541 ostreanbuf it erat or CONSITUCIOIS.......cooiiiieiirieiee ettt 540
24542 ostreanbuf _iterat Or OPEraliONS........ccieiriiriiier et 540
25 AlGOMTNMS TIDIAIYecveeieiieceee bbbt b e b b ens 543
25.1 Non-modifying SEQUENCE OPEIEIIONSccuiieerireereriereriesertesersee st s e s s st eseseeseseesessesessesessenesseesnes 551
AT R A o = o o [OOSR PP 551
2512 FINO ettt h b b e bR s e R R R R R R R R R R bR R e AR e R e e R n e nn 552
2513 FINO BNttt ettt b b b e bt e bt e bbbt e e st e e e b e b e ns 552
2514 FINO FITSEeuiiiitiiiteeet ettt b et se bt e bt s e bt b e st e b et b et b e seeb e se b e neebese b e e ebenrene s 552
2515 AGIACENE FING ...ooeieiiieiiec ettt bbb b e a et b e 553
25,108 COUNL....cteeeteeetereetere ettt ettt b e b e bt se b s e bt b e e eh e ea e e R £ e b £ s e b £ e e b e e e bt e e eb e s e eb e e ene e e e b e e e enn 553
25. 1.7 IMISIMAECH ..t h e bbbt b 553
2518 EQUAL ...ttt bbbt h R E R R R Rt R bR Rt ARt R R n e enn 554
25109 SEAICK .ttt E R R E R R R R Rt R bR Rt ARt R R n e enn 554
25.2 MULaLing SEQUENCE OPEIGLIONScoveueerieetireeeereetesteseseesestesessesess s e s se st s st seeseseesesaeae s ene s eaesseennan 555
25. 2.1 COPY cteuerteeetereetereete sttt sttt s et h et h et b e bt e bRk R R R R e R R £ R £ £ RS R e R R R R R bR e bt R eR e R e e R e n e enn 555
25,22 SWAD ettt h bt b £ R R R R R R AR E RS R e R R R Rt R b e R e Rt R e R e R et R e n et enn 555
25.2.3 THANSFOMT L.einectiieteeet ettt h et b e bt s b s e b e b bt h s e bt s b bt s e e bt e e ne b e e b e e b e e nnis 556
25. 2.4 REPIBEE ..ottt h bbbt h e h e R R R £ R R Rt R bR R R R e R R a e enn 556
25.2.5 il h R R R R R R R R R bt e bR Rt R R n et nn 557
25.2.8 GENMEIEIEot ieetereeteie ettt ettt b bt b et b e b e bR R R AR RS R R R R Rt R bR h e R e R e R R b e enn 557
A A A (= 1110 TP PP P PP 557
25.2.8 UNIQUE.....eietiieitseeeet ettt ettt b et b et b et b e e b e se bt s e e bt se bt s e bt e e n e e R st b et b e e b e ere e 558
25.2.9 REVEISE ...ttt b et b e b ek R R R AR RS R R R R Rt R bR Rt R e R e R e R n e enn 558
25.2.10 ROEAEE. ... eiteeeteieetere ettt ettt ettt b e b e bt e bt e s e a R e b e b e Rt R Rt R bt e bt AR e R R e e enn 559
25.2.11 RANAOM SNUFTIE....c.eceiiceic bbb 559
25212 PAITITIONS. ...c.e ettt ettt ettt b bbb e R R R R bR h R a e R e enn 560
25.3 Sorting and related OPEraiONScccivireeririetereet ettt b et 560
25.3. 1 SOIING. . teueetereetereetereetereetese sttt be e bt e e bt eb e seeb e sbeb e sees e s e es e s ea e eR e e e b e s b e e R R e Rt nE b e R eh e R eR e R e e R e n e enn 561
25.3. 1.1 SOOI b ittt h b b ek R R R R R R R R R R Rt R bR Rt AR e R e R a e enn 561
P20 1 A~ A=Y o | = T o] g OO 561
25313 PArti @l SOOIt et 561
25314 PArti @l _SOMt _COPY ittt a bbb b e nan 562
25.3.2 NN EIEMENT.....ceie bbbt bbb a e 562
25.3.3 BINAIY SBAICH ...ttt h bR b e h e n et n R nn 562

XX © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

25.3.3.1 1 OWBE _DOUNG ..ttt s b e sttt st et et e enis 562
25.3.3.2 UPPEI _DOUNG ..ottt b ettt e b srene e 563
25.3.3.3 EQUAI T BNGE oot b et b e e b e b e b e ene e 563
25.3.3.4 DI NAIY _SEAI Ch oottt bbb e b snene e 563
25.3. 4 MBIOR .ottt e e R R R R R R R e n e n e 564
2535 Set operations 0N SOMEd SLIUCTUMESciiviiirieriete ettt eb e s eb e e b seene e 564
25351 1 NCH UES ettt e bbb bbbt b et b et b e e b e e et e b e nnene e 565
P B =Y =Y A U 11 o o OSSR 565
P R T Y Y A N 1 A=Y =Y =T o A 1 o OSSR 565
25.35.4 Set i ff I BNCE et 566
25355 set _SymMetri C_di ff er @NCe s 566
25.3.6 HEQP OPEIELIONSc.eeveeeteieeterieiestet ettt sttt et b ettt se et se bt se bt s b e st b et e b et e b e seeb e st et e neebeseebesrene e 566
25.3.6.1 PUSH_NBAP et b e e bbb e 567
25.3.6.2 POP_NEAP ottt bbb e R e bbb e b e b e ne e 567
25.3.6.3 ITBKE AP oottt bbb e b e ne e 567
25.3.6.4 SO T _NBAP it bbbt b e e b e b e b e ene e 567
25.3.7 Minimum and MEXIMUMeiiueiireiiieeerereerese e ere s seeseseeseseese s e sae e b e sbeseebeseebeseebeseeseseesesnas 568
25.3.8 LexicographiCal COMPEAITSON.c.titeirieirtereereseereseete sttt seereseesesee e ss et sse e b e beseebeseebeseebeseeneseenesnas 568
25.3.9 PerMUEBLION GENETBIOISc.vevieeiereeierteiestee sttt st et se et se et se b seebese bt b et b et ebe e ebeseebeseebeseebeseeneseeneneas 569
254 CliDrary @lgorithmsS.......coccoicirieiieiere ettt b e e b e e b e b e ne e 569
26 NUMENTCS TIDIAIY ...ttt ettt b et b et b e e b se et e b e srene e 571
26.1 NUMENTC LYPE FEOUITEIMENES.eveuiiteiirteuesteeeterestese et se et et seebeseese e st s et sbe e s b e e b e seebeseebeseebeseeneseenesnas 571
26.2 COMPIEX NUMIDEYS. ...ttt ettt b et b e et e b e b e srene e 572
26.2.1 Header CONMPI EX> SYNOPSIS .cvcueireuirieirteieetestetese et sttt se et et et re e s e b e b seebeseebeseebeseebeseenesnas 572
26.2.2 ClasStemplate COMPI EX ittt sttt ettt e b et se et e b srene e 573
26.2.3 CONPI X SPECIAIIZALIONS.c.vcueeeiiieeiesieeet ettt ettt b e b e b et se b e b srene e 574
26.2.4 conpl eX MEMDEr FUNCHIONS........ciieirieireeieriet ettt r e b ere e 575
26.2.5 CONPI €X MEMDEN OPEIGLOIS......c.cviuireeieieeietee ettt sttt st eb et r et b et e b e b e ebe e ebeseebeseenen 575
26.2.6 conpl eX NON-MEMDEN OPEFBLIONScueerviieterietere ettt b e b e e b e b seene e 576
26.2.7 CONPI X VAlUE OPEIELIONSeveviteiisteneeteeet et se ettt et et b e b b e b et se b seebeseene e 578
26.2.8 CONPI X raNSCENAENTAIS.cuiieeiiieeeiteet ettt b e et s eb e e b srene e 578
26.3 INUITIENTC BITAYS. .t eueeveeetereeteseete sttt sttt ettt sttt st b e seebeseebeseebeseebesaebe s e e st e b e st e b et e b e st ebene et e neebeseebesrene e 579
26.3.1 Header SVal ar I @y > SYNOPSIS.....ciiiieirreieetereete sttt se et et sae et b e b e b e ebeseebeseebeseene e 579
26.3.2 ClasStemplate Val @l I GY ...coccieirieieieeeiereetesete ettt b e et s b e e b seene e 582
26.3.2.1 VAl A& T QY CONSITUCLOIS......ccueiitiietereete st sttt sttt sr et b et b e s eb e e b e b sa b e e enesre e sne e sneneas 584
26.3.2.2 VAl Array aSSIgNMENTcouiiiieiiiteeeieet ettt ettt sttt b e bt b e e b e b e b e b srene e 584
26.3.2.3 val array ElemMeNnt BCCESSceiriirreirtereetereet sttt sttt b et b e e bbb e b e ne e 585
26.3.2.4 val array SUDSEL OPErAiONSccviueirririetereete sttt b e et se b seebeseene e 585
26.3.2.5 val Array UNaIY OPEIELOIS......c.coueerteiereierereereseete st seeseseeie s e st s e sbe e sbeseebeseebeseebeseeneseeneseas 586
26.3.2.6 val array computed 8SSIGNIMENTcceiieririieriee ettt r e s b e e ebeseebeseene e 586
26.3.2.7 val array member FUNCHIONS..........cooiiiieeereee ettt et e eb e s n e 587
26.3.3 val array non-member OPEIaliONS..........eoeerirrerieerete ettt r e e b s eb e s eneseene e 588
26.3.3.1 val array DiNary OPEratOrS.cccieoireriereriee sttt s b e s eb e e b seene e 588
26.3.3.2 val arr ay [0giCal OPEIEIOISccuiueirrereeteriete sttt ettt b e b s ebese b seebeseene e 589
26.3.3.3 val array transCeneNtalS..... ..ot 590
26.3.4 ClaSS S| I Lo ittt bbb bbb e b e b e ne e 590
26.3.4.1 S| i C8 CONSLIUCTOIS.eveveeeuireeterteuesteeet et e bt ebe st et se et seebe e e bt e bt s s e st b e e e b et ebeseebese et e seebeseenesrene e 591
26.3.4.2 S| i CE BCCESSTUNCIIONScvcuiiciieeiiiteiet ettt b e et et se b srene e 591
26.35 Classtemplate S| i CE_AI T AY .coiieiiieiereiete sttt b e et e b e b srene e 591

© ISO/IEC 2003 — Al rights reserved XXi

ISO/IEC 14882:2003(E)

26.35.1 Sl i Ce_arT @y CONSITUCLOISccueuirtiuereiistiestee sttt sttt e st b e n bt ne e nnenes 592
26.35.2 SliCe_array aSSgNMENT......cccoiiirieirieiet ettt ettt b bbbt e et n s e nnens 592
26.35.3 slice_array computed 8SSIONMENTcoirrerieirierireeierieseriee s sr e see e seenes 592
26.35.4 slice_array fill FUNCHON. ..o 593
26.3.6 TREUSI I CO ClBSS...uiiitiiitiriciee bbbttt 593
26.3.6.1 gSI i CE CONST I UCT OF Sttt 594
26.3.6.2 gS| i CE ACCESSTUNCLIONS.cuiiieiiieieiecist ettt 594
26.3.7 ClasStemplate gS| i CO_AI T @Y .ottt 594
26.3.7.1 gSl i CE_Ar T Ay CONSIUCIOIS.c.ciuiueieeuertierteesteseeteseesese et seese bbb b n s ne e snenes 595
26.3.7.2 gSliCe_array aSSigNMENT...... ..ottt b e e se e snenes 595
26.3.7.3 gslice_array conmputed asSi gNITENT ...t 595
26.3.7.4 gslice_array fill FUNCHON........co.coiiii s 596
26.3.8 Classtemplate MBSK_AI T QY ..ottt 596
26.3.8.1 MBSK_Ar I AY CONSIMUCIONS. .. .c.eiveuirieierieestiestee st se ettt e st sb e bbb s s s sn e nnenes 596
26.3.8.2 mBSK_Ar 1Ay @SSIONMENT ...c.ciiieiirieerieirt ettt b e e b n et n e nnenes 596
26.3.8.3 mask_array COMPULE SSINIMENL..........cureireirreereiertiesseees et seese s e ssee s eenes 597
26.3.8.4 mask_array fill TUNCHION ..o 597
26.3.9 Classtemplatei NAi I @CT I T QY .iocceiieieieeieeeiereet et 597
26.39.1 i NdirecCt _array CONSIMUCIONS.......ccuiuitirertireetireeteseeteseett et sn e sne e snenes 598
26.39.2 iNdirect_array aSSgNMENT.......cciiiereereer et s e ne e seenes 598
26.39.3 indirect_array cOmMPULEd aSSIGNMENL.........ccceirerireririeerieesree s ssese e seenes 598
26.39.4 indirect_array fill FUNCHION. ..o s 599
26.4 Generalized NUMENIC OPEIAHONSccueeiiierieirteestee ettt b e st se e nnenes 599
26.4.1 ACCUMUIBLE........coteeetieetieeet ettt b bbb bt e bbbt b et b e bt s b e b b et enennenennenes 599
26.4.2 INNEE PrOOUCE.eeueetieeteeet ettt se b eb e bt e bbbt e b b s b ae b e e e b e e bt s e b e b b et enennenennenes 600
26.4.3 PaITI8I SUM ..ottt eb b e bt bt e b bbbt b bRt b bt e n e nn s 600
26.4.4 AdiaCENt diffErENCE.o it 601
26.5 G LIDIAIY .ttt bbb bbbt R n bt n Rt e e 601
27 INPUL/OULPUL TIF@IY ...ttt bbbt 605
27.1 | OSIrEAMS FEQUITEIMIENTS.c.ecvieetereeuereesestesestese st sb e bt e b e bt ssesesees e s e se s b eae s e e ebeseeb e s e s e s eb e s s ene e enennenes 605
2711 IMBUE LIMITAEIONS.e.eiteeetireeteiteteriei sttt ettt b e b e bbb s e e s 605
27.1.2 Positioning TYPE LIMItaliONSccciruiiriiirieesieesteseet ettt 605
27.2 FOrWard AECIaralioNS.........c..euerieuirieiirieiirt ettt bbbt n et nn s 605
27.3 Standard i0Stream OJECES.........ciiiiieiee s 608
27.3 1 NaITOW SIrEAIM ODJECEScvieeuirieierietirt ettt ettt b et b e bbb bbb s bbbt s st e s nnenes 608
27.3.2 Wide StrEamM ODJECES.......eeevieeierieieieee ettt b e bbbt b e e s 609
274 |OSIrEAMS DASE ClASSES.e.ecveeeieiteie ettt eb bbb bbbt b e b bt et n e e bt e e s 610
2741 TYPES ..ttt ettt ee ettt bbbt h e e e bt e e bR bR R R eR e R R £ R £ R £ R e R R R R R R e R eR e R e ae R R e R e enn 610
2742 ClaSSi 0S_DASE oottt et sttt sttt a e a e aeeae b e e 611
A R Y/ o= OSSOSO 613
274211 Classi 0S_base: i fai | Ul € et 613
274212 Typei 0S_base: i f MLl ags . 613
274213 Typei 0S_DASE: 1§ OST AL € .o 614
274214 Typei 0S_bhase: : OPENMDUE ...ttt 615
274215 Typei 0S_Dase: : SEEKAI I . 615
274.2.1.6 Classi 0S_DASE: i I NIt e et 615
27422 i0s_base fntflags StaefUNCLONS. ..o 616

XXii © ISO/IEC 2003 — Al rights reserved

ISO/IEC 14882:2003(E)

27423 10S_base | 0Cal € fUNCHONScccoii i 616
27424 1 0S_Dase StaliC MEMDEIS. ..ottt se ettt se et e e enas 617
27425 1 0S_base Storage fUNCLIONS.........couiiiririeiereieseet ettt e eb e e eb e e b e 617
27.4.2.6 1 0S_DASE CAIDACKS......eooiiietiiiee ettt 618
27.4.2.7 1 0S_base CONSUCIOrSEStIUCIONS.oiuirieriereiieiesee ettt s 618
27.4.3 ClasSTEMPIALE f POS .ottt sttt b et b et b e et et e b e snene e 618
27431 TPOS MEMDENS.... .ottt b et b e e b et e b seene e 618
27.4.3.2 T POS FEOUITEITIENES.cueeetireetiseeteeteie st et et se et seebeseebeseebeseebeseese s s esesaese e b e e ebeseebeseebeseebeseebesnenennas 618
27.4.4 ClasStemplate DAST C_i 0S ...ciiiiiieiiieeseree ettt e b e e b e e b e 619
27441 DAST C_i OS CONSITUCOScouiiuiiueitisteriestesiesteseesteeeseeseesee e st esesaessesaesbesbeseessesbeseeseensenseeeneeneenes 620
27.4.4.2 MEMDEN TUNCHIONS......ccuiieitiiieiiiectee ettt ettt b et b et b e et et e b seene e 621
27443 basi c_i 0S io0state flagsSfunClions..........ccoeiriiiiiicncce e 622
2745 1 0S_DASE MANIPUIBIOIScveuiieeiirieiiiteiet ettt sttt ettt b e b e bt eb e et e ebeseebeseene e 623
27451 Tt f] ags MaANiPUIBLOISc.ciuiuiiiiiiteieteieet ettt sttt b e b e st se b e b seene e 623
27452 adj ustfi el d mManipUIELOrS.t b e 624
27453 basefi el d ManNiPUIBLOIS........cccoiiiiiiiiieeriee sttt b e et s eb e seebesrene e 625
27454 floatfiel dmManiPUIBLOIS ...t eb e e b e 625
27.5 SHEAM DUITEIS. ..ottt ettt b et b e e b et se et e b e srene e 625
27.5.1 Stream DUFEr FEQUITEMENTSc.eiiiiieeiiteiet ettt ettt bbb e eb e e b snene e 626
2752 Classtemplate basi c_streanbuf <char T, trai t S> ... 626
27521 basi Cc_StreamDuf CONSLIUCIONS. ...t e 628
27.5.2.2 basi c_streanbuf public member fUNCLIONS ..o 629
27.5.2.2. 1 LOCEIES.coieiteeetereet ettt b e st b e e b e bt e bR h Rt R R e b e R e b e b e b e ne e 629
27.5.2.2.2 Buffer management and POSITIONING.........cererereerieirieerieeriee st ere b e ere s 629
27.5.2.2.3 GBL BIA......ueeeueeetereet ettt bbbt b e e bt e bR R R R R AR e R e b e R e b e ne b e e b e ene e 629
27.5.2.2.4 PULDACKcooeitietiet ettt b e b e b e b e ne e 630
27.5.2.2.5 PUL IRcouieetieete ettt ettt b e b e e b e e b e e bt e Rt et R R e b e b e b e b e ene e ene e 630
27.5.2.3 basi c_streanbuf protected member fuNCLIONS..........c.coiveeriiiniinerneree e 630
27.5.2.3.1 GELAIBABCCESS. ... ccueeueeierieeiieterie sttt ettt h e Rt r e Rt R e R R e nr e n e 630
27.5.2.3.2 PULBIBAIBCCESS ...ttt er sttt sttt ettt h e bRt r e r e R se e r e R se e e e n e 631
275.24 basi c_streanmbuf virtual fUNCHONS........ccco i 631
275241 LOCEIES.coeeiteeeteieet ettt b et b e e b et b e e bt e R Rt R R e b e R e b e b e bt e ne e 631
27.5.2.4.2 Buffer management and POSITIONING........ccerrrereerieerieerieeriee st re b e ereseene e 631
27.5.2.4.3 GO GIA.....cueeeteeetereete ettt sttt b ettt b et b e e b e bR R R R R AR e R e R e R e b ne b e e bt nnene e 632
275244 PUDACKcooeieeeiteeete bbb bbb ne e 633
27.5. 245 PUL BIAccuiieteeetereet ettt ettt b et b e e b e s e bt e bt e Rt R R e R e R e b e R e b e bt e b nrene e 634
27.6 Formatting and ManiPUIBLOTS.c.eireerreirrerierereete sttt se et e et esre e b e b e b e b seebeseeneseene e 635
27.6.1 INPUE SEFEAIMS. ..ottt e ettt b e R Rt er e Rt R se e r e rese e se e s e e e e s s 636
27.6.1.1 ClasstemplaleDasi C_i ST EAML. .o 636
27.6.1.1.1 basi C_i St T EaMCONSIIUCIOIS........ccueieeieeeereeteete sttt se e se e e e sreseesaesreseas 638
27.6.1.1.2 Classhasi C_i ST AN I SENTTY it b e s 638
27.6.1.2 Formatted iNPUL FUNCLIONS..........ciiiiiiieieteieeteseete ettt b e s eb e s eb e seene e 639
27.6.1.2.1 COMIMON FEOUITEIMENES. ... ceteeetereetereeteseeteseestseesessesessesessesesseseeseseebeseebesaeseseeseseesessenessenesseneereneas 639
27.6.1.2.2 ArthmEtiC EXIrACIONS.c.iieeiiiieiirecesteestee ettt eb e e eb e s ebeseene s 639
27.6.1.2.3 basi C_i StTeant i OPEr At OF S>> .. e 640
27.6.1.3 Unformatted iNPUL fUNCLIONS.........oooiiiiiieieereee ettt 641
27.6.1.4 Standard basi C_i St reammanipUIaLOrS.ccoooeireerieerieereesee e 645
27.6.1.5 ClasstemplaleDasi C_i OSt I @AM ..o 646
27.6.1.5.1 basi C_i OSt T EAMCONSITUCIOISc..eivirieriereeieie ettt st s se e e e e e neenes 646
27.6.1.5.2 basi C_i 0St T @aAMUESIIUCIONcoiiirierie ettt s 646
27.6.2 OULPUL SETBAIMS. ...ttt e ettt b b sr e r R se e r e r e se e e e s e e e s 646
27.6.2.1 ClasstemplaleDasi C_OST I BAML..cciii i bbb 646

© ISO/IEC 2003 — Al rights reserved XXiii

ISO/IEC 14882:2003(E)

27.6.2.2 DasSi C_OSt I EAMCONSITUCLOIS........coereiuirierieriistesieseeseesteseeseeseeseesee e esessessessestesaessesseseeseessensenes 648
27.6.23 Classbasi C_OSE T aANT I SENT Y .o 648
27.6.24 basi C_0St reamsSeek MEMDES ..o e r e 649
27.6.25 Formatted OULPUL TUNCLIONS........coveiriiiiiiisieei ettt 650
27.6.25.1 COMIMON FEQUITEIMENTS.......eeiteeerireerereetereetesteseseesessesesseessese s s esessesesseseseesessesesaeassseaessensssennenis 650
27.6.25.2 ANNMELIC INSEITEIScuiectiecie st n et n e s 650
27.6.25.3 Dasi C_OSt T eam : OPEr At OF << ..ttt s sbe e e 650
27.6.25.4 Character inserter funCtion tEMPIaLEScoiiireirieree s 651
27.6.2.6 Unformatted OULPUL FUNCLIONS.......c.ciuiiriiiriieeteietere ettt 652
27.6.2.7 Standard basi C_0St r eammaniPUIBLOLS.ccurueuireeririeirieirieestee s seenes 653
27.6.3 StaNdard MENIPUIBLOISc.coveuereeuereeeirteesteest ettt se bt re st se s bbb sb e eb e s b ns bt nnene e e nesnenes 653
27.7 SHING-DASEA SITEAIMS.......cvieetiieeiirieiere ettt bbb bbbt st b bt n s e e e s 655
27.7.1 Classtemplate basi C_St i NGDUT ..o s 656
27.7.1.1 basi C_StriNGDUf CONSITUCLOIS........ccoiririiriiireirie s 657
27.7.1.2 MEMDES TUNCHIONS. .. .ctteitiieetirteieriei sttt ettt ettt b e eb e bt b b bt n s e e e s 657
27.7.1.3 Overridden Virtual TUNCHIONS.cccouiiiiiiieeieee e 658
27.7.2 Classtemplate basi C_i StTi NOST T @AM.c e 660
27.7.2.1 basi C_i Stri NSt rEamCONSITUCLOIS.ooueireeeirietireeiereeierie s 660
27.7.2.2 MEMDES TUNCHIONS.ctieetieetireeterte sttt b bttt b bbbt e bbbt n s e e nnenes 661
27.7.3 Classbasi C_OSt i NGST T @AM ... 661
27.7.3.1 basi C_OStri NGSt r €aMCONSITUCLOIS.ccveuireeeireeririeiirieieri s seenes 662
27.7.3.2 MEMDES TUNCHIONS.cuieetireetiieeierte sttt b bbb bbb b bt n s e e nnenes 662
27.7.4 Classtemplate basi C_St i NGST I @AM ... s 662
27.7.5 DasiC_StriNGSIream CONSIIUCTONS.......c.ciuiiiuiireeeeteeeteseetese et se et se et sb s b e eb e sn e ne e e snenes 663
27.7.6 MEMDES TUNCHIONS. .. .e.eitieetireeteitei ettt bbb bbbt eb e b e bbbt e s e e e s 663
27.8 FIle-DASEA SIHEAIMSoecviecteeecieree ettt b et b b et b bt n s e e s 664
27.8. 1 FIlESIIEAIMS. ...ttt b bbb bbb bbb et b e bt s bbbt e s e e nn s 664
27.8.1.1 Classtemplate basi C_f il @DUT ... 664
27.8.1.2 Dbasi C_fil ebuf CONSITUCLOrS.........ccioiiiriiiiisese et et 665
27.8.1.3 MEMDES TUNCHIONS. .. .ctieitieeiiiteiertei sttt ettt b bbb bbbt e s e e s 666
27.8.1.4 Overridden Virtual TUNCHIONS. ..ot 667
27815 ClasstemplateDasi C_i f St I aM. ... 669
27.8.1.6 basi C_i f St reamMCONSITUCIOIScoiieeeieeeeet ettt st see e 670
27.8.1.7 MEMDES TUNCHIONS. .. .cuieetireeiirteteree sttt b bbbt b e b bbb et ss bt e s e e e s 670
27.8.1.8 Classtemplate Dasi C_Of ST T aM.....ccciiiiice s 671
27.8.1.9 basi C_Of St r EAMCONSITUCIOISooueieeeieeeiiet ettt st sb e e 671
27.8.1.10 MEMDES TUNCHIONS.c.eetieeiireeieriei sttt b e bbb bbbt e s e e s 672
27.8.1.11 Classtemplate Dasi C_f ST T @AM ... s 672
27.8.1.12 basi C_f St reaAMCONSITUCIONS.........ciciiieierie ittt s et ee s 673
27.8.1.13 MEMDES TUNCHIONS.c.ectieeiiieetiriee sttt b bbbt s bbbt e s e e s 673
27.8.2 CLIBAY fllES. ..ottt b et n et n e 673
Annex A (informative) Gramimar SUMIMAIYcoceuereeuereetereeieseeessesesiee e ssesessesessesessesessesessessssessesessens 675
AL KEYWOITS.ccvieetiieete ettt sttt b et b e e b e e bt e bt s e bt b e bt S h e st E et e b et e b et e b et eb e st e b e neebese s e s enenr s 675
A2 LEXICE CONVENLIONS.....c.eiuiuirieiiiieititeestet ettt ettt b et s st sb et bt b et b et s b et ebese e b e e e b e ese s enennns 675
A3 BBSIC CONCEPLS.euieetirteuirteeert etttk ettt ettt b et bbb bt £ s e b st b et b et b et b et e b e e e bt e bt b e s e b et nr e 679
AL EXPIESSIONS. ...uiueetieetiseeteseete sttt sttt sb et b et b e st ebeseebeseeb e e e eh e e R e Re e R e Re S E At AR e e e R e e b e e R e e b e e R e bt e n s nennns 679

XXiv © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

AD SEAEEIMENES. ...t n e e 682
A B DECIAIAIIONS ...ttt bbb bbbt bbbt e bR et bbbt r e 683
AT DECIAIAIOTS. ...ttt bbbttt b et bt b e bt e bbbt b et bt b e e 685
AL ClBSSES ...ttt bR h £ R AR R AR b e R e R Rt Rt bRt b b 687
A9 DEIIVEU CIASSES.......ceiiieiietiet ettt b et b et e ettt b e r e 688
A.10 Special MEMDES TUNCHIONS.........oiiieiirieiirie ittt bbbttt b ene e 688
ALLL OVEIOBAINGevivieiierieeetieet ettt sttt b e st h bbbt b et b e b e bbbt b et et et nb s 688
ALL2 TEMPIAIES. ...ttt bbbt bRt s bbb b e R Rt et bRt b r s 689
A.L3 EXCEPION NANAIING ...cviiiiiiit ettt bbbt bbbt 689
A.14 PreproCeSSING QiTECHIVES.......c.eiueuireeiirieierie ettt ettt bbbt b b 690
Annex B (informative) Implementation QUaNTITIES.oireirieereireerieese e 693
Annex C (informative) COomPALiDITILYcoerveiriiiiriiriie e 695
C.l CH BNAISO C.eetete ettt bbbt e b e bbbt e h e et b et b e st ebeseebeseebeseebesnene e 695
C.11 Clause 2: |eXiCal CONVENTIONS.ctireirieeerereeteseeteseeteseeteseebeseese et r e s e b e b seebeseebeseebeseeneseenesnas 695
C.1.2 Clause 3: DASIC CONCEPLScuerveuerieuirteiirteesteseere sttt se et se bt se b e se bt be e bt ebeseebese et e seebeseebeseene e 696
C.1.3 ClaUSE 5. EXPIESSIONS. ..c.ecveeeterietertetesreststetase et seebeseebeseebeseebeseebeseesessesesbeseeb et ebeseebeseebeseebeseeneseenennas 698
C.14A Clause B: SAIEMENTS.ceeuiieetereeiirtete ettt sttt ettt se bt e bt e bt b e st b e e e b et e b e seebese et e seebeseebesnene e 699
C.15 Clause 7: GECIArAIONScueieeverieiirieiiet ettt ettt ettt se bt se et b et b et b et b e e b e se et e seebeseebeseene e 699
C.1.6 ClauSe 8: UECIArAONS ccveeevereeiereeiert ettt ettt et b ettt a et b et b e e b se et e seebeseebeseene e 701
C.L.7 ClaUSE O: ClBSSES.....ecueieeuerteieteee et se ettt sttt st b sttt se s bt s b et e b e e e b e s e ebese b e seebese ekt see bt sbenesbe e ebe e nre e 702
C.1.8 Clause 12: special MemDer fUNCHIONS.........ccoiiiiiiereerete e e eb e 703
C.1.9 Clause 16: preproCeSSiNG QirECHIVES.cciiiriirerietereete ettt sttt sb e e ebe e eb e s ebeseene e 704
C.2 SEANAAIA C DAY ...ecveeceeeeteeet ettt bbbt b e st b e et e et e b e e ene e 704
C.21 MOdifiCatioNSTO NEAHENS.c.eiveiirieiiieeerieet ettt s eb e e b srene e 706
C.2.2 Modificationsto defiNItIONS...........ceiriirieinteieeteriee ettt b e s b e e b e 706
C.2.2. 1 TYPEWECNAE _T ettt b e bt et e et b et a et b et b et ebese b e e ebeseebesnene e 706
C.2.2.2 Header <i SOBA6. N> ..ottt e b e b e 707
C.2.2.3 IMBOIO NULL ...ttt sttt b e bbbt e bt e bt et a et b et e b e e b e se ek e neebeseebesnene e 707
C.2.3 MOdifiCatioNStO AECIAIEIIONS.ucueireuerieirreieeteseete sttt ettt sttt b e e b s ebese b seebeseene e 707
C.24 ModificatioNSTO DENAVIONcc.cuiiieiiiieirieest ettt st s ebesrene e 707
C.241 Macroof fsetof (type, menber-desi gnat or) ... 707
C.24.2 Memory allOCation FUNCLIONS..........ciiuiirieieierieie ettt s eb e s b e e 707
Annex D (normative) Compatibility fEAIUIES.........coiiriiieieeee e 709
D.1 Increment operator With DOOI OPErandccoieiiiieiinieienere e 709
D.2 SHELC KEYWOITottt e s b e bbbt bbbt b e b 709
D.3 ACCESS UECIArAIONS.ttt bttt st b et e et b et bt bbb b 709

© ISO/IEC 2003 — All rights reserved XXV

ISO/IEC 14882:2003(E)

D.4 Implicit cONVErsion from CONSE SIINGScveverirrereeiereeierieie ettt nne 709
D.5 Standard C library NEAHENS.ciiiiiieeeere e 709
D.6 Old iOStrEAMS MEIMDETSoiiieeie ettt eeee et e e e e e e s e e s s be e s sest e s e saaeessabeessesbessssssassbeessasbessassnessrenean 709
D A o o F= Gl 1 (== 1 1 T T TR O RRR 711
D A0 R O = o X o) A G =T= 114 01U 1 R 711
D.7.1.1 Str St eambDUl CONSITUCLOIS.......ueiiiieieieeie et eteee ettt et e e ste e s st e s s eabe s s saeessbeessasbessssenessareeeas 713
D.7.1.2 MEMDET TUNCLIONS.......cueiiieie ettt ettt e s et e s te e s st e s sest e e e saaeessbeessesbessssasassabeessasbessasenessreeean 714
D.7.1.3 strstreanbuf overridden Virtual fTUNCLIONS.........coooouiiieciii ittt e e 714
(DA © = Y IS A o) A Y= 10 1 PP 717
D.7.2.1 | St I ST T CAMCONSITUCLOIS.eeiiiviieiteeeieteietetesesiteesssteeesetesssaeessabeessesbessssssassbesssasbessassnsssarenean 717
D.7.2.2 MEMDET TUNCLIONSottt ettt e e et e s e e s s ete e s se st e s e sabee s s beessesbessssasassabesssasbessssenessbeeean 717
(DA T =T Y o 13 A =) A Y= 11 1 TP 718
D.7.3.1 OStT St T EAMCONSIIUCLOIS......cccuvtiiieiiiitiiie sttt e e e e s s e s sbb e s e s e sbb e e e e s s s sbaseeassebbbaeessesasranesesias 718
D.7.3.2 MEMDET TUNCLIONS.......ceeiiiieie ittt et e e et e s te e s st e s st e e e saaeessbaessasbessssssassabensssbessassnessrenean 718
(DA A O =T X =X A G <T= 1 1 0 TR 719
[A S A Y A == g (0] 1S 0T o £ 719
D.7.4.2 SET St T QAMUESITUCIONeeiiiteieieeei e eeeeeette e e et e e st e e st esset e s e saaee s s baessasbessssssassbeessasbessassnessareeean 720
D.7.4.3 StI St T EAMOPEIELIONS.......ciiteiiteeetereete sttt sttt ettt sttt b et b ettt be st b e e e b n s nn e 720
Annex E (normative) Universal-CharaCter-NameSo.cereereiniee st 721
1010 L= GRS 723

XXVi © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as

an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14882 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

This second edition cancels and replaces the first edition (ISO/IEC 14882:1998), which has been technically
revised.

© ISO/IEC 2003 — Al rights reserved XXVii

INTERNATIONAL STANDARD HISO/EC | SO/IEC 14882:2003(E)

Programming languages — C+

1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the G+ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C+. Other requirements and relaxations of the first requirement appear at various places within this
International Standard.

CH+ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1990 Programming languages — C (1.2). In addition to the facilities provided by C, C+
provides additional data types, classes, templates, exceptions, namespaces, inline functions, operator over-
loading, function name overloading, references, free store management operators, and additional library
facilities.

1.2 Normativereferences [intro.refg]

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 2382 (all parts), Information technology — Vocabulary
| SO/IEC 9899:1999, Programming languages —C

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Character Set
(UCS) —Part 1: Architecture and Basic Multilingual Plane

The library described in clause 7 of 1SO/IEC 9899:1990 and clause 7 of 1SO/IEC 9899/Amd.1:1995 is here-
inafter called the Sandard C Library.”

1.3 Terms et definitions [intro.defg

For the purposes of this document, the definitions given in ISO/IEC 2382 and the following apply.
17.1 defines additional terms that are used only in clauses 17 through 27.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1.3.1 argument [defns.ar gument]
an expression in the comma-separated list bounded by the parentheses in a function call expression, a
seguence of preprocessing tokens in the commarseparated list bounded by the parenthesesin afunction-like
macro invocation, the operand of t hr ow, or an expression, type-id or template-name in the comma-
separated list bounded by the angle brackets in atemplate instantiation. Also known as an actual argument
or actual parameter.

D with the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Standard G+ library.

| SO/IEC 14882:2003(E) O ISO/IEC

1.3.2 diagnostic message 1 General

1.3.2 diagnostic message [defns.diagnostic]
amessage belonging to an implementation-defined subset of the implementation’ s output messages.

1.3.3 dynamictype [defns.dynamic.type]
the type of the most derived object (1.8) to which the Ivalue denoted by an |value expression refers. [Exam+
ple: if apointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived
from B (clause 10), the dynamic type of the expression * p is“D.” References (8.3.2) are treated similarly.]
The dynamic type of an rvalue expression isits static type.

1.3.4 ill-formed program [defns.ill.formed]
input to a G+ implementation that is not awell-formed program (1.3.14).

1.3.5 implementation-defined behavior [defns.impl.defined]
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation shall document.

1.3.6 implementation limits [defns.impl.limitg]
restrictions imposed upon programs by the implementation.

1.3.7 locale-specific behavior [defns.locale.specific]
behavior that depends on local conventions of nationality, culture, and language that each implementation
shall document.

1.3.8 multibyte character [defns.multibyte]
a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.2).

1.3.9 parameter [defns.parameter]
an object or reference declared as part of a function declaration or definition, or in the catch clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or atemplate-parameter. Parameters are also known as formal arguments or formal parameters.

1.3.10 signature [defns.signatur €]
the information about a function that participates in overload resolution (13.3): the types of its parameters
and, if the function is a class member, the cv- qualifiers (if any) on the function itself and the classin which
the member function is declared.?) The signature of a function template specialization includes the types of
its template arguments (14.5.5.1).

1.3.11 statictype [defns.static.type]
the type of an expression (3.9), which type results from analysis of the program without considering execu-
tion semantics. The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing.

1.3.12 undefined behavior [defns.undefined]
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this
International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note: permissible unde-
fined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
tranglation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a
diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are

) Function signatures do not include return type, because that does not participate in overload resolution.

O ISO/IEC | SO/IEC 14882:2003(E)

1 General 1.3.12 undefined behavior

required to be diagnosed.]

1.3.13 unspecified behavior [defns.unspecified]
behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usualy, the range of possible
behaviorsis delineated by this International Standard. |

1.3.14 well-formed program [defns.well.formed]
a G+ program constructed according to the syntax rules, diagnosable semantic rules, and the One Defini-
tion Rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard
except for those rules containing an explicit notation that “no diagnostic is required” or which are described
asresulting in “undefined behavior.”

Although this International Standard states only requirements on G+ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or execu-
tion of programs. Such requirements have the following meaning:

— If aprogram contains no violations of the rules in this International Standard, a conforming implemen-
tation shall, within its resource limits, accept and correctly execute” that program.

— If aprogram contains a violation of any diagnosable rule, a conforming implementation shall issue at
least one diagnostic message, except that

— If aprogram contains a violation of a rule for which no diagnostic is required, this International Stan-
dard places no requirement on implementations with respect to that program.

For classes and class templates, the library clauses specify partial definitions. Private members (clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library clauses.

For functions, function templates, objects, and values, the library clauses specify declarations. |mplementa-
tions shall supply definitions consistent with the descriptions in the library clauses.

The names defined in the library have namespace scope (7.3). A G+ trandation unit (2.1) obtains access to
these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementa-
tion provides definitions for standard library entities, as necessary, while combining translation units to
form a complete G+ program (2.1).

Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined set
of libraries that includes certain language-support libraries (17.4.1.3).

A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this International Standard. Having done so, how-
ever, they can compile and execute such programs.

) “Correct execution” can include undefined behavi or, depending on the data being processed; see 1.3 and 1.9.

| SO/IEC 14882:2003(E) O ISO/IEC

1.5 Structure of thisInternational Standard 1 General

1.5 Structureof thisInternational Standard [intro.structure]

Clauses 2 through 16 describe the G+ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifica
tions.

Clauses 17 through 27 (the library clauses) describe the Standard G+ library, which provides definitions
for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates (clause 14),
classes (clause 9), functions (8.3.5), and objects (clause 7).

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of G+ since its first published description, and explains in detail the
differences between G+ and C. Certain features of G+ exist solely for compatibility purposes; Annex D
describes those features.

Finally, Annex E says what characters are valid in universal-character namesin G+ identifiers (2.10).

Throughout this International Standard, each example is introduced by “[Example:” and terminated by “]”.
Each noteisintroduced by “[Note:” and terminated by “]”. Examples and notes may be nested.

1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in const ant wi dt h type. Alternatives are listed on separate lines
except in afew cases where a long set of alternatives is presented on one line, marked by the phrase “one
of.” An optional terminal or nonterminal symbol isindicated by the subscript “opt,” so

{ expressiong, }
indicates an optional expression enclosed in braces.
Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g. class-name, typedef-
name).

— X-id isan identifier with no context-dependent meaning (e.g. qualified-id).

— X-seq is one or more X's without intervening delimiters (e.g. declaration-seq is a sequence of declara
tions).

— X-list is one or more X' s separated by intervening commas (e.g. expression-list is a sequence of expres-
sions separated by commas).

1.7 The C+ memory model [intro.memory]

The fundamental storage unit in the G+ memory model is the byte. A byteis at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called the low-order bit; the most
significant bit is called the high-order bit. The memory available to a G+ program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

[Note: the representation of typesis described in 3.9.]

1.8 The C+ object model [intro.object]

The constructs in a G+ program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do.] An object is created by a definition (3.1), by a new-expression (5.3.4) or by the
implementation (12.2) when needed. The properties of an object are determined when the object is created.
An object can have a name (clause 3). An object has a storage duration (3.7) which influences its lifetime
(3.8). An object has atype (3.9). The term object type refers to the type with which the object is created.

O ISO/IEC | SO/IEC 14882:2003(E)

1 General 1.8 The C+ object model

Some objects are polymorphic (10.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. For other objects,
the interpretation of the values found therein is determined by the type of the expressions (clause 5) used to
access them.

Objects can contain other objects, called sub-objects. A sub-object can be a member sub-object (9.2), a
base class sub-object (clause 10), or an array element. An object that is not a sub-object of any other object
is called a complete object.

For every object x, there is some object called the complete object of x, determined as follows:
— If x isacomplete object, then x isthe complete object of x.
— Otherwise, the complete object of x isthe complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived classtypeis called amost derived object.

Unlessit is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class sub-objects may have zero size. An object of PoD? type (3.9) shall occupy
contiguous bytes of storage.

[Note: G+ provides a variety of built-in types and several ways of composing new types from existing
types (3.9).]

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementa-
tions. In particular, they need not copy or emulate the structure of the abstract machine. Rather, conform-
ing implementations are required to emulate (only) the observable behavior of the abstract machine as
explained below.”

Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, si zeof (i nt)). These constitute the parameters of the abstract
machine. Each implementation shall include documentation describing its characteristics and behavior in
these respects. Such documentation shall define the instance of the abstract machine that corresponds to
that implementation (referred to as the ** corresponding instance’’ below).

Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this Interna-
tional Standard defines a set of alowable behaviors. These define the nondeterministic aspects of the
abstract machine. An instance of the abstract machine can thus have more than one possible execution
sequence for agiven program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior. |

A conforming implementation executing a well-formed program shall produce the same observable behav-
ior as one of the possible execution sequences of the corresponding instance of the abstract machine with
the same program and the same input. However, if any such execution sequence contains an undefined
operation, this International Standard places no requirement on the implementation executing that program

*) The acronym POD stands for “plain old data.”

This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this Interna-
tional Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable behavior
of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no side effects affecting the observable behavior of the program are produced.

10

11

12

13

| SO/IEC 14882:2003(E) O ISO/IEC

1.9 Program execution 1 General

with that input (not even with regard to operations preceding the first undefined operation).

The observable behavior of the abstract machine is its sequence of reads and writesto vol at i | e dataand
calsto library 110 functions.®

Accessing an object designated by avol ati | e lvalue (3.10), modifying an object, caling a library 1/0
function, or calling afunction that does any of those operations are all side effects, which are changesin the
state of the execution environment. Evaluation of an expression might produce side effects. At certain
specified points in the execution sequence called sequence points, all side effects of 7g)revious evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place.

Once the execution of afunction begins, no expressions from the calling function are evaluated until execu-
tion of the called function has compl eted 8

When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with
type other than vol atile sig atom c_t are unspecified, and the value of any object not of
vol atil e sig _aton c_t thatismodified by the handler becomes undefined.

An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by acall of afunction or receipt of asignal).

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are complete and
subsequent eval uations have not yet occurred.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
messages actually appear prior to a program waiting for input. What constitutes an interactive deviceis
implementation-defined.

[Note: more stringent correspondences between abstract and actual semantics may be defined by each
implementation.]

A full-expression is an expression that is not a subexpression of another expression. If alanguage construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition.

[Note: certain contexts in G+ cause the evaluation of a full-expression that results from a syntactic con-
struct other than expression (5.18). For example, in 8.5 one syntax for initializer is

(expression-list)

but the resulting construct is afunction call upon a constructor function with expression-list as an argument
list; such afunction call isafull-expression. For example, in 8.5, another syntax for initializer is

= initializer-clause

but again the resulting construct might be a function call upon a constructor function with one assignment-
expression as an argument; again, the function call isafull-expression.]

% An implementation can offer additional library 1/0 functions as an extension. Implementations that do so should treat calls to those
functionsas‘* observable behavior’* aswell.

Note that some aspects of sequencing in the abstract machine are unspecified; the preceding restriction upon side effects applies to
that particular execution sequence in which the actual code is generated. Also note that when a call to alibrary 1/O function returns,
the side effect is considered complete, even though some external actionsimplied by the call (such asthe 1/0 itself) may not have com-
gl eted yet.

) In other words, function executions do not interleave with each other.

14

15

16
17

18

O ISO/IEC | SO/IEC 14882:2003(E)

1 General 1.9 Program execution

[Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument. |

[Note: operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.”) For example, in the following fragment

int a, b;

[*..0.0%]

a=a+ 32760 + b + 5;
the expression statement behaves exactly the same as

a=(((a+ 32760) + b) + 5);
due to the associativity and precedence of these operators. Thus, the result of thesum (a + 32760) is
next added to b, and that result is then added to 5 which results in the value assigned to a. On amachinein

which overflows produce an exception and in which the range of values representable by an i nt is
[-32768,+32767], the implementation cannot rewrite this expression as

a=((a+b) + 32765);

since if the values for a and b were, respectively, —32754 and —15, the sum a + b would produce an
exception while the original expression would not; nor can the expression be rewritten either as

((a + 32765) + b);

a

or
a=(a+ (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or —17 and 12. However on a machine
in which overflows do not produce an exception and in which the results of overflows are reversible, the
above expression statement can be rewritten by the implementation in any of the above ways because the
same result will occur.]

Thereis a sequence point at the completion of evaluation of each full-expressi on'?.

When calling a function (whether or not the function isinline), there is a sequence point after the evaluation
of al function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the exe-
cution of any expressions outside the function'. Several contexts in G+ cause evaluation of a function
call, even though no corresponding function call syntax appears in the translation unit. [Example: evalua-
tion of a new expression invokes one or more alocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears. | The sequence points at function-entry and function-exit (as described above) are features of the
function calls as evaluated, whatever the syntax of the expression that calls the function might be.

In the evaluation of each of the expressions

&& b
[l b
?b:c
a, b

a
a
a

using the built-in meaning of the operators in these expressions (5.14, 5.15, 5.16, 5.18), there is a sequence

9) Overloaded operators are never assumed to be associative or commutative.

10) As specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor func-
tions for temporary objects takes place, usually in reverse order of the construction of each temporary object.

1 The sequence point at the function return is not explicitly specified in 1ISO C, and can be considered redundant with sequence
points at full-expressions, but the extra clarity is important in C+. In G+, there are more ways in which a called function can termi-
nate its execution, such as the throw of an exception.

| SO/IEC 14882:2003(E) O ISO/IEC

1.9 Program execution 1 General

point after the evaluation of the first expressi on*?.

1.10 Acknowledgments [intro.ack]

The C+ programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Stroustrup: The G+ Programming Language (second edi-
tion, Addison-Wesley Publishing Company, ISBN 0-201-53992-6, copyright 00 1991 AT&T). That, in
turn, is based on the C programming language as described in Appendix A of Kernighan and Ritchie; The C
Programming Language (Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright (1 1978 AT&T).

Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was
published as The Draft Sandard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright [1995 P.J.
Plauger).

All rightsin these originals are reserved.

19 The operators indicated in this paragraph are the built-in operators, as described in clause 5. When one of these operators is over-
loaded (clause 13) in avalid context, thus designating a user-defined operator function, the expression designates a function invocation,
and the operands form an argument list, without an implied sequence point between them.

O ISO/IEC | SO/IEC 14882:2003(E)

2 Lexical conventions [lex]

The text of the program is kept in units called source files in this International Standard. A source file
together with all the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive
#i ncl ude, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing direc-
tives, is called atranglation unit. [Note: aCH+ program need not all be trandlated at the sametime.]

[Note: previously trandated trandation units and instantiation units can be preserved individualy or in
libraries. The separate trandation units of a program communicate (3.5) by (for example) callsto functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of datafiles. Tranglation units can be separately trandated and then later linked to produce an
executable program. (3.5).]

2.1 Phasesof tranglation [lex.phases]

The precedence among the syntax rules of trandation is specified by the following phases.ls)

1 Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. Trigraph
sequences (2.3) are replaced by corresponding single-character internal representations. Any source file
character not in the basic source character set (2.2) is replaced by the universal-character-name that des-
ignates that character. (An implementation may use any internal encoding, so long as an actual
extended character encountered in the source file, and the same extended character expressed in the
source file as a universal-character-name (i.e. using the \ uXXXX notation), are handled equivalently.)

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. If a source
file that is not empty does not end in a new-line character, or ends in a new-line character immediately
preceded by a backslash character, the behavior is undefined.

3 The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or partial com-
ment*?. Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file's characters into pre-
processing tokens is context-dependent. [Example: see the handling of < within a#i ncl ude prepro-
cessing directive.]

4 Preprocessing directives are executed and macro invocations are expanded. If a character sequence that
matches the syntax of a universal-character-name is produced by token concatenation (16.3.3), the
behavior isundefined. A #i ncl ude preprocessing directive causes the named header or source file to
be processed from phase 1 through phase 4, recursively.

5 Each source character set member, escape sequence, or universal-character-name in character literals
and string literalsis converted to amember of the execution character set (2.13.2, 2.13.4).

6 Adjacent ordinary string literal tokens are concatenated. Adjacent wide string literal tokens are concate-
nated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is

ol mplementations must behave asiif these separate phases occur, although in practice different phases might be folded together.

14) A partial preprocessing token would arise from a source file ending in the first portion of amulti-character token that requires ater-
minating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment would arise from a
source file ending with an unclosed / * comment.

| SO/IEC 14882:2003(E) O ISO/IEC

2.1 Phases of trandation 2 Lexical conventions

converted into a token. (2.6). The resulting tokens are syntactically and semantically analyzed and
trandlated. [Note: Source files, trandation units and translated translation units need not necessarily be
stored as files, nor need there be any one-to-one correspondence between these entities and any external
representation. The description is conceptual only, and does not specify any particular implementation.

]

8 Trandated trandation units and instantiation units are combined as follows: [Note: some or all of these
may be supplied from a library.] Each translated translation unit is examined to produce a list of
required instantiations. [Note: this may include instantiations which have been explicitly requested
(14.7.2).] The definitions of the required templates are located. It is implementation-defined whether
the source of the trandlation units containing these definitions is required to be available. [Note: an
implementation could encode sufficient information into the translated translation unit so as to ensure
the source is not required here.] All the required instantiations are performed to produce instantiation
units. [Note: these are similar to translated translation units, but contain no references to uninstantiated
templates and no template definitions.] The program isill-formed if any instantiation fails.

9 All externa object and function references are resolved. Library components are linked to satisfy exter-
nal references to functions and objects not defined in the current trandation. All such trandator output
is collected into a program image which contains information needed for execution in its execution
environment.

2.2 Character sets [lex.char set]

The basic source character set consists of 96 characters: the space character, the control characters regre
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters™

abcdefghijkl mnopgr stuvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXYZ
0123456789

YL #0C)<>%: 2% +- /7 &| 71 =,

The universal-character-name construct provides away to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

univer sal-character-name:
\ u hex-quad
\ U hex-quad hex-quad

The character designated by the universal-character-name \ UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name
\ uNNNN is that character whose character short namein ISO/IEC 10646 is 0000ONNNN. If the hexadecimal
value for a universal character name is less than 0x20 or in the range 0x7F-Ox9F (inclusive), or if the uni-
versal character name designates a character in the basic source character set, then the program is ill-
formed.

The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and car-
riage return, plus anull character (respectively, null wide character), whose representation has all zero hits.
For each basic execution character set, the values of the members shall be non-negative and distinct from
one another. In both the source and execution basic character sets, the value of each character after O in the
above list of decimal digits shall be one greater than the value of the previous. The execution character set
and the execution wide-character set are supersets of the basic execution character set and the basic

) The glyphs for the members of the basic source character set are intended to identify characters from the subset of |SO/IEC 10646
which corresponds to the ASCII character set. However, because the mapping from source file characters to the source character set
(described in trandation phase 1) is specified as implementation-defined, an implementation is required to document how the basic
source characters are represented in sourcefiles.

10

O ISO/IEC | SO/IEC 14882:2003(E)
2 Lexical conventions 2.2 Character sets
execution wide-character set, respectively. The values of the members of the execution character sets are
implementation-defined, and any additional members are |ocal e-specific.

2.3 Trigraph sequences [lex.trigraph]

Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences’) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences

Origraph replacement Otrigraph replacement Otrigraph replacement O
H??: # H 22([H ?27< { H
O ??/ \ o ??)] 0o ??> } O
H 27 - H 22! | H 27- ~ H
[Example:
??=define arraycheck(a, b) a??(b??) ??!2?! b??(a??)
becomes
#define arraycheck(a,b) a[b] || b[a]
—end example]

No other trigraph sequence exists. Each ? that does not begin one of the trigraphs listed above is not
changed.

2.4 Preprocessing tokens [lex.pptoken]

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an
identifier, aliteral, an operator, or a punctuator.

A preprocessing token is the minimal lexical element of the language in trandation phases 3 through 6.
The categories of preprocessing token are: header names, identifiers, preprocessing numbers, character
literals, string literals, preprocessing-op-or-punc, and single non-white-space characters that do not lexi-
cally match the other preprocessing token categories. If a’ or a” character matches the last category, the
behavior is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(2.7), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character literal or string
literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token, even if that would
cause further lexical analysisto fail.

[Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might

11

| SO/IEC 14882:2003(E) O ISO/IEC

2.4 Preprocessing tokens 2 Lexical conventions

produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program frag-
ment 1EL1 is parsed as a preprocessing number (one that isavalid floating literal token), whether or not E is
amacro name. |

[Example: The program fragment x+++++y isparsed asx ++ ++ + y, which, if x andy are of built-in
types, violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a
correct expression.]

2.5 Alternativetokens [lex.digraph]
Alternative token representations are provided for some operators and punctuatorslﬁ).

In al respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelli ngl7). The set of alternative tokensis defined in Table 2.

Table 2—alternative tokens

Chlternative primary Oalternative primary Oalternative primary O

5 <% { - and & - and_eq & o
o % } O bitor | O or_eq = O
0 < [U or || Uxor_eq = U
)] ~))
o >] O xor g hot ! O
O % # d conpl - O not _eq = 0O
H % % ## H bitand & Ao 5
2.6 Tokens [lex.token]
token:

identifier

keyword

literal

operator

punctuator

There are five kinds of tokens: identifiers, keywords, literal s,lg) operators, and other separators. Blanks,

horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space™), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters. |

2.7 Comments [lex.comment]

The characters/ * start a comment, which terminates with the characters */ . These comments do not nest.
The characters / / start a comment, which terminates with the next new-line character. If thereis aform-
feed or a vertical-tab character in such a comment, only white-space characters shall appear between it and
the new-line that terminates the comment; no diagnostic is required. [Note: The comment characters/ / ,
/*,and */ have no special meaning withina// comment and are treated just like other characters. Simi-
larly, the comment characters/ / and/ * have no special meaning withina/ * comment.]

10) These include “di graphs’ and additional reserved words. The term “digraph” (token consisting of two characters) is not perfectly
descriptive, since one of the alternative preprocessing-tokens is % % and of course several primary tokens contain two characters.
Nonethel ess, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs’.

Thusthe “stringized” values (16.3.2) of [and <: will be different, maintaining the source spelling, but the tokens can otherwise be
freely interchanged.

Literalsinclude strings and character and numeric literals.

12

O ISO/IEC | SO/IEC 14882:2003(E)

2 Lexical conventions 2.8 Header names
2.8 Header names [lex.header]
header-name:

<h-char-sequence>
" g-char-sequence”

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
new-line and >

g-char-sequence:
g-char
g-char-seguence g-char

g-char:
any member of the source character set except
new-lineand "

Header name preprocessing tokens shall only appear within a #i ncl ude preprocessing directive (16.2).
The sequences in both forms of header-names are mapped in an implementation-defined manner to headers
or to external source file names as specified in 16.2.

If either of the characters’ or \, or either of the character sequences / * or // appears in a g-char-
%querlge or a h-char-sequence, or the character " appears in a h-char-seguence, the behavior is unde-
fined.

2.9 Preprocessing numbers [lex.ppnumber]

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and al floating literal
tokens (2.13.3).

A preprocessing number does not have atype or a value; it acquires both after a successful conversion (as
part of tranglation phase 7, 2.1) to an integral literal token or afloating literal token.

2.10 ldentifiers [lex.name]
identifier:
nondigit
identifier nondigit
identifier digit

) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

13

2

| SO/IEC 14882:2003(E) O ISO/IEC

2.10 | dentifiers 2 Lexical conventions

nondigit: one of

universal-character-name

_abcdefghij kl m
nopgrstuvwxyz
ABCDEFGHI JKLM
NOPQRSTUVWXYZ

digit: one of
01234567829

An identifier isan arbitrarily long sequence of letters and digits. Each universal-character-namein an iden-
tifier shall designate a character whose encoding in 1SO 10646 falls into one of the ranges specified in
Annex E. Upper- and lower-case |etters are different. All characters are significant.

In addition, some identifiers are reserved for use by G+ implementations and standard libraries (17.4.3.1.2)
and shall not be used otherwise; no diagnostic is required.
2.11 Keywords [lex.key]

The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywordsin phase 7):

Table 3—keywords

Chsm do i f return typedef O
Chut o doubl e inline short typeid U
ool dynami c_cast i nt si gned t ypenane B
r eak el se | ong si zeof uni on 0
[Fase enum nut abl e static unsi gned
Ltatch explicit namespace static_cast using O
Lehar expor t new struct virtual U
| ass extern oper at or switch voi d B
const fal se private tenpl ate volatile
[ronst _cast fl oat protected this wchar _t [
Lconti nue for public t hr ow whi | e O
Ldef aul t friend register true O
elete got o rei nterpret_cast try H

Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are
reserved and shall not be used otherwise:

Table 4—alternative representations

Cand and_eq bitand bitor conpl not O
Fhot _eq or or_eq xor Xor _eq H

%) on systemsin which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in form-
ing valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to encode the \ u
inauniversal-character-name. Extended characters may produce along external identifier, but G+ does not place atrandation limit on
significant charactersfor external identifiers. In G+, upper- and lower-case letters are considered different for all identifiers, including
external identifiers.

14

O ISO/IEC | SO/IEC 14882:2003(E)

2 Lexical conventions 2.12 Operators and punctuators

2.12 Operatorsand punctuators [lex.operatorsg]

The lexical representation of G+ programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of

{ } [| # #it ()
< > <% % % % % :
new delete ? . . ¥
+ - * / % - & | -
| = < > += - = * = = (07
~ = &= | = << >> >>= <<= == I =
<= >= && |] ++ -- , - >* ->
and and_eq bitand bitor conpl not not _eq
or or_eq xor Xor _eq
Each preprocessing-op-or-punc is converted to a single token in tranglation phase 7 (2.1).
2.13 Literals [lexliteral]
There are several kinds of literals. 2"
literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
2.13.1 Integer literals [lex.icon]
integer-literal:
decimal-literal integer-suffix,,
octal-literal integer -suffix,
hexadecimal-literal integer-suffix,y
decimal-literal:
nonzero-digit
decimal-literal digit
octal-literal:

0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 45 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

“D Theterm “literal” generally designates, in this International Standard, those tokensthat are called “constants’ in 1SO C.

15

| SO/IEC 14882:2003(E) O ISO/IEC

2.13.1 Integer literals 2 Lexical conventions

=

hexadecimal-digit: one ol

0 1 2 3 45 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:

unsigned-suffix long-suffix,
long-suffix unsigned-suffix,g

unsigned-suffix: one of
u U

long-suffix: one of
I L

Aninteger literal is a sequence of digits that has no period or exponent part. An integer literal may have a
prefix that specifies its base and a suffix that specifiesitstype. The lexically first digit of the sequence of
digits is the most significant. A decimal integer literal (base ten) begins with a digit other than O and con-
sists of a sequence of decimal di%its. An octal integer literal (base eight) begins with the digit O and con-
sists of a sequence of octal digits. 2 A hexadecimal integer literal (base sixteen) begins with Ox or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through f

and A through F with decimal values ten through fifteen. [Example: the number twelve can be written 12,
014, or OXC.]

Thetype of aninteger literal depends on its form, value, and suffix. If it isdecimal and has no suffix, it has
the first of these types in which its value can be represented: i nt , | ong i nt ; if the value cannot be repre-
sented asal ong i nt, the behavior is undefined. If it isoctal or hexadecimal and has no suffix, it has the
first of these types in which its value can be represented: i nt , unsi gned i nt, 1 ongi nt, unsi gned
[ongint. If itissuffixed by u or U, its type is the first of these types in which its value can be repre-
sented: unsi gned i nt, unsi gned | ong i nt. If itissuffixed by | or L, itstype is the first of these
types in which its value can be represented: | ong i nt, unsi gned | ong i nt. If it is suffixed by ul ,
[u,ulL, Lu, U 1 U UL, or LU, itstypeisunsi gned | ongi nt.

A program is ill-formed if one of its trandation units contains an integer literal that cannot be represented
by any of the allowed types.

2.13.2 Character literals [lex.ccon]

character-literal:
' ¢c-char-sequence’
L' c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quote’ , backslash \ , or new-line character

escape-sequence
univer sal-character-name

%4 The digits 8 and 9 are not octal digits.

16

O ISO/IEC | SO/IEC 14882:2003(E)

2 Lexical conventions 2.13.2 Character literals

escape-sequence;
simpl e-escape-sequence
octal-escape-sequence
hexadeci mal-escape-sequence

simple-escape-sequence: one of
L R N A N
\‘a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadeci mal-escape-sequence:
\ X hexadecimal-digit
hexadeci mal-escape-sequence hexadecimal-digit

A character literal is one or more characters enclosed in single quotes, asin’ x’ , optionally preceded by
theletter L, asin L’ x’ . A character literal that does not begin with L is an ordinary character literal, also
referred to as a narrow-character literal. An ordinary character literal that contains a single c-char has type
char , with value egual to the numerical value of the encoding of the c-char in the execution character set.
An ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharac-
ter literal hastypei nt and implementation-defined value.

A character literal that begins with the letter L, such asL’ x’ , isawide-character literal. A wide-character
literal has type wchar _t 23 The value of a wide-character literal containi ng a single c-char has vaue
equal to the numerical value of the encoding of the c-char in the execution wide-character set. The value of
awide-character literal containing multiple c-charsisimplementation-defined.

Certain nongraphic characters, the single quote ' , the double quote ", the question mark ?, and the back-
slash\ , can be represented according to Table 5.

Table 5—escape sequences
Chew-line NL(LF) \n O
Chorizontal tab~ HT \t U
Hertical tab VT \v B
Elpackspace BS \b 0
[carriagereturn CR \r 0
[(form feed FF \f O
Chlert BEL \a U

ackslash \ \ B
Questionmark ? \? 0
[single quote ' \ 0
Cdouble quote " \" O
Coctal number 000 \ooo U
hex number ~ hhh \xhhh H

The double quote " and the question mark ?, can be represented as themselves or by the escape sequences
\" and \ ? respectively, but the single quote * and the backslash \ shall be represented by the escape
sequences\ ' and \ \ respectively. If the character following a backslash is not one of those specified, the
behavior is undefined. An escape sequence specifies a single character.

23 They are intended for character sets where a character does not fit into asingle byte.

17

| SO/IEC 14882:2003(E) O ISO/IEC

2.13.2 Character literals 2 Lexical conventions

The escape \ 000 consists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The escape \ xhhh consists of the backslash followed by x followed
by one or more hexadecimal digits that are taken to specify the value of the desired character. Thereis no
limit to the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digitsis ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation-defined if it falls outside of the implementation-defined range defined
for char (for ordinary literals) or wchar _t (for wideliterals).

A universal-character-name is translated to the encoding, in the execution character set, of the character
named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in trandation phase 1, a universal-character-name is introduced whenever an
actua extended character is encountered in the source text. Therefore, al extended characters are described
in terms of universal-character-names. However, the actual compiler implementation may use its own
native character set, so long as the same results are obtained.]

2.13.3 Floating literals [lex.fcon]

floating-literal:
fractional-constant exponent-part, floating-suffix,
digit-sequence exponent-part floating-suffix,

fractional-constant:
digit-sequence,, . digit-sequence
digit-sequence .

exponent-part:
e sgn,, digit-sequence
E sign,, digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f I F L

A floating literal consists of an integer part, a decimal point, afraction part, an e or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the letter e (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form the significant part of the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else
the larger or smaller representable value nearest the scaled value, chosen in an implementation-defined
manner. Thetype of afloating literal isdoubl e unless explicitly specified by a suffix. The suffixesf and
F specify f | oat , the suffixes| and L specify | ong doubl e. If the scaled value is not in the range of
representable values for its type, the program is ill-formed.

18

O ISO/IEC | SO/IEC 14882:2003(E)

2 Lexical conventions 2.13.3 Floating literals
2.13.4 Stringliterals [lex.string]
string-literal:

" s-char-sequenceyy”
L" s-char-sequencey,”

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quote " , backslash \ , or new-line character

escape-sequence
univer sal-character-name

A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally
beginning with the letter L, asin"..." orL"...". A string literal that does not begin with L is an ordi-
nary string literal, also referred to as a narrow string literal. An ordinary string literal has type “array of n
const char” and static storage duration (3.7), where n is the size of the string as defined below, and is
initialized with the given characters. A string literal that beginswith L, such asL" asdf ", isawide string
literal. A wide string literal has type “array of nconst wchar _t” and has static storage duration, where
n isthe size of the string as defined below, and isinitialized with the given characters.

Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

In translation phase 6 (2.1), adjacent narrow string literals are concatenated and adjacent wide string literals
are concatenated. If a narrow string literal token is adjacent to a wide string literal token, the behavior is
undefined. Charactersin concatenated strings are kept distinct. [Example:

"\ xA" "B"

contains the two characters’ \ XA’ and’ B’ after concatenation (and not the single hexadecimal character
"\ XAB').]

After any necessary concatenation, in translation phase 7 (2.1), ' \ 0
that programs that scan a string can find its end.

is appended to every string literal so

Escape sequences and universal-character-namesin string literals have the same meaning as in character lit-
erals (2.13.2), except that the single quote ’ is representable either by itself or by the escape sequence\ ',
and the double quote " shall be preceded by a\ . In anarrow string literal, a universal-character-name may
map to more than one char element due to multibyte encoding. The size of awide string literal isthe total
number of escape sequences, universal-character-names, and other characters, plus one for the terminating
L'\ 0’ . The size of a narrow string literal is the total number of escape sequences and other characters,
plus at least one for the multibyte encoding of each universal-character-name, plus one for the terminating
"\NO'.

2.13.5 Boolean literals [lex.bool]

boolean-literal:
fal se
true

The Boolean literals are the keywordsf al se andt r ue. Such literals have type bool . They are not lval-
ues.

19

| SO/IEC 14882:2003(E)

20

Blank page

O ISO/IEC

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3 Basic concepts

3 Basic concepts [basic]

[Note: this clause presents the basic concepts of the C+ language. It explains the difference between an
object and a name and how they relate to the notion of an Ivalue. It introduces the concepts of a declaration
and a definition and presents CGH’s notion of type, scope, linkage, and storage duration. The mechanisms
for starting and terminating a program are discussed. Finaly, this clause presents the fundamental types of
the language and lists the ways of constructing compound types from these.

This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses. |

An entity is avalue, object, subobject, base class subobject, array element, variable, function, instance of a
function, enumerator, type, class member, template, or namespace.

A nameisause of anidentifier (2.10) that denotes an entity or label (6.6.4, 6.1). A variable is introduced
by the declaration of an object. The variable's name denotes the object.

Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is intro-
duced either by agot o statement (6.6.4) or alabeled-statement (6.1)Blank page.

Some names denote types, classes, enumerations, or templates. In genera, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that containsit. The process
that determinesthisis called name lookup (3.4).

Two names are the same if

— they areidentifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or

— they are the names of user-defined conversion functions formed with the same type.

An identifier used in more than one tranglation unit can potentially refer to the same entity in these tranda
tion units depending on the linkage (3.5) of the identifier specified in each tranglation unit.

3.1 Declarations and definitions [basic.def]

A declaration (clause 7) introduces names into a trandlation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it
contains the ext er n specifier (7.1.1) or a Iinkage-specification24) (7.5) and neither an initializer nor a
function-body, it declares a static data member in a class declaration (9.4), it is a class name declaration
(9.2), oritisat ypedef declaration (7.1.3), ausing-declaration (7.3.3), or ausing-directive (7.3.4).

%) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a defini-
tion.

21

| SO/IEC 14882:2003(E)

O ISO/IEC

3.1 Declarations and definitions 3 Basic concepts

[Example: al but one of the following are definitions:

int a; /| definesa
extern const int ¢ = 1; /| definesc
int f(int x) { return x+a; } /| definesf and defines x
struct S{ int a; int b; }; /] definesS,S::a,andS:: b
struct X { /| defines X
int x; /| defines nonstatic data member x
static int vy; /| declares static data member y
X(): x(0) { } /| defines a constructor of X
int X:y =1, /] definesX::y
enum { up, down }; /| definesup and down
namespace N { int d; } /| definesNand N: : d
namespace N1 = N; /| defines N1
X anX; /'l definesanX

whereas these are just declarations:

extern int a; /| declaresa

extern const int c; /| declaresc

int f(int); /| declaresf

struct S; /| declaresS

typedef int Int; /| declares| nt

extern X anot her X; /| declaresanot her X

using N :d; /| declaresN: : d
—end example]

[Note: in some circumstances, C+ implementations implicitly define the default constructor (12.1), copy
constructor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [Example: given

struct C {
string s; /'l stringisthe standard library class (clause 21)

b
int

{

in()

ma
C
C a,
b

oo

a
}

the implementation will implicitly define functions to make the definition of C equivaent to

struct C {

string s;

a): s() {}

C(const C& x): s(x.s) { }

C& operator=(const C& x) { s = x.s; return *this; }
} a) {1}

—end example] —end note]
[Note: aclass name can also be implicitly declared by an elaborated-type-specifier (3.3.1).]
A program isill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 Onedéefinition rule [basic.def.odr]

No tranglation unit shall contain more than one definition of any variable, function, class type, enumeration

type or template.

22

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.2 Onedefinition rule

An expression is potentially evaluated unless it appears where an integral constant expression is required
(see 5.19), is the operand of the si zeof operator (5.3.3), or is the operand of the t ypei d operator and
the expression does not designate an lvalue of polymorphic class type (5.2.8). An object or non-overloaded
function is used if its name appears in a potentially-evaluated expression. A virtual member function is
used if it isnot pure. An overloaded function is used if it is selected by overload resolution when referred
to from a potentially-evaluated expression. [Note: this covers calls to named functions (5.2.2), operator
overloading (clause 13), user-defined conversions (12.3.2), allocation function for placement new (5.3.4),
as well as non-default initialization (8.5). A copy constructor is used even if the call is actualy elided by
the implementation.] An allocation or deallocation function for aclass is used by a new expression appear-
ing in a potentially-evaluated expression as specified in 5.3.4 and 12.5. A deallocation function for a class
isused by a delete expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5.
A copy-assignment function for a class is used by an implicitly-defined copy-assignment function for
another class as specified in 12.8. A default constructor for aclassis used by default initialization as speci-
fied in 8.5. A constructor for aclassis used as specified in 8.5. A destructor for aclassis used as specified
in12.4.

Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the
standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8).
Aninline function shall be defined in every trandation unit in which it is used.

Exactly one definition of aclassisrequired in atrandation unit if the classis used in away that requires the
class type to be complete. [Example: the following complete trandation unit is well-formed, even though it
never defines X:

struct X /| declare X as a struct type
struct X* x1; /| use Xin pointer formation
xX* x2; /1 use Xin pointer formation

—end example] [Note: the rules for declarations and expressions describe in which contexts complete class
types arerequired. A classtype T must be completeif:

— an object of type T is defined (3.1, 5.3.4), or
— anlvalue-to-rvalue conversion is applied to an lvalue referring to an object of type T (4.1), or
— an expression is converted (either implicitly or explicitly) totype T (clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4), or

— an expression that is not a null pointer constant, and has type other than voi d *, is converted to the
type pointer to T or referenceto T using an implicit conversion (clause 4), adynami c_cast (5.2.7) or
astatic_cast (5.29),o0r

— aclass member access operator is applied to an expression of type T (5.2.5), or

— thet ypei d operator (5.2.8) or thesi zeof operator (5.3.3) is applied to an operand of type T, or
— afunction with areturn type or argument type of type T is defined (3.1) or called (5.2.2), or

— anlvalueof type T isassigned to (5.17).]

There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function
with external linkage (7.1.2), class template (clause 14), non-static function template (14.5.5), static data
member of a class template (14.5.1.3), member function of a class template (14.5.1.1), or template special-
ization for which some template parameters are not specified (14.7, 14.5.4) in a program provided that each
definition appears in a different trandlation unit, and provided the definitions satisfy the following require-
ments. Given such an entity named D defined in more than one tranglation unit, then

— each definition of D shall consist of the same sequence of tokens; and

— in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.8.3), except that a name can refer to a const object

23

| SO/IEC 14882:2003(E) O ISO/IEC

3.2 One definition rule 3 Basic concepts

with internal or no linkage if the object has the same integral or enumeration typein all definitions of D,
and the object is initialized with a constant expression (5.19), and the value (but not the address) of the
object is used, and the object has the same value in all definitions of D; and

in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function, or to
afunction defined within the definition of D; and

in each definition of D, a default argument used by an (implicit or explicit) function call is treated as if
its token sequence were present in the definition of D; that is, the default argument is subject to the three
requirements described above (and, if the default argument has sub-expressions with default arguments,
this requirement applies recursively).

if Dis a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every tranglation unit where it is used, and the implicit definition in every trandation unit
shall call the same constructor for abase class or a class member of D. [Example:

/| trandlation unit 1:

struct X {
X(int);
X(int, int);
1

X X(int =0) { }
class D public X { };
D d2; /1 X(int) calledbyD()

/| trangdlation unit 2:
struct X {
X(int);
X(int, int);
}s
X::X(int =0, int

=0) {}
class D public X { }

; /1 X(int, int) caledby () ;

/1 () 'simplicit definition

/| violatesthe ODR
—end example] If Dis atemplate, and is defined in more than one trandation unit, then the last four
requirements from the list above shall apply to names from the template's enclosing scope used in the
template definition (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the
definitions of D satisfy all these requirements, then the program shall behave as if there were a single
definition of D. If the definitions of D do not satisfy these requirements, then the behavior is undefined.

3.3 Declarative regions and scopes [basic.scope]

Every name isintroduced in some portion of program text called a declarative region, which is the largest
part of the program in which that name is valid, that is, in which that name may be used as an unqualified
name to refer to the same entity. In general, each particular name is valid only within some possibly dis-
contiguous portion of program text called its scope. To determine the scope of a declaration, it is some-
times convenient to refer to the potential scope of a declaration. The scope of a declaration is the same as
its potential scope unless the potential scope contains another declaration of the same name. In that case,
the potential scope of the declaration in the inner (contained) declarative region is excluded from the scope
of the declaration in the outer (containing) declarative region.

29) 836 describes how default argument names are looked up.

24

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.3 Declarative regions and scopes

[Example: in
int j = 24,
int main()
int i =j, j;
i = 42
}
the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potentia scope of thefirstj beginsimmediately after that j and extends to the end
of the program, but its (actual) scope excludes the text between the, and the}. The declarative region of
the second declaration of j (thej immediately before the semicolon) includes al the text between { and } ,
but its potential scope excludes the declaration of i . The scope of the second declaration of j isthe same
asits potential scope.]

The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of afri end specifier (11.4), certain uses of the elaborated-type-specifier (3.3.1), and
using-directives (7.3.4) ater this general behavior.

Given a set of declarations in a single declarative region, each of which specifies the same unqualified
name,

— they shall al refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and
the other declarations shall al refer to the same object or enumerator, or al refer to functions and func-
tion templates; in this case the class name or enumeration name is hidden (3.3.7). [Note: a namespace
name or a class template name must be unique in its declarative region (7.3.2, clause 14).]

[Note: these restrictions apply to the declarative region into which aname is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers
(3.3.1) and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing name-
space; these restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the
declarative region where the declaration appears and also introduce a (possibly not visible) name into an
enclosing namespace; these restrictions apply to both regions. |

[Note: the name lookup rules are summarized in 3.4. |

3.3.1 Point of declaration [basic.scope.pdecl]

The point of declaration for a name is immediately after its complete declarator (clause 8) and before its
initializer (if any), except as noted below. [Example:

int x = 12;
{int x =x; }
Here the second x isinitialized with its own (indeterminate) value.]

[Note: a nonlocal name remains visible up to the point of declaration of the local name that hides it.
[Example:
const int i = 2
{ int i[i]; }
declaresalocal array of two integers. 11
The point of declaration for an enumerator isimmediately after its enumerator-definition. [Example:

const int x = 12;
{ enum{ x =x }; }

Here, the enumerator x isinitialized with the value of the constant x, namely 12.]

25

| SO/IEC 14882:2003(E) O ISO/IEC

3.3.1 Point of declaration 3 Basic concepts

After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [Note: thisistrue even if the classis an incomplete class. For example,

struct X {
enumE { z = 16 };
int b[X:2z]; /1 OK
b
—end note]

The point of declaration of aclassfirst declared in an elaborated-type-specifier is as follows:

— for an elaborated-type-specifier of the form
class-key identifier ;

the elaborated-type-specifier declares the identifier to be a class-name in the scope that contains the
declaration, otherwise

— for an elaborated-type-specifier of the form
class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as afriend declaration, the identifier is declared in the small-
est non-class, non-function-prototype scope that contains the declaration. [Note: if the elaborated-
type-specifier designates an enumeration, the identifier must refer to an already declared enum-name. If
the identifier in the elaborated-type-specifier is a qualified-id, it must refer to an aready declared
class-name or enum-name. See3.4.4. |

[Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope
and object declarations with the ext er n specifier at block scope refer to delarations that are members of
an enclosing namespace, but they do not introduce new names into that scope.]

[Note: For point of instantiation of atemplate, see 14.6.4.1.]

3.3.2 Local scope [basic.scope.local]

A name declared in ablock (6.3) islocal to that block. Its potential scope begins at its point of declaration
(3.3.1) and ends at the end of its declarative region.

The potential scope of a function parameter name in a function definition (8.4) begins at its point of decla-
ration. If the function has a function-try-block the potential scope of a parameter ends at the end of the last
associated handler, else it ends at the end of the outermost block of the function definition. A parameter
name shall not be redeclared in the outermost block of the function definition nor in the outermost block of
any handler associated with a function-try-block.

The namein acat ch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

Names declared in the for-init-statement, and in the condition of i f , whi | e, f or, and swi t ch statements
arelocal tothei f, whi |l e, for, or swi t ch statement (including the controlled statement), and shall not
be redeclared in a subsequent condition of that statement nor in the outermost block (or, for the i f state-
ment, any of the outermost blocks) of the controlled statement; see 6.4.

3.3.3 Function prototype scope [basic.scope.proto]

In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

26

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.3.4 Function scope

3.3.4 Function scope [basic.funscope]

Labels (6.1) have function scope and may be used anywhere in the function in which they are declared.
Only labels have function scope.

3.3.5 Namespace scope [basic.scope.namespace]

The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by an
original-namespace-name is the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with that original-namespace-name. Entities declared
in a namespace-body are said to be members of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to be member names of the namespace. A namespace
member name has namespace scope. Its potential scope includes its namespace from the name's point of
declaration (3.3.1) onwards; and for each using-directive (7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of the using-directive that follows
the member’s point of declaration. [Example:

namespace N {
int i;
int g(int a) { return a; }
int j();
void q();
}
namespace { int |=1; }
/| the potential scopeof | isfromits point of declaration
/| tothe end of the trandation unit

namespace N {

int g(char a) /| overloadsN: : g(i nt)
return | +a; /1 1 isfromunnamed namespace

}

int i; /| error: duplicate definition

int j(); /1 OK: duplicate function declaration

int j() /[OK: definition of N: : j ()

{
return g(i); /1l callsN: : g(int)

}

int q(); /| error: different return type

}
—end example]

A namespace member can also be referred to after the : : scope resolution operator (5.1) applied to the
name of its namespace or the name of a namespace which nominates the member’ s namespace in a using-
directive; see 3.4.3.2.

The outermost declarative region of atranslation unit is also a namespace, caled the global namespace. A
name declared in the global namespace has global namespace scope (also called global scope). The poten-
tial scope of such a name begins at its point of declaration (3.3.1) and ends at the end of the trandlation unit
that isits declarative region. Names with global hamespace scope are said to be global.

3.3.6 Classscope [basic.scope.class)

The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following
the name's declarator, but aso of al function bodies, default arguments, and constructor ctor-
initializers in that class (including such things in nested classes).

27

| SO/IEC 14882:2003(E) O ISO/IEC

3.3.6 Class scope 3 Basic concepts

2) A nameNusedinaclass S shal refer to the same declaration in its context and when re-evaluated in the
completed scope of S. No diagnostic is required for aviolation of thisrule.

3) If reordering member declarationsin a class yields an aternate valid program under (1) and (2), the pro-
gramisill-formed, no diagnostic is required.

4) A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

5) The potential scope of a declaration that extends to or past the end of a class definition also extends to
the regions defined by its member definitions, even if the members are defined lexically outside the
class (this includes static data member definitions, nested class definitions, member function definitions
(including the member function body and, for constructor functions (12.1), the ctor-initializer (12.6.2))
and any portion of the declarator part of such definitions which follows the identifier, including a
parameter-declaration-clause and any default arguments (8.3.6). [Example:

typedef int c;
enum{ i =11},

class X {
char v[i]; /] error:i refersto: :i
/[but when reevaluated is X: : i
int f() { return sizeof(c); } /1 OK: X::¢c
char c;
enum{ i = 2 };

}s

typedef char* T,
struct Y {
T a; /] error: Trefersto: : T
/| but whenreevaluatedisY:: T
typedef long T,;
T b;
s

typedef int I;
class D {
typedef | 1; /| error, even though no reordering involved

s
—end example]
The name of a class member shall only be used as follows:
— inthe scope of its class (as described above) or a class derived (clause 10) from its class,

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the - > operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,

— after the : : scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

3.3.7 Name hiding [basic.scope.hiding]

A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are
declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator nameisvisible.

28

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.3.7 Name hiding

In a member function definition, the declaration of alocal name hides the declaration of a member of the
class with the same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the
declaration of amember of abase class of the same name; see 10.2.

During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see (3.4.3.2).

If anameisin scope and isnot hidden it is said to be visible.

3.4 Namelookup [basic.lookup]

The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names
(7.3) and class-names (9.1)) wherever the grammar allows such names in the context discussed by a partic-
ular rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup
shall find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one
declaration with a name if it finds the name to be a function name; the declarations are said to form a set of
overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The
accessrules (clause 11) are considered only once name lookup and function overload resolution (if applica
ble) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name's declaration used further in expression
processing (clause 5).

A name “looked up in the context of an expression” islooked up as an unqualified name in the scope where
the expression is found.

The injected-class-name of a class (clause 9) is also considered to be a member of that class for the pur-
poses of name hiding and lookup.

[Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are dis-
cussed in 3.3.]

3.4.1 Unqualified name lookup [basic.lookup.unqual]

In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories;, name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program isill-formed.

The declarations from the namespace nominated by a using-directive become visible in a namespace
enclosing the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in
3.4.1, the declarations from the namespace nominated by the using-directive are considered members of
that enclosing namespace.

The lookup for an unqualified name used as the postfix-expression of a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expression is a postfix-expression for a
function call, the usual name lookup rules apply. The rulesin 3.4.2 have no effect on the syntactic interpre-
tation of an expression. For example,

typedef int f;
struct A {
friend void f(A &);
operator int();
void g(A a) {
f(a);
}

}s

The expression f (a) isacast-expression equivalenttoi nt (a) . Because the expression is not a function
call, the argument-dependent name lookup (3.4.2) does not apply and the friend function f isnot found.]

29

| SO/IEC 14882:2003(E) O ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
beforeits usein global scope.

A name used in a user-declared namespace outside of the definition of any function or class shal be
declared before its use in that namespace or before its use in a namespace enclosing its namespace.

A name used in the definition of a function following the function’s declarator-id®® that is a member of
namespace N (where, only for the purpose of exposition, N could represent the global scope) shall be
declared before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be
declared before its use in namespace N or, if Nis a nested namespace, shall be declared before its usein one
of N's enclosing namespaces.

[Example:

namespace A {
namespace N {
void f();
}

}

void AN :f()
i = 5;
/' The following scopes are searched for a declaration of i :
/1 1) outermost block scope of A: : N: : f, beforethe use of i
/'l 2) scope of namespace N
/1 3) scope of hamespace A
/'l 4) global scope, before the definition of A: : N: : f

}

—end example]

A name used in the definition of a class X outside of a member function body or nested class definition”
shall be declared in one of the following ways:

— beforeitsusein class X or be amember of abase class of X (10.2), or

— if Xisanested class of class Y (9.7), before the definition of X in'Y, or shall be a member of abase class
of Y (this lookup appliesin turn to Y’'s enclosing classes, starting with the innermost enclosing class),28
or

— if Xisaloca class (9.8) or is a nested class of alocal class, before the definition of class X in a block
enclosing the definition of class X, or

— if Xisamember of namespace N, or is a nested class of a class that isa member of N, or isalocal class
or anested class within alocal class of afunction that is a member of N, before the definition of class X
in namespace N or in one of N's enclosing namespaces.

[Example:

namespace M {
class B { };
}

%) This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-declaration-
clause or used in the function body.

This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in the class
definition.

This lookup applies whether the definition of X is nested within Y’s definition or whether X's definition appears in a namespace
scope enclosing Y’ s definition (9.7).

30

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.4.1 Unqualified name lookup

namespace N {
class Y : public M:B {
class X {
int afi];
s

}s
}

/' The following scopes are searched for a declaration of i :
/1 1) scopeofclassN: : Y: : X, before the use of i

/'l 2) scopeof classN: : Y, before the definition of N: @ Y: : X
/1 3) scopeof N: : Y'sbaseclassM : B

/'l 4) scope of namespace N, before the definition of N: @ Y
/1 5) global scope, before the definition of N

—end example] [Note: when looking for a prior declaration of aclass or function introduced by af ri end
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2.]
[Note: 3.3.6 further describes the restrictions on the use of namesin a class definition. 9.7 further describes
the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions on the
use of namesin local class definitions. |

A name used in the definition of a member function (9.3) of class X following the function’s declarator-
id® shall be declared in one of the following ways:

— beforeitsusein the block in which it isused or in an enclosing block (6.3), or
— shall be amember of class X or be amember of abase class of X (10.2), or

— if Xisanested class of class Y (9.7), shall be a member of Y, or shall be amember of a base class of Y
(thislookup appliesin turn to Y's enclosing classes, starting with the innermost enclosing cl ass),3o) or

— if Xisaloca class (9.8) or is a nested class of alocal class, before the definition of class X in a block
enclosing the definition of class X, or

— if Xisamember of namespace N, or is a nested class of a class that isa member of N, or isalocal class
or a nested class within alocal class of a function that is a member of N, before the member function
definition, in namespace N or in one of N's enclosing namespaces.

[Example:

class B{ };
namespace M {
nanespace N {
class X : public B {
void f();
b
}

}

void M:N: X :f() {
i = 16;

}

<) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-declaration-
clause, in the function body, or in an expression of a meminitializer in a constructor definition.

This lookup applies whether the member function is defined within the definition of class X or whether the member function is
defined in anamespace scope enclosing X' s definition.

31

10

11

12

13

14

| SO/IEC 14882:2003(E) O ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

/| The following scopes are searched for a declaration of i :

/1 1) outermost block scopeof M : N: : X: : f, before the use of i
/'l 2) scopeofclassM : N:: X

/1 3) scopeof M : N: : X'sbaseclassB

/| 4) scope of namespace M : N

/| 5) scope of namespace M

/1 6) global scope, before the definitionof M : N: : X: : f

—end example] [Note: 9.3 and 9.4 further describe the restrictions on the use of nhamesin member function
definitions. 9.7 further describes the restrictions on the use of namesin the scope of nested classes. 9.8 fur-
ther describes the restrictions on the use of namesin local class definitions.]

Name lookup for a name used in the definition of a f ri end function (11.4) defined inline in the class
granting friendship shall proceed as described for lookup in member function definitions. If thefri end
function is not defined in the class granting friendship, name lookup in the f ri end function definition
shall proceed as described for lookup in namespace member function definitions.

Inaf ri end declaration naming a member function, a name used in the function declarator and not part of
atemplate-argument in a template-id is first looked up in the scope of the member function’s class. If it is
not found, or if the name is part of a template-argument in a template-id, the look up is as described for
unqualified namesin the definition of the class granting friendship. [Example:

struct A {
typedef int AT;
void f1(AT);
void f2(float);
b
struct B {
t ypedef float BT,
friend void A :f1(AT); // parameter typeisA:: AT
friend void A :f2(BT); [/ parametertypeisB:: BT
S
—end example]

During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause
or used in the expression of a meminitializer for a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the func-
tion declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments.
12.6.2 further describes the restrictions on the use of namesin a ctor-initializer. |

A name used in the definition of a st at i ¢ data member of class X (9.4.2) (after the qualified-id of the
static member) is looked up as if the name was used in a member function of X. [Note: 9.4.2 further
describes the restrictions on the use of namesin the definition of ast at i ¢ datamember.]

A name used in the handler for a function-try-block (clause 15) is looked up as if the name was used in the
outermost block of the function definition. In particular, the function parameter names shall not be rede-
clared in the exception-declaration nor in the outermost block of a handler for the function-try-block.
Names declared in the outermost block of the function definition are not found when looked up in the scope
of ahandler for the function-try-block. [Note: but function parameter names are found.]

[Note: the rules for name lookup in template definitions are described in 14.6.]

3.4.2 Argument-dependent name lookup [basic.lookup.koenig]

When an unqualified name is used as the postfix-expression in a function call (5.2.2), other namespaces not
considered during the usual unqualified lookup (3.4.1) may be searched, and namespace-scope friend func-
tion declarations (11.4) not otherwise visible may be found. These modifications to the search depend on
the types of the arguments (and for template template arguments, the namespace of the template argument).

32

2a

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.4.2 Argument-dependent name lookup

For each argument type T in the function call, there is a set of zero or more associated namespaces and a set
of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If Tisafundamental type, its associated sets of namespaces and classes are both empty.

— If Tisaclasstype (including unions), its associated classes are: the class itself; the class of whichitisa
member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces
in which its associated classes are defined.

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is
class member, its associated class is the member’s class; else it has no associated class.

— If Tisapointer to Uor an array of U, its associated namespaces and classes are those associated with U.

— If T is afunction type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T isapointer to amember function of aclass X, its associated namespaces and classes are those asso-
ciated with the function parameter types and return type, together with those associated with X.

— If T isapointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

— If T isatemplate-id, its associated namespaces and classes are the namespace in which the template is
defined; for member templates, the member template’s class; the namespaces and classes associated
with the types of the template arguments provided for template type parameters (excluding template
template parameters); the namespaces in which any template template arguments are defined; and the
classes in which any member templates used as template template arguments are defined. [Note: non-
type template arguments do not contribute to the set of associated namespaces. |

In addition, if the argument is the name or address of a set of overloaded functions and/or function tem-
plates, its associated classes and namespaces are the union of those associated with each of the members of
the set: the namespace in which the function or function template is defined and the classes and namespaces
associated with its (non-dependent) parameter types and return type.

If the ordinary unqualified lookup of the name finds the declaration of a class member function, the associ-
ated namespaces and classes are not considered. Otherwise the set of declarations found by the lookup of
the function name is the union of the set of declarations found using ordinary unqualified lookup and the set
of declarations found in the namespaces and classes associated with the argument types. [Note: the name-
spaces and classes associated with the argument types can include namespaces and classes already consid-
ered by the ordinary unqualified lookup.] [Example:

namespace NS {
class T { };
void f(T);
}
NS:: T parm
int nain() {
f(parm; /1 OK: callsNS: : f

—end example]

When considering an associated namespace, the lookup is the same as the lookup performed when the asso-
ciated namespace is used as aqualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions declared in associated classes are visible within their respective
namespaces even if they are not visible during an ordinary lookup (11.4).

33

| SO/IEC 14882:2003(E) O ISO/IEC

3.4.3 Qualified name lookup 3 Basic concepts

3.4.3 Qualified name lookup [basic.lookup.qual]

The name of a class or namespace member can be referred to after the : : scope resolution operator (5.1)
applied to a nested-name-specifier that nominates its class or namespace. During the lookup for a name
preceding the : : scope resolution operator, object, function, and enumerator names are ignored. If the
name found is not a class-name (clause 9) or namespace-name (7.3.1), the program is ill-formed. [Exam-
ple:

class A {
public:
static int n;
1
int main()
{
int A
A :n = 42; /1 OK
A b; /I ill-formed: A does not name a type
}
—end example]

[Note: Multiply qualified names, such as N1: : N2: : N3: : n, can be used to refer to members of nested
classes (9.7) or members of nested namespaces. |

In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being
declared are looked up in the defining namespace scope; names following the qualified-id are looked up in
the scope of the member’s class or namespace. [Example:

class X { };

class C{
class X { };
static const int nunber = 50;
static X arr[nunber];

H
X C:.:arr[nunber]; /1 ill-formed:
/'l equivalentto: : : X C.:arr[C : nunber];
/] notto: C.: X C::arr[C: :nunber];
—end example]

A name prefixed by the unary scope operator : : (5.1) is looked up in global scope, in the tranglation unit
where it isused. The name shall be declared in global hamespace scope or shall be a name whose declara
tionisvisiblein global scope because of a using-directive (3.4.3.2). Theuseof : : alows agloba nameto
be referred to even if itsidentifier has been hidden (3.3.7).

If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as
types in the scope designated by the nested-name-specifier. In aqualified-id of the form:

I 1 opt Nested-name-specifier ~ class-name
where the nested-name-specifier designates a namespace scope, and in a qualified-id of the form:;

© ¢ opt Nested-name-specifier class-name : : class-name

the class-names are looked up as typesin the scope designated by the nested-name-specifier. [Example:

la

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.4.3 Qualified name lookup

struct C {

typedef int |;
}s
typedef int 11, 12;
extern int* p;
extern int* q;

p->C:1::71(); /'l 1 islooked up in the scope of C
g->11::712(); /'l 12 islooked up in the scope of
/| the postfix-expression
struct A {
“A);
b
typedef A AB;
int main()
{
AB *p;
p->AB: : " AB(); /| explicitly calls the destructor for A
}

—end example] [Note: 3.4.5 describes how name lookup proceeds after the. and - > operators. |

3.4.3.1 Classmembers [class.qual]

If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier islooked up in the scope of the class (10.2), except for the cases listed below. The name shall rep-
resent one or more members of that class or of one of its base classes (clause 10). [Note: a class member
can be referred to using a qualified-id at any point in its potential scope (3.3.6).] The exceptions to the
name lookup rule above are the following:

— adestructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an operator-function-id is looked up both in the scope of the class and in the
context in which the entire postfix-expression occurs and shall refer to the same type in both contexts;

— the template-arguments of a template-id are looked up in the context in which the entire postfix-
€Xpression occurs.

If the nested-name-specifier nominates a class C, and the name specified after the nested-name-specifier,
when looked up in C, is the injected-class-name of C (clause 9), the name is instead considered to name the
constructor of class C. Such a constructor name shall be used only in the declarator-id of a constructor def-
inition that appears outside of the class definition. [Example:

struct A{ A(); };
struct B: public A{ B(); };

AcA) {}
B() { }

B: :

B:: A ba; /| object of type A

A A a; /| error, A: : Aisnot a type name
—end example]

A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the: : operator.
3.4.3.2 Namespace members [namespace.qual]

If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-
name-specifier is looked up in the scope of the namespace, except that the template-arguments of a
template-id are looked up in the context in which the entire postfix-expression occurs.

35

| SO/IEC 14882:2003(E) O ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

Given X: : m(where X is a user-declared namespace), or given : : m(where X is the global namespace), let
S be the set of al declarations of min X and in the transitive closure of all namespaces nominated by
using-directives in X and its used namespaces, except that using-directives are ignored in any namespace,
including X, directly containing one or more declarations of m No namespace is searched more than once
in the lookup of a name. If S isthe empty set, the program is ill-formed. Otherwise, if S has exactly one
member, or if the context of the reference is a using-declaration (7.3.3), S is the required set of declarations
of m Otherwise if the use of mis not one that allows a unique declaration to be chosen from S, the program
isill-formed. [Example:

int x;
namespace Y {
void f(float);
void h(int);
}

namespace Z {
voi d h(doubl e);
}

namespace A {
usi ng namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
usi ng nanespace Z;
void f(char);
int i;

}

nanespace AB ({
usi ng namespace
usi ng namespace
void g();

® >

36

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.4.3.2 Namespace members
void h()
{
AB: :g(); /| gisdeclared directly in AB,
/| thereforeSis{ AB:: g() } and AB: : g() ischosen
AB: : f(1); /1 f isnot declared directly in AB so therulesare

/| applied recursively to A and B;
/1 namespace Y isnot searchedand Y: : f (f | oat)
/'] isnot considered;
/1 Sis{A :f(int),B::f(char) } andoverload
/I resolution chooses A: : f (i nt)

AB::f('c); / | asabove but resolution choosesB: : f (char)

AB: : X++; /1 x isnot declared directly in AB, and
/'] isnot declaredin A or B, so therulesare
/| applied recursively to Y and Z,
/'l Sis{} sotheprogramisill-formed

AB: ;i ++; /1 i isnot declared directlyin AB so therulesare
/| applied recursively to A and B,
/1 Sis{A: :i,B::i }sotheuseisambiguous
/| and the programisill-formed

AB: : h(16. 8); /1 hisnot declared directlyin AB and

/| not declared directly in Aor B sotherulesare

/| applied recursively to Y and Z,

/1 Sis{Y::h(int),Z: :h(doubl e) } and overload
/| resolution chooses Z: : h(doubl e)

}

The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {
int a;
}

namespace B {
usi ng nanespace A
}

namespace C {
usi ng nanespace A
}

nanespace BC {
usi ng nanmespace B;
usi ng nanmespace C,

}

void f()
{

}

BC. : a++; /1 OK: Sis{A::a,A :a}

nanespace D {
using A :a;
}

namespace BD {
usi ng nanespace B;
usi ng nanmespace D

37

| SO/IEC 14882:2003(E) O ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

voi d g()

BD: : a++; /1 OK:Sis{A: :a,A:a}
}

Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;
}

nanespace A {
usi ng nanmespace B;
int a;

}

nanespace B {
usi ng nanmespace A,

}

void f()

{
A at+; /1 OK: adeclared directlyin A, Sis{ A :a}
B: : a++; /1 OK: both A and B searched (once), Sis{ A: : a}
A:: b++; /| OK: both A and B searched (once), Sis{B: : b }
B: : b++; /1 OK: b declared directlyinB, Sis{B: : b}

}

—end example]

During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same object, the same enumerator or a set of functions, the non-type name hides the
class or enumeration name if and only if the declarations are from the same namespace; otherwise (the dec-
larations are from different namespaces), the program isill-formed. [Example:

namespace A {
struct x { };
int Xx;
int y;

}

namespace B {
struct y {};
}

namespace C {
usi ng nanespace A,
usi ng nanespace B;
int i C:x; /1 OK, A: : x (of typei nt)
int j C:y; /| ambiguous, A: 1y or B: 1y

}
—end example]

In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the
qualified-id for the namespace member has the form

nested-name-specifier unqualified-id

the unqualified-id shall name a member of the namespace designated by the nested-name-specifier. [Exam-
ple:

38

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.4.3.2 Namespace members

namespace A {
namespace B {
void f1(int);
}

usi ng nanmespace B;

void A :f1(int) { } /1 ill-formed, f 1 isnot a member of A

—end example] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier. [Example:
nanespace A {

namespace B {
void f1(int);
}

}

namespace C {
namespace D {
void f1(int);
}

}

usi ng nanespace A,
usi ng namespace C::D;
void B::f1(int){} /1 OK, definesA: : B: : f1(int)

—end example]

3.4.4 Elaborated type specifiers [basic.lookup.€elab]

An elaborated-type-specifier may be used to refer to a previously declared class-name or enum-name even
though the name has been hidden by a non-type declaration (3.3.7). The class-name or enum-name in the
elaborated-type-specifier may either be a simple identifer or be a qualified-id.

If the name in the elaborated-type-specifier is a simple identifer, and unless the elaborated-type-specifier
has the following form:

class-key identifier ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
this name lookup finds a typedef-name, the elaborated-type-specifier isill-formed. If the elaborated-type-
specifier refers to an enum-name and this lookup does not find a previously declared enum-name, the
elaborated-type-specifier is ill-formed. If the elaborated-type-specifier refers to an class-name and this
lookup does not find a previously declared class-name, or if the elaborated-type-specifier has the form:

class-key identifier ;
the elaborated-type-specifier is adeclaration that introduces the class-name as described in 3.3.1.

If the name is a qualified-id, the name is looked up according its qualifications, as described in 3.4.3, but
ignoring any non-type names that have been declared. If this name lookup finds a typedef-name, the
elaborated-type-specifier isill-formed. If this name lookup does not find a previously declared class-name
or enum-name, the elaborated-type-specifier isill-formed. [Example:

struct Node {
struct Node* Next; /| OK: Refersto Node at global scope
struct Data* Data; /| OK: Declarestype Dat a
/| at global scope and member Dat a

39

| SO/IEC 14882:2003(E) O ISO/IEC

3.4.4 Elaborated type specifiers 3 Basic concepts

struct Data {

struct Node* Node; /| OK: Refersto Node at global scope
friend struct ::d ob; /'] error: A ob isnot declared
/1 cannot introduce a qualified type (7.1.5.3)
friend struct d ob; /| OK: Refersto (as yet) undeclared G ob
/| at global scope.
[* ... %]
s
struct Base {
struct Data; /| OK: Declares nested Dat a
struct ::Data* t hat Dat a; /| OK: Refersto: : Dat a
struct Base::Data* thisData; /| OK: Refersto nested Dat a
friend class ::Data; /1 OK: global Dat a isafriend
friend class Data; /'l OK: nested Dat a isafriend
struct Data { /* ... */ }; /| Defines nested Dat a
s
struct Data; /| OK: Redeclares Dat a at global scope
struct ::Data; /'] error: cannot introduce a qualified type (7.1.5.3)
struct Base:: Dat a; /| error: cannot introduce a qualified type (7.1.5.3)
struct Base:: Datum /| error: Dat umundefined
struct Base::Data* pBase; /1 OK: refersto nested Dat a
—end example]
3.4.5 Classmember access [basic.lookup.classr ef]

In a class member access expression (5.2.5), if the. or - > token isimmediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of atemplate
argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression
and shall name a class or function template. If the lookup in the class of the object expression finds a tem-
plate, the name is also looked up in the context of the entire postfix-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfix-expression and does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it must refer to the same entity as the one found in the class of the
object expression, otherwise the program isill-formed.

If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expres-
sionisof aclasstype C (or of pointer to a class type C), the unqualified-id is looked up in the scope of class
C. If thetype of the object expression is of pointer to scalar type, the unqualified-id islooked up in the con-
text of the complete postfix-expression.

If the unqualified-id is “type-name, and the type of the object expression is of aclass type C (or of pointer to
aclasstype C), the type-name is looked up in the context of the entire postfix-expression and in the scope of
class C. The type-name shall refer to a class-name. If type-nameis found in both contexts, the name shall
refer to the same class type. If the type of the object expression is of scalar type, the type-name is |ooked
up in the scope of the complete postfix-expression.

If the id-expression in a class member accessis a qualified-id of the form

the class-name-or-namespace-name following the . or - > operator is looked up both in the context of the
entire postfix-expression and in the scope of the class of the object expression. If the name isfound only in
the scope of the class of the object expression, the name shall refer to a class-name. If the name is found
only in the context of the entire postfix-expression, the name shall refer to a class-name or namespace-

40

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.4.5 Class member access

name. If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same
entity. [Note: the result of looking up the class-name-or-namespace-name is not required to be a unique
base class of the class type of the object expression, as long as the entity or entities named by the qualified-
id are members of the class type of the object expression and are not ambiguous according to 10.2.

struct A {
int a;
}s
struct B: virtual A { };
struct C B { };
struct DD B { };
struct E: public C, public D { };
struct F. public A { };
void f() {
E e;
e.B.:a = 0; /1 OK,onlyoneA: : ainE
Ff;
f.A:a = 1; /1 OK, A: : aisamember of F
}
—end note]

If the qualified-id has the form

the class-name-or-namespace-nameis looked up in global scope as a class-name or namespace-name.

If the nested-name-specifier contains a class template-id (14.2), its template-arguments are evaluated in the
context in which the entire postfix-expression occurs.

If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both
the context in which the entire postfix-expression occurs and in the context of the class of the object expres-
sion (or the class pointed to by the pointer expression).

3.4.6 Using-directives and namespace aliases [basic.lookup.udir]
When looking up a namespace-name in a using-directive or namespace-alias-definition, only namespace
names are considered.

3.5 Program and linkage [basic.link]

A program consists of one or more translation units (clause 2) linked together. A trandlation unit consists
of asequence of declarations.

tranglation-unit:
declaration-segqy

A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as aname introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other tranglation units or from other scopes of the same tranglation unit.

— When aname hasinternal linkage, the entity it denotes can be referred to by names from other scopesin
the same tranglation unit.

— When aname has no linkage, the entity it denotes cannot be referred to by names from other scopes.
A name having namespace scope (3.3.5) hasinternal linkage if it is the name of

— an object, reference, function or function template that is explicitly declared st at i ¢ or,

41

| SO/IEC 14882:2003(E) O ISO/IEC

3.5 Program and linkage 3 Basic concepts

— an object or reference that is explicitly declared const and neither explicitly declared ext er n nor
previously declared to have external linkage; or

— adatamember of an anonymous union.

A name having namespace scope has external linkage if it is the name of
— an object or reference, unlessit hasinternal linkage; or

— afunction, unlessit hasinternal linkage; or

— anamed class (clause 9), or an unnamed class defined in atypedef declaration in which the class has the
typedef name for linkage purposes (7.1.3); or

— anamed enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or
— atemplate, unlessit is afunction template that has internal linkage (clause 14); or
— anamespace (7.3), unlessit is declared within an unnamed namespace.

In addition, a member function, static data member, class or enumeration of class scope has external link-
ageif the name of the class has external linkage.

The name of a function declared in block scope, and the name of an object declared by a block scope
ext er n declaration, have linkage. If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block
scope declaration declares that same entity and receives the linkage of the previous declaration. If thereis
more than one such matching entity, the program is ill-formed. Otherwise, if no matching entity is found,
the block scope entity receives external linkage.

[Example:
static void f();
static int i = 0; /11
void g() {
extern void f(); /1 internal linkage
int i; /1 2:i hasnolinkage
{
extern void f(); /1 internal linkage
extern int i; /1 3: external linkage
}
}

There are three objects named i in this program. The object with internal linkage introduced by the decla-
ration in global scope (line// 1), the object with automatic storage duration and no linkage introduced by
the declaration on line / / 2, and the object with static storage duration and external linkage introduced by
thedeclarationonline// 3.]

When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [Example:

namespace X {
void p()
{

a(); /| error: g not yet declared
extern void q(); /1 g isamember of namespace X

42

10

11

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.5 Program and linkage

voi d mi ddl e()

{
a(); /'l error: g not yet declared
}
voidq() { /* ... * } /| definitionof X: : g
}
void q() { /* ... * } /| some other, unrelated g
—end example]

Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.2) has no linkage. A name with no linkage (notably, the name of a class or enumeration declared
in alocal scope (3.3.2)) shall not be used to declare an entity with linkage. |f a declaration uses a typedef
name, it is the linkage of the type name to which the typedef refersthat is considered. [Example:

void f()
{
struct A{ int x; }; /1 no linkage
extern A a; /1 ill-formed
typedef A B;
extern B b; /1 ill-formed
}

—end example] Thisimplies that names with no linkage cannot be used as template arguments (14.3).

Two names that are the same (clause 3) and that are declared in different scopes shall denote the same
object, reference, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the same
tranglation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the function types are identical for purposes of overloading; and
— when both names denote function templates, the signatures (14.5.5.1) are the same.

After al adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given object or function shall be identical, except that declara
tions for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of thisrule on type identity does not require a diagnostic.

[Note: linkage to non-C+ declarations can be achieved using a linkage-specification (7.5).]
3.6 Start and termination [basic.start]

3.6.1 Main function [basic.start.main]

A program shall contain a global function called mai n, which is the designated start of the program. It is
implementation-defined whether a program in a freestanding environment is required to define a mai n
function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration; termi-
nation contains the execution of destructors for objects with static storage duration.]

An implementation shall not predefine the mai n function. This function shall not be overloaded. It shall
have a return type of type i nt, but otherwise its type is implementation-defined. All implementations
shall allow both of the following definitions of nai n:

int min() { /* ... */ }

43

| SO/IEC 14882:2003(E) O ISO/IEC

3.6.1 Main function 3 Basic concepts

and
int main(int argc, char* argv[]) { /* ... */ }

In the latter form ar gc shall be the number of arguments passed to the program from the environment in
which the program is run. If ar gc is nonzero these arguments shall be supplied in ar gv[0] through
argv[argc- 1] as pointers to the initial characters of null-terminated multibyte strings (NTMBSSs)
(17.3.2.1.3.2) and ar gv[0] shal be the pointer to the initial character of a NTMBS that represents the
name used to invoke the program or "". The value of argc shall be nonnegative. The vaue of
argv[argc] shal be 0. [Note: it is recommended that any further (optional) parameters be added after
argv. |

The function nmai n shall not be used (3.2) within a program. The linkage (3.5) of nain is
implementation-defined. A program that declares mai n to be i nl i ne or stati c isill-formed. The
name nai n is not otherwise reserved. [Example: member functions, classes, and enumerations can be
called mai n, as can entities in other namespaces. |

Calling the function
void exit(int);

declared in <cst dl i b> (18.3) terminates the program without leaving the current block and hence with-
out destroying any objects with automatic storage duration (12.4). If exi t iscalled to end a program dur-
ing the destruction of an object with static storage duration, the program has undefined behavior.

A return statement in mai n has the effect of leaving the main function (destroying any objects with auto-
matic storage duration) and calling exi t with the return value as the argument. If control reaches the end
of mai n without encountering ar et ur n statement, the effect isthat of executing

return O;

3.6.2 Initialization of non-local objects [basic.start.init]

Objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other initialization
takes place. Zero-initialization and initialization with a constant expression are collectively called static
initialization; al other initialization is dynamic initialization. Objects of POD types (3.9) with static stor-
age duration initialized with constant expressions (5.19) shall be initialized before any dynamic initial-
ization takes place. Objects with static storage duration defined in namespace scope in the same trandlation
unit and dynamically initialized shall be initialized in the order in which their definition appears in the
trandation unit. [Note: 8.5.1 describes the order in which aggregate members are initialized. The initial-
ization of local static objectsisdescribed in 6.7.]

An implementation is permitted to perform the initialization of an object of hamespace scope with static
storage duration as a static initialization even if such initialization is not required to be done statically, pro-
vided that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope with static storage duration prior to itsinitialization, and

— the static version of the initialization produces the same value in the initialized object as would be pro-
duced by the dynamic initialization if all objects not required to be initialized statically were initialized
dynamically.

[Note: as a consequence, if the initialization of an object obj 1 refers to an object obj 2 of namespace
scope with static storage duration potentially requiring dynamic initialization and defined later in the same
trandation unit, it is unspecified whether the value of obj 2 used will be the value of the fully initialized
obj 2 (because obj 2 was statically initialized) or will be the value of obj 2 merely zero-initialized. For
example,

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.6.2 Initialization of non-local objects

inline double fd() { return 1.0; }
extern doubl e di;
doubl e d2 = di; /'l unspecified:
/1 may be statically initialized to 0. O or
/| dynamically initializedto 1. 0
doubl e d1 = fd(); /1 may beinitialized staticallyto 1. 0

—end note]

It isimplementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of
namespace scope is done before the first statement of mai n. If the initidization is deferred to some point
in time after the first statement of mai n, it shall occur before the first use of any function or object defined
in the same trandation unit as the object to be initialized.>V [Example:

/1 —Filel—

#i nclude "a. h"

#i ncl ude "b. h"

B b;
A AO){
b. Use();
}
/1l —File2-
#i nclude "a. h"
A a;
/! —File3-

#i ncl ude "a. h"
#include "b. h"
extern A a;
extern B b;

int main() {
a. Use();
b. Use();

}

It is implementation-defined whether either a or b is initialized before mai n is entered or whether the
initializations are delayed until a is first used in mai n. In particular, if a is initiadlized before mai n is
entered, it is not guaranteed that b will be initialized before it is used by the initialization of a, that is,
before A: : Alis caled. If, however, a isinitialized at some point after the first statement of mai n, b will
beinitialized prior toitsusein A: : A.]

If construction or destruction of anon-local static object ends in throwing an uncaught exception, the result
istocal t er m nat e (18.6.3.3).

3.6.3 Termination [basic.start.term]

Destructors (12.4) for initialized objects of static storage duration (declared at block scope or at hamespace
scope) are called as aresult of returning from mai n and as aresult of calling exi t (18.3). These objects
are destroyed in the reverse order of the completion of their constructor or of the completion of their
dynamic initiaization. If an object isinitiaized staticaly, the object is destroyed in the same order asif the
object was dynamically initialized. For an object of array or class type, all subobjects of that object are
destroyed before any local object with static storage duration initialized during the construction of the sub-
objectsis destroyed.

If a function contains a local object of static storage duration that has been destroyed and the function is
called during the destruction of an object with static storage duration, the program has undefined behavior

3D an object defined in namespace scope having initialization with side-effects must beinitiaized even if it isnot used (3.7.1).

45

| SO/IEC 14882:2003(E) O ISO/IEC

3.6.3 Termination 3 Basic concepts

if the flow of control passes through the definition of the previously destroyed local object.

If afunction is registered with at exi t (see <cstdl i b>, 18.3) then following the call to exi t, any
objects with static storage duration initialized prior to the registration of that function shall not be destroyed
until the registered function is called from the termination process and has completed. For an object with
static storage duration constructed after a function is registered with at exi t, then following the call to
exi t, the registered function is not called until the execution of the object’s destructor has completed. If
at exi t is called during the construction of an object, the complete object to which it belongs shall be
destroyed before the registered function is called.

Calling the function
voi d abort();

declared in <cst dl i b> terminates the program without executing destructors for objects of automatic or
static storage duration and without calling the functions passed to at exi t () .
3.7 Storage duration [basic.stc]

Storage duration is the property of an object that defines the minimum potential lifetime of the storage con-
taining the object. The storage duration is determined by the construct used to create the object and is one
of the following:

— static storage duration
— automatic storage duration
— dynamic storage duration

Static and automatic storage durations are associated with objects introduced by declarations (3.1) and
implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created with oper at or new(5.3.4).

The storage class specifiers st at i ¢ and aut o are related to storage duration as described below.

The storage duration categories apply to references as well. The lifetime of areference is its storage dura
tion.

3.7.1 Static storage duration [basic.ste.static]

All objects which neither have dynamic storage duration nor are local have static storage duration. The
storage for these objects shall last for the duration of the program (3.6.2, 3.6.3).

If an object of static storage duration has initialization or a destructor with side effects, it shall not be elimi-
nated even if it appears to be unused, except that a class object or its copy may be eliminated as specified in
12.8.

The keyword st ati ¢ can be used to declare a local variable with static storage duration. [Note: 6.7
describes the initialization of local st ati ¢ variables; 3.6.3 describes the destruction of local stati c
variables. |

The keyword st at i ¢ applied to a class data member in a class definition gives the data member static
storage duration.
3.7.2 Automatic storage duration [basic.stc.auto]

Local objects explicitly declared aut o or r egi st er or not explicitly declared st ati ¢ or ext er n have
automatic storage duration. The storage for these objects lasts until the block in which they are created
exits.

[Note: these objects areinitialized and destroyed as described in 6.7.]

46

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.7.2 Automatic storage duration

If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused,
except that a class object or its copy may be eliminated as specified in 12.8.

3.7.3 Dynamic storage duration [basic.stc.dynamic]

Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and
destroyed using delete-expressions (5.3.5). A G+ implementation provides access to, and management of,
dynamic storage via the global allocation functions oper at or new and oper at or new] and the
global deallocation functionsoper at or del et e andoperator delete[].

The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.4.1). A G+ program shall provide at most one
definition of a replaceable alocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.4.3.4). The following alocation and deallocation functions
(18.4) areimplicitly declared in global scope in each translation unit of a program

voi d* operator new(std::size_t) throw(std::bad_alloc);

voi d* operator new](std::size_t) throw(std::bad_alloc);

voi d operator delete(void*) throw();

voi d operator delete[](void*) throw);

These implicit declarations introduce only the function names oper at or new, operator new],
operator del ete, operator del ete[]. [Note the implicit declarations do not introduce the
namesstd, std:: bad all oc,andstd::size_t,orany other names that the library uses to declare
these names. Thus, a new-expression, delete-expression or function call that refers to one of these functions
without including the header <new> iswell-formed. However, referringtost d, st d: : bad_al | oc, and
std::size_t isill-formed unless the name has been declared by including the appropriate header.]
Allocation and/or deallocation functions can also be declared and defined for any class (12.5).

Any allocation and/or deallocation functions defined in a G+ program, including the default versionsin the
library, shall conform to the semantics specified in 3.7.3.1 and 3.7.3.2.

3.7.3.1 Allocation functions [basic.stc.dynamic.allocation]

An alocation function shall be a class member function or a global function; a program isill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be voi d*. The first parameter shall have type si ze_t (18.1). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall have
two or more parameters.

The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as the
requested size. There are no constraints on the contents of the allocated storage on return from the alloca-
tion function. The order, contiguity, and initial value of storage allocated by successive calls to an alloca
tion function is unspecified. The pointer returned shall be suitably aligned so that it can be converted to a
pointer of any complete object type and then used to access the object or array in the storage allocated (until
the storage is explicitly deallocated by a call to a corresponding deallocation function). Even if the size of
the space requested is zero, the request can fail. If the request succeeds, the value returned shall be a non-
null pointer value (4.10) pO different from any previously returned value p1, unless that value p1 was sub-
sequently passed to an oper at or del et e. The effect of dereferencing a pointer returned as a request for
zero sizeis undefined.3?

32) The intent is to have operator new() implementable by calling mal | oc() or cal | oc(), so therules are substantialy the
same. G+ differsfrom Cin requiring azero request to return anon-null pointer.

47

| SO/IEC 14882:2003(E) O ISO/IEC

3.7.3.1 Allocation functions 3 Basic concepts

An dlocation function that fails to allocate storage can invoke the currently installed new_handl er
(18.4.2.2), if any. [Note: A program-supplied allocation function can obtain the address of the currently
installed new_handl er using the set _new _handl er function (18.4.2.3).] If an alocation function
declared with an empty exception-specification (15.4), t hr ow() , fails to allocate storage, it shall return a
null pointer. Any other allocation function that fails to allocate storage shall only indicate failure by throw-
ing an exception of classst d: : bad_al | oc (18.4.2.1) or aclassderived fromst d: : bad_al | oc.

A global alocation function is only called as the result of a new expression (5.3.4), or called directly using
the function call syntax (5.2.2), or called indirectly through calls to the functions in the G+ standard
library. [Note: in particular, a global allocation function is not called to allocate storage for objects with
static storage duration (3.7.1), for objects of typet ype_i nf o (5.2.8), for the copy of an object thrown by
at hr owexpression (15.1).]

3.7.3.2 Deallocation functions [basic.stc.dynamic.deallocation]

Deallocation functions shall be class member functions or global functions; a program isill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

Each deallocation function shall return voi d and its first parameter shall be voi d*. A deallocation func-
tion can have more than one parameter. If aclass T has amember deallocation function named oper at or
del et e with exactly one parameter, then that function is a usual (non-placement) deallocation function. If
class T does not declare such an oper at or del et e but does declare a member deallocation function
named oper at or del et e with exactly two parameters, the second of which has type st d: : si ze_t
(18.1), then this function is a usual deallocation function. Similarly, if aclass T has a member deallocation
function named oper at or del et e[] with exactly one parameter, then that function is a usua (non-
placement) deallocation function. If class T does not declare such an oper at or del et e[] but does
declare a member deallocation function named oper at or del et e[] with exactly two parameters, the
second of which hastype st d: : si ze_t, then this function is a usual deallocation function. A dealloca
tion function can be an instance of afunction template. Neither the first parameter nor the return type shall
depend on atemplate parameter. [Note: that is, a deall ocation function template shall have afirst parameter
of type voi d* and a return type of voi d (as specified above).] A deallocation function template shall
have two or more function parameters. A template instance is never a usual deallocation function, regard-
less of its signature.

The value of the first argument supplied to one of the deallocation functions provided in the standard
library may be a null pointer value; if so, the call to the deallocation function has no effect. Otherwise, the
value supplied to oper at or del et e(voi d*) inthe standard library shall be one of the values returned
by a previous invocation of either oper at or new(si ze_t) or operator newsi ze_t, const
std::nothrow t& in the sandard library, and the value supplied to operator
del et e[] (voi d*) inthe standard library shall be one of the values returned by a previous invocation of
either operator new] (si ze_t) oroperator new](size_t, const std:: nothrow t&)
in the standard library.

If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, render-
ing invalid all pointers referring to any part of the deallocated storage. The effect of using an invalid
pointer value (including passing it to adeallocation function) is undefined.>®

3.7.4 Duration of sub-objects [basic.stc.inherit]

The storage duration of member subobjects, base class subobjects and array elements is that of their com-
plete object (1.8).

33) on some implementations, it causes a system-generated runtime fault.

48

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.8 Object Lifetime

3.8 Object Lifetime [basic.life]

The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins
when:

— storage with the proper alignment and size for type T is obtained, and

— if Tisaclasstypewith anon-trivial constructor (12.1), the constructor call has completed.
The lifetime of an object of type T ends when:

— if Tisaclasstype with anon-trivial destructor (12.4), the destructor call starts, or

— the storage which the object occupiesis reused or released.

[Note: the lifetime of an array object or of an object of POD type (3.9) starts as soon as storage with proper
size and alignment is obtained, and its lifetime ends when the storage which the array or object occupiesis
reused or released. 12.6.2 describes the lifetime of base and member subobjects.]

The properties ascribed to objects throughout this International Standard apply for a given object only dur-
ing its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends there
are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also, the
behavior of an object under construction and destruction might not be the same as the behavior of an object
whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the con-
struction and destruction phases.]

A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with anon-trivial destructor. For an object of a
class type with a non-trivial destructor, the program is not required to call the destructor explicitly before
the storage which the object occupies is reused or released; however, if there is no explicit call to the
destructor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined
behavior.

Before the lifetime of an object has started but after the storage which the object will occupy has been allo-
cated™ or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. Such a pointer refers to allocated storage (3.7.3.2), and using the
pointer as if the pointer were of type voi d*, iswell-defined. Such a pointer may be dereferenced but the
resulting Ivalue may only be used in limited ways, as described below. If the object will be or was of a
class type with a non-trivial destructor, and the pointer is used as the operand of a delete-expression, the
program has undefined behavior. If the object will be or was of a non-POD class type, the program has
undefined behavior if:

— the pointer is used to access a non-static data member or call a non-static member function of the object,
or

— the pointer isimplicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a stati c_cast (5.2.9) (except when the conversion is to
voi d*, ortovoi d* and subsequently to char *, or unsi gned char *).

— the pointer isused as the operand of adynami ¢_cast (5.2.7). [Example:

%) For example, before the construction of aglobal object of non-POD classtype (12.7).

49

| SO/IEC 14882:2003(E) O ISO/IEC

3.8 Object Lifetime 3 Basic concepts

struct B {
virtual void f();
void mutate();
virtual "B();

b
struct DL : B { void f(); };
struct D2 : B { void f(); };
void B::mutate() {
new (this) D2; /'l reuses storage — endsthe lifetime of *t hi s
f(); /1 undefined behavior
. = this; /1 OK,thi s pointsto valid memory
}
void g() {
void* p = malloc(sizeof (Dl) + sizeof(D2));
B* pb = new (p) Di;
pb->nut ate();
&pb; /1 OK: pb pointsto valid memory
voi d* q = pb; /1 OK: pb pointsto valid memory
pb->f(); /1 undefined behavior, lifetime of * pb has ended
}
—end example]

Similarly, before the lifetime of an object has started but after the storage which the object will occupy has
been alocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any |value which refers to the original object may be used but only in limited ways.
Such an lvalue refers to alocated storage (3.7.3.2), and using the properties of the Ivalue which do not
depend on its value is well-defined. If an lvalue-to-rvalue conversion (4.1) is applied to such an Ivalue, the
program has undefined behavior; if the original object will be or was of a non-POD class type, the program
has undefined behavior if:

— thelvalueis used to access a non-static data member or call a non-static member function of the object,
or

— thelvalueisimplicitly converted (4.10) to areference to a base class type, or

— thelvalueisused asthe operand of ast ati c_cast (5.2.9) (except when the conversion is ultimately
tochar &or unsi gned char &), or

— thelvalueisused asthe operand of adynami ¢_cast (5.2.7) or asthe operand of t ypei d.

If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new abject is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— thetype of the original object is not const-qualified, and, if a class type, does not contain any non-static
data member whose type is const-qualified or areference type, and

— the original object was amost derived object (1.8) of type T and the new object is amost derived object
of type T (that is, they are not base class subobjects). [Example:

50

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.8 Object Lifetime

struct C {
int i;
void f();
const C& operator=(const C&);
s
const C& C.:operator=(const C& other)
{
if (this != &other) {
this->"C(); /1 lifetimeof *t hi s ends
new (this) C(other); /' new object of type C created
f(); /1 well-defined
}
return *this;
}
C c1;
C c2;
cl = c2; /'l well-defined
cl. f(); /1 well-defined; c1 refersto a new object of type C
—end example]

If aprogram ends the lifetime of an ot;j ect of type T with static (3.7.1) or automatic (3.7.2) storage duration
and if T has anon-trivial destructor,35 the program must ensure that an object of the original type occupies
that same storage location when the implicit destructor call takes place; otherwise the behavior of the pro-
gram isundefined. Thisistrue evenif the block is exited with an exception. [Example:

class T { };
struct B {

"B();
i

void h() {
B b;
new (&) T;
} /1 undefined behavior at block exit

—end example]
Creating a new object at the storage location that aconst object with static or automatic storage duration
occupies or, at the storage location that such a const object used to occupy before its lifetime ended
resultsin undefined behavior. [Example:

struct B {

B();
B();
s

const B b;

void h() {
b."B();
new (&) const B; /1 undefined behavior

}

—end example]

) that is, an object for which a destructor will be called implicitly—either either upon exit from the block for an object with auto-
matic storage duration or upon exit from the program for an object with static storage duration.

51

| SO/IEC 14882:2003(E) O ISO/IEC

3.9 Types 3 Basic concepts

3.9 Types [basic.types]

[Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).]

For any object (other than a base-class subobject) of POD type T, whether or not the object holds a valid
value of type T, the underlying bytes (1.7) making up the object can be copied into an array of char or
unsi gned char .” If the content of the array of char or unsi gned char is copied back into the
object, the object shall subsequently hold its original value. [Example:

#define N sizeof (T)

char buf[N;
T obj; /1 obj initialized to its original value
mencpy(buf, &obj, N); /1 between these two callsto mencpy,
/1 obj might be modified
nmenmcpy(&obj, buf, N); /| at this point, each subobject of obj of scalar type
/| holdsitsoriginal value
—end example]

For any POD type T, if two pointersto T point to distinct T objects obj 1 and obj 2, where neither obj 1
nor obj 2 is a base-class subobject, if the value of obj 1 is copied into obj 2, using the nencpy library
function, obj 2 shall subsequently hold the same value asobj 1. [Example:
™ tip;
T t2p;
/| provided that t 2p pointsto aninitialized object ...
menmcpy(tlp, t2p, sizeof(T)); /1 at this point, every subobject of POD typein*t 1p contains
/| the same value as the corresponding subobject in *t 2p

—end example]

The object representation of an object of type T isthe sequence of N unsi gned char objects taken up by
the object of type T, where N equals si zeof (T) . The value representation of an object is the set of bits
that hold the value of type T. For POD types, the value representation is a set of bits in the object represen-
tation that determines a value, which is one discrete el ement of an implementation-defined set of val ues.3"

Object types have alignment requirements (3.9.1, 3.9.2). The alignment of a complete object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address
that meets the alignment requirements of its object type.

A class that has been declared but not defined, or an array of unknown size or of incomplete element type,
is an incompletely-defined object type.38) Incompletely-defined object types and the void types are incom-
plete types (3.9.1). Objects shall not be defined to have an incomplete type.

A classtype (suchas“cl ass X') might be incomplete at one point in atranslation unit and complete later
on; thetype“cl ass X’ isthe same type at both points. The declared type of an array object might be an
array of incomplete class type and therefore incomplete; if the class type is completed later on in the trans-
lation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in atrandation unit and complete later on; the array types at those two points (“array of unknown bound of
T” and “array of N T") are different types. The type of a pointer to array of unknown size, or of a type
defined by at ypedef declaration to be an array of unknown size, cannot be completed. [Example:

5?) By using, for example, the library functions (17.4.1.2) nenctpy or mrenmove.
37 The intent is that the memory model of C+ is compatible with that of 1SO/IEC 9899 Programming Language C.
The size and layout of an instance of an incompl etely-defined object type is unknown.

52

10

11

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.9 Types
class X; /1 Xisanincomplete type
extern X* xp; /| xp isa pointer to an incomplete type
extern int arr[]; /| thetype of arr isincomplete
typedef int UNKA[]; /1 UNKA is an incomplete type
UNKA* arrp; /| arr pisapointer to an incomplete type

UNKA** arr pp;

voi d foo()

{
Xp++; /1 ill-formed: Xisincomplete
arrp++; /1 ill-formed: incomplete type
arrpp++; /1 OK: sizeof UNKA* isknown

}

struct X { int i; }; /1 now Xisa complete type

int arr[10]; /1 now thetype of ar r iscomplete

X X;

voi d bar ()

{
Xp = &X; /1 OK; typeis‘‘pointer to X'’
arrp = &arr; /1 ill-formed: different types
Xp++; /1 OK: Xiscomplete
arrp++; /1 ill-formed: UNKA can’t be completed

}

—end example]

[Note: the rules for declarations and expressions describe in which contexts incomplete types are prohib-
ited.]

An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member types (3.9.2), and cv-
qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD-struct types,
POD-union types (clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collec-
tively called POD types.

If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are
describedin 9.2.]

3.9.1 Fundamental types [basic.fundamental]

Objects declared as characters (char) shall be large enough to store any member of the implementation’s
basic character set. If acharacter from this set is stored in a character object, the integral value of that char-
acter object is equal to the value of the single character literal form of that character. It is implementation-
defined whether achar object can hold negative values. Characters can be explicitly declared unsi gned
or si gned. Plain char, si gned char, and unsi gned char are three distinct types. A char, a
si gned char, and an unsi gned char occupy the same amount of storage and have the same aign-
ment requirements (3.9); that is, they have the same object representation. For character types, al bits of
the object representation participate in the value representation. For unsigned character types, all possible
bit patterns of the value representation represent numbers. These requirements do not hold for other types.
In any particular implementation, a plain char object can take on either the same values as a
si gned char oranunsi gned char ; which oneisimplementation-defined.

There are four signed integer types: “si gned char”,“short int”,“int”,and“l ong i nt.” Inthis
list, each type provides at least as much storage as those preceding it in the list. Plaini nt s have the natu-
ral size suggested by the architecture of the execution envi ronment>> ; the other signed integer types are

N that is, large enough to contain any valuein therange of | NT_M Nand | NT_MAX, asdefined in the header <cl i m t s>.
53

10

| SO/IEC 14882:2003(E) O ISO/IEC

3.9.1 Fundamental types 3 Basic concepts

provided to meet specia needs.

For each of the signed integer types, there exists a corresponding (but different) unsigned integer type:
“unsi gned char”, “unsigned short int”, “unsigned int”, and “unsi gned | ong
i nt, " each of which occupies the same amount of storage and has the same alignment requirements (3.9)
as the corresponding signed integer type40) ; that is, each signed integer type has the same object represen-
tation as its corresponding unsigned integer type. The range of nonnegative values of a signed integer type
is a subrange of the corresponding unsigned integer type, and the value representation of each correspond-
ing signed/unsigned type shall be the same.

Unsigned integers, declared unsi gned, shall obey the laws of arithmetic modulo 2" where n is the num-
ber of bitsin the value representation of that particular size of integer.41

Typewchar _t isadistinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1). Typewchar _t shall have the same
size, signedness, and alignment requirements (3.9) as one of the other integral types, called its underlying

type.

Vaues of type bool areeithertrue or f al se.®? [Note: there are no si gned, unsi gned, short, or
| ong bool typesor values.] Asdescribed below, bool values behave asintegral types. Values of type
bool participateinintegral promotions (4.5).

Types bool , char, wchar _t, and the signed and unsigned integer types are collectively called integral
typ§.43) A synonym for integral typeisinteger type. The representations of integral types shall define val-
ues by use of a pure binary numeration system.) [Example: this International Standard permits 2's com-
plement, 1's complement and signed magnitude representations for integral types.]

There are three floating point types: f | oat , doubl e, and | ong doubl e. The type doubl e provides
at least as much precision asf | oat , and the type |l ong doubl e provides at least as much precision as
doubl e. The set of values of thetype f | oat isasubset of the set of values of the type doubl e; the set
of values of the type doubl e is a subset of the set of values of the type| ong doubl e. The value repre-
sentation of floating-point types is implementation-defined. Integral and floating types are collectively
called arithmetic types. Specializations of the standard template nureri c_| i mi ts (18.2) shall specify
the maximum and minimum values of each arithmetic type for an implementation.

Thevoi d type has an empty set of values. Thevoi d typeisan incomplete type that cannot be compl eted.
It is used as the return type for functions that do not return a value. Any expression can be explicitly con-
verted to type cv voi d (5.4). An expression of type voi d shall be used only as an expression statement
(6.2), as an operand of a comma expression (5.18), as a second or third operand of ?: (5.16), asthe operand
of t ypei d, or asthe expression in areturn statement (6.6.3) for a function with the return type voi d.

[Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types. |

) See7.15.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.
49 Thisimplies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting unsigned inte-
ger typeis reduced modulo the number that is one greater than the largest value that can be represented by the resulting unsigned inte-
e type.

gz) Using abool vauein waysdescribed by this International Standard as *‘undefined,”” such as by examining the value of an unini-
tiaﬂized automatic variable, might causeit to behave asif itisneither t r ue nor f al se.

Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to i nt, unsi gned i nt, | ong, or
unsi gned | ong, asspecifiedin 4.5.

A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits are
additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position.
(Adapted from the American National Dictionary for Information Processing Systems.)

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.9.2 Compound types

3.9.2 Compound types [basic.compound]
Compound types can be constructed in the following ways:
— arrays of objects of agiven type, 8.3.4;

— functions, which have parameters of given types and return voi d or references or objects of a given
type, 8.3.5;

— pointersto voi d or objects or functions (including static members of classes) of agiven type, 8.3.1;
— referencesto objects or functions of agiven type, 8.3.2;

— classes containing a sequence of objects of various types (clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(clause 11);

— unions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a
different enumerated type, 7.2;

— pointers to non-static*®

given class, 8.3.3.

class members, which identify members of a given type within objects of a

These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5,and 8.3.2.

A pointer to objects of type T isreferred to asa“ pointer to T.” [Example: a pointer to an object of typei nt
isreferred to as “ pointer to i nt ” and a pointer to an object of class X iscalled a“pointer to X.”] Except for
pointers to static members, text referring to “pointers’ does not apply to pointers to members. Pointers to
incomplete types are allowed although there are restrictions on what can be done with them (3.9). A valid
value of an object pointer type represents either the address of a byte in memory (1.7) or a null pointer
(4.10). If an object of type T islocated at an address A, a pointer of type cv T* whose value is the address
A is said to point to that object, regardless of how the value was obtained. [Note: for instance, the address
one past the end of an array (5.7) would be considered to point to an unrelated object of the array’s element
type that might be located at that address.] The value representation of pointer types is implementation-
defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible types shall have
the same value representation and alignment requirements (3.9).

Objects of cv-qualified (3.9.3) or cv-unqualified type voi d* (pointer to void), can be used to point to
objects of unknown type. A voi d* shall be able to hold any object pointer. A cv-qualified or cv-
unqualified (3.9.3) voi d* shall have the same representation and alignment requirements as a cv-qualified
or cv-unqualified char *.

3.9.3 CV-qualifiers [basic.type.qualifier]

A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete
or incomplete object type or is voi d (3.9) has three corresponding cv-qualified versions of its type: a
const-qualified version, a volatile-qualified version, and a const-volatile-qualified version. The term object
type (1.8) includes the cv-qualifiers specified when the object is created. The presence of aconst speci-
fier in a decl-specifier-seq declares an object of const-qualified object type; such object is called a const
object. The presence of a vol ati | e specifier in a decl-specifier-seq declares an object of volatile-
qualified object type; such object is called a volatile object. The presence of both cv-qualifiersin a decl-
specifier-seq declares an object of const-volatile-qualified object type; such object is called a const volatile
object. The cv-quaified or cv-unqualified versions of a %pe are distinct types; however, they shall have
the same representation and alignment requirements (3.9).

ZZ) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions.

55

| SO/IEC 14882:2003(E) O ISO/IEC

3.9.3CV-qualifiers 3 Basic concepts

A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-
qualified, each non-static, non-reference data member of a volatile-qualified class object is volatile-
qualified and similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding cv-qualified
function types.

Thereisa(partial) ordering on cv-qualifiers, so that atype can be said to be more cv-qualified than another.
Table 6 shows the relations that constitute this ordering.

Table 6—relationson const and vol atil e

Cho cv-qualifier < const a
Lho cv-qualifier < vol atile O
o cv-qualifier < const volatile E
const < const volatile
Hvolatile < const volatile H

In this International Standard, the notation cv (or cvl, cv2, etc.), used in the description of types, represents
an arbitrary set of cv-qudlifiers, i.e., one of {const}, {vol atil e}, {const, volatile}, or the
empty set. Cv-qualifiers applied to an array type attach to the underlying element type, so the notation
“cvT,” where T is an array type, refers to an array whose elements are so-qualified. Such array types can
be said to be more (or less) cv-qualified than other types based on the cv-qualification of the underlying ele-
ment types.

3.10 Lvaluesand rvalues [basic.lval]
Every expression is either an lvalue or an rvalue.

An lvalue refers to an object or function. Some rvalue expressions—those of class or cv-quaified class
type—also refer to obj ects’

[Note: some built-in operators and function calls yield Ivalues. [Example: if E is an expression of pointer
type, then * E is an lvalue expression referring to the object or function to which E points. As another
example, the function

int& f();
yieldsan lvalue, sothecall f () isanlvalue expression. |]

[Note: some built-in operators expect Ivalue operands. [Example: built-in assignment operators all expect
their left hand operands to be Ivalues.] Other built-in operators yield rvalues, and some expect them.
[Example: the unary and binary + operators expect rvalue arguments and yield rvalue results.] The discus-
sion of each built-in operator in clause 5 indicates whether it expects lvalue operands and whether it yields
anlvalue.]

The result of calling a function that does not return a reference is an rvalue. User defined operators are
functions, and whether such operators expect or yield lvalues is determined by their parameter and return

types.

An expression which holds atemporary object resulting from a cast to a nonreference type is an rvalue (this
includes the explicit creation of an object using functional notation (5.2.3)).

1) Expressions such as invocations of constructors and of functions that return a class type refer to objects, and the implementation
can invoke amember function upon such objects, but the expressions are not lval ues.

56

10

11

12

13

14

15

O ISO/IEC | SO/IEC 14882:2003(E)

3 Basic concepts 3.10 Lvaluesand rvalues

Whenever an lvalue appears in a context where an rvalue is expected, the Ivalue is converted to an rvalue;
see 4.1, 4.2, and 4.3.

The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lval-
ues and rvalues in other significant contexts.

Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues
shall always have complete types or the voi d type; in addition to these types, lvalues can also have incom-
plete types.

An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. [Example: a member function called for an
object (9.3) can modify the object.]

Functions cannot be modified, but pointers to functions can be modifiable.

A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

Thereferent of aconst -qualified expression shall not be modified (through that expression), except that if
itisof classtype and hasanut abl e component, that component can be modified (7.1.5.1).

If an expression can be used to modify the object to which it refers, the expression is called modifiable. A
program that attempts to modify an object through a nonmodifiable Ivalue or rvalue expression is ill-
formed.

If a program attempts to access the stored value of an object through an Ivalue of other than one of the fol-
lowing types the behavior is undefi ned*®:

— the dynamic type of the object,
— acv-qualified version of the dynamic type of the object,
— atypethat isthe signed or unsigned type corresponding to the dynamic type of the object,

— atypethat isthe signed or unsigned type corresponding to a cv-qualified version of the dynamic type of
the object,

— an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, amember of a subaggregate or contained union),

— atypethat isa(possibly cv-qualified) base class type of the dynamic type of the object,

— achar orunsi gned char type.

) Theintent of thislististo specify those circumstances in which an object may or may not be aliased.

57

| SO/I EC 14882:2003(E)

58

Blank page

O ISO/IEC

O ISO/IEC | SO/IEC 14882:2003(E)

4 Standard conversions 4 Standard conversions

4 Standard conversions [conv]

Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set of
such conversions. A standard conversion sequence is a sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: Ivalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e, it can consist of no conversions. | A standard
conversion sequence will be applied to an expression if necessary to convert it to a required destination

type.
[Note: expressions with a given type will be implicitly converted to other typesin several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destina
tion type (clause 5).

— When used in the condition of ani f statement or iteration statement (6.4, 6.5). The destination typeis
bool .

— When used in the expression of aswi t ch statement. The destination typeisintegral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression in ar et ur n statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

—end note]

An expression e can be implicitly converted to atype T if and only if the declaration “T t =e; " is well-
formed, for some invented temporary variablet (8.5). The effect of the implicit conversion is the same as
performing the declaration and initialization and then using the temporary variable as the result of the con-
version. The result isan Ivalueif T is a reference type (8.3.2), and an rvalue otherwise. The expression e
isused asan Ivalueif and only if the initialization usesit as an lvalue.

[Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-
defined conversion followed by another standard conversion sequence.

There are some contexts where certain conversions are suppressed. For example, the Ivalue-to-rvalue con-
version is not done on the operand of the unary & operator. Specific exceptions are given in the descrip-
tions of those operators and contexts.]

4.1 Lvalue-to-rvalue conversion [conv.lval]

An Ivalue (3.10) of a non-function, non-array type T can be converted to an rvaue. If T is an incomplete
type, a program that necessitates this conversion isill-formed. If the object to which the Ivalue refersis not
an object of type T and is not an object of atype derived from T, or if the object is uninitialized, a program
that necessitates this conversion has undefined behavior. If T is anon-class type, the type of the rvalue is
the cv-unqualified version of T. Otherwise, thetype of thervalueisT. 49

) In G+ class rvalues can have cv-qualified types (because they are objects). This differs from 1SO C, in which non-lvalues never
have cv-qualified types.

59

| SO/IEC 14882:2003(E) O ISO/IEC

4.1 Lvalue-to-rvalue conversion 4 Standard conversions

The value contained in the object indicated by the Ivalueis the rvalue result. When an lvalue-to-rvalue con-
version occurs within the operand of si zeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

[Note: Seeaso 3.10. |

4.2 Array-to-pointer conversion [conv.array]

An lvalue or rvalue of type “array of NT” or “array of unknown bound of T” can be converted to an rvalue
of type “pointer to T.” Theresult is apointer to the first element of the array.

A string literal (2.13.4) that is not a wide string literal can be converted to an rvalue of type “pointer to
char”; awide string literal can be converted to an rvalue of type “pointer to wchar _t”. In either case,
the result is a pointer to the first element of the array. This conversion is considered only when there is an
explicit appropriate pointer target type, and not when there is a general need to convert from an Ivalue to an
rvalue. [Note: this conversion is deprecated. See Annex D.] For the purpose of ranking in overload reso-
lution (13.3.3.1.1), this conversion is considered an array-to-pointer conversion followed by a qualification
conversion (4.4). [Example: "abc" isconverted to “pointer to const char” asan array-to-pointer con-
version, and then to “pointer to char ” asaqualification conversion.]

4.3 Function-to-pointer conversion [conv.func]

An lvalue of function type T can be converted to an rvalue of type “pointer to T.” The result is a pointer to
the function.>

[Note: See 13.4 for additional rules for the case where the function is overloaded.]

4.4 Qualification conversions [conv.qual]

An rvalue of type “pointer to cvl T” can be converted to an rvalue of type “pointer to cv2 T” if “cv2 T” is
more cv-qualified than “cvl T.”

An rvalue of type “pointer to member of X of type cvl T” can be converted to an rvalue of type “pointer to
member of X of typecv2 T” if “cv2 T” ismore cv-qualified than “cvl T.”

[Note: Function types (including those used in pointer to member function types) are never cv-qualified
(8.35).]

A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the fol-
lowing rules:>V
Two pointer types T1 and T2 are similar if there existsatype T and integer n >0 such that:

T1is cvy o pointerto cvy; pointerto --- cvyn-; pointerto cvyp, T
and
T2 is cv, o pointer to cv, ; pointerto - -+ cvp,-; pointerto cv,, T

whereeach cv; j isconst, vol ati | e,const vol ati | e, or nothing. The n-tuple of cv-qualifiers
after the first in a pointer type, 9., Cvq 1, CVy1 5, -+, CVq, inthe pointer type T1, is called the cv-
qualification signature of the pointer type. An expression of type T1 can be converted to type T2 if and
only if the following conditions are satisfied:

— the pointer types are similar.
— forevery j>0,if const isincv, j thenconst isincv, ;, and similarly for vol at i | e.

— ifthecvy j and cv, ; aredifferent, then const isinevery cv, for 0<k <j.

Y) This conversion never applies to nonstatic member functions because an Ivalue that refers to a nonstatic member function cannot be
g?tai ned.
) These rules ensure that const-safety is preserved by the conversion.

60

O ISO/IEC | SO/IEC 14882:2003(E)

4 Standard conversions 4.4 Qualification conversions

[Note: if aprogram could assign a pointer of type T* * to a pointer of typeconst T** (thatis,if line// 1
below was allowed), a program could inadvertently modify aconst object (asitisdoneonline/ / 2). For
example,

int main() {

const char ¢ = '¢’;
char* pc;
const char** pcc = &pc; /1 1: not allowed
*pcc = &c;
*pc = 'C; /1 2: modifiesaconst object
}
—end note]

A multi-level pointer to member type, or a multi-level mixed pointer and pointer to member type has the
form:

cvgPo tocvyPy to -+ cvp-1Ph-qtocv, T

where P; is either a pointer or pointer to member and where T is not a pointer type or pointer to member
type.

Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 are similar if there existsatype T and integer n >0 such that:

TliscvygPotocvy Py t0 - cvyp_iPrqgtocvy g T
and
T2 iscvygPg tocvy Py to - cvpop_1Progtocvyy T
For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to mem-
ber types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.
4.5 Integral promotions [conv.prom]

An rvalue of type char, si gned char, unsi gned char, short int, or unsi gned short
i nt can be converted to an rvalue of typei nt if i nt can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue of typeunsi gned i nt .

An rvalue of typewchar _t (3.9.1) or an enumeration type (7.2) can be converted to an rvalue of the first
of the following types that can represent al the values of its underlying type: i nt, unsi gned i nt,
| ong, orunsi gned | ong.

An rvalue for an integral bit-field (9.6) can be converted to an rvalue of typei nt if i nt can represent all
the values of the bit-field; otherwise, it can be converted to unsi gned i nt if unsi gned i nt canrep-
resent all the values of the bit-field. If the bit-field is larger yet, no integral promotion appliesto it. If the
bit-field has an enumerated type, it is treated as any other value of that type for promotion purposes.

An rvalue of type bool can be converted to an rvalue of typei nt , with f al se becoming zero and t r ue
becoming one.

These conversions are called integral promotions.

4.6 Floating point promaotion [conv.fpprom]
Anrvalue of typef | oat can be converted to an rvalue of type doubl e. The valueisunchanged.

This conversion is called floating point promotion.

61

| SO/IEC 14882:2003(E) O ISO/IEC

4.7 Integral conversions 4 Standard conversions

4.7 Integral conversions [conv.integral]

An rvalue of an integer type can be converted to an rvalue of another integer type. An rvalue of an enumer-
ation type can be converted to an rvalue of an integer type.

If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2" where n is the number of bits used to represent the unsigned type). [Note: In atwo’'s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
isno truncation).]

If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value isimplementation-defined.

If the destination type isbool , see 4.12. If the sourcetypeisbool , thevaluef al se isconverted to zero
and thevaluet r ue is converted to one.

The conversions allowed as integral promotions are excluded from the set of integral conversions.

4.8 Floating point conversions [conv.doublé]

An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion is an
implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

The conversions alowed as floating point promotions are excluded from the set of floating point conver-
sions.

4.9 Floating-integral conversions [conv.fpint]

An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination type. [Note: If the destination typeisbool , see4.12.]

An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point
type. Theresult is exact if possible. Otherwise, it is an implementation-defined choice of either the next
lower or higher representable value. [Note: loss of precision occurs if the integral value cannot be repre-
sented exactly as avalue of the floating type.] If the source typeisbool , thevaluef al se isconverted to
zero and thevaluet r ue is converted to one.

4.10 Pointer conversions [conv.ptr]

A null pointer constant is an integral constant expression (5.19) rvalue of integer type that evaluates to
zero. A null pointer constant can be converted to a pointer type; the result is the null pointer value of that
type and is distinguishable from every other value of pointer to object or pointer to function type. Two null
pointer values of the same type shall compare equal. The conversion of anull pointer constant to a pointer
to cv-qualified type is a single conversion, and not the sequence of a pointer conversion followed by a qual-
ification conversion (4.4).

An rvalue of type “pointer to cvT,” where T is an object type, can be converted to an rvalue of type
“pointer to cvvoi d.” The result of converting a “pointer to cv T” to a “pointer to cvvoi d” points to the
start of the storage location where the object of type T resides, asif the object is a most derived object (1.8)
of type T (that is, not a base class subobject).

An rvalue of type “pointer to cv D,” where D is a class type, can be converted to an rvalue of type “pointer
to cv B,” where B is a base class (clause 10) of D. If B is an inaccessible (clause 11) or ambiguous (10.2)
base class of D, a program that necessitates this conversion isill-formed. The result of the conversion is a
pointer to the base class sub-object of the derived class object. The null pointer value is converted to the
null pointer value of the destination type.

62

O ISO/IEC | SO/IEC 14882:2003(E)

4 Standard conversions 4.11 Pointer to member conversions

4.11 Pointer to member conversions [conv.mem]

A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from anull pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
apointer to member conversion followed by a qualification conversion (4.4).

An rvalue of type “pointer to member of B of type cv T,” where B is a class type, can be converted to an
rvalue of type “pointer to member of D of type cv T,” where D is a derived class (clause 10) of B. If Bisan
inaccessible (clause 11), ambiguous (10.2) or virtual (10.1) base class of D, a program that necessitates this
conversion isill-formed. The result of the conversion refers to the same member as the pointer to member
before the conversion took place, but it refers to the base class member as if it were a member of the
derived class. The result refers to the member in D's instance of B. Since the result has type “pointer to
member of D of typecv T,” it can be dereferenced with a D object. The result isthe same asif the pointer to
member of B were dereferenced with the B sub-object of D. The null member pointer value is converted to
the null member pointer value of the destination type.52

4.12 Boolean conversions [conv.bool]

An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool . A zero value, null pointer value, or null member pointer value is converted to f al se; any
other valueisconvertedtot r ue.

92) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, clause 10). Thisinversion is necessary to
ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of
such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted toavoi d*.

63

| SO/I EC 14882:2003(E)

64

Blank page

O ISO/IEC

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5 Expressions
5 EXpressions [expr]

[Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions. An expression is a
seguence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

Operators can be overloaded, that is, given meaning when applied to expressions of class type (clause 9) or
enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described in
13.5. Overloaded operators obey the rules for syntax specified in clause 5, but the requirements of operand
type, Ivalue, and evaluation order are replaced by the rules for function call. Relations between operators,
such as ++a meaning a+=1, are not guaranteed for overloaded operators (13.5), and are not guaranteed for
operands of typebool . —end note]

Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to con-
vert the operands to types appropriate for the built-in operator. If a built-in operator is selected, such con-
versions will be applied to the operands before the operation is considered further according to the rulesin
clause 5; see 13.3.1.2, 13.6.

Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions, and the order in which side effects take place, is unspecified.53) Between the previous
and next sequence point a scalar object shall have its stored value modified at most once by the evauation
of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored.
The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of afull
expression; otherwise the behavior is undefined. [Example:

i = v[i++]; /| the behavior is unspecified

i =7, i++ i++ // i becomes9

i = ++ + 1; /| the behavior is unspecified

i =i + 1; /'] thevalueofi isincremented
—end example]

If during the evaluation of an expression, the result is not mathematically defined or not in the range of rep-
resentable values for its type, the behavior is undefined, unless such an expression is a constant expression
(5.19), in which case the program isill-formed. [Note: most existing implementations of G+ ignore integer
overflows. Treatment of division by zero, forming a remainder using a zero divisor, and al floating point
exceptions vary among machines, and is usually adjustable by alibrary function.]

If an expression initialy has the type “reference to T” (8.3.2, 8.5.3), the type is adjusted to “T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sionisan lvaue.

An expression designating an object is called an object-expression.

Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand,
the Ivalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are
applied to convert the expression to an rvalue. [Note: because cv-qualifiers are removed from the type of
an expression of non-class type when the expression is converted to an rvalue, an lvalue expression of type
const i nt can, for example, be used where an rvalue expression of typei nt isrequired.]

23 The precedence of operatorsis not directly specified, but it can be derived from the syntax.

65

10

| SO/IEC 14882:2003(E) O ISO/IEC

5 Expressions 5 Expressions

Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result typesin a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of typel ong doubl e, the other shall be convertedto| ong doubl e.
— Otherwisg, if either operand isdoubl e, the other shall be converted to doubl e.

— Otherwisg, if either operandisf | oat , the other shall be convertedto f | oat .
— Otherwise, theintegral promotions (4.5) shall be performed on both operand354)
— Then, if either operand isunsi gned | ong the other shall be converted to unsi gned | ong.

— Otherwise, if oneoperand isal ong i nt and the other unsi gned i nt, thenif al ong i nt canrep-
resent all the values of an unsi gned i nt, the unsi gned i nt shall be convertedtoal ong i nt;
otherwise both operands shall be converted tounsi gned | ong i nt.

— Otherwisg, if either operand is| ong, the other shall be convertedto | ong.
— Otherwisg, if either operand isunsi gned, the other shall be converted to unsi gned.
[Note: otherwise, the only remaining case is that both operands arei nt]

The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.55)

5.1 Primary expressions [expr.prim]
Primary expressions are literals, names, and names qualified by the scope resolution operator : : .

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id

A literal isaprimary expression. Itstype dependson itsform (2.13). A string literal is an Ivalue; al other
literalsare rvalues.

Thekeyword t hi s names a pointer to the object for which a nonstatic member function (9.3.2) is invoked.
Thekeyword t hi s shall be used only inside a nonstatic class member function body (9.3) or in a construc-
tor memrinitializer (12.6.2). The type of the expression is a pointer to the function’s class (9.3.2), possibly
with cv-qualifiers on the classtype. The expression isan rvalue.

The operator :: followed by an identifier, a qualified-id, or an operator-function-id is a primary-
expression. Its type is specified by the declaration of the identifier, qualified-id, or operator-function-id.
The result is the entity denoted by the identifier, qualified-id, or operator-function-id. The result is an
Ivalue if the entity is a function or variable. The identifier, qualified-id, or operator-function-id shall have

;g) As aconsequence, operands of type bool , wchar _t , or an enumerated type are converted to someintegral type.
) The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

66

10

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.1 Primary expressions

global namespace scope or be visible in global scope because of a using-directive (7.3.4). [Note: the use of
. . dlows atype, an object, a function, an enumerator, or a namespace declared in the global namespace to
be referred to even if itsidentifier has been hidden (3.4.3).]

A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an Ivalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

An id-expression is a restricted form of a primary-expression. [Note: an id-expression can appear after .
and - > operators (5.2.5).]

An identifier is an id-expression provided it has been suitably declared (clause 7). [Note: for operator-
function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for template-ids, see 14.2. A class-name
prefixed by ~ denotes a destructor; see 12.4. Within the definition of a nonstatic member function, an
identifier that names a nonstatic member is transformed to a class member access expression (9.3.1).] The
type of the expression is the type of the identifier. The result is the entity denoted by the identifier. The
result isan lvalue if the entity isafunction, variable, or data member.
qualified-id:
: 1 opt Nested-name-specifier t enpl at e, unqualified-id

identifier

operator-function-id

template-id

nested-name-specifier:
class-or-namespace-name : : nested-name-specifier
class-or-namespace-name : : tenpl at e nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

A nested-name-specifier that names a class, optionally followed by the keyword t enpl at e (14.2), and
then followed by the name of a member of either that class (9.2) or one of its base classes (clause 10), isa
qualified-id; 3.4.3.1 describes name lookup for class members that appear in qualified-ids. The result isthe
member. The type of the result is the type of the member. The result is an Ivalue if the member is a static
member function or a data member. [Note: a class member can be referred to using a qualified-id at any
point in its potential scope (3.3.6).] Where class-name : : class-name is used, and the two class-names
refer to the same class, this notation names the constructor (12.1). Where class-hame: : ~ class-nameis
used, the two class-names shall refer to the same class; this notation names the destructor (12.4). [Note: a
typedef-name that names a classis a class-name (7.1.3). Except as the identifier in the declarator for a con-
structor or destructor definition outside of a class member-specification (12.1, 12.4), a typedef-name that
names a class may be used in a qualified-id to refer to a constructor or destructor. |

A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that name-
space (or the name of a member of a namespace made visible by a using-directive) isa qualified-id; 3.4.3.2
describes name lookup for namespace members that appear in qualified-ids. The result isthe member. The
type of the result is the type of the member. The result is an Ivalue if the member is a function or a vari-
able.

In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the
same type in both the context in which the entire qualified-id occurs and in the context of the class denoted
by the nested-name-specifier.

An id-expression that denotes a nonstatic data member or nonstatic member function of a class can only be
used:

— as part of aclass member access (5.2.5) in which the object-expression refers to the member’s class or a
class derived from that class, or

67

11

| SO/IEC 14882:2003(E) O ISO/IEC

5.1 Primary expressions 5 Expressions

— to form a pointer to member (5.3.1), or

— inthe body of a nonstatic member function of that class or of a class derived from that class (9.3.1), or
— inamenrinitializer for a constructor for that class or for a class derived from that class (12.6.2).

A template-id shall be used as an unqualified-id only as specified in 14.7.2, 14.7, and 14.5.4.

5.2 Postfix expressions [expr.post]
Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listy,)
simple-type-specifier (expression-list,,)
typenane :: ., nested-name-specifier identifier (expression-list,,)
typenane :: ., nested-name-specifier t enpl at e, template-id (expression-list,,)
postfix-expression . tenpl at e, id-expression
postfix-expression - > t enpl at e, id-expression
postfix-expression . pseudo-destructor-name
postfix-expression - > pseudo-destructor-name
postfix-expression ++
postfix-expression - -
dynami c_cast < typeid > (expression)
static_cast < typeid > (expression)
reinterpret_cast < typeid > (expression)
const _cast < typeid > (expression)
typeid (expression)
typeid (typeid)

expression-list:
assignment-expression
expression-list , assignment-expression

pseudo-destructor-name:
i1 opt Nested-name-specifier, type-name :: 7 type-name

© . o Nested-name-specifier t enpl at e template-id :: ~ type-name
: 1 opt Nested-name-specifier,, ~ type-name
5.2.1 Subscripting [expr.sub]

A postfix expression followed by an expression in square brackets is a postfix expression. One of the
expressions shall have the type “pointer to T and the other shall have enumeration or integral type. The
result is an Ivalue of type “T.” The type “T” shall be a completely-defined object type.56) The expression
E1[E2] isidentica (by definition) to* ((E1) +(E2)) . [Note: see 5.3 and 5.7 for details of * and + and
8.3.4 for details of arrays.]

5.2.2 Function call [expr.call]

There are two kinds of function call: ordinary function call and member function®” (9.3) cal. A function
cal is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix
expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling a
function through an expression whose function type has a language linkage that is different from the

) This istrue even if the subscript operator is used in the following common idiom: &x[0] .
A static member function (9.4) isan ordinary function.

68

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.2.2 Function call

language linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a func-
tion member. The first expression in the postfix expression is then called the object expression, and the call
is as a member of the object pointed to or referred to. In the case of an implicit class member access, the
implied object is the one pointed to by t hi s. [Note: amember function call of theformf () isinterpreted
as(*this).f() (see9.3.1).] If afunction or member function name is used, the name can be over-
loaded (clause 13), in which case the appropriate function shall be selected according to the rulesin 13.3.
The function called in amember function call is normally selected according to the static type of the object
expression (clause 10), but if that function isvi rt ual and is not specified using a qualified-id then the
function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the
object expression [Note: the dynamic type is the type of the object pointed or referred to by the current
value of the object expression. 12.7 describes the behavior of virtual function calls when the object-
expression refers to an object under construction or destruction.]

If no declaration of the called function is visible from the scope of the call the program isill-formed.

The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
vi rtual keyword), even if the type of the function actually called is different. This type shall be a com-
plete object type, areference type or thetypevoi d.

When afunction is called, each parameter (8.3.5) shall beinitialized (8.5, 12.8, 12.1) with its corresponding
argument. If the function is a nonstatic member function, the “t hi s” parameter of the function (9.3.2)
shall be initialized with a pointer to the object of the call, converted as if by an explicit type conversion
(5.4). [Note: There is no access checking on this conversion; the access checking is done as part of the
(possibly implicit) class member access operator. See 11.2.] When a function is called, the parameters
that have object type shall have completely-defined object type. [Note: this still allows a parameter to be a
pointer or reference to an incomplete class type. However, it prevents a passed-by-value parameter to have
an incomplete class type.] During the initialization of a parameter, an implementation may avoid the con-
struction of extra temporaries by combining the conversions on the associated argument and/or the con-
struction of temporaries with the initialization of the parameter (see 12.2). The lifetime of a parameter ends
when the function in which it is defined returns. The initialization and destruction of each parameter occurs
within the context of the calling function. [Example: the access of the constructor, conversion functions or
destructor is checked at the point of call in the calling function. If a constructor or destructor for afunction
parameter throws an exception, the search for a handler starts in the scope of the calling function; in partic-
ular, if the function called has a function-try-block (clause 15) with a handler that could handle the excep-
tion, this handler is not considered.] The value of a function call is the value returned by the called func-
tion except in avirtual function call if the return type of the final overrider is different from the return type
of the statically chosen function, the value returned from the final overrider is converted to the return type
of the statically chosen function.

[Note: afunction can change the values of its non-const parameters, but these changes cannot affect the val-
ues of the arguments except where a parameter is of areference type (8.3.2); if the reference is to a const-
qualified type, const _cast is required to be used to cast away the constness in order to modify the
argument’s value. Where a parameter is of const reference type a temporary object is introduced if
needed (7.1.5, 2.13, 2.13.4, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant
objects through pointer parameters. |

A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the dllipsis, . . . 8.3.5) than the number of parameters in the function definition (8.4).
[Note: thisimplies that, except wherethe ellipsis(. . .) isused, aparameter is available for each argument.

]

When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_ar g (18.7). The Ivalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the argument
expression. After these conversions, if the argument does not have arithmetic, enumeration, pointer,

69

10

| SO/IEC 14882:2003(E) O ISO/IEC

5.2.2 Function call 5 Expressions

pointer to member, or class type, the program is ill-formed. If the argument has a non-POD class type
(clause 9), the behavior is undefined. If the argument has integral or enumeration type that is subject to the
integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6), the
value of the argument is converted to the promoted type before the call. These promotions are referred to
as the default argument promotions.

The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations
take effect before the function is entered. The order of evaluation of the postfix expression and the argu-
ment expression list is unspecified.

Recursive cals are permitted, except to the function named nai n (3.6.1).

A function call isan Ivalue if and only if the result typeis areference.

5.2.3 Explicit type conversion (functional notation) [expr.type.conv]

A simple-type-specifier (7.1.5) followed by a parenthesized expression-list constructs a value of the speci-
fied type given the expression list. If the expression list is a single expression, the type conversion expres-
sion is equivalent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If
the simple-type-specifier specifies a class type, the class type shall be complete. If the expression list speci-
fies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1), and
the expression T(x1, x2, ...) isequivalentin effect tothedeclaration T t (x1, x2, ...); for
some invented temporary variablet , with the result being the value of t asan rvalue.

The expression T() , where T is a simple-type-specifier (7.1.5.2) for a non-array complete object type or
the (possibly cv-qualified) void type, creates an rvalue of the specified type, which is value-initialized (8.5;
no initialization is done for the voi d() case). [Note: if T is a non-class type that is cv-qualified, the
cv-qual i fi ers areignored when determining the type of the resulting rvalue (3.10).]

5.2.4 Pseudo destructor call [expr.pseudo]

The use of a pseudo-destructor-name after adot . or arrow - > operator represents the destructor for the
non-class type named by type-name. The result shall only be used as the operand for the function call oper-
ator (), and the result of such a call has type voi d. The only effect is the evaluation of the postfix-
expression before the dot or arrow.

The left hand side of the dot operator shall be of scalar type. The left hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The type designated by the pseudo-
destructor-name shall be the same as the object type. Furthermore, the two type-names in a pseudo-
destructor-name of the form

© ¢ opt Nested-name-specifier ,, type-name : : type-name

shall designate the same scalar type. The cv-unqualified versions of the object type and of the type desig-
nated by the pseudo-destructor-name shall be the same type.

5.2.5 Class member access [expr.ref]

A postfix expression followed by adot . or an arrow - >, optionally followed by the keyword t enpl at e
(14.8.1), and then followed by an id-expression, is a postfix expression. The postfix expression before the
dot or arrow is eva uaIed;SB) the result of that evaluation, together with the id-expression, determine the
result of the entire postfix expression.

For the first option (dot) the type of the first expression (the object expression) shall be “class object” (of a
complete type). For the second option (arrow) the type of the first expression (the pointer expression) shall
be “pointer to class object” (of a complete type). In these cases, the id-expression shall name a member of
the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope

%) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expression denotes a static member.

70

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.2.5 Class member access

(clause 9), the name of a class is also considered a nested member of that class.] [Note: 3.4.5 describes
how names are looked up after the. and - > operators.]

If E1 has the type “pointer to class X,” then the expression E1- >E2 is converted to the equivalent form
(*(El)). E2; the remainder of 5.2.5 will address only the first option (dot)®®. Abbreviating object-
expression.id-expression as E1. E2, then the type and Ivalue properties of this expression are determined as
follows. In the remainder of 5.2.5, cq represents either const or the absence of const ; vq represents
either vol ati | e or the absence of vol ati | e. cv represents an arbitrary set of cv-qualifiers, as defined
in3.9.3.

If E2 is declared to have type “reference to T”, then E1. E2 is an lvalue; the type of E1. E2 is T. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the type of E2 is T, then E1. E2 is an lvalue; the expression desig-
nates the named member of the class. Thetypeof E1. E2 isT.

— If E2 isanon-static data member, and the type of E1 is“cgl vgl X’, and thetype of E2 is“cq2vg2 T",
the expression designates the named member of the object designated by the first expression. If E1 is
an lvalue, then E1. E2 isan lvalue. Let the notation vg12 stand for the “union” of vgl and vg2 ; that is,
if vgl or vg2 isvol atil e, thenvgl2 isvol atil e. Similarly, let the notation cgql2 stand for the
“union” of cql and cg2; that is, if cql or cg2 isconst , then cql2 isconst . If E2 isdeclaredto bea
nut abl e member, then the type of E1. E2 is“vg12 T”. If E2 is not declared to be anut abl e mem-
ber, then the type of E1. E2 is“cql2vql2 T".

— If E2 isa(possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whether E1. E2 refersto a static or a non-static member function.

— If it refers to a static member function, and the type of E2 is “function of (parameter type list)
returning T”, then E1. E2 is an lvalue; the expression designates the static member function. The
type of E1. E2 is the same type as that of E2, namely “function of (parameter type list) returning
T

— Otherwise, if E1. E2 refers to a non-static member function, and the type of E2 is “function of
(parameter type list) cv returning T”, then E1. E2 is not an Ivalue. The expression designates a
non-static member function. The expression can be used only as the |eft-hand operand of a member
function call (9.3). [Note: any redundant set of parentheses surrounding the expression is ignored
(5.1).] Thetypeof E1. E2 is“function of (parameter typelist) cv returning T”.

— If E2 isanested type, the expression E1. E2 isill-formed.

— If E2 is a member enumerator, and the type of E2 is T, the expression E1. E2 is not an lvalue. The
typeof E1. E2 isT.

[Note: “class objects’ can be structures (9.2) and unions (9.5). Classes are discussed in clause 9.]

5.2.6 Increment and decrement [expr.post.incr]

The value obtained by applying a postfix ++ is the value that the operand had before applying the operator.
[Note: the value obtained is a copy of the original value] The operand shall be a modifiable Ivalue. The
type of the operand shall be an arithmetic type or a pointer to a complete object type. After the result is
noted, the value of the object is modified by adding 1 to it, unless the object is of type bool , in which case
itissettotrue. [Note this use is deprecated, see annex D.] The result is an rvalue. The type of the
result isthe cv-unqualified version of the type of the operand. Seealso 5.7 and 5.17.

The operand of postfix - - is decremented analogously to the postfix ++ operator, except that the operand
shall not be of type bool . [Note: For prefix increment and decrement, see 5.3.2.]

99 Note that if E1 has the type “pointer to class X”, then (* (E1)) isanlvalue.

71

| SO/IEC 14882:2003(E) O ISO/IEC

5.2.7 Dynamic cast 5 Expressions
5.2.7 Dynamic cast [expr.dynamic.cast]

The result of the expression dynami ¢_cast <T>(v) isthe result of converting the expression v to type
T. T shall be a pointer or reference to a complete class type, or “pointer to cv voi d”. Types shall not be
definedinadynami c_cast. Thedynam c_cast operator shall not cast away constness (5.2.11).

If T isapointer type, v shal be an rvalue of a pointer to complete class type, and the result is an rvalue of
type T. If T isareference type, v shall be an lvalue of a complete class type, and the result is an lvalue of
thetypereferredtoby T.

If the type of v is the same as the required result type (which, for convenience, will be called R in this
description), or it is the same as R except that the class object type in R is more cv-qualified than the class
object typeinv, theresult isv (converted if necessary).

If the value of v isanull pointer value in the pointer case, the result is the null pointer value of type R.

If T is“pointer to cvl B” and v has type “pointer to cv2 D’ such that B is a base class of D, the result isa
pointer to the unique B sub-object of the D object pointed to by v. Similarly, if T is “reference to cvl B”
and v hastype“cv2 D’ such that Bisahbase class of D, the result is an Ivalue for the uniqueﬁo) B sub-object
of the D object referred to by v. In both the pointer and reference cases, cvl shall be the same cv-
qualification as, or greater cv-qualification than, cv2, and B shall be an accessible unambiguous base class

of D. [Example:

struct B {};
struct D: B {};
voi d foo(D* dp)

{
B* bp = dynami c_cast <B*>(dp); /| equivalent to B* bp = dp;
}
—end example]

Otherwise, v shall be a pointer to or an Ivalue of a polymorphic type (10.3).

If Tis“pointer to cvvoi d,” then the result is a pointer to the most derived object pointed to by v. Other-
wise, arun-time check is applied to seeif the object pointed or referred to by v can be converted to the type
pointed or referred to by T.

The run-time check logically executes as follows:

— If, in the most derived object pointed (referred) to by v, v points (refers) to a publ i ¢ base class sub-
object of aT object, and if only one object of type T is derived from the sub-object pointed (referred) to
by v, theresult isapointer (an Ivalue referring) to that T object.

— Otherwise, if v points (refers) to a publ i ¢ base class sub-object of the most derived object, and the
type of the most derived object has a base class, of type T, that is unambiguous and publ i ¢, the result
isapointer (an Ivalue referring) to the T sub-object of the most derived object.

— Otherwise, the run-time check fails.

The value of afailed cast to pointer typeisthe null pointer value of the required result type. A failed cast to
referencetypethrowsbad_cast (18.5.2).

%) The most derived object (1.8) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

72

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.2.7 Dynamic cast

[Example:

class A{ virtual void f(); };
class B { virtual void g(); };
class D: public virtual A private B {};

void g()
{
D d;
B* bp = (B*)&d,; /'] cast needed to break protection
A* ap = &d; /| public derivation, no cast needed
D& dr = dynam c_cast <D&>(*bp); /1 fails
ap = dynani c_cast <A*>(bp); /] fails
bp = dynani c_cast <B*>(ap); /] fails
ap = dynam c_cast <A*>(&d) ; /'] succeeds
bp = dynam c_cast <B*>(&d); /1 fails
}

class E: public D, public B {};
class F: public E, public D {};

void h()
{
F f;
A* ap = &f; /'l succeeds: finds unique A
D* dp = dynam c_cast<D*>(ap); /| fails: yields 0
/1 f hastwo D sub-objects
E* ep = (E*)ap; /1 ill-formed:
/| cast fromvirtual base
E* epl = dynam c_cast <E*>(ap); /| succeeds
}

—end example] [Note: 12.7 describes the behavior of adynamni ¢_cast applied to an object under con-
struction or destruction.]

5.2.8 Typeidentification [expr.typeid]

The result of at ypei d expression is an lvalue of static type const std::type_info (185.1) and
dynamic type const std::type_info or const name where name is an implementation-defined
class derived from st d: : t ype_i nf o which preserves the behavior described in 18.5.1.59 The lifetime
of the object referred to by the Ivalue extends to the end of the program. Whether or not the destructor is
caled for thet ype_i nf o object at the end of the program is unspecified.

When t ypei d is applied to an lvalue expression whose type is a polymorphic class type (10.3), the result
refersto at ype_i nf o object representing the type of the most derived object (1.8) (that is, the dynamic
type) to which the Ivalue refers. If the Ivalue expression is obtained by applying the unary * operator to a
poi nter® and the pointer is a null pointer value (4.10), the t ypei d expression throws the bad_t ypei d
exception (18.5.3).

When t ypei d is applied to an expression other than an Ivalue of a polymorphic class type, the result
refersto at ype_i nf o object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-
to-pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the type of
the expression is a class type, the class shall be completely-defined. The expression is not evaluated.

Whent ypei d isapplied to atype-id, the result refersto at ype_i nf o object representing the type of the
type-id. If the type of the type-id is a reference type, the result of the t ypei d expression refers to a
t ype_i nf o object representing the referenced type. If the type of the type-id is a class type or areference
to aclasstype, the class shall be completely-defined. Types shall not be defined in the type-id.

L) The recommended name for such aclassis ext ended_t ype_i nf o.
62) If p isan expression of pointer type, then*p, (*p),*(p), ((*p)),*((p)),and soon al meet this requirement.

73

| SO/IEC 14882:2003(E) O ISO/IEC

5.2.8 Type identification 5 Expressions

The top-level cv-qualifiers of the Ivalue expression or the type-id that is the operand of t ypei d are aways
ignored. [Example:

class D{ ... };

D di;

const D d2;

typei d(dl) == typeid(d2); /'] yieldst r ue

typeid(D) == typeid(const D); /| yieldst rue

typeid(D) == typeid(d2); /] yieldst rue

typeid(D) == typeid(const D&); /| yieldst r ue
—end example]

If the header <t ypei nf 0> (18.5.1) is not included prior to ause of t ypei d, the program is ill-formed.
[Note: 12.7 describes the behavior of t ypei d applied to an object under construction or destruction.]

5.2.9 Static cast [expr.static.cast]

Theresult of the expression st at i ¢_cast <T>(v) istheresult of converting the expression v to type T.
If T isareferencetype, the result is an Ivalue; otherwise, the result is an rvalue. Types shall not be defined
inastatic_cast. Thestati c_cast operator shall not cast away constness (5.2.11).

An expression e can be explicitly converted to a type T using a static_cast of the form
static_cast <T>(e) if thedeclaration“T t (e) ;" iswell-formed, for some invented temporary vari-
ablet (8.5). The effect of such an explicit conversion is the same as performing the declaration and initial-
ization and then using the temporary variable as the result of the conversion. Theresultisan Ivalueif Tisa
reference type (8.3.2), and an rvalue otherwise. The expression e is used as an Ivalue if and only if the
initialization usesit as an Ivalue.

Otherwise, the st ati c_cast shal perform one of the conversions listed below. No other conversion
shall be performed explicitly usingast ati c_cast .

Any expression can be explicitly converted to type “cv voi d.” The expression value is discarded. [Note:
however, if the value isin atemporary variable (12.2), the destructor for that variable is not executed until
the usual time, and the value of the variable is preserved for the purpose of executing the destructor.] The
Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the expression.

An Ivalue of type “cvl B”, where B is a class type, can be cast to type “reference to cv2 D', where Dis a
class derived (clause 10) from B, if avalid standard conversion from “pointer to D’ to “pointer to B” exists
(4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cvl, and B is not a virtual base
class of D. Theresult is an Ivalue of type “cv2 D.” If the Ivalue of type “cvl B” is actually a sub-object of
an object of type D, the Ivalue refers to the enclosing object of type D. Otherwise, the result of the cast is
undefined. [Example:

struct B {};

struct D: public B {};
D d;

B &br = d;

static_cast<D&>(br); /| produces Ivalue to the original d object
—end example]

The inverse of any standard conversion sequence (clause 4), other than the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static_cast. The lvaueto-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conver-
sions are applied to the operand. Such ast ati c_cast is subject to the restriction that the explicit con-
version does not cast away constness (5.2.11), and the following additional rules for specific cases:

74

10

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.2.9 Static cast

A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is
unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting
enumeration value is unspecified.

An rvalue of type “pointer to cvl B”, where B is a class type, can be converted to an rvalue of type “pointer
to cv2 D', where D is a class derived (clause 10) from B, if avalid standard conversion from “pointer to D’
to “pointer to B” exists (4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cvl, and
B isnot avirtual base class of D. The null pointer value (4.10) is converted to the null pointer value of the
destination type. If the rvalue of type “pointer to cvl B” points to a B that is actually a sub-object of an
object of type D, the resulting pointer points to the enclosing object of type D. Otherwise, the result of the
cast is undefined.

An rvalue of type “pointer to member of D of type cvl T” can be converted to an rvalue of type “pointer to
member of B of type cv2 T”, where B is a base class (clause 10) of D, if a valid standard conversion from
“pointer to member of B of type T” to “pointer to member of D of type T” exists (4.11), and cv2 is the same
cv-qualification as, or greater cv-qualification than, ov1.%) The null member pointer value (4.11) is con-
verted to the null member pointer value of the destination type. If class B contains the original member, or
is a base or derived class of the class containing the origina member, the resulting pointer to member
points to the original member. Otherwise, the result of the cast is undefined. [Note: although class B need
not contain the original member, the dynamic type of the object on which the pointer to member is derefer-
enced must contain the original member; see 5.5.]

An rvalue of type “pointer to cvl voi d” can be converted to an rvalue of type “pointer to cv2 T,” where T
is an object type and cv2 is the same cv-qudlification as, or greater cv-qualification than, cvl. A value of
type pointer to object converted to “pointer to cv voi d” and back to the original pointer type will have its
original value.

5.2.10 Reinterpret cast [expr.reinterpret.cast]

The result of the expressionr ei nt er pret _cast <T>(v) istheresult of converting the expression v to
type T. If T is areference type, the result is an lvalue; otherwise, the result is an rvalue and the Ivalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
the expression v. Types shall not be defined in ar ei nt er pret _cast. Conversions that can be per-
formed explicitly using r ei nt er pret _cast are listed below. No other conversion can be performed
explicitly usingr ei nt er pret _cast.

Ther ei nt er pret _cast operator shall not cast away constness. [Note: see 5.2.11 for the definition of
‘‘casting away constness’’. Subject to the restrictions in this section, an expression may be cast to its own
typeusing ar ei nt er pret _cast operator.]

The mapping performed by r ei nt er pret _cast isimplementation-defined. [Note: it might, or might
not, produce a representation different from the original value.]

A pointer can be explicitly converted to any integral type large enough to hold it. The mapping functionis
implementation-defined [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine.]

A value of integral type or enumeration type can be explicitly converted to a poi nter.%9 A pointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will haveits original value; mappings between pointers and integers are otherwise implementation-defined.

A pointer to afunction can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in the
definition of the function is undefined. Except that converting an rvalue of type “pointer to T1” to the type
“pointer to T2” (where T1 and T2 are function types) and back to its origina type yields the original

93) Function types (including those used in pointer to member function types) are never cv-qualified; see8.3.5.
Converting an integral constant expression (5.19) with value zero always yields a null pointer (4.10), but converting other expres-
sions that happen to have value zero need not yield anull pointer.

75

10

| SO/IEC 14882:2003(E) O ISO/IEC

5.2.10 Reinterpret cast 5 Expressions

pointer value, the result of such apointer conversion is unspecified. [Note: see also 4.10 for more details of
pointer conversions. |

A pointer to an object can be explicitly converted to a pointer to an object of different type.65) Except that
converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object types
and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

The null pointer value (4.10) is converted to the null pointer value of the destination type.

An rvalue of type “pointer to member of X of type T1” can be explicitly converted to an rvalue of type
“pointer to member of Y of type T2” if T1 and T2 are both function types or both object typeﬁ%) The null
member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting an rvalue of type “pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data mem-
ber of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1) and back
toitsoriginal typeyields the original pointer to member value.

An lvalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer
to T1"” can be explicitly converted to the type “pointer to T2” usingarei nterpret _cast. That is, a
reference cast reinterpret _cast<T&>(x) has the same effect as the conversion
reinterpret _cast<T>(&x) withthe built-in & and * operators. Theresult is an Ivalue that refers
to the same object as the source lvalue, but with a different type. No temporary is created, no copy is made,
and constructors (12.1) or conversion functions (12.3) are not cal led.®

5.2.11 Const cast [expr.const.cast]

The result of the expression const _cast <T>(v) isof type T. If T is areference type, the result is an
Ivalue; otherwise, the result is an rvalue and, the Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the expression v. Types shall not be
defined in aconst _cast. Conversions that can be performed explicitly using const _cast are listed
below. No other conversion shall be performed explicitly using const _cast .

[Note: Subject to the restrictions in this section, an expression may be cast to its own type using a
const _cast operator.]

For two pointer types T1 and T2 where

T1is cvy o pointerto cvy; pointerto --- cvyn-; pointerto cvyp, T
and

T2 is cv, o pointer to cv, ; pointerto - -+ cvp,-; pointerto cv,, T

where T is any object type or the voi d type and where cv, , and cv, may be different cv-qualifications,
an rvalue of type T1 may be explicitly converted to the type T2 using a const _cast. Theresult of a
pointer const _cast refersto the original object.

An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast
const _cast <T2&> (where T1 and T2 are object types) if a pointer to T1 can be explicitly converted to
the type pointer to T2 using a const _cast. The result of a reference const _cast refers to the

%) The types may have different cv-qualifiers, subject to the overall restriction that ar ei nt er pr et _cast cannot cast away const-
ness.
66) T1 and T2 may have different cv-qualifiers, subject to the overall restrictionthat ar ei nt er pr et _cast cannot cast away const-

Ness.
67) Thisis sometimes referred to as a type pun.

76

10

11

12

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.2.11 Const cast

original object.

For aconst _cast involving pointers to data members, multi-level pointers to data members and multi-
level mixed pointers and pointers to data members (4.4), the rules for const _cast are the same as those
used for pointers; the “member” aspect of a pointer to member is ignored when determining where the cv-
qualifiers are added or removed by the const cast. The result of a pointer to data member
const _cast refersto the same member asthe original (uncast) pointer to data member.

A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

[Note: Depending on the type of the object, a write operation through the pointer, Ivalue or pointer to data
member resulting from aconst _cast that casts away aconst-qualifier6 may produce undefined behav-
ior (7.1.5.1).]

The following rules define the process known as casting away constness. In these rules Tn and Xn repre-
sent types. For two pointer types:

X1lisTlevyq * -+ cvyny * where T1 is not a pointer type
X2 isT2cvyq * -+ cvay * where T2 is not a pointer type
K is min(N,M)

casting from X1 to X2 casts away constnessiif, for a non-pointer type T there does not exist an implicit con-
version (clause 4) from:

Tovy (n-k+1) * CVi(N-K+2) ¥ " CVinN ¥
to

Tevy (M-k+1) * Vo (m-k+2) * "-° CVom *

Casting from an Ivalue of type T1 to an Ivalue of type T2 using a reference cast casts away constness if a
cast from an rvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

Casting from an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data mem-
ber of Y of type T2” casts away constness if a cast from an rvalue of type “pointer to T1” to the type
“pointer to T2” casts away constness.

For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the
“member” aspect of a pointer to member level is ignored when determining if a const cv-quaifier has
been cast away.

[Note: some conversions which involve only changes in cv-qualification cannot be done using
const _cast. For instance, conversions between pointers to functions are not covered because such
conversions lead to values whose use causes undefined behavior. For the same reasons, conversions
between pointers to member functions, and in particular, the conversion from a pointer to a const member
function to a pointer to a non-const member function, are not covered. |

%9 const _cast isnot limited to conversions that cast away a const-qualifier.

77

| SO/IEC 14882:2003(E) O ISO/IEC

5.2.11 Const cast 5 Expressions
5.3 Unary expressions [expr.unary]

Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ cast-expression
- - cast-expression
unary-operator cast-expression
si zeof unary-expression
si zeof (typeid)
new-expression
delete-expression

unary-operator: one of
& o+ - 1T

5.3.1 Unary operators [expr.unary.op]

The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an Ivalue referring to the object or function to
which the expression points. If the type of the expression is “pointer to T,” the type of the result is“T.”
[Note: a pointer to an incomplete type (other than cv voi d) can be dereferenced. The lvalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to an
rvalue, see4.1. |

The result of the unary & operator is a pointer to its operand. The operand shall be an Ivalue or a qualified-
id. Inthefirst case, if the type of the expressionis“T,” the type of the result is*“pointer to T.” In particular,
the address of an abject of type“cv T” is“pointer to cv T,” with the same cv-qualifiers. For a qualified-id,
if the member is a static member of type “T”, the type of the result is plain “pointer to T.” If the member is
a nonstatic member of class C of type T, the type of the result is “pointer to member of cl ass C of type
T.” [Example:

struct A{ int i; };
struct B: A{ };
&B: i ... /'l hastypeint A::*

—end example] [Note: a pointer to member formed from a nut abl e nonstatic data member (7.1.1) does
not reflect the mut abl e specifier associated with the nonstatic data member.]

A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not
enclosed in parentheses. [Note: that is, the expression &(qual i fi ed-i d), where the qualified-id is
enclosed in parentheses, does not form an expression of type “pointer to member.” Neither does
qgual i fi ed-i d, because thereis no implicit conversion from a qualified-id for a nonstatic member func-
tion to the type “ pointer to member function” as there is from an Ivalue of function type to the type “pointer
to function” (4.3). Nor is &nqual ifi ed-id a pointer to member, even within the scope of the
unqualified-id'sclass.]

The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declares oper at or &) asamember function, then the behavior is undefined (and no diagnostic
isrequired). The operand of & shall not be a bit-field.

The address of an overloaded function (clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function isreferred to (see 13.4). [Note: since the context might determine
whether the operand is a static or nonstatic member function, the context can also affect whether the expres-
sion has type “ pointer to function” or “pointer to member function.”]

The operand of the unary + operator shall have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

78

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.3.1 Unary operators

The operand of the unary - operator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promation is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value from 2", where n is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

The operand of the logical negation operator ! is implicitly converted to bool (clause 4); its value is
t r ue if the converted operandisf al se and f al se otherwise. Thetype of theresultisbool .

The operand of ~ shall have integral or enumeration type; the result is the one’s complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand. Thereisan
ambiguity in the unary-expression ~ X() , where X is a class-name. The ambiguity is resolved in favor of
treating”™ as aunary complement rather than treating ™ X as referring to a destructor.

5.3.2 Increment and decrement [expr.preincr]

The operand of prefix ++ is modified by adding 1, or set tot r ue if it isbool (this use is deprecated).
The operand shall be a modifiable Ivalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The value is the new value of the operand; it is an lvalue. If x is not
of type bool , the expression ++x is equivalent to x+=1. [Note: see the discussions of addition (5.7) and
assignment operators (5.17) for information on conversions. |

The operand of prefix - - is modified by subtracting 1. The operand shall not be of type bool . The
requirements on the operand of prefix - - and the properties of its result are otherwise the same as those of
prefix ++. [Note: For postfix increment and decrement, see 5.2.6. |

5.3.3 Sizeof [expr.sizeof]

The si zeof operator yields the number of bytes in the object representation of its operand. The operand
is either an expression, which is not evaluated, or a parenthesized type-id. The si zeof operator shall not
be applied to an expression that has function or incomplete type, or to an enumeration type before all its
enumerators have been declared, or to the parenthesized name of such types, or to an Ivalue that designates
a hit-field. si zeof (char), si zeof (si gned char) and si zeof (unsi gned char) are 1; the
result of si zeof applied to any other fundamental type (3.9.1) is implementation-defined. [Note: in par-
ticular, si zeof (bool) and si zeof (wchar _t) are implementation—defined.69)] [Note: See 1.7 for
the definition of byte and 3.9 for the definition of object representation.]

When applied to areference or areference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).
The result of applying si zeof to abase class subobject is the size of the base class type.70) When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array of n
elementsis n times the size of an element.

The si zeof operator can be applied to a pointer to a function, but shall not be applied directly to a func-
tion.

The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand of si zeof .

Types shall not be definedinasi zeof expression.

The result is a constant of type size t. [Note: size t is defined in the standard header
<cst ddef >(18.1).]

;’y) si zeof (bool) isnotrequiredtobe 1.
0) The actual size of a base class subobject may be less than the result of applying si zeof to the subobject, due to virtual base
classes and less strict padding requirements on base class subobjects.

79

| SO/IEC 14882:2003(E) O ISO/IEC

5.3.4 New 5 Expressions
5.3.4 New [expr.new]

The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied.
The type of that object is the allocated type. This type shall be a complete object type, but not an abstract
class type or array thereof (1.8, 3.9, 10.4). [Note: because references are not objects, references cannot be
created by new-expressions.] [Note: the type-id may be a cv-qualified type, in which case the object cre-
ated by the new-expression has a cv-qualified type.]
new-expression:
ot New new-placement,, new-type-id new-initializer
Dot NEw new-placement,, (type-id) new-initializer g,

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declarator

new-declarator:
ptr-operator new-declarator ,
direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator [constant-expression]

new-initializer:
(expression-list,y)

Entities created by a new-expression have dynamic storage duration (3.7.3). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created.] If the entity is anon-array object, the
new-expression returns a pointer to the object created. If it is an array, the new-expression returns a pointer
to theinitial element of the array.

The new-type-id in a new-expression is the longest possible sequence of new-declarators. [Note: this pre-
vents ambiguities between declarator operators &, *, [] , and their expression counterparts. | [Example:

newint * i; /| syntaxerror: parsed as(newi nt*) i
/1 notas(newi nt) *i

The* isthe pointer declarator and not the multiplication operator.]

[Note: parenthesesin a new-type-id of a new-expression can have surprising effects. [Example:
new i nt(*[10])(); /'l error

isill-formed because the binding is
(new int) (*[10])(); /'l error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound
types (3.9.2):

new (int (*[10])());
allocates an array of 10 pointersto functions (taking no argument and returning i nt).]]
The type-specifier-seq shall not contain class declarations, or enumeration declarations.

When the allocated object is an array (that is, the direct-new-declarator syntax is used or the new-type-id or
type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the
array. [Note: bothnew i nt andnew i nt[10] havetypei nt* andthetypeof new i nt[i]][10] is
int (*)[10].]

80

10

11

12

13

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.3.4 New

Every constant-expression in a direct-new-declarator shall be an integral constant expression (5.19) and
evaluate to a strictly positive value. The expression in a direct-new-declarator shall have integral or enu-
meration type (3.9.1) with a non-negative value. [Example: if n is a variable of type i nt, then
new float[n][5] is well-formed (because n is the expression of a direct-new-declarator), but
new fl oat[5] [n] isill-formed (because n is not a constant-expression). If n is negative, the effect of
new fl oat[n][5] isundefined.]

When the value of the expression in a direct-new-declarator is zero, the allocation function is called to alo-
cate an array with no elements.

A new-expression obtains storage for the object by calling an allocation function (3.7.3.1). If the new-
expression terminates by throwing an exception, it may release storage by calling a deallocation function
(3.7.3.2). If the alocated type is a non-array type, the allocation function’s name is oper at or new and
the deallocation function’snameisoper at or del et e. If the allocated typeis an array type, the alloca
tion function's name is operator new] and the dedlocation function's name is
operat or del ete[]. [Note: an implementation shall provide default definitions for the global alloca
tion functions (3.7.3, 18.4.1.1, 18.4.1.2). A CH program can provide alternative definitions of these func-
tions (17.4.3.4) and/or class-specific versions (12.5).]

If the new-expression begins with a unary : : operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function's
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type, the alocation function’s nameis looked up in the global scope.

A new-expression passes the amount of space requested to the allocation function as the first argument of
type st d: : si ze_t. That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For arrays of char and
unsi gned char, the difference between the result of the new-expression and the address returned by the
allocation function shall be an integral multiple of the most stringent alignment requirement (3.9) of any
object type whose size is no greater than the size of the array being created. [Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type, this
constraint on array allocation overhead permits the common idiom of allocating character arrays into which
objects of other typeswill later be placed.]

The new-placement syntax is used to supply additional arguments to an alocation function. If used, over-
load resolution is performed on a function call created by assembling an argument list consisting of the
amount of space requested (the first argument) and the expressions in the new-placement part of the new-
expression (the second and succeeding arguments). The first of these arguments hastype si ze_t and the
remaining arguments have the corresponding types of the expressionsin the new-placement.

[Example:

— new T resultsinacall of oper at or new(si zeof (T)),

— new(2,f) Tresultsinacall of operator new(si zeof (T), 2,f),

— new T[5] resultsinacall of operat or new] (si zeof (T) *5+x), and

— new(2,f) T[5] resultsinacall of operator new] (sizeof (T)*5+y, 2,f).

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the
new-expression will be offset by this amount from the value returned by oper at or new{] . This over-
head may be applied in all array new-expressions, including those referencing the library function
operator new{](std::size t, void*) and other placement allocation functions. The amount
of overhead may vary from one invocation of newto another.]

[Note: unless an alocation function is declared with an empty exception-specification (15.4), t hr ow() , it
indicates failure to alocate storage by throwing a bad alloc exception (clause 15, 18.4.2.1); it returns a
non-null pointer otherwise. If the alocation function is declared with an empty exception-specification,
t hrow(), it returns null to indicate failure to allocate storage and a non-null pointer otherwise.] If the

81

14

15

16

17

18

19

20

| SO/IEC 14882:2003(E) O ISO/IEC

5.3.4 New 5 Expressions

allocation function returns null, initialization shall not be done, the deallocation function shall not be called,
and the value of the new-expression shall be null.

[Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage
in which space for the object has been reserved. The block of storage is assumed to be appropriately
aligned and of the requested size. The address of the created object will not necessarily be the same as that
of the block if the object isan array. |

A new-expression that creates an object of type T initializes that object as follows:
— If the new-initializer is omitted:

— If T is a (possibly cv-qualified) non-POD class type (or array thereof), the object is default-
initialized (8.5). If T is aconst-qualified type, the underlying class type shall have a user-declared
default constructor.

— Otherwise, the object created has indeterminate value. If T is a const-qualified type, or a (possibly
cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
const-qualified type, the program is ill-formed;

— If the new-initializer isof theform () , theitem is value-initialized (8.5);

— If the new-initializer is of the form (expression-list) and T is a class type, the appropriate constructor is
called, using expression-list as the arguments (8.5);

— If the new-initializer is of the form (expression-list) and T is an arithmetic, enumeration, pointer, or
pointer-to-member type and expression-list comprises exactly one expression, then the object is initial-
ized to the (possibly converted) value of the expression (8.5);

— Otherwise the new-expressionisill-formed.

If the new-expression creates an object or an array of objects of class type, access and ambiguity control are
done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the new
expression creates an array of objects of class type, access and ambiguity control are done for the destructor
(12.4).

If any part of the object initialization described above™ terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is caled to free the memory in which the
object was being constructed, after which the exception continues to propagate in the context of the new-
expression. If no unambiguous matching deallocation function can be found, propagating the exception
does not cause the object’s memory to be freed. [Note: Thisis appropriate when the called allocation func-
tion does not allocate memory; otherwise, it islikely to result in amemory leak.]

If the new-expression beginswith aunary : : operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation
function’s nameis looked up in the scope of T. If thislookup fails to find the name, or if the allocated type
isnot aclasstype or array thereof, the deall ocation function’s name is looked up in the global scope.

A declaration of a placement deallocation function matches the declaration of a placement allocation func-
tion if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter
types except the first are identical. Any non-placement deallocation function matches a non-placement
allocation function. If the lookup finds a single matching deallocation function, that function will be called;
otherwise, no deallocation function will be called.

If a new-expression calls a deallocation function, it passes the value returned from the allocation function
call as the first argument of type voi d*. If a placement deallocation function is called, it is passed the
same additional arguments as were passed to the placement allocation function, that is, the same arguments
as those specified with the new-placement syntax. If the implementation is allowed to make a copy of any
argument as part of the call to the alocation function, it is allowed to make a copy (of the same original

" This may include evaluating a new-initializer and/or calling a constructor.

82

21

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.3.4 New

value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the allo-
cation function. If the copy is elided in one place, it need not be elided in the other.

Whether the allocation function is called before evaluating the constructor arguments or after evaluating the
constructor arguments but before entering the constructor is unspecified. It is also unspecified whether the
arguments to a constructor are evaluated if the allocation function returns the null pointer or exits using an
exception.

5.3.5 Delete [expr.delete]

The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.

delete-expression:
‘o del ete cast-expression
‘o delete [] cast-expression

The first dternative is for non-array objects, and the second is for arrays. The operand shall have a pointer
type, or a class type having a single conversion function (12.3.2) to a pointer type. The result has type
voi d.

If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either aternative, if the value of the operand of del et e is the null pointer the operation
has no effect. In the first aternative (delete object), the value of the operand of del et e shall be a pointer
to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an object (clause
10). If not, the behavior is undefined. In the second alternative (delete array), the value of the operand of
del et e shall be the pointer value which resulted from a previous array new-expron.72) If not, the
behavior is undefined. [Note: this means that the syntax of the del ete-expression must match the type of the
object allocated by new, not the syntax of the new-expression.] [Note: a pointer to a const type can be
the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11) of the pointer
expression beforeit is used as the operand of the delete-expression. |

In the first alternative (delete abject), if the static type of the operand is different from its dynamic type, the
static type shall be a base class of the operand’s dynamic type and the static type shall have a virtual
destructor or the behavior is undefined. In the second alternative (delete array) if the dynamic type of the
object to be deleted differs from its static type, the behavior is undefi ned.”

The cast-expression in a delete-expression shall be evaluated exactly once. If the delete-expression calls
the implementation deallocation function (3.7.3.2), and if the operand of the delete expression is not the
null pointer constant, the deallocation function will deallocate the storage referenced by the pointer thus
rendering the pointer invalid. [Note: the value of a pointer that refers to deallocated storage is indetermi-
nate.]

If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

The delete-expression will invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of the completion of their constructor; see 12.6.2).

The delete-expression will call adeallocation function (3.7.3.2).

[Note: An implementation provides default definitions of the global dealocation functions
operat or del ete() for non-arrays (18.4.1.1) and oper ator del ete[] () for arrays (18.4.1.2).
A G+ program can provide alternative definitions of these functions (17.4.3.4), and/or class-specific ver-
sions (12.5).] When the keyword del et e in adelete-expression is preceded by the unary : : operator, the

%) For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression. Zero-
length arrays do not have afirst element.
[£) Thisimpliesthat an object cannot be deleted using a pointer of type voi d* because there are no objects of typevoi d.

83

| SO/IEC 14882:2003(E) O ISO/IEC

5.3.5 Delete 5 Expressions

global deallocation function is used to deall ocate the storage.
Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

5.4 Explicit type conversion (cast notation) [expr.cast]

The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is a reference
type, otherwise the result is an rvalue. [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers
are ignored when determining the type of the resulting rvalue; see 3.10.]

An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynam c_cast, static_cast, reinterpret_cast, const_cast),orthecast notation.

cast-expression: _
unary-expression
(typeiid) cast-expression
Types shall not be defined in casts.
Any type conversion not mentioned below and not explicitly defined by the user (12.3) isill-formed.
The conversions performed by
— aconst _cast (5.2.11),
— astatic_cast (5.29),
— astatic_cast followedby aconst _cast,
— areinterpret_cast (5.2.10), or
— areinterpret_cast followedby aconst _cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and
behaviors apply. If a conversion can be interpreted in more than one of the ways listed above, the interpre-
tation that appears first in the list is used, even if a cast resulting from that interpretation isill-formed. If a
conversion can be interpreted in more than oneway asast ati c_cast followed by aconst _cast , the
conversionisill-formed. [Example:

struct A {};
struct 11 : A{};
struct 12 : A{};
struct D: 11, 12 {};
A *foo(D*p) {
return (A*)(p); /1 ill-formed st ati c_cast interpretation
}
—end example]

The operand of a cast using the cast notation can be an rvalue of type “pointer to incomplete class type”.
The destination type of a cast using the cast notation can be “pointer to incomplete class type’. In such
cases, even if there is a inheritance relationship between the source and destination classes, whether the
static_cast orrei nterpret_cast interpretationisused isunspecified.

In addition to those conversions, the following stati c_cast and rei nt erpret_cast operations
(optionally followed by a const _cast operation) may be performed using the cast notation of explicit
type conversion, even if the base class typeis not accessible:

— apointer to an object of derived class type or an Ivalue of derived class type may be explicitly converted
to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base classtype;

— apointer to an object of non-virtual base class type, an Ivalue of non-virtual base class type, or a pointer

84

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.4 Explicit type conversion (cast notation)

to member of non-virtual base class type may be explicitly converted to a pointer, a reference, or a
pointer to member of aderived class type, respectively.

5.5 Pointer-to-member operators [expr.mptr.oper]
The pointer-to-member operators - >* and . * group left-to-right.
pm-expression:
cast-expression

pm-expression . * cast-expression
pm-expression - >* cast-expression

The binary operator . * binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of class T or of aclass of which T
is an unambiguous and accessible base class. The result is an object or a function of the type specified by
the second operand.

The binary operator - >* binds its second operand, which shall be of type “pointer to member of T” (where
T is acompletely-defined class type) to its first operand, which shall be of type “pointer to T” or “pointer to
aclass of which T is an unambiguous and accessible base class.” The result is an object or a function of the
type specified by the second operand.

If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is
undefined.

The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same astherulesfor E1. E2 givenin 5.2.5. [Note: it is not
possible to use a pointer to member that refers to a nut abl e member to modify a const class object.
For example,

struct S {
mutable int i;
s
const S cs;
int S:* pm=&S::i; /| pmreferstonut abl e member S: @i
Ccs.*pm = 88; /1 ill-formed: cs isaconst object

]

If the result of . * or - >* isafunction, then that result can be used only as the operand for the function
call operator () . [Example:

(ptr_to_obj->*ptr_to_nfct)(10);

calls the member function denoted by pt r _t o_nf ct for the object pointed to by ptr _to_obj .] The
result of a.* expression is an lvalue only if its first operand is an lvalue and its second operand is a
pointer to data member. The result of an - >* expression is an Ivalue only if its second operand is a pointer
to data member. If the second operand is the null pointer to member value (4.11), the behavior is unde-
fined.

5.6 Multiplicative operators [expr.mul]
The multiplicative operators* , / , and %group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

The operands of * and/ shall have arithmetic or enumeration type; the operands of %shall have integral or
enumeration type. The usual arithmetic conversions are performed on the operands and determine the type

85

| SO/IEC 14882:2003(E) O ISO/IEC

5.6 Multiplicative operators 5 Expressions

of theresult.
Thebinary * operator indicates multiplication.

The binary / operator yields the quotient, and the binary %operator yields the remainder from the division
of the first expression by the second. If the second operand of / or %is zero the behavior is undefined; oth-
erwise (a/ b)*b + a%b isequal to a. If both operands are nonnegative then the remainder is nonnega-
tive; if not, the sign of the remainder isimplementation-defi ned’®.

5.7 Additive operators [expr.add]

The additive operators + and - group left-to-right. The usua arithmetic conversions are performed for
operands of arithmetic or enumeration type.
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or enumeration type, or one operand shall be a
pointer to acompletely defined object type and the other shall have integral or enumeration type.

For subtraction, one of the following shall hold:
— both operands have arithmetic or enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined
object type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral or
enumeration type.

Theresult of the binary + operator is the sum of the operands. The result of the binary - operator isthe dif-
ference resulting from the subtraction of the second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object asits el ement type.

When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expression P points to the i-th element of an array object, the expressions (P) +N (equivalently, N+(P))
and (P) - N (where N has the value n) point to, respectively, the i+n-th and i-n-th elements of the array
object, provided they exist. Moreover, if the expression P points to the last element of an array object, the
expression (P) +1 points one past the last element of the array object, and if the expression Q points one
past the last element of an array object, the expression (Q) - 1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the ssmetypethat isdefinedaspt rdi ff _t inthe<cst ddef > header (18.1). As
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an
array object, the expression (P) - (Q has the value i— provided the value fits in an object of type
ptrdi ff_t. Moreover, if the expression P points either to an element of an array object or one past the
last element of an array object, and the expression Q points to the last element of the same array object, the

) Accordi ng to work underway toward the revision of 1SO C, the preferred algorithm for integer division follows the rules defined in
the 1SO Fortran standard, 1 SO/IEC 1539:1991, in which the quotient is always rounded toward zero.

86

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.7 Additive operators

expression ((Q +1) - (P) hasthesamevaueas ((Q-(P))+1l andas-((P)-((Q +1)), and has
the value zero if the expression P points one past the last element of the array object, even though the
expression (Q +1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is undefi ned.”™

If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original
pointer value. If two pointers point to the same object or both point one past the end of the same array or
both are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the
typeptrdi ff _t.

5.8 Shift operators [expr.shift]

The shift operators << and >> group left-to-right.
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or enumeration type and integral promotions are performed. The type of
the result is that of the promoted |eft operand. The behavior is undefined if the right operand is negative, or
greater than or equal to the length in bits of the promoted |eft operand.

Thevalue of E1 << E2 isELl (interpreted as a bit pattern) left-shifted E2 bit positions; vacated bits are
zero-filled. If E1 has an unsigned type, the value of the result is E1 multiplied by the quantity 2 raised to
the power E2, reduced modulo ULONG_MAX+1 if E1 has type unsigned long, Ul NT_MAX+1 otherwise.
[Note: the constants ULONG_MAX and Ul NT_MAX are defined in the header <cl i mi t s>).]

Thevaue of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of E1 divided
by the quantity 2 raised to the power E2. If E1 has a signed type and a negative value, the resulting value
isimplementation-defined.

5.9 Relational operators [expr.rel]

The relational operators group left-to-right. [Examplee a<b<c means (a<b)<c and not
(a<b) &&(b<c).]

relational -expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration or pointer type. The operators < (less than), > (greater
than), <= (less than or equal to), and >= (greater than or equal to) all yield f al se ort r ue. The type of
theresultisbool .

The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant) to bring them to their composite pointer type. If one operand is a null
pointer constant, the composite pointer type is the type of the other operand. Otherwise, if one of the

) Another way to approach pointer arithmetic isfirst to convert the pointer(s) to character pointer(s): In this scheme the integral value
of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object originaly pointed to, and
the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character
pointersis similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program)
just after the end of the object in order to satisfy the “one past the last element” requirements.

87

| SO/IEC 14882:2003(E) O ISO/IEC

5.9 Relational operators 5 Expressions

operands has type “pointer to cvl voi d”, then the other has type “pointer to cv2 T” and the composite
pointer type is “pointer to cvl2 voi d”, where cv12 is the union of cvl and cv2. Otherwise, the composite
pointer type is a pointer type similar (4.4) to the type of one of the operands, with a cv-qualification signa-
ture (4.4) that is the union of the cv-qualification signatures of the operand types. [Note: this implies that
any pointer can be compared to a null pointer constant and that any object pointer can be compared to a
pointer to (possibly cv-qualified) voi d.] [Example:

void *p;

const int *q;

int **pi;

const int *const *pci;

void ct()

{

p <= q; /| Both converted to const voi d * before comparison
pi <= pci; /| Both converted to const i nt *const * before comparison

}

—end example] Pointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with aresult defined as follows:

— If two pointers p and g of the same type point to the same object or function, or both point one past the
end of the same array, or are both null, then p<=q and p>=q both yield t r ue and p<q and p>q both
yieldf al se.

— If two pointers p and q of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q, p>q, p<=q, and p>=q are unspecified.

— If two pointers point to nonstatic data members of the same object, or to subobjects or array elements of
such members, recursively, the pointer to the later declared member compares greater provided the two
members are not separated by an access-specifier label (11.1) and provided their classis not a union.

— If two pointers point to nonstatic data members of the same object separated by an access-specifier |abel
(11.1) theresult is unspecified.

— If two pointers point to data members of the same union object, they compare equal (after conversion to
voi d*, if necessary). If two pointers point to elements of the same array or one beyond the end of the
array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

5.10 Equality operators [expr.eq]

equality-expression:
relational -expression

equality-expression == relational-expression
equality-expression ! = relational-expression

The == (equal to) and the ! = (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note: a<b
== c<d istrue whenever a<b and c<d have the same truth-value.] Pointers to objects or functions of
the same type (after pointer conversions) can be compared for equality. Two pointers of the same type
compare equal if and only if they are both null, both point to the same function, or both represent the same
address (3.9.2).

In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is anull pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. [Note: thisimplies that any pointer to member can be compared to a null pointer constant.] If both

88

O ISO/IEC | SO/IEC 14882:2003(E)

5 Expressions 5.10 Equality operators

operands are null, they compare equal. Otherwise if only one is null, they compare unequal. Otherwise if
either is a pointer to a virtual member function, the result is unspecified. Otherwise they compare equal if
and only if they would refer to the same member of the same most derived object (1.8) or the same subob-
ject if they were dereferenced with a hypothetical object of the associated classtype. [Example:

struct B {
int f();

b

struct L : B { };

struct R: B { };

struct D: L, R{ };

int (B::*pb)() = &B::f;

int (L::*pl)() = pb;

int (R:*pr)() = pb;

int (D:*pdl)() = pl;

int (D::*pdr)() = pr;

bool x = (pdl == pdr); /'l fal se
—end example]
5.11 Bitwise AND operator [expr.bit.and]

and-expression:
equality-expression
and-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The
operator applies only to integral or enumeration operands.

5.12 Bitwise exclusive OR operator [expr.xor]

exclusive-or-expression:
and-expression
exclusive-or-expression ~ and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive or function of the
operands. The operator applies only to integral or enumeration operands.

5.13 Bitwiseinclusive OR operator [expr.or]

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive or function of its
operands. The operator applies only to integral or enumeration operands.

5.14 Logical AND operator [expr.log.and]

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

The && operator groups left-to-right. The operands are both implicitly converted to type bool (clause 4).
Theresultist r ue if both operandsaret r ue and f al se otherwise. Unlike &, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand isf al se.

The result is abool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is eval uated.

89

| SO/IEC 14882:2003(E) O ISO/IEC

5.15 L ogical OR operator 5 Expressions
5.15 Logical OR operator [expr.log.or]

logi cal-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

The | | operator groups left-to-right. The operands are both implicitly converted to bool (clause 4). It
returns t r ue if either of its operandsistrue, and f al se otherwise. Unlike | , | | guarantees left-to-
right evaluation; moreover, the second operand is not evaluated if the first operand evaluatestot r ue.

The result is a bool . All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is eval uated.

5.16 Conditional operator [expr.cond]
conditional-expression:

logical-or-expression
logical-or-expression ? expression : assignment-expression

Conditional expressions group right-to-left. Thefirst expression isimplicitly converted to bool (clause 4).
It is evaluated and if it ist r ue, the result of the conditional expression is the value of the second expres-
sion, otherwise that of the third expression. All side effects of the first expression except for destruction of
temporaries (12.2) happen before the second or third expression is evaluated. Only one of the second and
third expressionsis evaluated.

If either the second or the third operand has type (possibly cv-qualified) voi d, then the lvalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second
and third operands, and one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type of
the other and isan rvalue.

— Both the second and the third operands have type voi d; the result is of type voi d and is an rvalue.
[Note: thisincludes the case where both operands are throw-expressions. |

Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class
type, an attempt is made to convert each of those operands to the type of the other. The process for deter-
mining whether an operand expression E1 of type T1 can be converted to match an operand expression E2
of type T2 is defined as follows:

— If E2 isan Ivalue: E1 can be converted to match E2 if E1 can be implicitly converted (clause 4) to the
type “reference to T2", subject to the constraint that in the conversion the reference must bind directly
(8.5.3)to E1.

— |If E2 isanrvalue, or if the conversion above cannot be done:

— if E1 and E2 have class type, and the underlying class types are the same or one is a base class of
the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base class of,
the class of T1, and the cv-qualification of T2 is the same cv-qudlification as, or a greater cv-
quaification than, the cv-qudification of T1. If the conversion is applied, E1 is changed to an
rvalue of type T2 that still refers to the original source class object (or the appropriate subobject
thereof). [Note: that is, no copy is made.]

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying
classes are not either the same or one a base class of the other): E1 can be converted to match E2 if
E1 can beimplicitly converted to the type that expression E2 would have if E2 were converted to an
rvalue (or the typeit has, if E2 isan rvalue).

Using this process, it is determined whether the second operand can be converted to match the third

operand, and whether the third operand can be converted to match the second operand. If both can be con-
verted, or one can be converted but the conversion is ambiguous, the program isill-formed. If neither can

90

O ISO/IEC 1SO/IEC 14882:2003(E)

5 Expressions 5.16 Conditional operator

be converted, the operands are left unchanged and further checking is performed as described below. [f
exactly one conversion is possible, that conversion is applied to the chosen operand and the converted
operand isused in place of the original operand for the remainder of this section.

If the second and third operands are lvalues and have the same type, the result is of that type and is an
Ivalue.

Otherwise, theresult isan rvalue. |If the second and third operand do not have the same type, and either has
(possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program isill-formed. Other-
wise, the conversions thus determined are applied, and the converted operands are used in place of the orig-
inal operands for the remainder of this section.

Lvaue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to acommon type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null pointer
constant; pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to
their composite pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and the
other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions
(4.4) are performed to bring them to a common type, whose cv-qualification shall match the cv-
qualification of either the second or the third operand. The result is of the common type.

5.17 Assignment operators [expr.ass]|

There are several assignment operators, al of which group right-to-left. All require a modifiable Ivalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
isan lvalue.
assignment-expression:

conditional-expression

logical-or-expression assignment-operator assignment-expression

throw-expression

assignment-operator: one of
= *= |[= s += .= >>S= <<= &= "= | =

In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

If the left operand is not of class type, the expression isimplicitly converted (clause 4) to the cv-unqualified
type of the left operand.

If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy assignment operator (12.8, 13.5.3).

[Note: For class objects, assignment is not in general the same asinitialization (8.5, 12.1, 12.6, 12.8).]

When the left operand of an assignment operator denotes a reference to T, the operation assigns to the
object of type T denoted by the reference.

The behavior of an expression of the form E1 op= E2 is equivalent to E1=E1 op E2 except that E1 is
evaluated only once. In += and - =, E1 shall either have arithmetic type or be a pointer to a possibly cv-
qualified completely defined object type. In all other cases, E1 shall have arithmetic type.

91

I SO/IEC 14882:2003(E) O 1SO/IEC

5.17 Assignment oper ators 5 Expressions

If the value being stored in an object is accessed from ancther object that overlapsin any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined.

5.18 Comma oper ator [expr.comma]

The comma operator groups |eft-to-right.

expression:
assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated |eft-to-right and the value of the left expression is
discarded. The Ivalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conver-
sions are not applied to the left expression. All side effects (1.9) of the left expression, except for the
destruction of temporaries (12.2), are performed before the evaluation of the right expression. The type and
value of the result are the type and value of the right operand; the result isan Ivalueif itsright operand is.

In contexts where commais given a special meaning, [Example: in lists of arguments to functions (5.2.2)
and lists of initializers (8.5)] the comma operator as described in clause 5 can appear only in parentheses.

[Example:
f(a, (t=3, t+2), c);

has three arguments, the second of which hasthevalue 5.]

5.19 Constant expressions [expr.const]

In several places, G+ requires expressions that evaluate to an integral or enumeration constant: as array
bounds (8.3.4, 5.3.4), ascase expressions (6.4.2), as bit-field lengths (9.6), as enumerator initializers (7.2),
as static member initializers (9.4.2), and as integral or enumeration non-type template arguments (14.3).

constant-expression:
conditional-expression

An integral constant-expression can involve only literals (2.13), enumerators, const variables or static
data members of integral or enumeration types initialized with constant expressions (8.5), hon-type tem-
plate parameters of integral or enumeration types, and si zeof expressions. Floating literals (2.13.3) can
appear only if they are cast to integral or enumeration types. Only type conversionsto integral or enumera-
tion types can be used. In particular, except in si zeof expressions, functions, class objects, pointers, or
references shall not be used, and assignment, increment, decrement, function-call, or comma operators shall
not be used.

Other expressions are considered constant-expressions only for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following:

— anull pointer value (4.10),

— anull member pointer value (4.11),
— an arithmetic constant expression,
— an address constant expression,

— areference constant expression,

— an address constant expression for a compl ete object type, plus or minus an integral constant expression,
or

— apointer to member constant expression.

An arithmetic constant expression shall satisfy the requirements for an integral constant expression, except
that

— floating literals need not be cast to integral or enumeration type, and

92

O ISO/IEC 1SO/IEC 14882:2003(E)

5 Expressions 5.19 Constant expressions

— conversions to floating point types are permitted.

An address constant expression is a pointer to an Ivalue designating an object of static storage duration, a
string literal (2.13.4), or afunction. The pointer shall be created explicitly, using the unary & operator, or
implicitly using a non-type template parameter of pointer type, or using an expression of array (4.2) or
function (4.3) type. The subscripting operator [] and the class member access. and - > operators, the &
and * unary operators, and pointer casts (except dynam c¢_cast s, 5.2.7) can be used in the creation of an
address constant expression, but the value of an object shall not be accessed by the use of these operators.
If the subscripting operator is used, one of its operands shall be an integral constant expression. An expres-
sion that designates the address of a subobject of a non-POD class object (clause 9) is not an address con-
stant expression (12.7). Function calls shall not be used in an address constant expression, even if the func-
tionisi nl i ne and has areference return type.

A reference constant expression is an lvalue designating an object of static storage duration, a non-type
template parameter of reference type, or afunction. The subscripting operator [] , the class member access

and - > operators, the & and * unary operators, and reference casts (except those invoking user-defined
conversion functions (12.3.2) and except dynam c_cast s(5.2.7)) can be used in the creation of arefer-
ence constant expression, but the value of an object shall not be accessed by the use of these operators. If
the subscripting operator is used, one of its operands shall be an integral constant expression. An Ivalue
expression that designates a member or base class of a non-POD class object (clause 9) is not a reference
constant expression (12.7). Function calls shall not be used in a reference constant expression, even if the
functionisi nl i ne and has areference return type.

A pointer to member constant expression shall be created using the unary & operator applied to a qualified-
id operand (5.3.1), optionally preceded by a pointer to member cast (5.2.9).

93

| SO/IEC 14882:2003(E)

94

Blank page

O ISO/IEC

O ISO/IEC 1SO/IEC 14882:2003(E)

6 Statements 6 Statements
6 Statements [stmt.stmt]
Except asindicated, statements are executed in sequence.
Statement:
|abeled-statement

expression-statement
compound-statement
sel ection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement [stmt.label]

A statement can be |abeled.

|abel ed-statement:
identifier : statement
case constant-expression : statement
default : statement

Anidentifier label declaresthe identifier. The only use of an identifier label is asthe target of agot 0. The
scope of a label is the function in which it appears. Labels shall not be redeclared within a function. A
label can be used in agot o statement before its definition. Labels have their own name space and do not
interfere with other identifiers.

Case labels and default 1abels shall occur only in switch statements.

6.2 Expression statement [stmt.expr]

Expression statements have the form

expression-statement:

eXpressiony ;

The expression is evaluated and its value is discarded. The Ivalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from
an expression statement are completed before the next statement is executed. An expression statement with
the expression missing is called a null statement. [Note: Most statements are expression statements—
usually assignments or function calls. A null statement is useful to carry alabel just beforethe} of acom-
pound statement and to supply anull body to an iteration statement such asawhi | e statement (6.5.1).]

6.3 Compound statement or block [stmt.block]

So that several statements can be used where one is expected, the compound statement (also, and equiva
lently, called “block™) is provided.

compound-statement:
{ statement-seq,, }

statement-seq;:
statement
statement-seq statement

A compound statement defines alocal scope (3.3). [Note: adeclaration is a statement (6.7).]

95

I SO/IEC 14882:2003(E) O 1SO/IEC

6.4 Selection statements 6 Statements

6.4 Selection statements [stmt.select]

Sel ection statements choose one of severa flows of control.

sel ection-statement:
i f (condition) statement
if (condition) statement el se statement
swi tch (condition) statement

condition:
expression
type-specifier-seq declarator = assignment-expression

In clause 6, the term substatement refers to the contained statement or statements that appear in the syntax
notation. The substatement in a selection-statement (each substatement, in the el se form of thei f state-
ment) implicitly defines alocal scope (3.3). If the substatement in a selection-statement is a single state-
ment and not a compound-statement, it is asif it was rewritten to be a compound-statement containing the
original substatement. [Example:
if (x)
int i;
can be equivaently rewritten as

if (x) {
int i;
}

Thus after thei f statement, i isnolonger in scope.]

The rules for conditions apply both to selection-statements and to the f or and whi | e statements (6.5).
The declarator shall not specify afunction or an array. The type-specifier-seq shall not containt ypedef
and shall not declare a new class or enumeration.

A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the
declarator of the condition) is in scope from its point of declaration until the end of the substatements con-
trolled by the condition. If the name is re-declared in the outermost block of a substatement controlled by
the condition, the declaration that re-declares the nameisill-formed. [Example:

if (int x =f()) {

int x; /1 ill-formed, redeclaration of x
}
el se {
int x; /1 ill-formed, redeclaration of x
}
—end example]

The value of a condition that is an initialized declaration in a statement other than aswi t ch statement is
the value of the declared variable implicitly converted to type bool . If that conversion isill-formed, the
program isill-formed. The value of a condition that is an initialized declaration in aswi t ch statement is
the value of the declared variable if it has integral or enumeration type, or of that variable implicitly con-
verted to integral or enumeration type otherwise. The value of a condition that is an expression is the value
of the expression, implicitly converted to bool for statements other than swi t ch; if that conversion is
ill-formed, the program isill-formed. The value of the condition will be referred to as simply “the condi-
tion” where the usage is unambiguous.

If a condition can be syntactically resolved as either an expression or the declaration of alocal name, it is
interpreted as a declaration.

96

O ISO/IEC 1SO/IEC 14882:2003(E)

6 Statements 6.4.1Thei f statement

6.4.1 Thei f statement [stmt.if]

If the condition (6.4) yields t r ue the first substatement is executed. If the el se part of the selection
statement is present and the condition yields f al se, the second substatement is executed. In the second
formof i f statement (the one including el se_), if the first substatement isalso ani f statement then that
inner i f statement shall contain an el se part. ©)

6.4.2 Theswi t ch statement [stmt.switch]

Theswi t ch statement causes control to be transferred to one of several statements depending on the value
of acondition.

The condition shall be of integral type, enumeration type, or of a class type for which a single conversion
function to integral or enumeration type exists (12.3). If the condition is of class type, the condition is con-
verted by calling that conversion function, and the result of the conversion is used in place of the original
condition for the remainder of this section. Integral promotions are performed. Any statement within the
swi t ch statement can be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be an integral constant-expression. The integral constant-expression
(5.19) isimplicitly converted to the promoted type of the switch condition. No two of the case constantsin
the same switch shall have the same value after conversion to the promoted type of the switch condition.

There shall be at most one label of the form

def aul t
withinaswi t ch statement.

Switch statements can be nested; acase or def aul t label is associated with the smallest switch enclos-
ingit.

When the swi t ch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is a def aul t 1abel,

control passes to the statement labeled by the default label. If no case matches and if thereis no def aul t
then none of the statements in the switch is executed.

case and def aul t labels in themselves do not ater the flow of control, which continues unimpeded
across such labels. To exit from a switch, see br eak, 6.6.1. [Note: usually, the substatement that is the
subject of a switch is compound and case and def aul t labels appear on the top-level statements con-
tained within the (compound) substatement, but this is not required. Declarations can appear in the sub-
statement of a switch-statement.]

6.5 lteration statements [stmt.iter]
Iteration statements specify looping.

iteration-statement:
whil e (condition) statement
do statement while (expression)
for (for-init-statement condition,, ; expression,,) statement

for-init-statement:
expression-statement
simple-declaration

[Note: afor-init-statement ends with asemicolon. |

™) | n other words, the el se isassociated with the nearest un-elsed i f .

97

I SO/IEC 14882:2003(E) O 1SO/IEC

6.5 Iteration statements 6 Statements

2 The substatement in an iteration-statement implicitly defines alocal scope (3.3) which is entered and exited
each time through the loop.

3 If the substatement in an iteration-statement is a single statement and not a compound-statement, it is asif it
was rewritten to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;
can be equivaently rewritten as
while (--x >= 0) {

int i;
}
Thus after thewhi | e statement, i isno longer in scope.]
4 [Note: The requirements on conditions in iteration statements are described in 6.4. —end note]
6.5.1 Thewhi | e statement [stmt.whil€]
1 In the whi | e statement the substatement is executed repeatedly until the value of the condition (6.4)

becomesf al se. Thetest takes place before each execution of the substatement.

2 When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.1) to the end of the while statement. A while statement of the form

while (Tt = x) statement

is equivalent to

| abel :
{ /| start of condition scope
Tt = x;
if (t) {
statement
goto | abel;
}
} /1 end of condition scope

The object created in a condition is destroyed and created with each iteration of the loop. [Example:

struct A {
int val;
ACint i) @ val(i) {}
“AO) {0}
operator bool () { return val !'=0; }
b
int i =1,
while (Aa=1i) {
/..
i = 0;
}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails.]

6.5.2 Thedo statement [stmt.do]
1 The expression isimplicitly converted to bool ; if that is not possible, the program is ill-formed.
2 In the do statement the substatement is executed repeatedly until the value of the expression becomes

f al se. Thetest takes place after each execution of the statement.

98

O ISO/IEC 1SO/IEC 14882:2003(E)

6 Statements 6.5.3 Thef or statement

6.5.3 Thef or statement [stmt.for]
Thef or statement
for (for-init-statement condition,, ; expression,,) statement

isequivalent to

{
for-init-statement
whil e (condition) {
Statement
expression ;
}
}

except that names declared in the for-init-statement are in the same declarative-region as those declared in
the condition, and except that a cont i nue in statement (not enclosed in ancther iteration statement) will
execute expression before re-evaluating condition. [Note: Thus the first statement specifies initialization
for the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited
when the condition becomes f al se; the expression often specifies incrementing that is done after each
iteration.]

Either or both of the condition and the expression can be omitted. A missing condition makes the implied
whi | e clause equivalent towhi | e(true).

If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-
statement. [Example:

int i = 42;
int a[10];
for (int i =0; i < 10; i++)
a[i] = i;
int j =i; Ilj =42

—end example]

6.6 Jump statements [stmt.jump]

Jump statements unconditionally transfer control.

jump-statement:
break ;
conti nue ;
return expression
got o identifier ;

opt 7

On exit from a scope (however accomplished), destructors (12.4) are called for al constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of aloop, out of ablock, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). [Note: However, the program can be terminated (by calling exi t () or abort () (18.3), for
example) without destroying class objects with automatic storage duration.]

6.6.1 Thebr eak statement [stmt.break]

The br eak statement shall occur only in an iteration-statement or aswi t ch statement and causes termi-
nation of the smallest enclosing iteration-statement or swi t ch statement; control passes to the statement
following the terminated statement, if any.

99

I SO/IEC 14882:2003(E) O 1SO/IEC

6.6.2 Thecont i nue statement 6 Statements

6.6.2 Thecont i nue statement [stmt.cont]

Thecont i nue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
{ {

... I, I

} . } . } .
contin: ; contin: ; contin:
} } while (foo); }

acont i nue not contained in an enclosed iteration statement is equivalent to got o cont i n.

6.6.3 Ther et ur n statement [stmt.return]
A function returnsto its caller by ther et ur n statement.

A return statement without an expression can be used only in functions that do not return avalue, that is, a
function with the return type voi d, a constructor (12.1), or a destructor (12.4). A return statement with an
expression of non-void type can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. The expression isimplicitly converted to the return type of the func-
tion in which it appears. A return statement can involve the construction and copy of a temporary object
(12.2). Flowing off the end of afunction isequivalent to ar et ur n with no value; this resultsin undefined
behavior in avalue-returning function.

A return statement with an expression of type “cv voi d” can be used only in functions with a return type
of cv void; the expression is evaluated just before the function returnsto its caller.

6.6.4 Thegot o statement [stmt.goto]

The got o statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be alabel (6.1) located in the current function.

6.7 Declaration statement [stmt.dcl]

A declaration statement introduces one or more new identifiersinto ablock; it hasthe form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumesitsforce.

Variables with automatic storage duration (3.7.2) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

It is possible to transfer into a block, but not in away that bypasses declarations with initialization. A pro-
gram that jumpsm from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5).

1) The transfer from the condition of aswi t ch statement to acase label is considered ajump in this respect.

100

O ISO/IEC 1SO/IEC 14882:2003(E)

6 Statements 6.7 Declaration statement
[Example:
void f()
{
Il ..
goto |x; /1 ill-formed: jump into scope of a
/..
ly:
Xa=1;
/..
| x:
goto ly; /1 OK, jump implies destructor

/| call for a followed by construction
/| again immediately following label | y
}

—end example]

The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any
other initialization takes place. A local object of POD type (3.9) with static storage duration initialized with
constant-expressions is initialized before its block is first entered. An implementation is permitted to per-
form early initialization of other local objects with static storage duration under the same conditions that an
implementation is permitted to statically initialize an object with static storage duration in namespace scope
(3.6.2). Otherwise such an object isinitialized the first time control passes through its declaration; such an
object is considered initialized upon the completion of itsinitiaization. If the initialization exits by throw-
ing an exception, the initialization is not complete, so it will be tried again the next time control enters the
declaration. If control re-enters the declaration (recursively) while the object is being initialized, the behav-
ior isundefined. [Example:

int foo(int i)

{
static int s = foo(2*i); /'l recursive call —undefined
return i+1;
}
—end example]

The destructor for alocal object with static storage duration will be executed if and only if the variable was
constructed. [Note: 3.6.3 describes the order in which local objects with static storage duration are
destroyed.]

6.8 Ambiguity resolution [stmt.ambig]

There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration. [Note: To disambiguate, the whole statement might have to be examined to determine if it is
an expression-statement or a declaration. This disambiguates many examples. [Example: assuming T isa
simple-type-specifier (7.1.5),

T(a)->m=7; /| expression-statement
T(a) ++; /| expression-statement
T(a, 5) <<c; /| expression-statement
T(*d)(int); /| declaration
T(e)[5]; /| declaration
T(f) ={ 1, 2}, /| declaration
T(*g) (doubl e(3)); /1 declaration

In the last example above, g, which is a pointer to T, is initialized to doubl e(3) . Thisis of courseill-
formed for semantic reasons, but that does not affect the syntactic analysis. —end exampl €]

101

2

I SO/IEC 14882:2003(E) O 1SO/IEC

6.8 Ambiguity resolution 6 Statements

The remaining cases are declarations. [Example:

class T {

/1 ..
public:

T(0);

T(int);

T(int, int);
b
T(a); /| declaration
T(*b) (); /| declaration
T(c)=7, /1 declaration
T(d), e, f=3; /| declaration
extern int h;
T(g)(h,2); /| declaration

—end example] —end note]

The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation.
Class templates are instantiated as necessary to determine if a qualified name is a type-name. Disambigua-
tion precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program isill-formed. No diagnostic is required. [Note: This can occur only when the nameis
declared earlier in the declaration. | [Example:

struct T1 {
T1 operator()(int x) { return T1(x); }
int operator=(int x) { return x; }
Ti(int) { }

b

struct T2 { T2(int){ } };

int a, (*(*b)(T2))(int), c, d;

void f() {

/| disambiguation requires this to be parsed

/| asadeclaration

Tl(a) = 3,

T2(4), /1 T2 will be declared as

(*(*b)(T2(c)))(int(d)); // avariableoftypeT1l
/1 but thiswill not allow
/| thelast part of the
/| declaration to parse
/| properly since it depends
/1 on T2 being a type-name

}
—end example]

102

O ISO/IEC 1SO/IEC 14882:2003(E)

7 Declarations [dcl.dcl]

Declarations specify how names areto be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seq,, init-declarator-listy, ;

[Note: asm-definitions are described in 7.4, and linkage-specifications are described in 7.5. Function-
definitions are described in 8.4 and template-declarations are described in clause 14. Namespace-
definitions are described in 7.3.1, using-declarations are described in 7.3.3 and using-directives are
described in 7.3.4.] The simple-declaration

decl-specifier-seq,, init-declarator-listy, ;

is divided into two parts: decl-specifiers, the components of a decl-specifier-seq, are described in 7.1 and
declarators, the components of an init-declarator-list, are described in clause 8.

A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that are not nested within scopes nested within the declaration.

In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (clause
9) or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-
type-specifier with a class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or
enum-specifier is present in the decl-specifier-seg, the identifiers in these specifiers are among the names
being declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax).
In such cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall intro-
duce one or more names into the program, or shall redeclare a name introduced by a previous declaration.

[Example:

enum { }; /1 ill-formed
typedef class { }; /1 ill-formed
—end example]

103

I SO/IEC 14882:2003(E) O 1SO/IEC

7 Declarations 7 Declarations

Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name
declared by that init-declarator and hence one of the names declared by the declaration. The type-specifiers
(7.1.5) in the decl-specifier-seq and the recursive declarator structure of the init-declarator describe a type
(8.3), which is then associated with the name being declared by the init-declarator.

If the decl-specifier-seq containsthet ypedef specifier, the declaration is called a typedef declaration and
the name of each init-declarator is declared to be a typedef-name, synonymous with its associated type
(7.1.3). If the decl-specifier-seq contains no t ypedef specifier, the declaration is caled a function
declaration if the type associated with the name is a function type (8.3.5) and an object declaration other-
wise.

Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make a function-definition. An object declaration, however, is also a definition unless it contains
the ext er n specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq
be omitted.”®

7.1 Specifiers [dcl.spec]
The specifiersthat can be used in adeclaration are
decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
t ypedef

decl-specifier-seq:
decl-specifier-seq,, decl-specifier

The longest sequence of decl-specifiers that could possibly be atype name is taken as the decl-specifier-seq
of adeclaration. The sequence shall be self-consistent as described below. [Example:

t ypedef char* Pc;
static Pc; /'] error: name missing

Here, the declaration st ati ¢ Pc isill-formed because no name was specified for the static variable of
type Pc. To get avariable called Pc, atype-specifier (other than const or vol ati |) hasto be present
to indicate that the typedef-name Pc is the name being (re)declared, rather than being part of the decl-
specifier sequence. For another example,

void f(const Pc); /1 voidf (char* const) (notconst char*)
void g(const int Pc); /1 voidg(const int)
—end example]

[Note: since si gned, unsi gned, | ong, and short by default imply i nt , a type-name appearing after
one of those specifiersistreated as the name being (re)declared. [Example:

voi d h(unsigned Pc); /1 voi dh(unsi gnedint)
voi d k(unsigned int Pc); /1 voi dk(unsignedint)

—end example] —end note]

) Thei mplicitint” rule of Cisno longer supported.

104

O ISO/IEC 1SO/IEC 14882:2003(E)

7 Declarations 7.1 Specifiers

7.1.1 Storage class specifiers [dcl.stc]

The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
nmut abl e

At most one storage-class-specifier shall appear in a given decl-specifier-seq. If a storage-class-specifier
appears in a decl-specifier-seq, there can be no t ypedef specifier in the same decl-specifier-seq and the
init-declarator-list of the declaration shall not be empty (except for global anonymous unions, which shall
be declared st ati ¢ (9.5)). The storage-class-specifier applies to the name declared by each init-
declarator in the list and not to any names declared by other specifiers. A storage-class-specifier shall not
be specified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

Theaut o or r egi st er specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.7.2). An
object declared without a storage-class-specifier at block scope or declared as a function parameter has
automatic storage duration by default. [Note: hence, the aut o specifier is amost aways redundant and not
often used; one use of aut o is to distinguish a declaration-statement from an expression-statement (6.8)
explicitly. —end note]

A regi st er specifier has the same semantics as an aut o specifier together with a hint to the implemen-
tation that the object so declared will be heavily used. [Note: the hint can be ignored and in most imple-
mentations it will beignored if the address of the object istaken. —end note]

The st at i ¢ specifier can be applied only to names of objects and functions and to anonymous unions
(9.5). There can be no st at i ¢ function declarations within a block, nor any st at i ¢ function parame-
ters. A stati c specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). A st ati c specifier can be used in declarations of class members; 9.4 describes its effect.
For the linkage of a name declared with ast at i ¢ specifier, see 3.5.

The ext er n specifier can be applied only to the names of objects and functions. The ext er n specifier
cannot be used in the declaration of class members or function parameters. For the linkage of a name
declared with an ext er n specifier, see 3.5.

A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has
internal linkage because of a previous declaration and provided it is not declared const . Objects declared
const and not explicitly declared ext er n haveinterna linkage.

The linkages implied by successive declarations for a given entity shall agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. [Example:

static char* f(); /1 f() hasinternal linkage

char* f() /1 f() ill hasinternal linkage
{71* ... *}

char* g(); /1 g() hasexternal linkage

static char* g() /'l error: inconsistent linkage
{71 ... *}

void h();

inline void h(); /'l external linkage

inline void I ();
void I (); /| external linkage

105

8

I SO/IEC 14882:2003(E) O 1SO/IEC

7.1.1 Storage class specifiers 7 Declarations

inline void m();
extern void m(); /| external linkage

static void n();

inline void n(); /I internal linkage

static int a; /| a hasinternal linkage
int a; /| error: two definitions
static int b; /1 b hasinternal linkage
extern int b; /'l b still hasinternal linkage
int c; /'l ¢ hasexternal linkage
static int c; /'] error: inconsistent linkage
extern int d; /| d hasexternal linkage
static int d; /'l error: inconsistent linkage

—end example]

The name of a declared but undefined class can be used in an ext er n declaration. Such a declaration can
only be used in ways that do not require acomplete classtype. [Example:

struct S;

extern S a;
extern S f();
extern void g(9S);

void h()
{
g(a); /'l error: Sisincomplete
fO); /| error: Sisincomplete
}

—end example] The mut abl e specifier can be applied only to names of class data members (9.2) and
cannot be applied to names declared const or st ati ¢, and cannot be applied to reference members.

[Example:

class X {
mut abl e const int* p; /1 OK
nmut abl e int* const q; /1 ill-formed

i
—end example]
The rut abl e specifier on a class data member nullifiesaconst specifier applied to the containing class

object and permits modification of the mutable class member even though the rest of the object is const
(7.15.2).

7.1.2 Function specifiers [dcl.fct.spec]
Function-specifiers can be used only in function declarations.
function-specifier:
inline
vi rtual
explicit

A function declaration (8.3.5, 9.3, 11.4) with ani nl i ne specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call is
to be preferred to the usua function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if thisinline substitution is omitted, the other rules for

106

O ISO/IEC 1SO/IEC 14882:2003(E)

7 Declarations 7.1.2 Function specifiers

inline functions defined by 7.1.2 shall till be respected.

A function defined within a class definition is an inline function. Thei nl i ne specifier shall not appear
on ablock scope function decl aration.”

An inline function shall be defined in every trandation unit in which it is used and shall have exactly the
same definition in every case (3.2). [Note: acal to the inline function may be encountered before its defi-
nition appears in the trandation unit.] If afunction with external linkage is declared inline in one transla-
tion unit, it shall be declared inline in al trandation units in which it appears; no diagnostic isrequired. An
i nl i ne function with external linkage shall have the same address in al trandation units. A static
local variable in an ext ern i nl i ne function aways refers to the same object. A string literal in an
ext erni nl i ne function isthe same object in different translation units.

Thevi rtual specifier shall only be used in declarations of nonstatic class member functions that appear
within a member-specification of a class declaration; see 10.3.

Theexpl i cit specifier shal be used only in declarations of constructors within a class declaration; see
12.3.1.

7.1.3 Thet ypedef specifier [dcl.typedef]

Declarations containing the decl-specifier t ypedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. Thet ypedef specifier shall not be used in a function-
definition (8.4), and it shall not be combined in a decl-specifier-seq with any other kind of specifier except
atype-specifier.
typedef-name:
identifier

A name declared with thet ypedef specifier becomes a typedef-name. Within the scope of its declaration,
atypedef-name is syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in clause 8. A typedef-name is thus a synonym for another type. A typedef-name does
not introduce a new type the way a class declaration (9.1) or enum declaration does. [Example: after

typedef int MLES, *KLICKSP;
the constructions

M LES di st ance;
extern KLICKSP netricp;

areal correct declarations; thetype of di st ance isi nt ; thatof netri cp is“pointertoi nt.”]

In agiven non-class scope, at ypedef specifier can be used to redefine the name of any type declared in
that scopeto refer to the type to which it already refers. [Example:

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef | 1;
—end example]

In agiven scope, at ypedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to adifferent type. [Example:

class complex { /* ... *| };
t ypedef int conpl ex; /| error: redefinition

—end example] Similarly, in a given scope, a class or enumeration shall not be declared with the same
name as a typedef-name that is declared in that scope and refers to a type other than the class or enumera-
tionitself. [Example:

) Theinline keyword has no effect on the linkage of afunction.

107

I SO/IEC 14882:2003(E) O 1SO/IEC

7.1.3Thet ypedef specifier 7 Declarations

typedef int conpl ex;
class complex { /* ... *| }; /| error: redefinition

—end example]

A typedef-name that names a class is a class-name (9.1). If atypedef-name is used following the class-key
in an elaborated-type-specifier (7.1.5.3) or in the class-head of a class declaration (9), or is used as the
identifier in the declarator for a constructor or destructor declaration (12.1, 12.4), the program is ill-formed.
[Example:
struct S {
S();
"S();
b

typedef struct S T;

Sa=T(); /1 OK
struct T * p; /] error

—end example]

If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the decla-
ration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage pur-
posesonly (3.5). [Example:

typedef struct { } *ps, S /| Sisthe class name for linkage purposes

—end example] [Note: if the typedef-name is used where a class-name (or enum-name) is required, the
programisill-formed. For example,

typedef struct {
S(); /| error: requiresareturn type because Sis
/| an ordinary member function, not a constructor
}'S

—end note]

7.1.4 Thefri end specifier [dcl.friend]

Thef ri end specifier is used to specify access to class members; see 11.4.

7.1.5 Type specifiers [dcl.type]
The type-specifiersare

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier
As agenera rule, at most one type-specifier is alowed in the complete decl-specifier-seq of a declaration.
The only exceptions to this rule are the following:

— const or vol atil e can be combined with any other type-specifier. However, redundant cv-
qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type
arguments (14.3), in which case the redundant cv-qualifiers are ignored.

— si gned or unsi gned can be combined with char , | ong, short,ori nt.
— short orl ong can be combined withi nt .

— | ong can be combined with doubl e.

108

O ISO/IEC 1SO/IEC 14882:2003(E)

7 Declarations 7.1.5 Type specifiers

At least one type-specifier that is not a cv-qualifier is required in adeclaration unless it declares a construc-
tor, destructor or conversion function.®

[Note: class-specifiers and enum-specifiers are discussed in clause 9 and 7.2, respectively. The remaining
type-specifiers are discussed in the rest of this section.]

7.1.5.1 Thecv-qualifiers [dcl.type.cv]

There are two cv-qualifiers, const and vol ati | e. If acv-qualifier appears in a decl-specifier-seq, the
init-declarator-list of the declaration shall not be empty. [Note: 3.9.3 describes how cv-qualifiers affect
object and function types.]

An object declared in namespace scope with a const-qualified type has internal linkage unlessiit is explic-
itly declared ext er n or unless it was previously declared to have external linkage. A variable of non-
volatile const-qualified integral or enumeration type initialized by an integral constant expression can be
used in integral constant expressions (5.19). [Note: as described in 8.5, the definition of an object or subob-
ject of const-qualified type must specify an initializer or be subject to default-initialization.]

A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the object ref-
erenced is a non-const object and can be modified through some other access path. [Note: cv-qualifiersare
supported by the type system so that they cannot be subverted without casting (5.2.11).]

Except that any class member declared nut abl e (7.1.1) can be modified, any attempt to modify aconst
object during its lifetime (3.8) results in undefined behavior.

[Example:
const int ci = 3; /1 cv-qualified (initialized as required)
ci = 4 /1 ill-formed: attempt to modify const
int i = 2; /1 not cv-qualified
const int* cip; /| pointer to const i nt
cip = &; /1 OK: cv-qualified access path to unqualified
*Cip = 4; /1 ill-formed: attempt to modify through ptr to const
int* ip;
ip = const_cast<int*>(cip); /| cast needed to convert const i nt * toi nt *
*ip = 4; /| defined: *i p pointstoi , anon-const object
const int* cig = new const int (3); /' initialized asrequired
int* ig = const_cast<int*>(ciq); /| cast required
*iq = 4 /1 undefined: modifiesa const object

For another example

class X {
public:
mutable int i;
int j;

class Y {
public:
X X;
Y();
i

8 Thereis no specia provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies cv-
qualifiers. The“implicitint” rule of Cisno longer supported.

109

1SO/I EC 14882: 2003(E)

7.1.5.1 Thecv-qualifiers

const Y vy;
Y. X. 0+t
Y. X.] ++;
Y* p = const_cast <Y*>(&y);
p->x.i = 99;
p->x.j = 99;
—end example]

O ISO/EC

7 Declarations

/1 well-formed: mut abl e member can be modified
/1 ill-formed: const -qualified member modified
/| cast away const-ness of y

/| well-formed: mut abl e member can be modified
/ | undefined: modifiesaconst member

If an attempt is made to refer to an object defined with a volatile-qualified type through the use of an Ivalue
with anon-volatile-qualified type, the program behaviour is undefined.

[Note: vol ati | e is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics of vol at i | e are intended to be the same in C+ as they are

inC.]

7.1.5.2 Simpletype specifiers
The simple type specifiers are

simple-type-specifier:
op

[dcl.type.smple]

¢ nested-name-specifier ,; type-name

" opt Nested-name-specifier t enpl at e template-id

char
wchar _t
bool
short
int

| ong

si gned
unsi gned
fl oat
doubl e
void

type-name:
class-name
enum-name
typedef-name

The simple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.9.1). Table 7 summarizes the valid combinations of simple-type-specifiers and the types they spec-

ify.

110

O ISO/IEC

7 Declarations

| SO/IEC 14882:2003(E)

7.1.5.2 Simple type specifiers

Table 7—simple-type-specifiers and the typesthey specify

Specifier () OType
Etypename che type naned
char 0" char”
runsi gned char O“unsi gned char”
[ki gned char 0“signed char”
Chool U“bool ”

nsi gned Heynsi gned int”
runsi gned int 0 unsigned int”
pi ghed g“int”
[ki gned i nt 0“int”
G nt U«jnt”

%msi gned short int Heynsi gned short int”
runsi gned short 0" unsigned short int”
g“unsigned long int”
0“unsigned long int”

runsi gned | ong int
Cunsi gned | ong

(5i gned | ong int U«l ong int”
i gned | ong D“I ong int”
ong int n“long int”

O ong O“long int”

[ki gned short int O“short int”

Lsi gned short U«short int”
hort i nt Ueshort int”

O, C
short 0" short int

oachar _t O“wchar _t”

[f | oat g“fl oat”

Ldoubl e U« doubl e”

a ong doubl e O ong doubl e”

rvoi d o void”

8 o A

When multiple simple-type-specifiers are alowed, they can be freely intermixed with other decl-specifiers
in any order. It is implementation-defined whether hit-fields and objects of char type are represented as
signed or unsigned quantities. The si gned specifier forces char objects and bit-fields to be signed; it is
redundant with other integral types.

7.1.5.3 Elaborated type specifiers
elaborated-type-specifier:

class-key ::

op

¢ nested-name-specifier, identifier

classkey :: oy nested-name-specifier, template,, template-id
enum::,, nested-name-specifier . identifier

typename ::,,; nested-name-specifier identifier

typename :: o, nested-name-specifier template,,, template-id

[dcl.type.elab]

If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed unless it
isan explicit speciaization (14.7.3), an explicit instantiation (14.7.2) or it has one of the following forms:

class-key identifier ;
friend classkey ::
friend classkey ::
friend classkey ::
friend classkey ::

opt
opt
opt
opt

identifier ;

template-id ;

nested-name-specifier identifier ;
nested-name-specifier t enpl at e, template-id ;

111

| SO/IEC 14882:2003(E) O ISO/IEC

7.1.5.3 Elaborated type specifiers 7 Declarations

3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier. If the
identifier resolves to a class-name or enum-name, the elaborated-type-specifier introduces it into the decla-
ration the same way a simple-type-specifier introduces its type-name. If the identifier resolves to a typedef-
name or a template type-parameter, the elaborated-type-specifier is ill-formed. [Note: this implies that,
within a class template with atemplate type-parameter T, the declaration

friend class T,

isill-formed.] If name lookup does not find a declaration for the name, the elaborated-type-specifier is
ill-formed unless it is of the simple form class-key identifier in which case the identifier is declared as
described in 3.3.1.

The class-key or enumkeyword present in the elaborated-type-specifier shall agree in kind with the decla-
ration to which the name in the elaborated-type-specifier refers. This rule also applies to the form of
elaborated-type-specifier that declares a class-name or f r i end class since it can be construed as referring
to the definition of the class. Thus, in any elaborated-type-specifier, the enumkeyword shall be used to
refer to an enumeration (7.2), the uni on class-key shall be used to refer to a union (clause 9), and either
thecl ass or st ruct class-key shall be used to refer to a class (clause 9) declared using the cl ass or
st ruct class-key.

7.2 Enumeration declarations [dcl.enum]

An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within
its scope.

enum-name:
identifier

enum-specifier:
enum identifier,, { enumerator-list,, }

enumerator-list:
enumer ator-definition
enumerator-list , enumerator-definition

enumer ator-definition:
enumer ator
enumerator = constant-expression

enumerator:
identifier
The identifiers in an enumerator-list are declared as constants, and can appear wherever constants are
required. An enumerator-definition with = gives the associated enumerator the value indicated by the
constant-expression. The constant-expression shall be of integral or enumeration type. If the first
enumerator has no initializer, the value of the corresponding constant is zero. An enumerator-definition

without an initializer gives the enumerator the value obtained by increasing the value of the previous
enumerator by one.

[Example:

enum{ a, b, c=0 };
enum{ d, e, f=e+2 };

definesa, ¢, andd tobe zero,b ande tobe 1, andf tobe3.]

The point of declaration for an enumerator isimmediately after its enumerator-definition. [Example:

const int x = 12;
{ enum{ x =x }; }

Here, the enumerator x isinitialized with the value of the constant x, namely 12.]

112

10

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.2 Enumeration declarations

Each enumeration defines a type that is different from all other types. Following the closing brace of an
enum-specifier, each enumerator has the type of its enumeration. Prior to the closing brace, the type of
each enumerator is the type of itsinitializing value. If aninitializer is specified for an enumerator, the ini-
tializing value has the same type as the expression. If no initializer is specified for the first enumerator, the
type is an unspecified integral type. Otherwise the type is the same as the type of the initializing value of
the preceding enumerator unless the incremented value is not representable in that type, in which case the
type is an unspecified integral type sufficient to contain the incremented value.

The underlying type of an enumeration is an integral type that can represent al the enumerator values
defined in the enumeration. It isimplementation-defined which integral type is used as the underlying type
for an enumeration except that the underlying type shall not be larger than i nt unless the value of an enu-
merator cannot fit inani nt or unsi gned i nt. If the enumerator-list is empty, the underlying type is
as if the enumeration had a single enumerator with value 0. The value of si zeof () applied to an enu-
meration type, an object of enumeration type, or an enumerator, is the value of si zeof () applied to the
underlying type.

For an enumeration where e;, is the smallest enumerator and e, is the largest, the values of the enumer-
ation are the values of the underlying type in the range b, to b4, Where by, and b”Ei‘ are, respectively,
the smallest and largest values of the smallest bit-field that can store e, and €.) Itis possible to
define an enumeration that has values not defined by any of its enumerators.

Two enumeration types are layout-compatible if they have the same underlying type.

The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.5). [Example:

enum col or { red, yellow, green=20, blue };

color col = red;
color* cp = &col;
if (*cp == blue) /..

makes col or atype describing various colors, and then declarescol as an object of that type, and cp asa
pointer to an object of that type. The possible values of an object of type col or arered, yel | ow,
gr een, bl ue; these values can be converted to the integral values 0, 1, 20, and 21. Since enumerations
are distinct types, objects of type col or can be assigned only values of type col or .

color ¢ = 1; /| error: type mismatch,
/' no conversion fromi nt tocol or

int i =yellow /1 OK: yel | owconverted to integral value 1
/'l integral promotion

—end example]

An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it isin the range of enumeration values of the enumeration type; otherwise the result-
ing enumeration value is unspecified.

The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for al names in (3.3) and
(3.4). An enumerator declared in class scope can be referred to using the class member access operators
(::,. (dot)and- > (arrow)), see5.2.5. [Example:

8 on a two’s-complement machine, b, is the smallest value greater than or equal to max(abs(e,,) —1,abs(en)) of the form
2M - 1; b, iszeroif ey, isnon-negative and — (b, + 1) otherwise.

113

| SO/IEC 14882:2003(E)

7.2 Enumeration declarations

class X {
public:
enumdirection { left="1", right="r" };
int f(int i)
{ return i==left 2 0: i==right 2 1: 2; }
i

void g(X* p)
{

direction d; /] error: di recti on notin scope
int i;
i = p->f(left); /'l error: | ef t notinscope
i = p->(X:right); /1 OK
i = p->f(p->left); /1 OK
/..
}
—end example]

7.3 Namespaces

O ISO/IEC

7 Declarations

[basic.namespace]

A namespace is an optionally-named declarative region. The name of a hamespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation units.

The outermost declarative region of atrandlation unit is a namespace; see 3.3.5.

7.3.1 Namespace definition

The grammar for a namespace-definition is

namespace-name;
original-namespace-name
namespace-alias
original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body }

extensi on-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

namespace-body:
declaration-seqqy

[namespace.def]

Theidentifier in an original-namespace-definition shall not have been previously defined in the declarative
region in which the original-namespace-definition appears. The identifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an

original-namespace-name.

114

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.3.1 Namespace definition

The original-namespace-name in an extension-namespace-definition shall have previously been defined in
an original-namespace-definition in the same declarative region.

Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.5).

Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is
itself adeclaration, it follows that namespace-definitions can be nested. [Example:

namespace Quter {

int i;
namespace | nner {
void f() { i++ } /] Quter::i
int i;
void g() { i++ } [l Inner::i
}
}
—end example]
7.3.1.1 Unnamed namespaces [namespace.unnamed]

An unnamed-namespace-definition behaves as if it were replaced by

namespace unique { /* enpty body */ }
usi ng namespace unique;
namespace unique { namespace-body }

where al occurrences of unique in atransation unit are replaced by the same identifier and this identifier
differsfrom all other identifiersin the entire program.gz) [Example:

nanespace { int i; } /1 unique: : i

void f() { i++ } /'l unique: : i ++

namespace A {
nanespace {

int i; /1 A :unique: ;i
int j; /1 A :unique : j
}
void g() { i++ } /'l A unique: @i ++
}
usi ng nanespace A,
void h() {
i ++; /| error: unique: : i or A::unique: ;i
A i+ /1 A :unique: :i
j+ /1 A unique: : |
}
—end example]

Theuse of the st at i ¢ keyword is deprecated when declaring objects in a namespace scope (see annex D);
the unnamed-namespace provides a superior aternative.

7.3.1.2 Namespace member definitions [namespace.memdef]
Members of a namespace can be defined within that namespace. [Example:

nanespace X {
void f() { /* ... *}
}

82) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
trandlation unit and therefore can never be seen from any other translation unit.

115

| SO/IEC 14882:2003(E) O ISO/IEC

7.3.1.2 Namespace member definitions 7 Declarations

—end example]

Members of a named namespace can also be defined outside that namespace by explicit qualification
(3.4.3.2) of the name being defined, provided that the entity being defined was already declared in the
namespace and the definition appears after the point of declaration in a namespace that encloses the
declaration’ snamespace. [Example:

namespace Q {
namespace V {

void f();
}
void Ve:f() { /* ... */} /1 OK
void V::g() { /* ... *I } /'l error: g() isnot yet a member of V
namespace V {
void g();
}
}
namespace R {
void Q:V::g() { /* ... *} /'l error: Rdoesn’t enclose Q
}
—end example]

Every name first declared in a namespace is a member of that namespace. If af ri end declaration in a
non-local class first declares a class or function™ the friend class or function is amember of the innermost
enclosing namespace. The name of the friend is not found by simple name lookup until a matching declara-
tion is provided in that namespace scope (either before or after the class declaration granting friendship). 1f
afriend function is called, its name may be found by the name lookup that considers functions from name-
spaces and classes associated with the types of the function arguments (3.4.2). When looking for a prior
declaration of a class or a function declared as a f ri end, and when the name of the f ri end class or
function is neither a qualified name nor a template-id, scopes outside the innermost enclosing namespace
scope are not considered. [Example:

/1 Assumef and g have not yet been defined.
void h(int);

tenplate <class T> void f2(T);
namespace A {

class X {
friend void f(X); /1 A :f(X) isafriend
class Y {
friend void g(); /1 A :gisafriend
friend void h(int); /'l A hisafriend
/1 ::hnot considered
friend void f2<>(int); // ::f2<>(int) isafriend
b
i
/1 A :f,A :gandA: : harenotvisible here
X X;
void g() { f(x); } /| definition of A: : g
void f(X) { /* ... */} /| definition of A: : f
void h(int) { /* ... */ } /| definition of A: : h

/1 A :f,A :gandA: : harevisible here and known to be friends

83 this implies that the name of the class or function is unqualified.

116

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.3.1.2 Namespace member definitions
using A :Xx;
void h()
{
A f(x);
A X f(x); /'l error: f isnot a member of A: : X
A XrYiig(); /] error: gisnotamember of A: : X::Y
}
—end example]
7.3.2 Namespace alias [namespace.alias]

A namespace-alias-definition declares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
% opt NEsted-name-specifier ,,, namespace-name

The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the
qualified-namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-
name in a namespace-alias-definition, only namespace names are considered, see 3.4.6. |

In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in
that declarative region to refer only to the namespace to which it already refers. [Example: the following
declarations are well-formed:

namespace Conpany_with _very long nane { /* ... */ }

namespace CWLN = Conpany_w th_very_| ong_nane;

namespace CWLN = Conpany_w th_very_| ong_nane; /1 OK: duplicate
namespace CWLN = CW/LN,

—end example]

A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same
declarative region. A namespace-name defined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

7.3.3 Theusi ng declaration [namespace.udecl]
A using-declaration introduces a name into the declarative region in which the using-declaration appears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using typename,, ::,, nested-name-specifier unqualified-id;
using :: unqualified-id;

The member name specified in a using-declaration is declared in the declarative region in which the using-
declaration appears. [Note: only the specified name is so declared; specifying an enumeration name in a
using-declaration does not declare its enumerators in the using-declaration’ s declarative region.]

Every using-declaration is a declaration and a member-declaration and so can be used in a class definition.
[Example:

117

| SO/IEC 14882:2003(E) O ISO/IEC

7.3.3 Theusi ng declaration 7 Declarations

struct B {
void f(char);
void g(char);
enumE { e };
union { int x; };

}s

struct D: B {
using B::f;
void f(int) { f
void g(int) { g

('c’); } [/ callsB: : f(char)
("c); } /| recursively callsD: : g(i nt)

b
—end example]

A using-declaration used as a member-declaration shall refer to a member of a base class of the class being
defined, shall refer to a member of an anonymous union that is a member of a base class of the class being
defined, or shall refer to an enumerator for an enumeration type that is a member of a base class of the class
being defined. [Example:

class C{
int g();
b

class D2 : public B {
using B::f; /] OK: Bisabase of D2
using B::e; /1 OK: e isan enumerator of base B
using B::x; /1 OK: x isaunion member of base B
using C :g; /| error: Cisn't a base of D2
s
—end example] [Note: since constructors and destructors do not have names, a using-declaration cannot
refer to a constructor or a destructor for abase class. Since specializations of member templates for conver-
sion functions are not found by name lookup, they are not considered when a using-declaration specifies a
conversion function (14.5.2).] If an assignment operator brought from a base class into a derived class
scope has the signature of a copy-assignment operator for the derived class (12.8), the using-declaration
does not by itself suppress the implicit declaration of the derived class copy-assignment operator; the
copy-assignment operator from the base class is hidden or overridden by the implicitly-declared copy-
assignment operator of the derived class, as described below.

A using-declaration shall not name atemplate-id. [Example:

class A {

public:
tenplate <class T> void f(T);
tenmpl ate <class T> struct X { };

s
class B : public A {
public:
usi ng A::f<doubl e>; /1 ill-formed
using A : X<int>; /1 ill-formed
s
—end example]

A using-declaration for a class member shall be a member-declaration. [Example:

struct X {
int i;
static int s;

}s

118

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.3.3 Theusi ng declaration
void f()
{
using X :i; /] error: X: ;i isaclass member
/| and thisis not a member declaration.
using X :s; /] error: X: : s isaclass member
/| and thisis not a member declaration.
}
—end example]

Members declared by a using-declaration can be referred to by explicit qualification just like other member
names (3.4.3.2). Inausing-declaration, aprefix : : refersto the global namespace. [Example:

void f();

namespace A {
void g();

}

namespace X {
using ::f; /1 global f
using A :g; /'l A'sg

}

void h()

{
X f(); /] calls::f
Xg(); /1 callsA: : g

}

—end example]

A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Example:

namespace A {

int i;
}
namespace Al {
using A :i;
using A :i; /| OK: double declaration
}
void f()
{
using A :i;
using A :i; /| error: double declaration
}
class B {
public:
int i;
}s
class X : public B {
using B::i;
using B::i; /| error: double member declaration
s
—end example]

119

10

| SO/IEC 14882:2003(E) O ISO/IEC

7.3.3 Theusi ng declaration 7 Declarations

The entity declared by a using-declaration shall be known in the context using it according to its definition
at the point of the using-declaration. Definitions added to the namespace after the using-declaration are
not considered when a use of the nameis made. [Example:

namespace A {
void f(int);
}

using A :f; /1 f isasynonymfor A: : f;
/] thatis, for A:: f(int).
namespace A {
void f(char);

}
voi d foo()
{
f('a); /] callsf (int),
} /'l eventhoughf (char) exists.
voi d bar ()
{
using A :f; /| f isasynonymfor A: : f;
/| thatis, for A:: f(int) andA::f(char).
f(ra); /| callsf (char)
}

—end example] [Note: partial specializations of class templates are found by looking up the primary class
template and then considering all partial speciaizations of that template. If a using-declaration names a
class template, partial specializations introduced after the using-declaration are effectively visible because
the primary templateisvisible (14.5.4).]

Since a using-declaration is a declaration, the restrictions on declarations of the same name in the same
declarative region (3.3) also apply to using-declarations. [Example:

namespace A {
int Xx;
}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
voi d f(double);
void g(char); /1 OK: hidesstruct g

120

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.3.3 Theusi ng declaration

voi d func()

{ - -
int i;
using B::i; /] error:i declared twice
void f(char);
using B::f; /1 OK: eachf isafunction
f(3.5); /| callsB: : f(doubl e)
using B::g;
g('a); [/ callsB: : g(char)
struct g gi; /'l gl hasclasstypeB: : g
using B::x;
using A :x; /] OK: hidesstruct B:: x
X = 99; /| assignsto A : x
struct x x1; /'l x1 hasclasstypeB: : x

}

—end example]
11 If a function declaration in namespace scope or block scope has the same name and the same parameter

types as a function introduced by a using-declaration, and the declarations do not declare the same func-
tion, the program isill-formed. [Note: two using-declarations may introduce functions with the same name
and the same parameter types. If, for a call to an unqualified function name, function overload resolution
selects the functions introduced by such using-declarations, the function call isill-formed.

[Example:
nanespace B {
void f(int);
voi d f(double);
}
nanespace C {
void f(int);
voi d f(double);
void f(char);
}
void h()
{
using B::f; /1 B::f(int) andB::f(doubl e)
using C:f; /1 C:f(int),C :f(double),andC: :f(char)
f('h); /1 callsC: :f(char)
f(1); /'l error: ambiguous: B: : f(int) orC.:f(int) ?
void f(int); /| error:
/1 f(int) conflictswithC: : f(int) andB:: f(int)
}

—end example] |

12 When a using-declaration brings names from a base class into a derived class scope, member functions in
the derived class override and/or hide member functions with the same name and parameter types in a base
class (rather than conflicting). [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

121

13

14

15

| SO/IEC 14882:2003(E) O ISO/IEC

7.3.3 Theusi ng declaration 7 Declarations

struct D: B {

using B::f;
void f(int); /1 OK:D::f(int) overridesB:: f(int);
using B::g;
voi d g(char); /1 OK
using B::h;
void h(int); /1 OK:D::h(int) hidesB:: h(int)
b
void k(D* p)
{
p->f(1); /1 callsD: : f (int)
p->f("a); /1 callsB: : f (char)
p->g(1); /1 callsB:: g(int)
p->g(’a’); /1 callsD: : g(char)
}

—end example] [Note: two using-declarations may introduce functions with the same name and the same
parameter types. If, for a cal to an unqualified function name, function overload resolution selects the
functionsintroduced by such using-declarations, the function call isill-formed.]

For the purpose of overload resolution, the functions which are introduced by a using-declaration into a
derived class will be treated as though they were members of the derived class. In particular, the implicit
t hi s parameter shall be treated as if it were a pointer to the derived class rather than to the base class.
This has no effect on the type of the function, and in all other respects the function remains a member of the
base class.

All instances of the name mentioned in a using-declaration shall be accessible. In particular, if a derived
class uses a using-declaration to access a member of a base class, the member name shall be accessible. If
the name is that of an overloaded member function, then all functions named shall be accessible. The base
class members mentioned by a using-declaration shall be visible in the scope of at least one of the direct
base classes of the class where the using-declaration is specified. [Note: because a using-declaration des-
ignates a base class member (and not a member subobject or a member function of a base class subobject),
ausing-declaration cannot be used to resolve inherited member ambiguities. For example,

struct A{ int x(); };
struct B: A{ };
struct C: A {

using A :Xx;
int x(int);
b
struct D: B, C {
using C :x;
int x(double);
s
int f(D* d) {
return d->x(); /| ambiguous. B: : x or C: : x
}

]

The alias created by the using-declaration has the usual accessibility for a member-declaration. [Example:

122

16

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.3.3 Theusi ng declaration
class A {
private:
void f(char);
public:
void f(int);
protect ed:
void g();
b
class B : public A{
using A :f; /'l error: A:: f(char) isinaccessible
public:
using A :g; /| B::gisapublic synonymfor A: : g
b
—end example]

[Note: use of access-declarations (11.3) is deprecated; member using-declarations provide a better alterna-
tive.]

7.3.4 Usingdirective [namespace.udir]
using-directive:
using namespace ::,, nhested-name-specifier,, namespace-name;
A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note: when looking up a hamespace-name in a using-directive, only namespace hames are considered, see
34.6.]

A using-directive specifies that the names in the nominated namespace can be used in the scope in which
the using-directive appears after the using-directive. During unqualified name lookup (3.4.1), the names
appear as if they were declared in the nearest enclosing namespace which contains both the using-directive
and the nominated namespace. [Note: in this context, “contains’ means “contains directly or indirectly”. |

123

| SO/IEC 14882:2003(E) O ISO/IEC

7.3.4 Using directive 7 Declarations

A using-directive does not add any members to the declarative region in which it appears. [Example:

namespace A {
int i;
namespace B {
nanespace C {

int i;
}
usi ng namespace A::B::C
void f1() {
i =5 /1 OK,C::i visbleinBand hidesA: : i
}

}

nanespace D {
usi ng nanmespace B;
usi ng nanmespace C,

void f2() {
i =5 /| ambiguous,B: : C: :i or A::i?
}
}
void f3() {
i =5 /] usesA: ;i
}
}
void f4() {
i =5 /1 ill-formed; neither i isvisible

}
]

The using-directive is transitive: if a scope contains a using-directive that nominates a second namespace
that itself contains using-directives, the effect is as if the using-directives from the second namespace also
appeared in thefirst. [Example:

namespace M {
int i;
}

namespace N {
int i;
usi ng namespace M

}
void f()
{
usi ng nanespace N;
i =7, /] error: bothM :i andN: :i arevisible
}

124

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.3.4 Using directive

For another example,

namespace A {

int i;
}
nanespace B {
int i;
int j;
namespace C {
nanespace D {
usi ng namespace A,
int j;
int k;
int a=i; [/ B::i hidesA: :i
}
usi ng nanmespace D;
int k = 89; /1 no problem yet
int I =k; /| ambiguous: C: : k or D: : k
int m=i; /1 B::i hidesA: :i
int n=j; /1 D :j hidesB: :j
}
}
—end example]

If anamespace is extended by an extension-namespace-definition after a using-directive for that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directives in the extension-namespace-definition can be used after the extension-namespace-
definition.

If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name isill-formed. [Note: in particular,
the name of an object, function or enumerator does not hide the name of a class or enumeration declared in
adifferent namespace. For example,

namespace A {
class X { };
extern "C' int g();
extern "C++" int h();

}
namespace B {
void X(int);
extern "C' int g();
extern "C++" int h();
}

usi ng namespace A;
usi ng nanmespace B;

void f() {
X(1); /'l error: name X found in two hamespaces
a(); /| okay: name g refers to the same entity
} h(); /| error: name h found in two namespaces
—end note]

During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which
namespaces were considered and the relationships among the namespaces implied by the using-directives
do not cause preference to be given to any of the declarations found by the search.] An ambiguity exists if
the best match finds two functions with the same signature, even if one isin a namespace reachabl e through
using-directives in the namespace of the other &

84) During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides the other
adong some paths (10.2). There is no such disambiguation when considering the set of names found as a result of following using-

125

| SO/IEC 14882:2003(E) O ISO/IEC

7.3.4 Using directive 7 Declarations

[Example:

namespace D {

int di;

void f(char);
}

usi ng nanmespace D

int di; /1 OK: noconflict withD: : d1

nanespace E {

int e;
void f(int);

}

nanespace D { /' namespace extension
int dz;
usi ng namespace E;
void f(int);

}

void f()

{
dl++; /| error: ambiguous: : d1 or D: : d1?
odl4+ /1 OK
D: : d1++; /1 OK
d2++; /1 OK:D::d2
e++; /] OK: E: : e
f(1); /'l error: ambiguous: D: : f(int) orE :f(int)?
f(a); /1 OK: D::f(char)

}

—end example]
7.4 Theasmdeclaration [dcl.asm]

An as mdeclaration has the form

asm-definition:
asm (string-literal) ;

The meaning of an as mdeclaration is implementation-defined. [Note: Typicaly it is used to pass informa
tion through the implementation to an assembler.]

7.5 Linkage specifications [dcl.link]

All function types, function names, and variable names have alanguage linkage. [Note: Some of the prop-
erties associated with an entity with language linkage are specific to each implementation and are not
described here. For example, a particular language linkage may be associated with a particular form of rep-
resenting names of objects and functions with external linkage, or with a particular calling convention, etc.
] The default language linkage of all function types, function names, and variable names is G+ language
linkage. Two function types with different language linkages are distinct types even if they are otherwise
identical.

Linkage (3.5) between G+ and non-CH code fragments can be achieved using a linkage-specification:

linkage-specification:
extern sring-literal { declaration-seqy; }
ext ern string-literal declaration

directives.

126

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.5 Linkage specifications

The string-literal indicates the required language linkage. The meaning of the string-literal is
implementation-defined. A linkage-specification with a string that is unknown to the implementation is
ill-formed. When the string-literal in a linkage-specification names a programming language, the spelling
of the programming language's name is implementation-defined. [Note: it is recommended that the spel-
ling be taken from the document defining that language, for example Ada (not ADA) and Fortran or
FORTRAN (depending on the vintage). The semantics of a language linkage other than G+ or C are
implementation-defined.]

Every implementation shall provide for linkage to functions written in the C programming language, " C',
and linkage to G+ functions, " C++" . [Example:

conpl ex sqrt(conpl ex);
extern "C' {

doubl e sqgrt (doubl e);
}

—end example]

/| C+ linkage by default

/1 Clinkage

Linkage specifications nest. When linkage specifications nest, the innermost one determines the language
linkage. A linkage specification does not establish a scope. A linkage-specification shall occur only in
namespace scope (3.3). In a linkage-specification, the specified language linkage applies to the function
types of all function declarators, function names, and variable names introduced by the declaration(s).
[Example:

extern "C'" void fl(void(*pf)(int));
/1
/1
typedef void FUNC();
/1
/1

thenamef 1 and its function type have C language
linkage; pf isa pointer to a C function

extern "C'
FUNC f 2; the namef 2 has G+ language linkage and the

function’ s type has C language linkage

extern "C' FUNC f 3; 1/
/1

voi d (*pf2) (FUNCH): /1

the name of function f 3 and the function’ s type
have C language linkage
the name of the variable pf 2 has G+ linkage and

/1
/1

the type of pf 2 is pointer to G+ function that
takes one parameter of type pointer to C function

—end example] A C language linkage is ignored for the names of class members and the member function
type of class member functions. [Example:

extern "C' typedef void FUNC c();
class C{
voi d nf1(FUNC c*); /| the name of the function nf 1 and the member
/'l function’s type have G+ language linkage; the
/| parameter has type pointer to C function
FUNC ¢ nf 2; /| the name of the function nf 2 and the member
/| function’s type have C+ language linkage
static FUNC c* q; /| the name of the data member q has G+ language
/'l linkage and the data member’ stypeis pointer to
/[Cfunction
i
extern "C' {
class X {
void nf(); /| the name of the function nf and the member
/| function’s type have C+ language linkage
void nf2(void(*)()); /| the name of the function nf 2 has G+ language
/'l linkage; the parameter has type pointer to
/[Cfunction
b
}
—end example]

127

| SO/IEC 14882:2003(E) O ISO/IEC

7.5 Linkage specifications 7 Declarations

If two declarations of the same function or object specify different linkage-specifications (that is, the
linkage-specifications of these declarations specify different string-literals), the program isill-formed if the
declarations appear in the same trandation unit, and the one definition rule (3.2) applies if the declarations
appear in different trandlation units. Except for functions with G+ linkage, a function declaration without a
linkage specification shall not precede the first linkage specification for that function. A function can be
declared without a linkage specification after an explicit linkage specification has been seen; the linkage
explicitly specified in the earlier declaration is not affected by such afunction declaration.

At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it) that
appear in different namespace scopes refer to the same function. Two declarations for an object with C lan-
guage linkage with the same name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same object. [Note: because of the one definition rule (3.2), only one defini-
tion for a function or object with C linkage may appear in the program; that is, such a function or object
must not be defined in more than one namespace scope. For example,

namespace A {
extern "C' int f();
extern "C'" int g() { return 1; }
extern "C' int h();

}

namespace B {
extern "C'" int f(); /1 A :f andB: : f refer
/'] to the same function
extern "C" int g() { return 1; } /1 ill-formed, the function g
/| with C language linkage
/1 hastwo definitions

}

int A:f() { return 98; } /| définition for the function f
/| with C language linkage
extern "C" int h() { return 97; }
/| definition for the function h
/1 with C language linkage
/1 A::hand: : hrefer to the same function

—end note]

Except for functions with internal linkage, a function first declared in a linkage-specification behaves as a
function with external linkage. [Example:

extern "C' double f();
static double f(); /'l error

isill-formed (7.1.1).] The form of linkage-specification that contains a brace-enclosed declaration-seq
does not affect whether the contained declarations are definitions or not (3.1); the form of linkage-
specification directly containing a single declaration is treated as an ext er n specifier (7.1.1) for the pur-
pose of determining whether the contained declaration is adefinition. [Example:

extern "C' int i; /| declaration
extern "C" {

int i; /| definition
}

—end example] A linkage-specification directly containing a single declaration shall not specify a storage
class. [Example:

extern "C' static void f(); /'l error

—end example]

128

O ISO/IEC | SO/IEC 14882:2003(E)

7 Declarations 7.5 Linkage specifications

[Note: because the language linkage is part of afunction type, when a pointer to C function (for example) is
dereferenced, the function to which it refersis considered a C function.]

Linkage from G+ to objects defined in other languages and to objects defined in G+ from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two lan-
guage implementations are similar enough can such linkage be achieved.

129

I SO/IEC 14882:2003(E) O ISO/IEC

Blank page

130

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8 Declarators

8 Declarators [dcl.decl]

A declarator declares a single object, function, or type, within a declaration. The init-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.
init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:

declarator initializer
The two components of a declaration are the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the type, storage class or other properties of the objects, functions
or typedefs being declared. The declarators specify the names of these objects, functions or typedefs, and
(optionally) modify the type of the specifiers with operators such as* (pointer to) and () (function return-
ing). Initial values can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

Each init-declarator in adeclaration is analyzed separately asif it was in a declaration by itself &

Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seq,, exception-specification,,
direct-declarator [constant-expressiong,]
(declarator)

ptr-operator:
* cv-qualifier-sedyy
&
I 1 opt Nested-name-specifier * cv-qualifier-sedqy

B A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T DL, D2, ... Dn;
isusually equvalent to
T DL, TD2 ... T Dn

where T is a decl-specifier-seq and each Di is a init-declarator. The exception occurs when a name introduced by one of the
declarators hides a type name used by the dcl-specifiers, so that when the same dcl-specifiers are used in a subsequent declaration,
they do not have the same meaning, asin

struct S{ ... };
S S T /| declaretwo instancesof st ruct S

which isnot equivalent to

struct S{ ... };
S S
S T, /] error

131

| SO/IEC 14882:2003(E) O ISO/IEC

8 Declarators 8 Declarators
cv-qualifier-seq:
cv-qualifier cv-qualifier-segqy
cv-qualifier:
const
vol atile
declarator-id:

id-expression
I 1 opt Nested-name-specifier o, type-name

A class-name has special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator : : (5.1, 12.1, 12.4).

8.1 Typenames [dcl.name]

To specify type conversions explicitly, and as an argument of si zeof , new, or t ypei d, the name of a
type shall be specified. This can be done with atype-id, which is syntactically a declaration for an object or
function of that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declarator o,

type-specifier-seq:
type-specifier type-specifier-seqqy

abstract-declarator:
ptr-operator abstract-declarator
direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declarator
(parameter-declaration-clause) cv-qualifier-seq,, exception-specification,,
direct-abstract-declarator,,, [constant-expression,,]
(abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Example:

int /] inti

int * /1 int *pi

int *[3] /1 int *p[3]

int (*)[3] /1 int (*p3i)[3]
int *() /1 int *f()

int (*)(double) /1 int (*pf)(double)

”ow LI LIS

name respectively the types “i nt ,” “pointer to i nt ,” “array of 3 pointersto i nt,” “pointer to array of 3
i nt,” “function of (no parameters) returning pointer to i nt,” and “pointer to a function of (doubl e)
returningi nt.””]

A type can aso be named (often more easily) by using atypedef (7.1.3).

8.2 Ambiguity resolution [dcl.ambig.res]

The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with aredundant set of parentheses around a parameter name and an object declaration with a function-style
cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any con-
struct that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disam-
biguated by a nonfunction-style cast, by a = to indicate initialization or by removing the redundant

132

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.2 Ambiguity resolution

parentheses around the parameter name. | [Example:

struct S {
S(int);

b

voi d foo(double a)

{
Swint(a)); /| function declaration
S x(int()); /| function declaration
Sy((int)a); /| object declaration
Sz =int(a); / | object declaration

}

—end example]

The ambiguity arising from the similarity between a function-style cast and a type-id can occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possibly be a type-id in its syntactic context shall be
considered atype-id.

[Example:

#i ncl ude <cst ddef >

char *p;

voi d *operator new(size_t, int);

void foo() {
const int x = 63;
new (int(*p)) int; /' new-placement expression
new (int(*[x])); /'] new type-id

}

For another example,

tenpl ate <class T>

struct S {
T *p;
b
S<int()> x; /1 type-id
S<int(l)>vy; /| expression (ill-formed)

For another example,

voi d foo()
{
sizeof (int(1)); /| expression
sizeof (int()); /1 type-id (ill-formed)
}
For another example,
voi d foo()
{
(int(1)); /| expression
(int())1,; /1 type-id (ill-formed)
}
—end example]

Another ambiguity arises in a parameter-declaration-clause of a function declaration, or in atype-id that is
the operand of asi zeof ort ypei d operator, when atype-name is nested in parentheses. In this case, the
choiceis between the declaration of a parameter of type pointer to function and the declaration of a parame-
ter with redundant parentheses around the declarator-id. The resolution is to consider the type-name as a
simple-type-specifier rather than a declarator-id. [Example:

133

| SO/IEC 14882:2003(E) O ISO/IEC
8.2 Ambiguity resolution 8 Declarators
class C{ };

void f(int(Q) { } [/ voidf(int (*fp)(Cc)) {}
/1 not: voidf (int C);

int g(0;
void foo() {
f(1); /'] error: cannot convert 1 to function pointer
f(9); /1 OK
}
For another example,
class C{ };
void h(int *(C10])); /1 voidh(int *(*_fp)(C_parni10]));
/1 not: voi d h(int *C[10]);
—end example]
8.3 Meaning of declarators [dcl.meaning]

A list of declarators appears after an optional (clause 7) decl-specifier-seq (7.1). Each declarator contains
exactly one declarator-id; it names the identifier that is declared. An unqualified-id occurring in a
declarator-id shall be a simple identifier except for the declaration of some specia functions (12.3, 12.4,
13.5) and for the declaration of template specializations or partial specializations (14.7). A declarator-id
shall not be qualified except for the definition of a member function (9.3) or static data member (9.4) out-
side of its class, the definition or explicit instantiation of afunction or variable member of a namespace out-
side of its namespace, or the definition of a previously declared explicit specialization outside of its name-
space, or the declaration of a friend function that is a member of another class or namespace (11.4). When
the declarator-id is qualified, the declaration shall refer to a previously declared member of the class or
namespace to which the qualifier refers, and the member shall not have been introduced by a using-
declaration in the scope of the class or namespace nominated by the nested-name-specifier of the
declarator-id. [Note: if the qualifier isthe global : : scope resolution operator, the declarator-id refersto a
name declared in the global namespace scope. |

Anaut o,static,extern,register,nmutabl e, friend,inline,virtual,ortypedef spec-
ifier applies directly to each declarator-id in ainit-declarator-list; the type specified for each declarator-id
depends on both the decl-specifier-seq and its declarator.

Thus, adeclaration of aparticular identifier has the form
TD

where T isadecl-specifier-seq and Dis adeclarator. Following isarecursive procedure for determining the
type specified for the contained declarator-id by such a declaration.

First, the decl-specifier-seq determines atype. In adeclaration

TD
the decl-specifier-seq T determinesthe type “T.” [Example: in the declaration

int unsigned i;
the type specifiersi nt unsi gned determinethetype“unsi gned i nt” (7.1.5.2).]
In adeclaration T Dwhere Dis an unadorned identifier the type of thisidentifier is“T.”
In adeclaration T D where D has the form

(D1)

the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration

134

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.3 Meaning of declarators

T D1

Parentheses do not alter the type of the embedded declarator-id, but they can alter the binding of complex
declarators.

8.3.1 Pointers [dcl.ptr]

In adeclaration T D where D has the form
* cv-qualifier-seq,y D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer to T.” The cv-qualifiers apply to the
pointer and not to the object pointed to.

[Example: the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;

int i, *p, *const cp = &;
declare ci , a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant
integer, ppc, a pointer to a pointer to a constant integer; i , an integer; p, a pointer to integer; and cp, a
constant pointer to integer. Thevalue of ci , cpc, and cp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to by cp. Examples of some correct operations are

*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are
ci = 1; /] error
Ci ++; /] error
*pc = 2; /1 error
cp = &ci; /'l error
cpc++; /] error
p = pc; /'l error
ppc = &p; /'l error

Each is unacceptable because it would either change the value of an object declared const or alow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &cCi ; /1 OK, but would make p pointtoci ...
/| ... because of previous error
*p = 5 /| clobber ci
—end example]
Seealsn 5.17 and 8.5.

[Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken, a
pointer can never point to abit-field.]

8.3.2 References [dcl.ref]

In adeclaration T D where D has the form

& D1
and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of Dis “derived-declarator-type-list referenceto T.” Cv-qualified references are ill-formed except

when the cv-qualifiers are introduced through the use of a typedef (7.1.3) or of a template type argument
(14.3), in which case the cv-qualifiersareignored. [Example: in

135

| SO/IEC 14882:2003(E) O ISO/IEC

8.3.2 References 8 Declarators

typedef int& A
const A aref = 3; /1 ill-formed;
/1 non-const reference initialized with rvalue

the type of aref is “reference to i nt”, not “const reference to i nt”.] [Note: a reference can be
thought of as a name of an object.] A declarator that specifies the type “referenceto cv void” isill-formed.

[Example:
void f(double& a) { a += 3.14; }
/..

double d = 0;
f(d);

declares a to be areference parameter of f sothecall f (d) will add 3. 14 tod.

int v[20];

/..

int&g(int i) { return v[i]; }
/..

9(3) =7,

declares the function g() to return areference to an integer so g(3) =7 will assign 7 to the fourth element
of thearray v. For another example,

struct link {

i nk* next;
b
link* first;
void h(link*& p) /'l p isareferenceto pointer
{
p->next = first;
first = p;
p = 0;
}
voi d k()
{
link* g = new |ink;
h(a);
}

declares p to be areferenceto apointer tol i nk soh(q) will leave q with the value zero. See also 8.5.3.

]

It is unspecified whether or not areference requires storage (3.7).

There shall be no references to references, no arrays of references, and no pointersto references. The decla
ration of a reference shall contain an initializer (8.5.3) except when the declaration contains an explicit
ext er n specifier (7.1.1), is a class member (9.2) declaration within a class declaration, or is the declara-
tion of a parameter or areturn type (8.3.5); see 3.1. A reference shall beinitialized to refer to avalid object
or function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only
way to create such areference would be to bind it to the “ object” obtained by dereferencing a null pointer,
which causes undefined behavior. Asdescribed in 9.6, areference cannot be bound directly to abit-field.]

8.3.3 Pointersto members [dcl.mptr]
In adeclaration T Dwhere D has the form
© . opt Nested-name-specifier * cv-qualifier-seq,, D1

and the nested-name-specifier names a class, and the type of the identifier in the declaration T D1 is

136

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.3.3 Pointersto members

“derived-declarator-type-list T,” then the type of the identifier of D is “derived-declarator-type-list cv-
qualifier-seq pointer to member of class nested-name-specifier of type T.”

[Example:
class X {
public:
void f(int);
int a;
s

class V;

int XX:* pm = &X :a;

void (X :* pnf)(int) = & :f;
double X :* pnd;

char Y::* pnt;

declarespni , pnf , pnd and pnt to be apointer to amember of X of typei nt , a pointer to a member of X
of typevoi d(i nt), apointer to a member of X of type doubl e and a pointer to a member of Y of type
char respectively. The declaration of prmd is well-formed even though X has no members of type
doubl e. Similarly, the declaration of pnt iswell-formed even though Y is an incomplete type. pm and
pnf can be used like this:

X obj;
/..
obj.*pm = 7; /| assign 7 to an integer
/1 member of obj
(obj.*pnf)(7); /| call afunction member of obj
/1 with the argument 7
—end example]

A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cvvoi d.” [Note: see also 5.3 and 5.5. The type “pointer to member” is distinct from the type “pointer”,
that is, a pointer to member is declared only by the pointer to member declarator syntax, and never by the
pointer declarator syntax. Thereisno “reference-to-member” typein CH. |

8.3.4 Arrays [dcl.array]
In adeclaration T Dwhere D has the form
D1 [constant-expressiony]

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of Disan array type. T iscalled the array element type; this type shall not be areference type, the
(possibly cv-qudified) type voi d, a function type or an abstract class type. If the constant-expression
(5.19) is present, it shall be an integral constant expression and its value shall be greater than zero. The
constant expression specifies the bound of (number of elements in) the array. If the value of the constant
expression is N, the array has N elements numbered O to N- 1, and the type of the identifier of D is
“derived-declarator-type-list array of N T.” An abject of array type contains a contiguously allocated non-
empty set of N sub-objects of type T. If the constant expression is omitted, the type of the identifier of Dis
“derived-declarator-type-list array of unknown bound of T,” an incomplete object type. The type
“derived-declarator-type-list array of N T” is a different type from the type “derived-declarator-type-list
array of unknown bound of T,” see 3.9. Any type of the form “cv-qualifier-seq array of NT” is adjusted to
“array of Ncv-qualifier-seq T,” and similarly for “array of unknown bound of T.” [Example:

typedef int A[5], AA[2][3];

t ypedef const A CA; /'l typeis‘‘array of 5 constint’’

typedef const AA CAA /| typeis‘‘array of 2 array of 3 constint”’

—end example] [Note: an “array of N cv-qualifier-seq T" has cv-qualified type; such an array has internal
linkage unless explicitly declared ext er n (7.1.5.1) and must be initialized as specified in 8.5.]

137

| SO/IEC 14882:2003(E) O ISO/IEC

8.3.4 Arrays 8 Declarators

An array can be constructed from one of the fundamental types (except voi d), from a pointer, from a
pointer to member, from a class, from an enumeration type, or from another array.

When several “array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere.] The first constant-expression can also be omitted
when the declarator isfollowed by an initializer (8.5). In this case the bound is calculated from the number
of initial elements (say, N) supplied (8.5.1), and the type of the identifier of Dis“array of NT.”

[Example:
float fa[l1l7], *afp[17];

declaresan array of f | oat numbersand an array of pointerstof | oat numbers. For another example,
static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] can reasonably appear in an
expression.]

[Note: conversions affecting lvalues of array type are described in 4.2. Objects of array types cannot be
modified, see 3.10.]

Except where it has been declared for a class (13.5.5), the subscript operator [] isinterpreted in such away
that E1[E2] isidentica to* ((E1) +(E2)) . Because of the conversion rules that apply to +, if E1 isan
array and E2 aninteger, then E1[E2] refersto the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank
ixjx .- xk, then E appearing in an expression is converted to a pointer to an (n —1)-dimensiona array
withrank jx - -+ xk. If the* operator, either explicitly or implicitly as aresult of subscripting, is applied to
this pointer, the result is the pointed-to (n—1)-dimensional array, which itself is immediately converted
into a pointer.

[Example: consider
int x[3][5];

Here x isa3x5 array of integers. When x appearsin an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expression x[i], which is equivalent to * (x+i), X is
first converted to a pointer as described; then x+i is converted to the type of x, which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If thereis another subscript the same argument applies again; this time the result is an inte-

ger.]

[Note: it follows from al this that arrays in G+ are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.]

8.3.5 Functions [dcl.fct]
In adeclaration T Dwhere D has the form
D1 (parameter-declaration-clause) cv-qualifier-seq,, exception-specification,y

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T,” the
type of the declarator-id in D is “derived-declarator-type-list function of (parameter-declaration-clause)
cv-qualifier-seq,, returning T”; atype of thisform is afunction type™.

80) asindicated by the syntax, cv-qualifiers are a significant component in function return types.

138

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.3.5 Functions

parameter-declaration-clause:
parameter-declaration-listyy . . . ot
parameter-declaration-list ,

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator = assignment-expression
decl-specifier-seq abstract-declarator ,,
decl-specifier-seq abstract-declarator,, = assignment-expression

The parameter-declaration-clause determines the arguments that can be specified, and their processing,
when the function is called. [Note: the parameter-declaration-clause is used to convert the arguments
specified on the function call; see 5.2.2.] If the parameter-declaration-clause is empty, the function takes
no arguments. The parameter list (voi d) is equivalent to the empty parameter list. Except for this spe-
cial case, voi d shall not be a parameter type (though types derived from voi d, such asvoi d*, can). If
the parameter-declaration-clause terminates with an ellipsis, the number of arguments shall be equal to or
greater than the number of parameters specified. Where syntactically correct, “, " is synonymous
with“. . . ”. [Example: the declaration

int printf(const char*, ...);
declares afunction that can be called with varying numbers and types of arguments.

printf("hello world");
printf("a=%l b=%l", a, b);

However, the first argument must be of atype that can be converted to aconst char *.] [Note: the stan-
dard header <cst dar g> contains a mechanism for accessing arguments passed using the élipsis (see
5.2.2and 18.7).]

A single name can be used for several different functions in a single scope; this is function overloading
(clause 13). All declarations for a function with a given parameter list shall agree exactly both in the type
of the value returned and in the number and type of parameters; the presence or absence of the elipsisis
considered part of the function type. The type of a function is determined using the following rules. The
type of each parameter is determined from its own decl-specifier-seq and declarator. After determining the
type of each parameter, any parameter of type “array of T" or “function returning T” is adjusted to be
“pointer to T" or “pointer to function returning T,” respectively. After producing the list of parameter
types, several transformations take place upon these types to determine the function type. Any cv-qualifier
modifying a parameter type is deleted. [Example: the type voi d(*)(const int) becomes
voi d(*) (int) —endexample] Such cv-qualifiers affect only the definition of the parameter within the
body of the function; they do not affect the function type. If a storage-class-specifier modifies a parameter
type, the specifier is deleted. [Example: regi st er char* becomes char* —endexample] Such
storage-class-specifiers affect only the definition of the parameter within the body of the function; they do
not affect the function type. The resulting list of transformed parameter types is the function’s parameter
typelist.

A cv-qualifier-seq shall only be part of the function type for a nonstatic member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. The
effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qudlification on top of the
function type, i.e., it does not create a cv-qualified function type. In fact, if at any time in the determination
of atype acv-qualified function type is formed, the program isill-formed. [Example:

139

| SO/IEC 14882:2003(E) O ISO/IEC

8.3.5 Functions 8 Declarators

typedef void F();
struct S {
const F f; /1 ill-formed:
/1 not equivalent to: voi d f () const;

}s

—end example] The return type, the parameter type list and the cv-qualifier-seq, but not the default argu-
ments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function types are
checked during the assignments and initializations of pointer-to-functions, reference-to-functions, and
pointer-to-member-functions. |

[Example: the declaration
int fseek(FlILE*, long, int);
declares afunction taking three arguments of the specified types, and returning i nt (7.1.5).]

If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “refer-
ence to array of unknown bound of T,” the program is ill-formed.%” Functions shall not have a return type
of type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions. Types shall not
be defined in return or parameter types. The type of a parameter or the return type for a function definition
shall not be an incomplete class type (possibly cv-qualified) unless the function definition is nested within
the member-specification for that class (including definitions in nested classes defined within the class).

A typedef of function type may be used to declare a function but shall not be used to define afunction (8.4).
[Example:
typedef void F();

F fv; /1 OK: equivalenttovoi dfv();
F fv {} /1 ill-formed
void fv() { } /1 OK: definition of f v

—end example] A typedef of a function type whose declarator includes a cv-qualifier-seq shall be used
only to declare the function type for a nonstatic member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Example:

typedef int FIC(int) const;

FICf; /1 ill-formed: does not declare a member function
struct S {
FIC f; /1 OK
}s
FIC S::*pm= &S::f; /1 OK
—end example]

An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called “formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a function declaration that is not a
definition, it cannot be used outside of the parameter-declaration-clause since it goes out of scope at the
end of the function declarator (3.3).]

[Example: the declaration

87) This excludes parameters of type “ptr-arr-seq T2” where T2 is “pointer to array of unknown bound of T” and where ptr-arr-seq
means any sequence of “pointer to” and “array of” derived declarator types. This exclusion applies to the parameters of the function,
and if a parameter isa pointer to function or pointer to member function then to its parameters also, etc.

140

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.3.5 Functions

int i,
*pi’
f0),
*fpi(int),
(*pif)(const char*, const char¥*),
(*fpif(int))(int);

declaresaninteger i , apointer pi to aninteger, afunction f taking no arguments and returning an integer,
afunction f pi taking an integer argument and returning a pointer to an integer, apointer pi f to afunction
which takes two pointers to constant characters and returns an integer, a function f pi f taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to comparef pi and pi f. The binding of *f pi (i nt) is*(fpi (int)), sothedecla
ration suggests, and the same construction in an expression requires, the calling of afunction f pi , and then
using indirection through the (pointer) result to yield an integer. In the declarator (*pi f) (const
char*, const char*) , the extra parentheses are necessary to indicate that indirection through a pointer
to afunction yields a function, which is then called.] [Note: typedefs are sometimes convenient when the
return type of afunction is complex. For example, the function f pi f above could have been declared

typedef int |FUNC(int);
I FUNC* fpif(int);

—end note]

8.3.6 Default arguments [dcl.fct.default]

If an expression is specified in a parameter declaration this expression is used as a default argument.
Default arguments will be used in calls where trailing arguments are missing.

[Example: the declaration
void point(int = 3, int = 4);

declares afunction that can be called with zero, one, or two arguments of typei nt . It can be caled in any
of these ways:

point(1,2); point(1l); point();
Thelast two calls are equivalent to poi nt (1, 4) and poi nt (3, 4) , respectively.]

A default argument expression shall be specified only in the parameter-declaration-clause of a function
declaration or in a template-parameter (14.1). If it is specified in a parameter-declaration-clause, it shall
not occur within a declarator or abstract-declarator of aparameter-declaration.ss)

For non-template functions, default arguments can be added in later declarations of a function in the same
scope. Declarationsin different scopes have completely distinct sets of default arguments. That is, declara
tionsin inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In
a given function declaration, all parameters subsequent to a parameter with a default argument shall have
default arguments supplied in this or previous declarations. A default argument shall not be redefined by a
later declaration (not even to the same value). [Example:

void f(int, int);

void f(int, int = 7);

voi d h()
{
f(3); /1 OK,callsf (3, 7)
void f(int =1, int); /| error: does not use default
/| from surrounding scope
}

88) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or
t ypedef declarations.

141

7

| SO/IEC 14882:2003(E) O ISO/IEC

8.3.6 Default arguments 8 Declarators
void m)
{
void f(int, int); / | has no defaults
f(4); /| error: wrong number of arguments
void f(int, int = 5); /1 OK
f(4); /1 OK,callsf (4, 5);
void f(int, int = 5); /| error: cannot redefine, even to
/| samevalue
}
void n()
f(6); /'l OK,callsf (6, 7)

—end example] For a given inline function defined in different trandation units, the accumulated sets of
default arguments at the end of the trandation units shall be the same; see 3.2.

A default argument expression is implicitly converted (clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in adeclaration of avariable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in
member functions of class templates are performed as described in 14.7.1. [Example: in the following
code, g will be called with thevaluef (2) :

int a=1;
int f(int);
int g(int x =f(a)); /| default argument: f (: : a)
void h() {
a = 2;
{
int a=3;
a(); 11 g(f(::a))
}

—end example] [Note: in member function declarations, names in default argument expressions are looked
up asdescribed in 3.4.1. Access checking applies to names in default argument expressions as described in
clause11.]

Except for member functions of class templates, the default arguments in a member function definition that
appears outside of the class definition are added to the set of default arguments provided by the member
function declaration in the class definition. Default arguments for a member function of a class template
shall be specified on theinitial declaration of the member function within the class template. [Example:

class C{
void f(int i = 3);
void g(int i, int j = 99);
b
void C:f(int i = 3) /| error: default argument already
{1} /| specified in class scope
void C:g(int i =88, int j) /'l inthistrandation unit,
{1} /| C: : g can be called with no argument

—end example]

Local variables shall not be used in default argument expressions. [Example:

142

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.3.6 Default arguments

void f()

{
int i;
extern void g(int x =1); /'l error
/..

}

—end example]
Thekeywordt hi s shall not be used in a default argument of a member function. [Example:

class A {
void f(A* p =this) { } /'l error
b

—end example]

Default arguments are evaluated each time the function is called. The order of evaluation of function argu-
ments is unspecified. Consequently, parameters of a function shall not be used in default argument expres-
sions, even if they are not evaluated. Parameters of a function declared before a default argument expres-
sion are in scope and can hide namespace and class member names. [Example;

int a;

int f(int a, int b a); /'] error: parameter a

/| used as default argument

typedef int I;
int g(float I, int b =1(2)); /| error: parameter | found
int h(int a, int b = sizeof(a)); /| error, parameter a used

/| in default argument

—end example] Similarly, anonstatic member shall not be used in a default argument expression, even if it
isnot evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless
it is used to form a pointer to member (5.3.1). [Example: the declaration of X: : menil() in the following
exampleisill-formed because no object is supplied for the nonstatic member X: : a used asaninitializer.

int b;
class X {
int a;
int menl(int i = a); /'] error: nonstatic member a
/| used as default argument
int men2(int i = b); /1 OK; useX: :b

static int b;
s
The declaration of X: : men2() is meaningful, however, since no object is needed to access the static
member X: : b. Classes, objects, and members are described in clause 9.] A default argument is not part
of the type of afunction. [Example:

int f(int = 0);

void h()
{
int j =f(1);
int k =f(); /1 OK, meansf (0)
}
int (*pl)(int) = &f;
int (*p2)() = &; /| error: type mismatch

—end example] When a declaration of a function is introduced by way of a using-declaration (7.3.3), any
default argument information associated with the declaration is made known as well. If the function is
redeclared thereafter in the namespace with additional default arguments, the additional arguments are also
known at any point following the redeclaration where the using-declaration is in scope.

143

10

| SO/IEC 14882:2003(E) O ISO/IEC

8.3.6 Default arguments 8 Declarators

A virtual function call (10.3) uses the default arguments in the declaration of the virtual function deter-
mined by the static type of the pointer or reference denoting the object. An overriding function in aderived
class does not acquire default arguments from the function it overrides. [Example:

struct A {

virtual void f(int a = 7);
b
struct B : public A {

void f(int a);

i
void m)
{
B* pb = new B;
A* pa = pb;
pa->f (); /1 OK,callspa->B: :f(7)
pb->f (); /| error: wrong humber of argumentsfor B: : f ()
}
—end example]
8.4 Function definitions [dcl.fct.def]

Function definitions have the form

function-definition:
decl-specifier-seq,,, declarator ctor-initializer,, function-body
decl-specifier-seq,,, declarator function-try-block

function-body:
compound-statement

The declarator in a function-definition shall have the form

D1 (parameter-declaration-clause) cv-qualifier-seq,, exception-specification,y
asdescribed in 8.3.5. A function shall be defined only in namespace or class scope.
[Example: asimple example of a complete function definition is

int mx(int a, int b, int ¢)

{
int m=(a>Dhb) ? a: b;
return (m>1c¢c) ? m: c;
}
Herei nt isthe decl-specifier-seq; max(i nt a, i nt b, i nt ¢) isthedeclarator;{ /* ... */ }is

the function-body.]
A ctor-initializer isused only in a constructor; see 12.1 and 12.6.

A cv-qualifier-seq can be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.3.2. Itis part of the function type.

[Note: unused parameters need not be named. For example,

void print(int a, int)

{
printf("a = %\ n", a);
}
—end note]

144

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.5 Initializers

8.5 Initializers [dcl.init]

A declarator can specify an initial value for the identifier being declared. The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of 8.5 applies
also to initializations specified by other syntactic contexts, such as the initialization of function parameters
with argument expressions (5.2.2) or the initialization of return values (6.6.3).

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list , o }
{}

initializer-list:
initializer-clause
initializer-list , initializer-clause

Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expres-
sionsinvolving literals and previously declared variables and functions. [Example:
int f(int);
int a=2;
int b =f(a);
int c(b);
—end example]
[Note: default argument expressions are more restricted; see 8.3.6.
The order of initialization of static objectsis described in 3.6 and 6.7.]
To zero-initialize an object of type T means:
— if Tisascalar type (3.9), the object is set to the value of 0 (zero) convertedto T;
— if T is a non-union class type, each nonstatic data member and each base-class subobject is zero-
initialized;
— if Tisaunion type, the object’ s first named data member is zero-i nitialized;
— if Tisan array type, each element is zero-initialized;
— if Tisareferencetype, no initialization is performed.
To default-initialize an object of type T means:

— if Tisanon-POD class type (clause 9), the default constructor for T is called (and the initialization is
ill-formed if T has no accessible default constructor);

— if Tisan array type, each element is default-initialized;
— otherwise, the object is zero-initialized.
To value-initialize an object of type T means:

— if Tisaclasstype (clause 9) with a user-declared constructor (12.1), then the default constructor for T is
caled (and theinitialization isill-formed if T has no accessible default constructor);

— if T is anon-union class type without a user-declared constructor, then every non-static data member
and base-class component of T is vaue-initiaized;

%) This member must not be st at i c, by virtue of the requirementsin 9.5.

145

10

11

12

13

| SO/IEC 14882:2003(E) O ISO/IEC

8.5 Initializers 8 Declarators

— if Tisan array type, then each element is value-initialized;
— otherwise, the object is zero-initialized

A program that calls for default-initialization or value-initialization of an entity of reference type is ill-
formed. If T is a cv-qualified type, the cv-unqualified version of T is used for these definitions of zero-
initialization, default-initialization, and value-initialization.

Every object of static storage duration shall be zero-initialized at program startup before any other initial-
ization takes place. [Note: in some cases, additional initialization is done later.]

An object whose initializer is an empty set of parentheses, i.e., () , shall be value-initialized.
[Note: since () isnot permitted by the syntax for initializer,
X a();

is not the declaration of an object of class X, but the declaration of a function taking no argument and
returning an X. Theform () ispermitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2).]

If noinitializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or
array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying
class type shall have a user-declared default constructor. Otherwise, if no initializer is specified for a non-
static object, the object and its subobjects, if any, have an indeterminate initial val uego); if the object or any
of its subobjects are of const-qualified type, the program isill-formed.

Aninitializer for astatic member isin the scope of the member’s class. [Example:
int a;
struct X {

static int a;
static int b;

}s

int X:a=1;

int X:b = a; /Il X:b=X":a
—end example]

The form of initialization (using parentheses or =) is generally insignificant, but does matter when the
entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions
only when the entity being initialized has a class type.

The initialization that occurs in argument passing, function return, throwing an exception (15.1), handling
an exception (15.3), and brace-enclosed initializer lists (8.5.1) is called copy-initialization and is equivalent
to the form

Tx = a;

The initialization that occurs in new expressions (5.3.4), st ati c_cast expressions (5.2.9), functional
notation type conversions (5.2.3), and base and member initializers (12.6.2) is called direct-initialization
and is equivalent to the form

T x(a);

If T isascalar type, then adeclaration of the form
Tx ={ a},;

isequivalent to

V) This does not apply to aggregate objects with automatic storage duration initialized with an incomplete brace-enclosed initializer-
list; see 8.5.1.

146

14

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.5 Initializers

T x = a;

The semantics of initializers are asfollows. The destination type is the type of the object or reference being
initialized and the source type is the type of the initializer expression. The source type is not defined when
theinitializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is areference type, see 8.5.3.

— If the destination type is an array of characters or an array of wehar _t , and the initializer isa string lit-
eral, see8.5.2.

— Otherwise, if the destination typeis an array, see 8.5.1.
— If the destination typeis a (possibly cv-qualified) class type:
— If the classis an aggregate (8.5.1), and the initializer is a brace-enclosed list, see 8.5.1.

— If theinitialization is direct-initialization, or if it is copy-initialization where the cv-unqualified ver-
sion of the source type is the same class as, or a derived class of, the class of the destination, con-
structors are considered. The applicable constructors are enumerated (13.3.1.3), and the best one is
chosen through overload resolution (13.3). The constructor so selected is called to initiaize the
object, with theinitializer expression(s) asits argument(s). |f no constructor applies, or the overload
resolution is ambiguous, theinitialization isill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences that
can convert from the source type to the destination type or (when a conversion function is used) to a
derived class thereof are enumerated as described in 13.3.1.4, and the best one is chosen through
overload resolution (13.3). If the conversion cannot be done or is ambiguous, the initialization is
ill-formed. The function selected is called with the initializer expression as its argument; if the func-
tion is a constructor, the call initializes a temporary of the destination type. The result of the call
(which is the temporary for the constructor case) is then used to direct-initialize, according to the
rules above, the object that is the destination of the copy-initiaization. In certain cases, an imple-
mentation is permitted to eliminate the copying inherent in this direct-initialization by constructing
the intermediate result directly into the object being initialized; see 12.2, 12.8.

— Otherwise, if the source typeisa (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen through over-
load resolution (13.3). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization isill-formed.

— Otherwise, theinitial value of the object being initialized is the (possibly converted) value of theinitial-
izer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer
expression to the cv-unqualified version of the destination type; no user-defined conversions are consid-
ered. If the conversion cannot be done, the initialization is ill-formed. [Note: an expression of type
“cvl T” caninitialize an object of type“cv2 T” independently of the cv-qualifiers cvl and cv2.

int a;
const int b = a;
int ¢ = b;
—end note]
8.5.1 Aggregates [dcl.init.aggr]

An aggregate is an array or a class (clause 9) with no user-declared constructors (12.1), no private or pro-
tected non-static data members (clause 11), no base classes (clause 10), and no virtual functions (10.3).

When an aggregate is initialized the initializer can contain an initializer-clause consisting of a brace-
enclosed, commarseparated list of initializer-clauses for the members of the aggregate, written in increasing
subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to the

147

| SO/IEC 14882:2003(E) O ISO/IEC

8.5.1 Aggregates 8 Declarators

members of the subaggregate. [Example:

struct A {
int x;
struct B {
int i;
int j;
} b

ya={1 {2 3} }
initializesa. x with1,a. b. i with2, a. b.j with3.]

An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as
described in 8.5.

An array of unknown size initialized with a brace-enclosed initializer-list containing n initializers, where n
shall be greater than zero, is defined as having n elements (8.3.4). [Example:

int x[] ={ 1, 3, 5};

declares and initializes x as aone-dimensional array that has three elements since no size was specified and
there are three initializers.] An empty initializer list {} shall not be used as the initializer for an array of
unknown bound.?

Static data members are not considered members of the class for purposes of aggregate initialization.
[Example:
struct A {
int i;
static int s;
int j;
ta={1 21}

Here, the second initializer 2 initializesa. j and not the static datamember A: : s.]

Aninitializer-list isill-formed if the number of initializers exceeds the number of members or elements to
initialize. [Example:

char cv[4] ={ 'a', 's’, 'd, '"f', 0}; /'l error
isill-formed.]

If there are fewer initializers in the list than there are members in the aggregate, then each member not
explicitly initialized shall be value-initialized (8.5). [Example:

struct S{ int a; char* b; int c; };
Sss ={ 1, "asdf" };

initializes ss. a with 1, ss. b with "asdf", and ss. ¢ with the value of an expression of the form
int(),thatis, 0.]

Aninitializer for an aggregate member that is an empty class shall have the form of an empty initializer-list
{}. [Example:
struct S{ };
struct A {
S s;
int i;
ta={{}., 3}
—end example] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an
empty class, then each member of the aggregate shall be initialized with a value of the form T() (5.2.3),
where T represents the type of the uninitialized member.

9 The syntax provides for empty initializer-lists, but nonetheless G+ does not have zero length arrays.

148

10

11

12

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.5.1 Aggregates

If an incomplete or empty initializer-list leaves a member of reference type uninitialized, the program is
ill-formed.

When initializing a multi-dimensional array, the initializers initialize the elements with the last (rightmost)
index of the array varying the fastest (8.3.4). [Example:

int x[2][2] ={ 3, 1, 4, 2};
initializesx[0] [0] to3,x[0] [1] to1,x[1][0] to4,andx[1] [1] to2. On the other hand,

float y[4][3] = {
. {1}y, {2} {3}, {4}

initializes the first column of y (regarded as atwo-dimensional array) and leaves the rest zero. |

Braces can be elided in an initializer-list as follows. If the initializer-list begins with a left brace, then the
succeeding commarseparated list of initializers initializes the members of a subaggregate; it is erroneous
for there to be more initializers than members. If, however, the initializer-list for a subaggregate does not
begin with aleft brace, then only enough initializers from the list are taken to initialize the members of the
subaggregate; any remaining initializers are left to initialize the next member of the aggregate of which the
current subaggregate is amember. [Example:

float y[4][3]
{1, 3,
{ 2, 4
{3 5
s
is a completely-braced initialization: 1, 3, and 5 initialize the first row of the array y[0], namely
y[O][O],y[O][1],andy[O] [2]. Likewisethe nexttwo linesinitializey[1] andy[2] . Theinitial-
izer ends early and therefore y[3] 's elements are initialized as if explicitly initialized with an expression
of theform f | oat (), that is, areinitialized with 0. 0. In the following example, braces in the initializer-
list are elided; however the initializer-list has the same effect as the completely-braced initializer-list of the
above example,
float y[4][3] = {
1, 3, 5 2, 4, 6, 3, 5 7

s
Theinitializer for y begins with aleft brace, but the one for y[0] does not, therefore three elements from
thelist are used. Likewisethe next three are taken successively for y[1] andy[2] . —end examplé€]

All implicit type conversions (clause 4) are considered when initializing the aggregate member with an ini-
tializer from an initializer-list. If the initializer can initialize a member, the member isinitialized. Other-
wise, if the member is itself a non-empty subaggregate, brace elision is assumed and the initializer is con-
sidered for the initialization of the first member of the subaggregate.
[Example:
struct A {
int i;
operator int();
itruct B {
A al, az;
int z;
s
A a;
Bb={4 a a},
Braces are elided around the initializer forb. al.i . b. al.i isinitidized with 4, b. a2 isinitialized with
a, b. z isinitialized with whatever a. operat or int () returns.]

149

13

14

15

| SO/IEC 14882:2003(E) O ISO/IEC

8.5.1 Aggregates 8 Declarators

[Note: An aggregate array or an aggregate class may contain members of a class type with a user-declared
constructor (12.1). Initialization of these aggregate objectsis described in 12.6.1.]

When an aggregate with static storage duration is initialized with a brace-enclosed initializer-list, if al the
member initializer expressions are constant expressions, and the aggregate is a POD type, the initialization
shall be done during the static phase of initialization (3.6.2); otherwise, it is unspecified whether the initial-
ization of members with constant expressions takes place during the static phase or during the dynamic
phase of initialization.

When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer for
the first member of the union. [Example:

union u { int a; char* b; };

ua={1}

ub = a

uc =1, /'l error
ud={ 0, "asdf" }; /'l error
ue={ "asdf" }; /'l error

—end example] [Note: as described above, the braces around the initializer for a union member can be
omitted if the union is amember of another aggregate. |

8.5.2 Character arrays [dcl.init.string]

A char array (whether plain char, si gned char, or unsi gned char) can be initialized by a string-
literal (optionally enclosed in braces); awchar _t array can beinitialized by awide string-literal (option-
ally enclosed in braces); successive characters of the string-literal initialize the members of the array.
[Example:

char msg[] = "Syntax error on line %\n";

shows a character array whose members are initialized with a string-literal. Note that because’ \ n’ isa
single character and because atrailing’ \ 0’ isappended, si zeof (nmsg) is25.]

There shall not be more initializers than there are array elements. [Example:
char cv[4] = "asdf"; /'l error

isill-formed since there is no space for theimplied trailing’ \ 0’ .]

8.5.3 References [dcl.init.ref]

A variable declared to be a T&, that is “reference to type T (8.3.2), shall be initialized by an object, or
function, of type T or by an object that can be converted intoa T. [Example:

int g(int);

void f()

{ . .
int i;
int&r =i; /'l r referstoi
r = 1; /| thevalueofi becomes1
int* p = &r; /'l p pointstoi
int&rr =r; /'l rr referstowhat r refersto, thatis, toi
int (&g)(int) = g; /'l r g refersto the function g
rg(i); /| callsfunction g
int a[3];
int (&a)[3] = a; /'l rareferstothearray a
ra[l] =i; /'l modifiesa[1]

}

—end example]

150

O ISO/IEC | SO/IEC 14882:2003(E)

8 Declarators 8.5.3 References

A reference cannot be changed to refer to another object after initialization. Note that initialization of aref-
erenceistreated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) areinitializations.

The initializer can be omitted for areference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
ext er n specifier isexplicitly used. [Example:

int&rl; /'] error: initializer missing
extern int& r2; /1 OK
—end example]

Given types “cvl T1” and “cv2T2,” “cvl T1” isreference-related to “cv2 T2” if T1 is the same type as
T2,0r Tl isabaseclassof T2. “cvl T1” isreference-compatible with “cv2 T2" if T1 isreference-related
to T2 and cvl is the same cv-qualification as, or greater cv-qualification than, cv2. For purposes of over-
load resolution, cases for which cvl is greater cv-qualification than cv2 are identified as reference-
compatible with added qualification (see 13.3.3.2). In al cases where the reference-related or reference-
compatible relationship of two typesis used to establish the validity of areference binding, and T1 isabase
class of T2, a program that necessitates such a binding is ill-formed if T1 is an inaccessible (clause 11) or
ambiguous (10.2) base class of T2.

A referenceto type“cvl T1” isinitialized by an expression of type “cv2 T2” asfollows:
— If theinitializer expression
— isanlvaue (but is not abit-field), and “cvl T1” isreference-compatible with “cv2 T2,” or

— has a class type (i.e, T2 is a class type) and can be implicitly converted to an Ivalue of type
“cv3T3,” where“cvl T1” is reference-compatible with “cv3 T3” %) (this conversion is selected by
enumerating the applicable conversion functions (13.3.1.6) and choosing the best one through over-
load resolution (13.3)),

then the reference is bound directly to theinitializer expression Ivalue in the first case, and the reference
is bound to the Ivalue result of the conversion in the second case. In these cases the referenceis said to
bind directly to the initializer expression. [Note: the usual Ivalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not needed, and therefore are suppressed, when
such direct bindingsto lvalues are done.]

[Example:
double d = 2.0;
doubl e& rd = d; // rdreferstod
const doubl e& rcd = d; /1 rcdreferstod

struct A { };
struct B : public A{ } b;

A& ra = b; /'l rarefersto Asub-objectinb
const A& rca = b; /'l rcarefersto A sub-objectinb
—end example]

— Otherwise, the reference shall be to a non-volatile const type (i.e., cvl shall be const). [Example:

doubl e& rd2 = 2.0; /| error: not an Ivalue and reference not const

int i =2

doubl e& rd3 = i; /| error: type mismatch and reference not const
—end example]

— If theinitializer expression is an rvalue, with T2 aclass type, and “cvl T1" is reference-compatible
with “cv2 T2,” the reference is bound in one of the following ways (the choice is implementation-

92) This requires a conversion function (12.3.2) returning areference type.

151

| SO/IEC 14882:2003(E) O ISO/IEC

8.5.3 References 8 Declarators

defined):

— Thereference is bound to the object represented by the rvalue (see 3.10) or to a sub-object within
that object.

— A temporary of type “cvl T2" [sic] is created, and a constructor is called to copy the entire
rvalue object into the temporary. The reference is bound to the temporary or to a sub-object
within the temporary.93

The constructor that would be used to make the copy shall be callable whether or not the copy is
actually done. [Example:

struct A{ };

struct B : public A{ } b;

extern B f();

const A& rca = f(); /| Either bound to the A sub-object of the B rvalue,
/1 or theentire B object is copied and the reference
/I isbound to the A sub-object of the copy

—end example]

Otherwise, a temporary of type “cvl T1” is created and initialized from the initializer expression
using the rules for a non-reference copy initiaization (8.5). The reference is then bound to the tem-
porary. If T1 is reference-related to T2, cvl must be the same cv-qualification as, or greater cv-
qualification than, cv2; otherwise, the program isill-formed. [Example:

const doubl e& rcd2 = 2; /1 rcd2 refersto temporary with value 2. 0
const volatile int cvi = 1;
const int&r = cvi; /| error: type qualifiers dropped

—end example]

[Note: 12.2 describes the lifetime of temporaries bound to references. |

93) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an implementation
must eventually choose thefirst alternative (binding without copying) to avoid infinite recursion.

152

O ISO/IEC | SO/IEC 14882:2003(E)

9 Classes [class]
A classisatype. Its name becomes a class-name (9.1) within its scope.
class-name:
identifier
template-id

Class-specifiers and elaborated-type-specifiers (7.1.5.3) are used to make class-names. An object of aclass
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head { member-specification,, }

class-head:
class-key identifier,, base-clause,,
class-key nested-name-specifier identifier base-clause,y
class-key nested-name-specifier , template-id base-clause,,

class-key:
cl ass
struct
uni on

A class-name is inserted into the scope in which it is declared immediately after the class-name is seen.
The class-name is aso inserted into the scope of the class itself; this is known as the injected-class-name.
For purposes of access checking, the injected-class-name is treated as if it were a public member name. A
class-specifier is commonly referred to as a class definition. A classis considered defined after the closing
brace of its class-specifier has been seen even though its member functions are in general not yet defined.

Complete objects and member subobjects of class type shall have nonzero size® [Note: class objects can
be assigned, passed as arguments to functions, and returned by functions (except objects of classes for
which copying has been restricted; see 12.8). Other plausible operators, such as equality comparison, can
be defined by the user; see 13.5. |

A structure is aclass defined with the class-key st r uct ; its members and base classes (clause 10) are pub-
lic by default (clause 11). A union is a class defined with the class-key uni on; its members are public by
default and it holds only one data member at atime (9.5). [Note: aggregates of class type are described in
8.5.1.] A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct,
non-POD-union (or array of such types) or reference, and has no user-defined copy assignment operator
and no user-defined destructor. Similarly, a POD-union is an aggregate union that has no non-static data
members of type non-POD-struct, hon-POD-union (or array of such types) or reference, and has no user-
defined copy assignment operator and no user-defined destructor. A POD class is a class that is either a
POD-struct or a POD-union.

9.1 Classnhames [class.name]

A class definition introduces anew type. [Example:

%) Base class subobjects are not so constrained.

153

| SO/IEC 14882:2003(E) O ISO/IEC

9.1 Class names 9 Classes

struct X { int a; };
struct Y { int a; };
X al;

Y az2;

int a3;

declares three variables of three different types. Thisimpliesthat

al = a2, /'l error: Y assigned to X
al = a3; /| error: i nt assignedto X

are type mismatches, and that

int f(X);

int f(Y);
declare an overloaded (clause 13) function f () and not simply asingle functionf () twice. For the same
reason,

struct S{ int a; };
struct S{ int a; }; /| error, double definition

isill-formed becauseit defines S twice.]

A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared, then when both declara
tions are in scope, the class can be referred to only using an elaborated-type-specifier (3.4.4). [Example:

struct stat {

/..
b
stat gstat; /| useplainst at to
/| define variable
int stat(struct stat*); /'l redeclarest at asfunction
void f()
{
struct stat* ps; /1 struct prefix needed
/] tonamestruct stat
/..
stat(ps); /] call stat()
/..
}

—end example] A declaration consisting solely of class-key identifier ; is either a redeclaration of the
name in the current scope or a forward declaration of the identifier as a class name. It introduces the class
name into the current scope. [Example:

struct s { int a; };

void g()
struct s; /| hideglobal struct s
/| with alocal declaration
s* p; /| refertolocal struct s
struct s { char* p; }; /| definelocal struct s
struct s; /| redeclaration, has no effect
}

—end example] [Note: Such declarations allow definition of classes that refer to each other. [Example:

154

O ISO/IEC | SO/IEC 14882:2003(E)

9 Classes 9.1 Class names

cl ass Vector;

class Matrix {
/..
friend Vector operator*(Matrix& Vectoré&);

cl ass Vector ({
/..
friend Vector operator*(Matrix& Vectoré&);

b
Declaration of f ri endsisdescribed in 11.4, operator functionsin 13.5. 1]

An elaborated-type-specifier (7.1.5.3) can also be used as a type-specifier as part of a declaration. It differs
from aclass declaration in that if aclass of the elaborated name is in scope the elaborated name will refer to
it. [Example:

struct s { int a; };
void g(int s)

struct s* p = new struct s; /1 global s
p->a = s; /1 local s

}
—end example]

[Note: The declaration of a class name takes effect immediately after the identifier is seen in the class defi-
nition or elaborated-type-specifier. For example,

class A * A

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated form cl ass A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.]

A typedef-name (7.1.3) that names a class is a class-name, but shall not be used in an elaborated-type-
specifier; seeaso 7.1.3.

9.2 Classmembers [class.mem]

member -specification:
member-declaration member-specificationgy
access-specifier : member-specification,y

member-declaration:
decl-specifier-seq,, member-declarator-listyy ;
function-definition ;
© ¢ opt Nested-name-specifier t enpl at e, unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifier
declarator constant-initializer o,
identifier,, : constant-expression

155

10

11

| SO/IEC 14882:2003(E) O ISO/IEC

9.2 Class members 9 Classes

pure-specifier:
=0

constant-initializer:
= constant-expression

The member-specification in a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and enu-
merators. Data members and member functions are static or nonstatic; see 9.4. Nested types are classes
(9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use of a
typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are members of
the class. Except when used to declare friends (11.4) or to introduce the name of a member of a base class
into a derived class (7.3.3,11.3), member-declarations declare members of the class, and each such
member-declaration shall declare at least one member name of the class. A member shall not be declared
twice in the member-specification, except that a nested class or member class template can be declared and
then later defined.

A class is considered a completely-defined object type (3.9) (or complete type) at the closing } of the
class-specifier. Within the class member-specification, the class is regarded as complete within function
bodies, default arguments and constructor ctor-initializers (including such things in nested classes). Other-
wiseit isregarded as incomplete within its own class member-specification.

[Note: a single name can denote several function members provided their types are sufficiently different
(clause 13).]

A member-declarator can contain a constant-initializer only if it declares a st ati ¢ member (9.4) of
const integral or const enumeration type, see 9.4.2.

A member can be initialized using a constructor; see 12.1. [Note: see clause 12 for a description of con-
structors and other special member functions.]

A member shall not beaut 0, ext ern,orregi ster.

The decl-specifier-seq is omitted in constructor, destructor, and conversion function declarations only. The
member-declarator-list can be omitted only after a class-specifier, an enum-specifier, or a decl-specifier-
seq of the form f r i end elaborated-type-specifier. A pure-specifier shall be used only in the declaration
of avirtual function (10.3).

Non-st at i ¢ (9.4) members that are class objects shall be objects of previously defined classes. In partic-
ular, aclasscl shall not contain an object of classcl , but it can contain a pointer or reference to an object
of classcl . When an array is used as the type of a nonstatic member all dimensions shall be specified.

Except when used to form a pointer to member (5.3.1), when used in the body of a nonstatic member func-
tion of its class or of a class derived from its class (9.3.1), or when used in a memrinitializer for a construc-
tor for its class or for a class derived from its class (12.6.2), a nonstatic data or function member of a class
shall only be referred to with the class member access syntax (5.2.5).

[Note: the type of a nonstatic member function is an ordinary function type, and the type of a nonstatic data
member is an ordinary object type. There are no special member function types or data member types.]

[Example: A simple example of a class definitionis

struct tnode {
char tword[20];
int count;
t node *left;
tnode *right;
s

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

156

12

13

13a

14

15

16

17

O ISO/IEC | SO/IEC 14882:2003(E)

9 Classes 9.2 Class members

tnode s, *sp;

declaress tobeat node and sp to be apointer to at node. With these declarations, sp- >count refers
to the count member of the structure to which sp points; s. | ef t refersto thel ef t subtree pointer of
the structure s; and s. ri ght - >t wor d[O] refers to the initial character of the t wor d member of the
ri ght subtreeof s. |

Nonstatic data members of a (non-union) class declared without an intervening access-specifier are allo-
cated so that later members have higher addresses within a class object. The order of allocation of nonstatic
data members separated by an access-specifier is unspecified (11.1). Implementation alignment require-
ments might cause two adjacent members not to be alocated immediately after each other; so might
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1).

If T isthe name of a class, then each of the following shall have a name different from T:
— every static data member of classT;

— every member function of class T [Note: this restriction does not apply to constructors, which do not
have names (12.1)] ;

— every member of class T that isitself atype;
— every enumerator of every member of class T that is an enumerated type; and
— every member of every anonymous union that is amember of classT.

In addition, if class T has a user-declared constructor (12.1), every nonstatic data member of class T shall
have a name different from T.

Two POD-struct (clause 9) types are layout-compatible if they have the same number of nonstatic data
members, and corresponding nonstatic data members (in order) have layout-compatible types (3.9).

Two POD-union (clause 9) types are layout-compatible if they have the same number of nonstatic data
members, and corresponding nonstatic data members (in any order) have layout-compatible types (3.9).

If a POD-union contains two or more POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

A pointer to a POD-struct object, suitably converted using ar ei nt er pret _cast, points to its initial
member (or if that member is a hit-field, then to the unit in which it resides) and vice versa. [Note: There
might therefore be unnamed padding within a POD-struct object, but not at its beginning, as necessary to
achieve appropriate alignment.]

9.3 Member functions [class.mfct]

Functions declared in the definition of a class, excluding those declared with af ri end specifier (11.4),
are called member functions of that class. A member function may be declared st at i ¢ in which caseitis
a static member function of its class (9.4); otherwise it is a nonstatic member function of its class (9.3.1,
9.3.2).

A member function may be defined (8.4) in its class definition, in which case it is an inline member func-
tion (7.1.2), or it may be defined outside of its class definition if it has aready been declared but not
defined in its class definition. A member function definition that appears outside of the class definition
shall appear in a namespace scope enclosing the class definition. Except for member function definitions
that appear outside of a class definition, and except for explicit specializations of member functions of class
templates and member function templates (14.7) appearing outside of the class definition, a member func-
tion shall not be redeclared.

Ani nl i ne member function (whether static or nonstatic) may also be defined outside of its class defini-
tion provided either its declaration in the class definition or its definition outside of the class definition

157

| SO/IEC 14882:2003(E) O ISO/IEC

9.3 Member functions 9 Classes

declares the function as i nl i ne. [Note: member functions of a class in namespace scope have external
linkage. Member functions of alocal class (9.8) have no linkage. See3.5. |

There shall be at most one definition of a non-inline member function in a program; no diagnostic is
required. There may be more than one i nl i ne member function definition in a program. See 3.2 and
7.1.2.

If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using the : : operator. [Note: a name used in a member function defini-
tion (that is, in the parameter-declaration-clause including the default arguments (8.3.6), or in the member
function body, or, for a constructor function (12.1), in ameminitiali zer expression (12.6.2)) is
looked up as described in 3.4. | [Example:

struct X {
typedef int T,
static T count;
void f(T);

}
void X:f(Tt = count) { }

The member function f of class X is defined in global scope; the notation X: : f specifies that the function
f isamember of class X and in the scope of class X. In the function definition, the parameter type T refers
to the typedef member T declared in class X and the default argument count refers to the static data mem-
ber count declaredinclassX.]

A st ati c loca variable in a member function always refers to the same object, whether or not the mem-
ber functionisi nl i ne.

Member functions may be mentioned inf r i end declarations after their class has been defined.
Member functions of alocal class shall be defined inline in their class definition, if they are defined at all.

[Note: a member function can be declared (but not defined) using a typedef for a function type. The result-
ing member function has exactly the same type as it would have if the function declarator were provided
explicitly, see 8.3.5. For example,

t ypedef void fv(void);
t ypedef void fvc(void) const;

struct S {

fv menfuncil; /1 equivalent to: voi d menf unc1(voi d);

voi d menfunc2();

fvc nmenfuncs; /1 equivalent to: voi d menf unc3(voi d) const;
i

fv S:* pnfvl
fv S::* pnfv2
fve S::* pnfv3

Alsosee 14.3. |

&S: : nenfuncl;
&S: : menf unc2;
&S: : menf unc3;

9.3.1 Nonstatic member functions [class.mfct.nonstatic]

A nonstatic member function may be called for an object of its class type, or for an object of aclass derived
(clause 10) from its class type, using the class member access syntax (5.2.5, 13.3.1.1). A nonstatic member
function may also be called directly using the function call syntax (5.2.2, 13.3.1.1)

— from within the body of a member function of its class or of aclass derived from its class, or
— from amem+initializer (12.6.2) for a constructor for its class or for a class derived from its class.

If a nonstatic member function of aclass X is called for an object that is not of type X, or of atype derived
from X, the behavior is undefined.

When an id-expression (5.1) that is not part of a class member access syntax (5.2.5) and not used to form a
pointer to member (5.3.1) is used in the body of a nonstatic member function of class X or used in the

158

O ISO/IEC | SO/IEC 14882:2003(E)

9 Classes 9.3.1 Nonstatic member functions

memrinitializer for a constructor of class X, if name lookup (3.4.1) resolves the name in the id-expression to
a nonstatic nontype member of class X or of a base class of X, the id-expression is transformed into a class
member access expression (5.2.5) using (*t hi s) (9.3.2) as the postfix-expression to the left of the .
operator. The member name then refers to the member of the object for which the functionis called. Simi-
larly during name lookup, when an unqualified-id (5.1) used in the definition of a member function for
class X resolvesto ast at i ¢ member, an enumerator or a nested type of class X or of a base class of X, the
unqualified-id is transformed into a qualified-id (5.1) in which the nested-name-specifier names the class of
the member function. [Example:

struct tnode {
char tword[20];
int count;
t node *left;
tnode *right;

voi d set(char*, tnode* |, tnode* r);
b
voi d tnode::set(char* w, tnode* |, tnode* r)
{
count = strlen(w)+1;
if (sizeof (tword)<=count)
perror("tnode string too | ong");
strepy(tword, w);
left =1;
right =r;
}
void f(tnode nl, tnode n2)
{
nl.set ("abc", &2, 0);
n2.set("def",0,0);
}

In the body of the member function t node: : set, the member names t word, count, | eft, and
right refer to members of the object for which the function is called. Thus, in the call
nl. set ("abc", &2, 0), tword refers to nl1. t word, and in the call n2.set ("def",0,0), it
refers to n2. t word. The functions strl en, perror, and strcpy are not members of the class
t node and should be declared elsewhere.”®]

A nonstatic member function may be declared const, vol atil e, or const vol atil e. These cv-
qualifiers affect the type of the t hi s pointer (9.3.2). They also affect the function type (8.3.5) of the
member function; a member function declared const is a const member function, a member function
declared vol at i | e isavolatile member function and a member function declared const vol atil e is
aconst volatile member function. [Example:

struct X {
void g() const;
void h() const volatile;

b
X: : gisaconst member functionand X: : hisaconst vol ati | e member function.]

A nonstatic member function may be declared virtual (10.3) or pure virtual (10.4).

%) See, for example, <cst ri ng> (21.4).

159

| SO/IEC 14882:2003(E) O ISO/IEC

9.3.2Thet hi s pointer 9 Classes

9.3.2 Thet hi s pointer [class.this]

In the body of a nonstatic (9.3) member function, the keyword t hi s is a non-lvalue expression whose
value is the address of the object for which the function is called. Thetype of t hi s in a member function
of aclass Xis X*. If the member functionis declared const , thetypeof t hi s isconst X*, if the mem-
ber function is declared vol ati | e, thetype of t hi s isvol ati | e X*, and if the member function is
declared const vol ati | e, thetypeoft hi sisconst vol atil e X*.

In a const member function, the object for which the function is called is accessed through a const
access path; therefore, aconst member function shall not modify the object and its non-static data mem-
bers. [Example:

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } /'l error

b
int s::f() const { return a; }

The a++ in the body of s: : h is ill-formed because it tries to modify (a part of) the object for which
s:: h() iscaled. Thisisnot allowedinaconst member function becauset hi s isapointer to const ;
thatis, *t hi s hasconst type.]

Similarly, vol ati | e semantics (7.1.5.1) apply in vol ati | e member functions when accessing the
object and its non-static data members.

A cv-qualified member function can be called on an object-expression (5.2.5) only if the object-expression
isas cv-qualified or less-cv-qualified than the member function. [Example:

void k(s& x, const s&vy)

{

x.£();

X.9();

y. f();

y.g(); /1 error
}

Thecaly. g() isill-formed becausey isconst ands: : g() isanon-const member function, that is,
s::g() isless-qualified than the object-expressionyy.]

Constructors (12.1) and destructors (12.4) shall not be declared const, vol atile or const
vol atil e. [Note: However, these functions can be invoked to create and destroy objects with cv-
qualified types, see (12.1) and (12.4).]

9.4 Static members [class.static]

A data or function member of a class may be declared st at i ¢ in a class definition, in which case it isa
static member of the class.

A st ati c member s of class X may be referred to using the qualified-id expression X: : s; it is not neces-
sary to use the class member access syntax (5.2.5) to refer toast at i ¢ member. A st at i ¢ member may
be referred to using the class member access syntax, in which case the object-expression is evaluated.
[Example:

cl ass process {

public:

static void reschedul e();
b
process& g();

160

O ISO/IEC | SO/IEC 14882:2003(E)

9 Classes 9.4 Static members
void f()
{
process: :reschedul e(); /1 OK: no object necessary
g().reschedul e(); /1 g() iscalled

—end example] A st at i ¢ member may be referred to directly in the scope of its class or in the scope of a
class derived (clause 10) from its class; in this case, the st at i ¢ member isreferred to asif a qualified-id
expression was used, with the nested-name-specifier of the qualified-id naming the class scope from which
the static member isreferenced. [Example:

int g();
struct X {
static int g();
b
struct Y : X {
static int i;
H
int Yi:i =9(); /1 equivalentto Y: : g();
—end example]

If an unqualified-id (5.1) is used in the definition of a stati ¢ member following the member's
declarator-id, and name lookup (3.4.1) finds that the unqualified-id refersto ast at i ¢ member, enumera-
tor, or nested type of the member’s class (or of a base class of the member’s class), the unqualified-id is
transformed into a qualified-id expression in which the nested-name-specifier names the class scope from
which the member is referenced. The definition of ast at i ¢ member shall not use directly the names of
the nonstatic members of its class or of a base class of its class (including as operands of the si zeof oper-
ator). The definition of ast at i ¢ member may only refer to these members to form pointer to members
(5.3.1) or with the class member access syntax (5.2.5).

Static members obey the usual class member access rules (clause 11). When used in the declaration of a
class member, the st at i ¢ specifier shall only be used in the member declarations that appear within the
member-specification of the class declaration. [Note: it cannot be specified in member declarations that
appear in namespace scope. |

9.4.1 Static member functions [class.static.mfct]
[Note: the rules described in 9.3 apply to st at i ¢ member functions.]

[Note: ast ati ¢ member function does not have at hi s pointer (9.3.2).] A st ati ¢ member function
shall not bevi rtual . Thereshall not beast at i ¢ and a nonstatic member function with the same name
and the same parameter types (13.1). A static member function shall not be declared const,
vol atil e,orconst vol atile.

9.4.2 Static data members [class.static.data]

A st at i ¢ datamember is not part of the subobjects of aclass. Thereisonly one copy of ast ati ¢ data
member shared by all the objects of the class.

The declaration of a st ati ¢ data member in its class definition is not a definition and may be of an
incomplete type other than cv-qualified voi d. The definition for ast at i ¢ data member shall appear in a
namespace scope enclosing the member’s class definition. In the definition at namespace scope, the name
of the st ati ¢ data member shall be qualified by its class name using the : : operator. The initializer
expression in the definition of ast at i ¢ datamember isin the scope of itsclass (3.3.6). [Example:

cl ass process {
static process* run_chain;
static process* running;

161

| SO/IEC 14882:2003(E) O ISO/IEC

9.4.2 Static data members 9 Classes

process* process::running = get_nmain();
process* process::run_chain = running;

The st ati c data member run_chai n of class process is defined in globa scope; the notation
process: : run_chai n specifies that the member r un_chai n is amember of class pr ocess and in
the scope of class process. Inthe st ati ¢ data member definition, the initializer expression refers to
thest at i ¢ datamember r unni ng of classpr ocess.]

[Note: once the st at i ¢ data member has been defined, it exists even if no objects of its class have been
created. [Example: in the example above, r un_chai n and r unni ng exist even if no objects of class
process arecreated by the program.] 1]

If astati c data member is of const integral or const enumeration type, its declaration in the class
definition can specify a constant-initializer which shall be an integral constant expression (5.19). In that
case, the member can appear in integral constant expressions. The member shall still be defined in a name-
space scopeif it isused in the program and the namespace scope definition shall not contain an initializer.

There shall be exactly one definition of ast at i ¢ data member that is used in a program; no diagnostic is
required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes
shall not contain st at i ¢ datamembers. [Note: thisis because there is no mechanism to provide the defi-
nitionsfor such st at i ¢ datamembers.]

St at i ¢ data members of a class in namespace scope have external linkage (3.5). A local class shall not
have st at i ¢ datamembers.

St at i ¢ data membersare initialized and destroyed exactly like non-local objects (3.6.2, 3.6.3).
A st at i ¢ datamember shall not be mut abl e (7.1.1).

9.5 Unions [class.union]

In aunion, at most one of the data members can be active at any time, that is, the value of at most one of
the data members can be stored in a union at any time. [Note: one specia guarantee is made in order to
simplify the use of unions: If a POD-union contains several POD-structs that share a common initia
sequence (9.2), and if an object of this POD-union type contains one of the POD-structs, it is permitted to
inspect the common initial sequence of any of POD-struct members; see 9.2.] The size of a union is suffi-
cient to contain the largest of its data members. Each data member is alocated as if it were the sole mem-
ber of astruct. A union can have member functions (including constructors and destructors), but not virtual
(20.3) functions. A union shall not have base classes. A union shall not be used as a base class. An object
of aclasswith anon-trivial constructor (12.1), a non-trivial copy constructor (12.8), a non-trivia destructor
(12.4), or anon-trivial copy assignment operator (13.5.3, 12.8) cannot be a member of a union, nor can an
array of such objects. If aunion containsast at i ¢ data member, or a member of reference type, the pro-
gramisill-formed.

A union of theform
uni on { member-specification } ;

is called an anonymous union; it defines an unnamed object of unnamed type. The member -specification of
an anonymous union shall only define non-static data members. [Note: nested types and functions cannot
be declared within an anonymous union.] The names of the members of an anonymous union shall be dis-
tinct from the names of any other entity in the scope in which the anonymous union is declared. For the
purpose of name lookup, after the anonymous union definition, the members of the anonymous union are
considered to have been defined in the scope in which the anonymous union is declared. [Example:

162

O ISO/IEC | SO/IEC 14882:2003(E)

9 Classes 9.5 Unions
void f()
{
union { int a; char* p; };
a =1,
Il ..
p = "Jennifer";
/1 ..

}

Here a and p are used like ordinary (nonmember) variables, but since they are union members they have
the same address.]

Anonymous unions declared in a named namespace or in the global namespace shall be declared st at i c.
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-
scope variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous
union in a class scope. An anonymous union shall not have pri vat e or pr ot ect ed members (clause
11). Ananonymous union shall not have function members.

A union for which objects or pointers are declared is not an anonymous union. [Example:
union { int aa; char* p; } obj, *ptr = &obj;
aa = 1,; /'l error
ptr->aa = 1; /1 OK

The assignment to plain aa isill formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular object.] [Note: Initialization of unions with no
user-declared constructorsis described in (8.5.1).]

9.6 Bit-fields [class.bit]
A member-declarator of the form

identifier,, : constant-expression

specifies abit-field; itslength is set off from the bit-field name by a colon. The bit-field attribute is not part
of the type of the class member. The constant-expression shall be an integral constant-expression with a
value greater than or equal to zero. The constant-expression may be larger than the number of bits in the
object representation (3.9) of the hit-field’ s type; in such cases the extra bits are used as padding bits and do
not participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object
is implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into
some addressable allocation unit. [Note: bit-fields straddle allocation units on some machines and not on
others. Bit-fields are assigned right-to-left on some machines, |eft-to-right on others.]

A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields are
not members and cannot be initialized. [Note: an unnamed bit-field is useful for padding to conform to
externally-imposed layouts.] As a special case, an unnamed hit-field with awidth of zero specifies align-
ment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed bit-field may
the constant-expression be a value equal to zero.

A bit-field shall not be a static member. A hit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigned) char, short, i nt or
| ong hit-field issigned or unsigned. A bool value can successfully be stored in abit-field of any nonzero
size. The address-of operator & shall not be applied to a bit-field, so there are no pointers to bit-fields. A
non-const reference shall not be bound to a bit-field (8.5.3). [Note: if the initializer for a reference of type
const T&isan lvauethat refersto abit-field, the reference is bound to atemporary initialized to hold the
value of the bit-field; the reference is not bound to the bit-field directly. See8.5.3.]

If the valuet rue or f al se is stored into a bit-field of type bool of any size (including a one hit bit-
field), the original bool value and the value of the bit-field shall compare equal. If the value of an enu-
merator is stored into a bit-field of the same enumeration type and the number of bitsin the bit-field islarge
enough to hold all the values of that enumeration type, the original enumerator value and the value of the

163

| SO/IEC 14882:2003(E)

9.6 Bit-fields

bit-field shall compare equal. [Example:

enum BOOL { f=0, t=1 };
struct A {
BOCOL b: 1;
s
A a;
void f() {
.b

}
—end example]

9.7 Nested class declarations

/1 shall yieldt rue

O ISO/IEC

9 Classes

[class.nest]

A class can be defined within another class. A class defined within another is called a nested class. The
name of a nested classislocal to its enclosing class. The nested classis in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only

type names, static members, and enumerators from the enclosing class. [Example:

int x;
int vy;
cl ass encl ose {
public:
int Xx;
static int s;

class inner {

void f(int i)

{
int a = sizeof (x);
X =1i;
S =i;
X =0y
y =i
}
voi d g(encl ose* p,
{ .
p->x = i;
}

}s
b

inner* p = 0;

—end example]

/1
/1
/1
/11
/1

i)

/1

/1

error: referstoencl ose: : x
error: assignto encl ose: : x
OK: assigntoencl ose: : s

OK: assign to global x
OK: assignto global y

OK: assigntoencl ose: : x

error: i nner not in scope

Member functions and static data members of anested class can be defined in a namespace scope enclosing

the definition of their class. [Example:

164

O ISO/IEC | SO/IEC 14882:2003(E)

9 Classes 9.7 Nested class declarations

cl ass encl ose {
public:
class inner {
static int x;
void f(int i);
s
s

int enclose::inner::x = 1;
void enclose::inner::f(int i) { /* ... */ }
—end example]

If class X is defined in a namespace scope, a nested class Y may be declared in class X and later defined in
the definition of class X or be later defined in a namespace scope enclosing the definition of class X.

[Example:

class E {
class 11; / | forward declaration of nested class
class 12;
class 11 {}; /| definition of nested class
b
class E:12 {}; /| definition of nested class
—end example]

Like amember function, a friend function (11.4) defined within a nested classisin the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.4) and has no
special access rights to members of an enclosing class.

9.8 Local classdeclarations [class.local]

A class can be defined within a function definition; such aclassis called alocal class. The name of aloca
classislocal to its enclosing scope. Thelocal classisin the scope of the enclosing scope, and has the same
access to names outside the function as does the enclosing function. Declarations in alocal class can use
only type names, static variables, ext er n variables and functions, and enumerators from the enclosing
scope. [Example:

int x;

void f()

{ . .
static int s ;
int x;
extern int g();

struct |ocal {
int g() { return x; } /'l error: x isauto
int h() { returns; } /1 OK
int k() { return ::x; } // OK
int 1 () { return g(); } // OK

~

}

local* p = 0; /'l error: 1 ocal notin scope
—end example]

An enclosing function has no specia access to members of the local class; it obeys the usual access rules
(clause 11). Member functions of a local class shall be defined within their class definition, if they are
defined at all.

165

| SO/IEC 14882:2003(E) O ISO/IEC

9.8 Local class declarations 9 Classes

If class X isalocal class anested class Y may be declared in class X and later defined in the definition of
class X or be later defined in the same scope as the definition of class X. A class nested within alocal class
isalocal class.

A local class shall not have static data members.

9.9 Nested type names [class.nested.type]

Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. [Example:

class X {
public:

typedef int I;

class Y { /* ... *| };

| a,;
s
I b; /'l error
Y c; /'l error
XY d; /1 OK
Xl e /1 OK

—end example]

166

O ISO/IEC | SO/IEC 14882:2003(E)

10 Derived classes [class.derived]

A list of base classes can be specified in a class definition using the notation:

base-clause:
base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list , base-specifier

base-specifier:
! opt NEStEd-name-specifier ,, class-name
virtual access-specifier o :: o Nested-name-specifier,, class-name
access-specifier virtual , 1 oo Nested-name-specifier ,, class-name

access-specifier:
private
protected
public

The class-name in a base-specifier shall not be an incompletely defined class (clause 9); this classis called
adirect base class for the class being declared. During the lookup for a base class name, non-type names
are ignored (3.3.7). If the name found is not a class-name, the program isill-formed. A class B is a base
classof aclass Dif it isadirect base class of D or a direct base class of one of D's base classes. A classis
an indirect base class of another if it isabase class but not adirect base class. A classis said to be (directly
or indirectly) derived from its (direct or indirect) base classes. [Note: See clause 11 for the meaning of
access-specifier.] Unless redefined in the derived class, members of a base class are also considered to be
members of the derived class. The base class members are said to be inherited by the derived class. Inher-
ited members can be referred to in expressions in the same manner as other members of the derived class,
unless their names are hidden or ambiguous (10.2). [Note: the scope resolution operator : : (5.1) can be
used to refer to a direct or indirect base member explicitly. This allows access to a hame that has been
redefined in the derived class. A derived class can itself serve as a base class subject to access control; see
11.2. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous
base class (4.10). An Ivalue of aderived class type can be bound to a reference to an accessible unambigu-
ous base class (8.5.3).]

The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived
classtype. [Example:

cl ass Base {

public:
int a, b, c;
b
class Derived : public Base {
public:
int b;
b
class Derived2 : public Derived {
public:
int c;
b

Here, an object of class Deri ved2 will have a sub-object of class Der i ved which in turn will have a
sub-object of classBase. |

167

| SO/IEC 14882:2003(E) O ISO/IEC

10 Derived classes 10 Derived classes

The order in which the base class subobjects are alocated in the most derived object (1.8) is unspecified.
[Note: a derived class and its base class sub-objects can be represented by a directed acyclic graph (DAG)
where an arrow means “directly derived from.” A DAG of sub-objects is often referred to as a “ sub-object
lattice.”

Base
Deri ved

Deri ved2
The arrows need not have a physical representation in memory. |
[Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2.]

[Note: A base class subobject might have alayout (3.7) different from the layout of a most derived object of
the same type. A base class subobject might have a polymorphic behavior (12.7) different from the poly-
morphic behavior of a most derived object of the same type. A base class subobject may be of zero size
(clause 9); however, two subobjects that have the same class type and that belong to the same most derived
object must not be allocated at the same address (5.10).]

10.1 Multiple base classes [class.mi]

A class can be derived from any number of base classes. [Note: the use of more than one direct base class
is often called multiple inheritance.] [Example:

class A{ I* ... *| };

class B{ /* ... *| };

class C{ /* ... *| };

class D: public A public B, public C{ /* ... */ };
—end example]

[Note: the order of derivation is not significant except as specified by the semantics of initialization by con-
structor (12.6.2), cleanup (12.4), and storage layout (9.2, 11.1).]

A class shall not be specified as a direct base class of a derived class more than once. [Note: aclass can be
an indirect base class more than once and can be a direct and an indirect base class. There are limited
things that can be done with such a class. The non-static data members and member functions of the direct
base class cannot be referred to in the scope of the derived class. However, the static members, enumera-
tions and types can be unambiguously referred to. | [Example:

class X { /I* ... *| };

class Y : public X, public X { /* ... *| }; /1 ill-formed

class L { public: int next; [* ... */ };

class A: public L { /* ... *I };

class B: public L { /* ... */ };

class C: public A public B { void f(); /* ... *I }; /1 well-formed

class D: public A public L { void f(); /* ... *I }; /'l well-formed
—end example]

A base class specifier that does not contain the keyword vi r t ual , specifies a nonvirtual base class. A
base class specifier that contains the keyword vi rt ual , specifies a virtual base class. For each distinct
occurrence of a nonvirtual base class in the class lattice of the most derived class, the most derived object
(1.8) shall contain a corresponding distinct base class subobject of that type. For each distinct base class
that is specified virtual, the most derived object shall contain a single base class subobject of that type.
[Example: for an object of class type C, each distinct occurrence of a (non-virtual) base class L in the class
lattice of C corresponds one-to-one with a distinct L subobject within the object of type C. Given the class
C defined above, an abject of class Cwill have two sub-objects of class L as shown below.

168

O ISO/IEC | SO/IEC 14882:2003(E)

10 Derived classes 10.1 Multiple base classes

L L

| !
.

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of func-
tion C. : f could refer to the member next of each L subobject:

void C:f() { Al:next = B::next; } /'l well-formed

Without the A: : or B: : qualifiers, the definition of C: : f above would beill-formed because of ambiguity
(10.2).

For another example,

class V{ /I* ... *| };

class A: virtual public V{ /* ... */ };
class B : virtual public V { /* ... *| };
class C: public A public B{ /* ... */ };

for an object ¢ of class type C, a single subobject of type V is shared by every base subobject of ¢ that is
declared to have avi rt ual base class of type V. Given the class C defined above, an object of class C
will have one subobject of classV, as shown below.

N
o

A class can have both virtual and nonvirtual base classes of a given type.

class B{ /* ... *| };

class X : virtual public B{ /* ... */ };

class Y : virtual public B { /* ... */ };

class Z : public B{ /* ... */ };
class AA: public X, public Y, public z { /* ... *I };

For an object of class AA, al vi rt ual occurrences of base class B in the class lattice of AA correspond to
asingle B subobject within the object of type AA, and every other occurrence of a (non-virtual) base class B
in the class lattice of AA corresponds one-to-one with a distinct B subobject within the object of type AA.
Given the class AA defined above, class AA has two sub-objects of class B: Z's B and the virtual B shared

by X and Y, as shown below.
B
X / \ Y

10.2 Member name lookup [class.member .lookup]

N—

—end example]

Member name lookup determines the meaning of a name (id-expression) in a class scope (3.3.6). Name
lookup can result in an ambiguity, in which case the program is ill-formed. For an id-expression, name
lookup begins in the class scope of t hi s; for a qualified-id, name lookup begins in the scope of the
nested-name-specifier. Name lookup takes place before access control (3.4, clause 11).

169

| SO/IEC 14882:2003(E) O ISO/IEC

10.2 Member name lookup 10 Derived classes

The following steps define the result of name lookup in a class scope, C. First, every declaration for the
name in the class and in each of its base class sub-objects is considered. A member name f in one sub-
object B hides a member name f in a sub-object A if A is a base class sub-object of B. Any declarations
that are so hidden are eliminated from consideration. Each of these declarations that was introduced by a
using-declaration is considered to be from each sub-object of C that is of the type containing the declara-
tion designated by the using-decl aration.% If the resulti ng set of declarations are not all from sub-objects
of the same type, or the set has a nonstatic member and includes members from distinct sub-objects, thereis
an ambiguity and the program isill-formed. Otherwise that set isthe result of the lookup.

[Example:
class A {
public:
int a;
int (*b)();
int f();
int f(int);
int g();
b
class B {
int a;
int b();
public:
int f();
int g;
int h();
int h(int);
s

class C: public A public B {};

void g(C* pc)
{

pc->a = 1; /| error: ambiguous: A: :aor B:: a
pc->b(); /| error: ambiguous: A: :borB::b
pc->f(); /| error: ambiguous: A: : f or B: : f
pc->f(1); /'l error: ambiguous: A: : f or B: : f
pc->g(); /| error: ambiguous: A: : gorB::g
pc->g = 1; /'l error: ambiguous: A:: gor B:: g
pc->h(); /1 OK
pc->h(1); /1 OK

}

—end example] [Example:

struct U { static int i; };

struct V: U{ };

struct W: U { using U:i; };

struct X : V, W{ void foo(); };
void X :foo() {
i; /] findsU: : i intwoways: asW :i andU: :i inV
/' no ambiguity because U: : i isstatic

}
—end example]

If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class name.

90 Note that usi ng-declarations cannot be used to resolve inherited member ambiguities; see 7.3.3.

170

O ISO/IEC

10 Derived classes

[Example:

class A {
public:

int f();
s

class B {
public:

int f();
s

class C: public A public B {

| SO/IEC 14882:2003(E)

10.2 Member name lookup

int f() { return A:f() + B.:f(); }

}s

—end example]

A static member, a nested type or an enumerator defined in a base class T can unambiguously be found
even if an object has more than one base class subobject of type T. Two base class subobjects share the
nonstatic member subobjects of their common virtual base classes. [Example:

class V { public:
class A {
public:

int a;

static int S;

enum{ e };

}s

class B : public A
class C: public A

class D : public B,

void f(D* pd)

{
pd- >v++;
pd- >s++;
int i = pd->e;
pd- >a++;
}
—end example]

public virtual V {};
public virtual V {};

public C{ };

/1 OK: only onev (virtual)

/1 OK: only one s (static)

// OK: only one e (enumerator)
/'l error, ambiguous: two asin D

When virtual base classes are used, a hidden declaration can be reached along a path through the sub-object
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all

the others. [Example:

class V { public:
class W{ public:

class B : public virtual

{
public:
int f(); int x;
int g(); inty;
}

class C: public virtual

int x;
int y;
V, public W

I
I

V, public W{ };

class D: public B, public C{ void glorp(); };

171

| SO/IEC 14882:2003(E) O ISO/IEC

10.2 Member name lookup 10 Derived classes

The names defined in V and the left hand instance of Ware hidden by those in B, but the names defined in
the right hand instance of Ware not hidden at al.

void D::glorp()

{
X++; /] OK: B::x hidesV: : x
f(); /1 OK:B::f() hidesV::f()
y++; /] error:B::yandC'sW :y
a(); /] error:B::g() andC'sW:g()
}
—end example]

An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes shall unambiguously refer to a unique object representing the base class. [Exam+
ple:

class V{ };

class A{ };

cl ass : public A public virtual V { };
cl ass public A public virtual V { };
cl ass public B, public C{ };

oM@

void g()

D d;

B* pb
A* pa
V* pv

&d;
&d; /| error, ambiguous: CsAor B'sA?
&d; /1 OK: only one V sub-object

}
—end example]

10.3 Virtual functions [class.virtual]

Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits avirtual function is called a polymorphic class.

If avirtual member function vf is declared in aclass Base and in a class Der i ved, derived directly or
indirectly from Base, amember function vf with the same name and same parameter list asBase: : vf is
declared, then Deri ved: : vf is dso virtua (whether or not it is so declared) and it overrides”
Base: : vf. For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
unique final overrider that overrides that function and every other overrider of that function. The rules for
member lookup (10.2) are used to determine the final overrider for a virtua function in the scope of a
derived class but ignoring names introduced by using-declarations. [Example:

I7) A function with the same name but a different parameter list (clause 13) asavirtua function is not necessarily virtual and does not
override. The use of thevi rt ual specifier in the declaration of an overriding function islegal but redundant (has empty semantics).
Access control (clause 11) is not considered in determining overriding.

172

O ISO/IEC | SO/IEC 14882:2003(E)

10 Derived classes 10.3 Virtual functions

struct A {
virtual void f();
b
struct B : virtual A {
virtual void f();

}s
struct C: B, virtual A {
using A :f;
}s
void foo() {
Cc;
c.f(); /] callsB: : f,thefinal overrider
c.C:f(); /1 callsA: : f because of the using-declaration
}
—end example]

[Note: avirtual member function does not have to be visible to be overridden, for example,

struct B {
virtual void f();
b
struct D: B {
void f(int);
b
struct D2 : D{
void f();
b

thefunctionf (i nt) inclassDhidesthe virtual functionf () initsbaseclassB; D: : f (i nt) isnotavir-
tual function. However, f () declared in class D2 has the same name and the same parameter list as
B: : f (), and therefore is a virtual function that overrides the function B: : f () even though B: : f () is
not visible in class D2.]

Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

The return type of an overriding function shall be either identical to the return type of the overridden func-
tion or covariant with the classes of the functions. If a function D: : f overrides a function B: : f, the
return types of the functions are covariant if they satisfy the following criteria:

— both are pointersto classes or referencesto cl asses™

— the class in the return type of B: : f isthe same class as the class in the return type of D: : f, or isan
unambiguous and accessible direct or indirect base class of the classin the return type of D: : f

— both pointers or references have the same cv-qualification and the class type in the return type of D: : f
has the same cv-qualification as or less cv-qualification than the class type in the return type of B: : f .

If the return type of D: : f differs from the return type of B: : f , the class type in the return type of D: : f
shall be complete at the point of declaration of D: : f or shall be the class type D. When the overriding
function is called as the final overrider of the overridden function, its result is converted to the type returned
by the (statically chosen) overridden function (5.2.2). [Example:

I5) Multi-level pointersto classes or references to multi-level pointersto classes are not allowed.

173

| SO/IEC 14882:2003(E) O ISO/IEC

10.3 Virtual functions 10 Derived classes

class B {};
class D: private B { friend class Derived; };
struct Base {

virtual void vfl();

virtual void vf2();

virtual void vf3();

virtual B* vi4();

virtual B* vi5();

void f();
i
struct No_good : public Base {
D vf4(); /| error: B (base class of D) inaccessible
S
class A
struct Derived : public Base {
void vil(); /'] virtual and overridesBase: : vf 1()
void vf2(int); /1 not virtual, hidesBase: : vf 2()
char vf3(); /'l error: invalid differencein return type only
D vfd4(); /1 OK: returns pointer to derived class
A vfb5(); /'] error: returns pointer to incomplete class
void f();
i
void g()
Derived d;
Base* bp = &d; /| standard conversion:
/| Derived* toBase*
bp->vf1(); /'] callsDerived: :vf1()
bp->vf2(); /| callsBase: : vf2()
bp->f(); /| callsBase: : f () (notvirtual)
B* p = bp->vf4(); /| callsDerived: : pf () and convertsthe
/'l result to B*
Derived* dp = &d;
D* q = dp->vf4(); /| callsDeri ved: : pf () and does not
/| convert the result to B*
dp->vf2(); /1 ill-formed: argument mismatch
}
—end example]

[Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
caled (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2).]

[Note: the vi rt ual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)
function. Nor can a virtual function be a static member, since a virtua function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a
fri end inanother class.]

A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no
diagnosticis required (3.2).

[Example: here are some uses of virtual functions with multiple base classes:

struct A {
virtual void f();

}s

174

O ISO/IEC | SO/IEC 14882:2003(E)

10 Derived classes 10.3 Virtual functions

struct Bl : A{ /1 note non-virtual derivation
void f();
s

struct B2 : A{
void f();
b

struct D: Bl, B2 { /1 D has two separate A sub-objects
b

voi d foo()

{

D d;
[l A* ap = &d; /1 would beill-formed: ambiguous
B1* blp = &d;

A* ap = blp;

D* dp &d;
ap->f(); /I callsD: : B1: : f
dp->f(); /1 ill-formed: ambiguous

}

In class D above there are two occurrences of class A and hence two occurrences of the virtual member
function A:; : f. The final overrider of B1: : A: : f is Bl: : f and the fina overrider of B2: : A: : f is
B2::f.

The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();
s
struct VBl : virtual A { /| notevirtual derivation
void f();
s
struct VB2 : virtual A {
void f();
s
struct Error : VB1, VB2 { /1 ill-formed
s
struct Ckay : VB1l, VB2 {
void f();
s

Both VB1: : f and VB2: : f override A: : f but there is no overrider of both of theminclassEr r or. This
example is therefore ill-formed. Class Okay is well formed, however, because Ckay: : f isafina over-
rider.

The following example uses the well-formed classes from above.

struct VBla : virtual A { /| does not declare f
s

struct Da : VBla, VB2 {

s

175

12

| SO/IEC 14882:2003(E) O ISO/IEC

10.3 Virtual functions 10 Derived classes

voi d foe()

VBla* vblap = new Da;
vblap->f(); /] callsvB2: : f
}

—end example]

Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:

class B { public: virtual void f(); };
class D: public B{ public: void f(); };

void D::f() { /* ... ¥ B:f(); }
Here, thefunctioncall inD: : f readly doescall B: : f andnotD: : f.]

10.4 Abstract classes [class.abstract]

The abstract class mechanism supports the notion of a general concept, such as a shape, of which only
more concrete variants, such asci r cl e and squar e, can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

An abstract class is a class that can be used only as a base class of some other class; no objects of an
abstract class can be created except as sub-objects of a class derived fromit. A classis abstract if it has at
least one pure virtual function. [Note: such afunction might be inherited: see below.] A virtua functionis
specified pure by using a pure-specifier (9.2) in the function declaration in the class declaration. A pure
virtual function need be defined only if explicitly called with the qualified-id syntax (5.1). [Example:

class point { /* ... *| };
cl ass shape { /| abstract class
point center;
/..
public:
point where() { return center; }
voi d move(point p) { center=p; drawm); }

virtual void rotate(int) = 0; /| purevirtual
virtual void draw() = O; /'l purevirtual
/..

}s

—end example] [Note: a function declaration cannot provide both a pure-specifier and a definition
—end note] [Example:

struct C {
virtual void f() =0 { }; /1 ill-formed
b

—end example]

An abstract class shall not be used as a parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and referencesto an abstract class can be declared. [Example:

shape x; /'l error: object of abstract class
shape* p; /1 OK
shape f(); /'l error
voi d g(shape); /'l error
shape& h(shapeg&); /1 OK
—end example]

A classis abstract if it contains or inherits at least one pure virtual function for which the final overrider is
purevirtual. [Example:

176

O ISO/IEC | SO/IEC 14882:2003(E)

10 Derived classes 10.4 Abstract classes

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
/1 ab_circle::draw() isapurevirtual

}s

Since shape: : draw() is a pure virtua function ab_ci rcl e: : draw() is a pure virtua by default.
The dternative declaration,

class circle : public shape {

int radius;
public:

void rotate(int) {}

void draw); /| adefinitionisrequired somewhere
b

would make classci r cl e nonabstract and adefinition of ci r cl e: : dr aw() must be provided.]

[Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may
override avirtual function whichis not pure.]

Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making
a virtua call (10.3) to a pure virtua function directly or indirectly for the object being created (or
destroyed) from such a constructor (or destructor) is undefined.

177

I SO/IEC 14882:2003(E) O ISO/IEC

Blank page

178

O ISO/IEC | SO/IEC 14882:2003(E)

11 Member access control 11 Member access control

11 Member access control [class.access]

A member of aclass can be

— privat e; that is, its name can be used only by members and friends of the class in which it is
declared.

— pr ot ect ed; that is, its name can be used only by members and friends of the class in which it is
declared, and by members and friends of classes derived from this class (see 11.5).

— publ i c; that is, its name can be used anywhere without access restriction.

Members of a class defined with the keyword cl ass are pri vat e by default. Members of a class
defined with the keywords st r uct or uni on arepubl i ¢ by default. [Example:

class X {
int a; /1 X:: aisprivate by default
b
struct S {
int a; /1 S::aispublic by default
b
—end example]

Access control is applied uniformly to all names, whether the names are referred to from declarations or
expressions. [Note: access control applies to names nominated by f ri end declarations (11.4) and using-
declarations (7.3.3).] In the case of overloaded function names, access control is applied to the function
selected by overload resolution. [Note: because access control applies to names, if access control is applied
to a typedef name, only the accessibility of the typedef name itself is considered. The accessibility of the
entity referred to by the typedef is not considered. For example,

class A
{
class B { };
public:
t ypedef B BB;
i
void f()
{
A : BB x; /1 OK, typedef name A: : BB is public
A :By; /| accesserror, A: : Bisprivate
}
—end note]

It should be noted that it is access to members and base classes that is controlled, not their visibility.
Names of members are still visible, and implicit conversions to base classes are till considered, when those
members and base classes are inaccessible. The interpretation of a given construct is established without
regard to access control. If the interpretation established makes use of inaccessible member names or base
classes, the construct isill-formed.

All access controls in clause 11 affect the ability to access a class member name from a particular scope.
The access control for names used in the definition of a class member that appears outside of the member’s
class definition is done as if the entire member definition appeared in the scope of the member’s class. In
particular, access controls apply as usual to member names accessed as part of a function return type, even
though it is not possible to determine the access privileges of that use without first parsing the rest of the
function declarator. Similarly, access control for implicit cals to the constructors, the conversion

179

| SO/IEC 14882:2003(E) O ISO/IEC

11 Member access control 11 Member access control

functions, or the destructor called to create and destroy a static data member is performed as if these calls
appeared in the scope of the member’s class. [Example:

class A {
typedef int I; /| private member

RO
friend I g(l);

static | x;
i
Al A:f() { return O; }
Al glA:l p=A:x);
Al g(A:l p) { return O; }
Al A:ix =0;

Here, al the uses of A: : | are well-formed because A: : f and A: : x are members of classAand g isa
friend of class A. Thisimplies, for example, that access checking on the first use of A: : | must be deferred
until it is determined that thisuse of A: : | isasthe return type of amember of class A.]

In the definition of a member of a nested class that appears outside of its class definition, the name of the
member may be qualified by the names of enclosing classes of the member’s class even if these names are
private members of their enclosing classes. [Example:

class D {
class E {
static int m

s
1
int D:E:m=1; /1 OK, no access error on private E
—end example]

The names in a default argument expression (8.3.6) are bound at the point of declaration, and access is
checked at that point rather than at any points of use of the default argument expression. Access checking
for default arguments in function templates and in member functions of class templates are performed as
described in 14.7.1.

11.1 Access specifiers [class.access.spec]
Member declarations can be labeled by an access-specifier (clause 10):
access-specifier : member-specification,y

An access-specifier specifies the access rules for members following it until the end of the class or until
another access-specifier isencountered. [Example:

class X {
int a; /1 X::aisprivate by default: cl ass used
public:
int b; /1 X::bispublic
int c; /1 X::cispublic
b
—end example] Any number of access specifiersis allowed and no particular order isrequired. [Example:
struct S {
int a; /1 S::aispublic by default: st ruct used
prot ect ed:
int b; /1 S:: b isprotected
private:
int c; /1 S::cisprivate
public:
int d; /1 S::dispublic
s

180

O ISO/IEC | SO/IEC 14882:2003(E)

11 Member access control 11.1 Access specifiers

—end example]
The order of allocation of data members with separate access-specifier labelsis unspecified (9.2).

When a member is redeclared within its class definition, the access specified at its redeclaration shall be the
same as at itsinitial declaration. [Example:

struct S {
class A
private:
class A{ }; /'] error: cannot change access
s
—end example]
11.2 Accessibility of base classes and base class members [class.access.base]

If aclassis declared to be a base class (clause 10) for another class using the publ i ¢ access specifier, the
publ i ¢ members of the base class are accessible as publ i ¢ members of the derived class and
pr ot ect ed members of the base class are accessible as pr ot ect ed members of the derived class. If a
class is declared to be a base class for another class using the pr ot ect ed access specifier, the publ i ¢
and pr ot ect ed members of the base class are accessible as pr ot ect ed members of the derived class.
If aclassis declared to be a base class for another class using the pr i vat e access specifier, the publ i ¢
and pr ot ect ed members of the base class are accessible as pr i vat e members of the derived class™.

In the absence of an access-specifier for a base class, publ i ¢ is assumed when the derived class is
declared st ruct and pri vat e isassumed when the classisdeclared cl ass. [Example:

class B{ /* ... *| };

class D1 : private B { /* ... */ };

class D2 : public B { /* ... */ };

class D3 : B{ /* ... *| }; /| B private by default
struct D4 : public B{ /* ... */ };

struct D5 : private B{ /* ... */ };

struct D6 : B{ /* ... */ }; /1 B public by default
class D7 : protected B{ /* ... */ };

struct D8 : protected B{ /* ... */ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7
and D8. —end example]

[Note: A member of a private base class might be inaccessible as an inherited member name, but accessible
directly. Because of the rules on pointer conversions (4.10) and explicit casts (5.4), a conversion from a
pointer to aderived class to a pointer to an inaccessible base class might be ill-formed if an implicit conver-
sion isused, but well-formed if an explicit cast isused. For example,

class B {
public:
int m; /I nonstatic member
static int si; /| static member
b
class D: private B {
s
class DD : public D {
void f();
b

F) as specified previously in clause 11, private members of a base class remain inaccessible even to derived classes unlessf r i end
declarations within the base class declaration are used to grant access explicitly.

181

| SO/IEC 14882:2003(E) O ISO/IEC

11.2 Accessibility of base classes and base class members 11 Member access control
void DD :f() {
m = 3; /| error: m isprivatein D
si = 3; /| error: si isprivatein D
B b;
b.m = 3; /1 OK (b. m isdifferent fromt hi s->m)
b.si = 3; /1 OK (b. si isdifferent fromt hi s- >si)
oBrisio o= 3; /1 OK
B* bpl = this; /'l error: Bisaprivate base class
:B* bp2 = (::B*)this; [/ OKwithcast
bp2->m = 3; /| OK: access through a pointer to B.
}
—end note]

A base classis said to be accessible if an invented public member of the base class is accessible. If a base
class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class
(4.10, 4.11). [Note: it follows that members and friends of a class X can implicitly convert an X* to a
pointer to a private or protected immediate base class of X.] The access to a member is affected by the
classin which the member is named. This naming classis the class in which the member name was |ooked
up and found. [Note: this class can be explicit, e.g., when a qualified-id is used, or implicit, e.g., when a
class member access operator (5.2.5) is used (including cases where an implicit “t hi s- >" is added). If
both a class member access operator and a qualified-id are used to name the member (asin p- >T: : m), the
class naming the member is the class named by the nested-name-specifier of the qualified-id (that is, T).]
A member mis accessible when named in class N if

— masamember of N is public, or
— masamember of N is private, and the reference occurs in amember or friend of class N, or

— m as a member of N is protected, and the reference occurs in a member or friend of class N, or in a
member or friend of a class P derived from N, where m as amember of P is private or protected, or

— there exists a base class B of N that is accessible at the point of reference, and m is accessible when
named in class B. [Example:

cl ass B;
class A {
private:
int i;
friend void f(B*);
b
class B: public A { };
void f(B* p) {
p->i = 1; /1 OK: B* can beimplicitly cast to A*,
/[andf hasaccesstoi inA

}
—end example]

If a class member access operator, including an implicit “t hi s- >,” is used to access a nonstatic data mem-
ber or nonstatic member function, the reference isill-formed if the left operand (considered as a pointer in
the“. " operator case) cannot be implicitly converted to a pointer to the naming class of the right operand.
[Note: thisrequirement isin addition to the requirement that the member be accessible as named.]

11.3 Accessdeclarations [class.access.dcl]

The access of amember of abase class can be changed in the derived class by mentioning its qualified-id in
the derived class declaration. Such mention is called an access declaration. The effect of an access decla-
ration qualified-id ; is defined to be equivalent to the declaration usi ng qualified-id ; 1%

199 Access declarations are deprecated; member using-declarations (7.3.3) provide a better means of doing the same things. In earlier
versions of the G+ language, access declarations were more limited; they were generalized and made equivalent to using-declarations

182

O ISO/IEC | SO/IEC 14882:2003(E)

11 Member access control 11.3 Access declarations

[Example:

class A {
public:
int z;
int z1;

}s

class B : public A {
int a;
public:
int b, c;
int bf();
prot ect ed:
int Xx;
int y;
i

class D: private B {
int d;

public:
B::c; /| adjust accesstoB: : ¢
B::z; /| adjust accessto A: : z
Azl /| adjust accessto A: : z1
int e;
int df();

prot ect ed:
B: : x; /| adjust accessto B: : x
int g;

}s

class X : public D {
int xf();
b

int ef (D&);
int ff(X&;

The external function ef can use only thenamesc, z, z1, e, and df . Being a member of D, the function
df canusethenameshb,c, z,z1, bf, x,y,d, e, df, and g, but not a. Being amember of B, the function
bf can use the membersa, b, ¢, z, z1, bf, x, and y. The function xf can use the public and protected
names from D, that is, ¢, z, z1, e, and df (public), and x, and g (protected). Thus the external function
ff hasaccessonlytoc, z,z1, e, and df . If Dwere aprotected or private base class of X, xf would have
the same privileges as before, but f f would have no access at all.]

11.4 Friends [class.friend]

A friend of aclassisafunction or class that is not amember of the class but is permitted to use the private
and protected member names from the class. The name of afriend is not in the scope of the class, and the
friend is not called with the member access operators (5.2.5) unless it is a member of another class. [Exam+
ple: the following example illustrates the differences between members and friends:

in the interest of simplicity. Programmers are encouraged to use using-declarations, rather than the new capabilities of access declara-
tions, in new code.

183

| SO/IEC 14882:2003(E) O ISO/IEC

11.4 Friends 11 Member access control
class X {
int a;
friend void friend_set(X*, int);
public:
voi d menber _set (int);
i
void friend_set(X* p, int i) { p->a =1i; }
void X :menber_set(int i) { a=1i; }
void f()
{
X obj;
friend_set(&obj, 10);
obj . nenber _set (10);
}
—end example]

Declaring a class to be a friend implies that the names of private and protected members from the class
granting friendship can be accessed in declarations of members of the befriended class. [Note: this means
that access to private and protected names is also granted to member functions of the friend class (as if the
functions were each friends) and to the static data member definitions of the friend class. This also means
that private and protected type names from the class granting friendship can be used in the base-clause of a
nested class of the friend class. However, the declarations of members of classes nested within the friend
class cannot access the names of private and protected members from the class granting friendship. Also,
because the base-clause of the friend class is not part of its member declarations, the base-clause of the
friend class cannot access the names of the private and protected members from the class granting friend-
ship. For example,
class A {

class B { };
friend class X;

}s
class X : A:B{ /1 ill-formed: A: : B cannot be accessed
/| inthe base-clause for X
A : B nx; /1 OK: A: : B used to declare member of X
class Y : A :B { /1 OK: A: : B used to declare member of X
A :B ny; / / ill-formed: A: : B cannot be accessed
/| to declare members of nested class of X
}s
}s

] An elaborated-type-specifier shall be used in a friend declaration for a class.!®Y A class shall not be
defined in afriend declaration. [Example:
class X {
enum { a=100 };
friend class Y;

}s
class Y {

int v[X:a]; /1 OK, Yisafriend of X
}s

O Thed ass-key of the elaborated-type-specifier isrequired.

184

O ISO/IEC | SO/IEC 14882:2003(E)

11 Member access control 11.4 Friends

class Z {
int v[X:a]; /] error: X: : aisprivate

b
—end example]

A function first declared in a friend declaration has external linkage (3.5). Otherwise, the function retains
its previous linkage (7.1.1).

When af ri end declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomesafriend. A member function of aclass X can beafriend of aclassY. [Example:

class Y {
friend char* X :foo(int);
/..

s

—end example]

A function can be defined in afriend declaration of a classif and only if the classis a non-local class (9.8),
the function name is unqualified, and the function has namespace scope. [Example:

class M{
friend void f() { } /| definition of global f , a friend of M
/1 not the definition of a member function

}s

—end example] Such a function is implicitly i nl i ne. A fri end function defined in a class is in the
(lexical) scope of the classin which it isdefined. A friend function defined outside the classis not (3.4.1).

No storage-class-specifier shall appear in the decl-specifier-seq of afriend declaration.

A name nominated by a friend declaration shall be accessible in the scope of the class containing the friend
declaration. The meaning of the friend declaration is the same whether the friend declaration appearsin the
privat e, protect ed or publ i c (9.2) portion of the class member-specification.

Friendship is neither inherited nor transitive. [Example:

class A {
friend class B;
int a;

}s

class B {
friend class C

}s

class C {
void f(A* p)
{

p- >a++; /'l error: Cisnot afriend of A
/| despite being a friend of a friend
}
1
class D: public B {
void f(A* p)
{
p- >a++; /'] error: Disnot afriend of A
/| despite being derived from a friend
}
s
—end example]

185

| SO/IEC 14882:2003(E) O ISO/IEC

11.4 Friends 11 Member access control

If afriend declaration appearsin alocal class (9.8) and the name specified is an unqualified name, a prior
declaration is looked up without considering scopes that are outside the innermost enclosing non-class
scope. For afriend function declaration, if there is no prior declaration, the program is ill-formed. For a
friend class declaration, if there is no prior declaration, the class that is specified belongs to the innermost
enclosing non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a
matching declaration is provided in the innermost enclosing nonclass scope. [Example:

class X;
void a();
void f() {
class Y;
extern void b();
class A {
friend class X /1 OK, but Xisalocal class, not: : X
friend class Y; /1 OK
friend class Z /| OK, introduces local classZ
friend void a(); /'l error,: : aisnot considered
friend void b(); /1 OK
friend void c(); /'l error
1
X *px; /1 OK,but: : Xisfound
Z *pz; /' error, no Z isfound
}
—end example]
11.5 Protected member access [class.protected]

When afriend or amember function of a derived class references a protected nonstatic member function or
protected nonstatic data member of a base class, an access check applies in addition to those described ear-
lier in cdlause 11.1%? Except when forming a pointer to member (5.3.1), the access must be through a
pointer to, reference to, or object of the derived class itself (or any class derived from that class) (5.2.5). If
the access is to form a pointer to member, the nested-name-specifier shall name the derived class (or any
class derived from that class). [Example:

class B {
protect ed:
int i;
static int j;
s
class D1 : public B {
s

class D2 : public B {
friend void fr(B*, D1*, D2*);
voi d mem(B*, D1*);

192) This additional check does not apply to other members, e.g. static data members or enumerator member constants.

186

O ISO/IEC | SO/IEC 14882:2003(E)

11 Member access control 11.5 Protected member access

void fr(B* pb, D1* pl, D2* p2)

{
pb->i = 1; /1 ill-formed
pl->i = 2; /1 ill-formed
p2->i = 3; /1 OK (access through a D2)
p2->B.:i = 4; /1 OK (access through a D2, even though
/1 naming classis B)
int B::* pmi_B = &B::i; /1 ill-formed
int B.:* pmi_B2 = &D2::i; /1 OK (typeof &D2: : i isint B::*)
B::j =5; /1 OK (because refers to static member)
D2::j =6; /1 OK (because refers to static member)
}
void D2::nmen(B* pb, D1* pl)
{
pb->i = 1; /1 ill-formed
pl->i = 2; /1 ill-formed
i = 3; /1 OK (accessthrought hi s)
B::i = 4; /1 OK (accessthrought hi s, qualification ignored)
int B::* pmi_B = &B::i; /1 ill-formed
int B::* pm_B2 = &D2::1i; /1 OK
j =5; /1 OK (because| refersto static member)
B::j = 6; /1 OK (because B: : j refersto static member)
}
void g(B* pb, D1* pl, D2* p2)
{
pb->i = 1; /1 ill-formed
pl->i = 2; /1 ill-formed
p2->i = 3; /1 ill-formed
}
—end example]
11.6 Accessto virtual functions [class.access.virt]

The access rules (clause 11) for avirtual function are determined by its declaration and are not affected by
the rulesfor afunction that later overridesit. [Example:

class B {
public:
virtual int f();
b
class D: public B {
private:
int f();
b
void f()
{
D d;
B* pb = &d;
D* pd = &d;
pb->f (); /] OK: B::f() ispublic,
/1 D :f() isinvoked
pd->f (); /| error: D:: f () isprivate
}

—end example] Access is checked at the call point using the type of the expression used to denote the
object for which the member function is called (B* in the example above). The access of the member

187

| SO/IEC 14882:2003(E) O ISO/IEC

11.6 Accessto virtual functions 11 Member access control

function in the class in which it was defined (D in the example above) isin general not known.

11.7 Multiple access [class.paths]

If aname can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. [Example:

class W{ public: void f(); };
class A: private virtual W{ };
class B : public virtual W{ };
class C: public A public B {

void f() { W:f(); } /1 OK
i

SinceW : f () isavailableto C: : f () along the public path through B, accessis allowed.]

11.8 Nested classes [class.access.nest]

The members of a nested class have no specia access to members of an enclosing class, nor to classes or
functions that have granted friendship to an enclosing class; the usua access rules (clause 11) shall be
obeyed. The members of an enclosing class have no specia access to members of a nested class; the usual
access rules (clause 11) shall be obeyed. [Example:

class E {
int Xx;
class B{ };

class | {
B b; /| error: E: : Bisprivate
int y;
void f(E* p, int i)
{
p->x = 1i; /'] error: E: : x isprivate
}
S
int g(l* p)
{
return p->y; /'l error:1::yisprivate
}
b
—end example]

[Note: because a base-clause for a nested class is part of the declaration of the nested class itself (and not
part of the declarations of the members of the nested class), the base-clause may refer to the private mem-
bers of the enclosing class. For example,

class C{
class A{ };
A *p; /1 OK
class B: A /1 OK
{
A *q; /' OK because of injection of name Ain A
C:A *r; /'l error, C. : Aisinaccessible
B *s; /| OK because of injection of name B in B
C:B *t; /'] error, C. : Bisinaccessible
3
s
—end note]

188

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions [special]

The default constructor (12.1), copy constructor and copy assignment operator (12.8), and destructor (12.4)
are special member functions. The implementation will implicitly declare these member functions for a
class type when the program does not explicitly declare them, except as noted in 12.1. The implementation
will implicitly define them if they are used, as specified in 12.1, 12.4 and 12.8. Programs shall not define
implicitly-declared special member functions. Programs may explicitly refer to implicitly declared special
member functions. [Example: a program may explicitly call, take the address of or form a pointer to mem-
ber to an implicitly declared special member function.

struct A { }; /1 implicitly-declared A: : oper at or =
struct B : A {
B& operator=(const B &);
I
B& B::operator=(const B& s) {
this->A::operator=(s); // well-formed
return *this;

}

—end example] [Note: the specia member functions affect the way objects of class type are created,
copied, and destroyed, and how values can be converted to values of other types. Often such special mem-
ber functions are called implicitly.]

Specia member functions obey the usua access rules (clause 11). [Example: declaring a constructor
pr ot ect ed ensuresthat only derived classes and friends can create objectsusing it.]

12.1 Constructors [class.ctor]

Constructors do not have names. A specia declarator syntax using an optiona sequence of function-
specifiers (7.1.2) followed by the constructor’s class name followed by a parameter list is used to declare or
define the constructor. In such a declaration, optional parentheses around the constructor class name are
ignored. [Example:

class C{
public:
c); /| declares the constructor
i
c:c) {1} /| defines the constructor
—end example]

A constructor is used to initialize objects of its class type. Because constructors do not have names, they
are never found during name lookup; however an explicit type conversion using the functional notation
(5.2.3) will cause a constructor to be called to initialize an object. [Note: for initialization of objects of
classtype see 12.6. |

A typedef-name that names a class is a class-name (7.1.3); however, a typedef-name that names a class shall
not be used as the identifier in the declarator for a constructor declaration.

A constructor shall not bevi rtual (10.3) or stati c (9.4). A constructor can be invoked for aconst ,
vol atil e or const vol ati |l e object. A constructor shall not be declared const, vol atil e, or
const vol atil e (9.3.2). const andvol ati | e semantics(7.1.5.1) are not applied on an object under
construction. Such semantics only come into effect once the constructor for the most derived object (1.8)
ends.

A default constructor for a class X is a constructor of class X that can be called without an argument. If
there is no user-declared constructor for class X, adefault constructor isimplicitly declared. Animplicitly-

189

10

11
12

13

14

15

| SO/IEC 14882:2003(E) O ISO/IEC

12.1 Constructors 12 Special member functions

declared default constructor isani nl i ne publ i ¢ member of itsclass. A constructor istrivial if itisan
implicitly-declared default constructor and if:

— itsclass has no virtual functions (10.3) and no virtual base classes (10.1), and
— dll the direct base classes of its class have trivial constructors, and

— for all the nonstatic data members of its class that are of class type (or array thereof), each such class has
atrivial constructor.

Otherwise, the constructor is non-trivial.

An implicitly-declared default constructor for a classisimplicitly defined when it is used to create an object
of its class type (1.8). The implicitly-defined default constructor performs the set of initializations of the
class that would be performed by a user-written default constructor for that class with an empty mem-
initializer-list (12.6.2) and an empty function body. If that user-written default constructor would be ill-
formed, the program is ill-formed. Before the implicitly-declared default constructor for a class is implic-
itly defined, all the implicitly-declared default constructors for its base classes and its nonstatic data mem-
bers shall have been implicitly defined. [Note: an implicitly-declared default constructor has an exception-
specification (15.4).]

Default constructors are called implicitly to create class objects of static or automatic storage duration
(3.7.1, 3.7.2) defined without an initializer (8.5), are called to create class objects of dynamic storage dura-
tion (3.7.3) created by a new-expression in which the new-initializer is omitted (5.3.4), or are called when
the explicit type conversion syntax (5.2.3) isused. A programisill-formed if the default constructor for an
object isimplicitly used and the constructor is not accessible (clause 11).

[Note: 12.6.2 describes the order in which constructors for base classes and non-static data members are
called and describes how arguments can be specified for the calls to these constructors. |

A copy constructor for a class X is a constructor with a first parameter of type X& or of type const X&.
[Note: see 12.8 for more information on copy constructors. |

A union member shall not be of aclasstype (or array thereof) that has a non-trivia constructor.

No return type (not even voi d) shall be specified for a constructor. A r et ur n statement in the body of a
constructor shall not specify areturn value. The address of a constructor shall not be taken.

A functional notation type conversion (5.2.3) can be used to create new objects of itstype. [Note: The syn-
tax looks like an explicit call of the constructor.] [Example:

conpl ex zz = conpl ex(1,2.3);
cprint(conmplex(7.8,1.2));

—end example] An object created in thisway isunnamed. [Note: 12.2 describes the lifetime of temporary
objects.] [Note: explicit constructor calls do not yield Ivalues, see 3.10.]

[Note: some language constructs have special semantics when used during construction; see 12.6.2 and
12.7.]

During the construction of a const object, if the value of the object or any of its subobjects is accessed
through an lvalue that is not obtained, directly or indirectly, from the constructor’st hi s pointer, the value
of the object or subobject thus obtained is unspecified. [Example:

struct C,
void no_opt (C);

struct C {
int c;
C() : ¢c(0) { no_opt(this); }

190

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.1 Constructors

const C cobj;

void no_opt (C* cptr) {

int i = cobj.c * 100; /1 value of cobj . ¢ isunspecified
cptr->c = 1;
cout << cobj.c * 100 /1 value of cobj . ¢ isunspecified
<< ’'\n’;
}
—end example]
12.2 Temporary objects [class.temporary]

Temporaries of classtype are created in various contexts. binding an rvalue to a reference (8.5.3), returning
an rvalue (6.6.3), a conversion that creates an rvalue (4.1, 5.2.9, 5.2.11, 5.4), throwing an exception (15.1),
entering a handler (15.3), and in some initializations (8.5). [Note: the lifetime of exception objects is
described in 15.1.] Even when the creation of the temporary object is avoided (12.8), all the semantic
restrictions must be respected as if the temporary object was created. [Example: even if the copy construc-
tor isnot called, all the semantic restrictions, such as accessihility (clause 11), shall be satisfied.]

[Example:

class X {
/..

public:
/..
X(int);
X(const X&) ;
“X();

s

X F(X);
void g()

(1);
f(X(2));

(a);

D X X
oo
e

}

Here, an implementation might use atemporary in which to construct X(2) before passingittof () using
X's copy-constructor; aternatively, X(2) might be constructed in the space used to hold the argument.
Also, a temporary might be used to hold the result of f (X(2)) before copying it to b using X's copy-
constructor; aternatively, f () ’s result might be constructed in b. On the other hand, the expression
a=f (a) requiresatemporary for either the argument a or theresult of f (a) to avoid undesired aliasing of
a.]

When an implementation introduces a temporary object of aclass that has a non-trivial constructor (12.1), it
shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for
atemporary with a non-trivia destructor (12.4). Temporary objects are destroyed as the last step in evalu-
ating the full-expression (1.9) that (lexically) contains the point where they were created. Thisis true even
if that evaluation endsin throwing an exception.

There are two contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when an expression appears as an initializer for a declarator defining an
object. In that context, the temporary that holds the result of the expression shall persist until the object’s
initialization is complete. The object is initialized from a copy of the temporary; during this copying, an
implementation can call the copy constructor many times; the temporary is destroyed after it has been
copied, before or when the initialization completes. |f many temporaries are created by the evaluation of
theinitializer, the temporaries are destroyed in reverse order of the completion of their construction.

191

| SO/IEC 14882:2003(E) O ISO/IEC

12.2 Temporary objects 12 Special member functions

The second context is when a reference is bound to a temporary. The temporary to which the reference is
bound or the temporary that is the complete object to a subobject of which the temporary is bound persists
for the lifetime of the reference except as specified below. A temporary bound to a reference member in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a reference
parameter in a function call (5.2.2) persists until the completion of the full expression containing the call.
A temporary bound to the returned value in a function return statement (6.6.3) persists until the function
exits. In all these cases, the temporaries created during the evaluation of the expression initializing the ref-
erence, except the temporary to which the reference is bound, are destroyed at the end of the full-expression
in which they are created and in the reverse order of the completion of their construction. If the lifetime of
two or more temporaries to which references are bound ends at the same point, these temporaries are
destroyed at that point in the reverse order of the completion of their construction. In addition, the
destruction of temporaries bound to references shall take into account the ordering of destruction of objects
with static or automatic storage duration (3.7.1, 3.7.2); that is, if obj 1 is an object with static or automatic
storage duration created before the temporary is created, the temporary shall be destroyed before obj 1 is
destroyed; if obj 2 is an object with static or automatic storage duration created after the temporary is cre-
ated, the temporary shall be destroyed after obj 2 is destroyed. [Example:

class C{
/..
public:
()
C(int);
friend C operator+(const C& const C&);
")
1
C obj 1;
const C& cr = C(16)+C(23);
C obj 2;

the expression C(16) +C(23) creates three temporaries. A first temporary T1 to hold the result of the
expression C(16) , a second temporary T2 to hold the result of the expression C(23) , and a third tempo-
rary T3 to hold the result of the addition of these two expressions. The temporary T3 is then bound to the
reference cr. It is unspecified whether T1 or T2 is created first. On an implementation where T1 is cre-
ated before T2, it is guaranteed that T2 is destroyed before T1. The temporaries T1 and T2 are bound to
the reference parameters of oper at or +; these temporaries are destroyed at the end of the full expression
containing the call to oper at or +. Thetemporary T3 bound to the reference cr is destroyed at the end of
cr’slifetime, that is, a the end of the program. In addition, the order in which T3 is destroyed takes into
account the destruction order of other objects with static storage duration. That is, because obj 1 is con-
structed before T3, and T3 is constructed before obj 2, it is guaranteed that obj 2 is destroyed before T3,
and that T3 isdestroyed before obj 1.]

12.3 Conversions [class.conv]

Type conversions of class objects can be specified by constructors and by conversion functions. These con-
versions are called user-defined conversions and are used for implicit type conversions (clause 4), for
initialization (8.5), and for explicit type conversions (5.4, 5.2.9).

User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey
the access control rules (clause 11). Access control is applied after ambiguity resolution (3.4).

[Note: See 13.3 for adiscussion of the use of conversionsin function calls as well as examples below.]

At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. [Example:

192

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.3 Conversions

class X {

/..
public:

operator int();
b

class Y {

Il ..
public:

operator X();
i

Y a;
int b a; /] error:
/1 a.operator X().operator int() nottried

int ¢ = X(a); /1 OK:a.operator X().operator int()

—end example]

User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. Function overload resolution (13.3.3) selects the best conversion function to perform the con-
version. [Example:
class X {
public:
/..
operator int();

}s

class Y : public X {
public:

/..

operator char();

s
void f(Y& a)

if (a) { /1 ill-formed:
/1 X :operator int() orY::operator char()
/..

}

—end example]

12.3.1 Conversion by constructor [class.conv.ctor]

A constructor declared without the function-specifier expl i ci t that can be called with a single parameter
specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is

called a converting constructor. [Example:

class X {
/..

public:
X(int);

X(const char*, int =0);

193

| SO/IEC 14882:2003(E) O ISO/IEC

12.3.1 Conversion by constructor 12 Special member functions

void f(X arg)

{
Xa=1; /1 a=X(1)
X b = "Jessie"; Il b=X("Jessie",0)
a = 2; Il a=X(2)
f(3); 11 f(X(3))
}
—end example]

An explicit constructor constructs objects just like non-explicit constructors, but does so only where the
direct-initialization syntax (8.5) or where casts (5.2.9, 5.4) are explicitly used. A default constructor may
be an explicit constructor; such a constructor will be used to perform default-initialization or value-
initialization (8.5). [Example:

class Z {
public:
explicit Z();
explicit Z(int);
/..
b
Z a; /1 OK: default-initialization performed
Z al = 1; /| error: noimplicit conversion
Z a3 = Z(1); /' OK: direct initialization syntax used
Z a2(1l); /1 OK: direct initialization syntax used
Z* p = new Z(1); /| OK: direct initialization syntax used
Z ad = (2)1; /1 OK: explicit cast used
Z a5 = static_cast<z>(1); /' OK: explicit cast used
—end example]

A non-explicit copy-constructor (12.8) is a converting constructor. An implicitly-declared copy constructor
isnot an explicit constructor; it may be called for implicit type conversions.

12.3.2 Conversion functions [class.conv.fct]

A member function of aclass X with aname of the form

conversion-function-id:
oper at or conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declarator o,

conversion-declarator:
ptr-operator conversion-declarator

specifies a conversion from X to the type specified by the conversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, and typedef-names shall not be declared in the type-
specifier-seq. Neither parameter types nor return type can be specified. The type of a conversion function
(8.3.5) is “function taking no parameter returning conversion-type-id.” A conversion function is never used
to convert a (possibly cv-qualified) object to the (possibly cv-qualified) same object type (or a reference to
it), tolo% (possibly cv-qualified) base class of that type (or a reference to it), or to (possibly cv-qualified)
void.

199 Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be
reached through acall to avirtual conversion function in abase class

194

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.3.2 Conversion functions

[Example:

class X {

/..
public:

operator int();
b

void f(X a)
int(a);

1 =
(int)a;
a:

In all three cases the value assigned will be converted by X: : operat or int (). —endexample]

User-defined conversions are not restricted to use in assignments and initializations. [Example:
void g(X a, X b)

{
int i = (a) ? 1+a : O;
int j = (a&b) ? a+b : i;
if (a) { /..
}
}
—end example]

The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in a
conversion-function-id is the longest possible sequence of conversion-declarators. [Note: this prevents
ambiguities between the declarator operator * and its expression counterparts. [Example:

&ac. operator int*i; /| syntax error:
/| parsed as: &(ac. operator int *) i
/1 notas: & ac.operator int)*i

The* isthe pointer declarator and not the multiplication operator.]]
Conversion functions are inherited.

Conversion functions can be virtual.

12.4 Destructors [class.dtor]

A specia declarator syntax using an optional function-specifier (7.1.2) followed by ~ followed by the
destructor’ s class name followed by an empty parameter list is used to declare the destructor in a class defi-
nition. In such a declaration, the ™ followed by the destructor’s class hame can be enclosed in optional
parentheses; such parentheses are ignored. A typedef-name that names a classis a class-name (7.1.3); how-
ever, a typedef-name that names a class shall not be used as the identifier in the declarator for a destructor
declaration.

A destructor is used to destroy objects of its class type. A destructor takes no parameters, and no return
type can be specified for it (not even voi d). The address of a destructor shall not be taken. A destructor
shall not be static. A destructor can be invoked for a const, vol atil e or const vol atile
object. A destructor shall not be declared const , vol ati |l e or const vol atil e (9.3.2). const and
vol ati | e semantics (7.1.5.1) are not applied on an object under destruction. Such semantics stop being
into effect once the destructor for the most derived object (1.8) starts.

If a class has no user-declared destructor, a destructor is declared implicitly. An implicitly-declared
destructor isani nl i ne publ i ¢ member of itsclass. A destructor istrivial if it isan implicitly-declared
destructor and if:

— dll of the direct base classes of its class have trivial destructors and

195

10

11

12

| SO/IEC 14882:2003(E) O ISO/IEC

12.4 Destructors 12 Special member functions

— for all of the non-static data members of its class that are of class type (or array thereof), each such class
has atrivia destructor.

Otherwise, the destructor is non-trivial.

An implicitly-declared destructor is implicitly defined when it is used to destroy an object of its class type
(3.7). A programisill-formed if the class for which a destructor isimplicitly defined has:

— anon-static data member of class type (or array thereof) with an inaccessible destructor, or
— abase class with an inaccessible destructor.

Before the implicitly-declared destructor for a class is implicitly defined, al the implicitly-declared
destructors for its base classes and its nonstatic data members shall have been implicitly defined. [Note: an
implicitly-declared destructor has an exception-specification (15.4).]

After executing the body of the destructor and destroying any automatic objects allocated within the body, a
destructor for class X calls the destructors for X's direct members, the destructors for X's direct base classes
and, if X isthe type of the most derived class (12.6.2), its destructor calls the destructors for X' s virtual base
classes. All destructors are called as if they were referenced with a qualified name, that is, ignoring any
possible virtual overriding destructors in more derived classes. Bases and members are destroyed in the
reverse order of the completion of their constructor (see 12.6.2). A return statement (6.6.3) in a
destructor might not directly return to the caller; before transferring control to the caller, the destructors for
the members and bases are called. Destructors for elements of an array are called in reverse order of their
construction (see 12.6).

A destructor can be declared vi rt ual (10.3) or purevi rt ual (10.4); if any objects of that class or any
derived class are created in the program, the destructor shall be defined. If a class has a base class with a
virtual destructor, its destructor (whether user- or implicitly- declared) isvirtual.

[Note: some language constructs have special semantics when used during destruction; see 12.7.]
A union member shall not be of aclasstype (or array thereof) that has a non-trivial destructor.

Destructors are invoked implicitly (1) for a constructed object with static storage duration (3.7.1) at pro-
gram termination (3.6.3), (2) for a constructed object with automatic storage duration (3.7.2) when the
block in which the object is created exits (6.7), (3) for a constructed temporary object when the lifetime of
the temporary object ends (12.2), (4) for a constructed object allocated by a new-expression (5.3.4), through
use of a delete-expression (5.3.5), (5) in severa situations due to the handling of exceptions (15.3). A pro-
gramisill-formed if an object of classtype or array thereof is declared and the destructor for the classis not
accessible at the point of the declaration. Destructors can also be invoked explicitly.

At the point of definition of a virtual destructor (including an implicit definition (12.8)), non-placement
operator delete shall be looked up in the scope of the destructor’s class (3.4.1) and if found shall be accessi-
ble and unambiguous. [Note: this assures that an operator delete corresponding to the dynamic type of an
object is available for the delete-expression (12.5).]

In an explicit destructor call, the destructor name appears asa”~ followed by a type-name that names the
destructor’s class type. The invocation of a destructor is subject to the usual rules for member functions
(9.3), that is, if the object is not of the destructor’s class type and not of a class derived from the
destructor’s class type, the program has undefined behavior (except that invoking del et e on anull pointer
has no effect). [Example:

struct B {
virtual "B() { }
b
struct D: B {
. o) {}

196

13

14

15

O ISO/IEC | SO/IEC 14882:2003(E)
12 Special member functions 12.4 Destructors
D D _obj ect;

typedef B B_ali as;
B* B ptr = &D object;

void f() {

D object.B::"B(); /| callsB'sdestructor

B ptr->"B(); /| calls D s destructor

B ptr->"B alias(); /| calls D s destructor

B ptr->B alias::"B(); /| callsB'sdestructor

B ptr->B alias::"B alias(); /'l error,noB_al i as inclassB
}

—end example] [Note: an explicit destructor call must always be written using a member access operator
(5.2.5); in particular, the unary-expression ~ X() in a member function is not an explicit destructor call

(5.3.1).]

[Note: explicit calls of destructors are rarely needed. One use of such callsis for objects placed at specific
addresses using a new-expression with the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

voi d* operator new(size_t, void* p) { return p; }

struct X {
Il ...
X(int);
“X0O);

void f(X* p);

void g() /'] rare, specialized use:
char* buf = new char[sizeof (X)];
X* p = newbuf) X(222); /1 usebuf[] andinitialize
f(p);
p->X:7X(); /'] cleanup

}

—end note]

Once a destructor is invoked for an object, the object no longer exists; the behavior is undefined if the
destructor is invoked for an object whose lifetime has ended (3.8). [Example: if the destructor for an auto-
matic object is explicitly invoked, and the block is subsequently left in a manner that would ordinarily
invoke implicit destruction of the object, the behavior is undefined.]

[Note: the notation for explicit call of a destructor can be used for any scalar type name (5.2.4). Allowing
this makes it possible to write code without having to know if a destructor exists for a given type. For
example,

typedef int |;

1* p;

/..

p->1::71 ()
—end note]

197

| SO/IEC 14882:2003(E)

12.4 Destructors

12.5 Freestore

O ISO/IEC

12 Special member functions

[class.freg]

Any alocation function for aclass T is a static member (even if not explicitly declared st at i ¢).

[Example:

cl ass Arena;
struct B {
voi d* oper at or

new(size_t, Arena*);

}s
struct D1 :
}s

B {

Arena* ap;

void foo(int i)

{

/| callsB: : operat or new(si ze_t, Arena*)
/| calls: :operator new[] (size_t)

/1 ill-formed: : : oper at or new(si ze_t) hidden

new (ap) Di;
new D1[i];
new D1;

}
—end example]

When an object is deleted with a delete-expression (5.3.5), a deallocation function
(operat or del ete() for non-array objects or oper at or del ete[] () for arrays) is (implicitly)
called to reclaim the storage occupied by the object (3.7.3.2).

If a delete-expression begins with a unary : : operator, the deallocation function’s name is looked up in
global scope. Otherwise, if the delete-expression is used to deallocate a class object whose static type has a
virtual destructor, the deallocation function is the one found by the lookup in the definition of the dynamic
type's virtual destructor (12.4).104) Otherwise, if the delete-expression is used to deallocate an object of
class T or array thereof, the static and dynamic types of the object shall be identical and the deallocation
function’s name is looked up in the scope of T. If thislookup fails to find the name, the name is looked up
in the global scope. If the result of the lookup is ambiguous or inaccessible, or if the lookup selects a place-
ment deall ocation function, the program is ill-formed.

When a delete-expression is executed, the selected deallocation function shall be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.105

Any dealocation function for a class X is a static member (even if not explicitly declared st ati c).
[Example:

class X {
/..

voi d operator delete(void*);

voi d operator delete[](void*, size_ t);
s
class Y {
/..
voi d operator del ete(void*, size_t);
voi d operator delete[](void*);
s
—end example]

O A similar lookup is not needed for the array version of oper at or del et e because 5.3.5 requires that in this situation, the static

%D? of the delete-expression’s operand be the same asits dynamic type.
> If the static type in the delete-expression is different from the dynamic type and the destructor is not virtual the size might be

incorrect, but that case is already undefined; see 5.3.5.

198

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 125 Freestore

Since member allocation and deallocation functions are st at i ¢ they cannot be virtual. [Note: however,
when the cast-expression of a delete-expression refers to an object of class type, because the deallocation
function actually called is looked up in the scope of the class that is the dynamic type of the object, if the
destructor isvirtual, the effect is the same. For example,

struct B {
virtual “B();
voi d operator del ete(void*, size_t);

}s

struct D: B {
voi d operator delete(void*);

b
void f()
{
B* bp = new D;
del ete bp; /1 1: usesD: : oper at or del et e(voi d*)
}

Here, storage for the non-array object of class Dis deallocated by D: : oper at or del et e(), dueto the
virtual destructor.] [Note: virtua destructors have no effect on the deallocation function actually called
when the cast-expression of a delete-expression refers to an array of objects of classtype. For example,

struct B {
virtual “B();
voi d operator delete[](void*, size_t);

b

struct D: B {
voi d operator delete[](void*, size_t);

b

void f(int i)

{
D dp = new OOil;
delete [] dp; /] usesD: : operator del ete[] (voi d*, size_t)
B* bp = new Oi];
del ete[] bp; /1 undefined behavior

}

—end note]

Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. [Example: for the call
on line //1 above, if B: : operat or del et e() had been pri vat e, the delete expression would have
beenill-formed.]

12.6 Initialization [class.init]

When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the
initializer has the form () , the object is initialized as specified in 8.5. The object is default-initialized if
thereisnoinitializer, or value-initialized if the initializer is () .

An object of classtype (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.

When an array of class objects isinitialized (either explicitly or implicitly), the constructor shall be called
for each element of the array, following the subscript order; see 8.3.4. [Note: destructors for the array ele-
ments are called in reverse order of their construction.]

199

| SO/IEC 14882:2003(E) O ISO/IEC

12.6.1 Explicit initialization 12 Special member functions

12.6.1 Explicit initialization [class.expl.init]

An object of class type can be initialized with a parenthesized expression-list, where the expression-list is
construed as an argument list for a constructor that is called to initialize the object. Alternatively, asingle
assignment-expression can be specified as an initializer using the = form of initialization. Either direct-
initialization semantics or copy-initialization semantics apply; see 8.5. [Example:
cl ass compl ex {
/..
public:

conpl ex();

conpl ex(doubl e) ;

conpl ex(doubl e, doubl e) ;
/..

}s

conpl ex sqrt(conpl ex, conpl ex) ;

conpl ex a(l); /| initialize by a call of

/' conpl ex(doubl e)
conplex b = ga; /| initialize by a copy of a
conplex ¢ = conmpl ex(1, 2); /| construct conpl ex(1, 2)

/1 using conpl ex(doubl e, doubl e)
/| copyitintoc

conplex d = sqrt(b,c); /1 call sqrt (conpl ex, conmpl ex)
/| and copy the result into d

conpl ex e; /1 initialize by a call of
/'l conpl ex()

conplex f = 3; /'l construct conpl ex(3) usi ng
/1 conpl ex(doubl e)
/'l copyitinto f

conplex g = { 1, 2 }; /'l error; constructor isrequired

—end example] [Note: overloading of the assignment operator (13.5.3) has no effect on initialization.]

When an aggregate (whether class or array) contains members of class type and is initialized by a brace-
enclosed initializer-list (8.5.1), each such member is copy-initialized (see 8.5) by the corresponding
assignment-expression. If there are fewer initializers in the initializer-list than members of the aggregate,
each member not explicitly initialized shall be value-initialized (8.5). [Note: 8.5.1 describes how
assignment-expressionsin an initializer-list are paired with the aggregate members they initialize.] [Exam+
ple:

conplex v[6] = { 1,conmplex(1,2),conplex(),2 };

Here, conpl ex:: conpl ex(doubl e) is called for the initidization of v[0] and v[3],
conpl ex: : conpl ex(doubl e, doubl e) is cdled for the initidization of v[1],
conpl ex: : conmpl ex() iscalledfor theinitidizationv[2] ,v[4] ,and v[5] . For another example,

class X {

public:
int i;
float f;
conpl ex c;

} x ={ 99, 88.8, 77.7 };

Here, x. i isinitialized with 99, x. f is initialized with 88.8, and conpl ex: : conpl ex(doubl e) is
called for the initialization of x. c.] [Note: braces can be elided in the initializer-list for any aggregate,
even if the aggregate has members of a class type with user-defined type conversions; see 8.5.1. |

[Note: if T is a class type with no default constructor, any declaration of an object of type T (or array
thereof) isill-formed if noinitializer is explicitly specified (see 12.6 and 8.5).]

200

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.6.1 Explicit initialization

[Note: the order in which objects with static storage duration areinitialized is described in 3.6.2 and 6.7.]

12.6.2 Initializing bases and members [class.base.init]

In the definition of a constructor for a class, initializers for direct and virtual base subobjects and nonstatic
data members can be specified by a ctor-initializer, which has the form
ctor-initializer:
mem+initializer-list

menmtinitializer-list:
memtinitializer
memrinitializer , memvinitializer-list

mem-initializer:
mem-initializer-id (expression-listy,)

mentinitializer-id:
: 1 opt NEsted-name-specifier o class-name
identifier

Names in a memtinitializer-id are looked up in the scope of the constructor’s class and, if not found in that
scope, are looked up in the scope containing the constructor’s definition. [Note: if the constructor’s class
contains a member with the same name as a direct or virtual base class of the class, a meminitializer-id
naming the member or base class and composed of a single identifier refers to the class member. A mem-
initializer-id for the hidden base class may be specified using a qualified name.] Unless the mem-
initializer-id names a nonstatic data member of the constructor’s class or a direct or virtual base of that
class, the memtinitializer isill-formed. A meminitializer-list can initialize a base class using any name that
denotes that base classtype. [Example:

struct A{ A(); };
t ypedef A gl obal _A;

struct B { };
struct C public A public B{ C); };
C:C(): global _A() { } /1 memrinitializer for base A

—end example] If a meminitializer-id is ambiguous because it designates both a direct non-virtual base
class and an inherited virtual base class, the meminitializer isill-formed. [Example:

struct A { A(); };

struct B: public virtual A { };
struct C public A public B{ C); };
C:C(): A {1} /1 ill-formed: which A?

—end example] A ctor-initializer may initialize the member of an anonymous union that is a member of
the constructor’s class. If a ctor-initializer specifies more than one mentinitializer for the same member,
for the same base class or for multiple members of the same union (including members of anonymous
unions), the ctor-initializer isill-formed.

The expression-list in a menrinitializer is used to initialize the base class or nonstatic data member subob-
ject denoted by the mem-initializer-id. The semantics of a mentinitializer are asfollows:

— if the expression-list of the mem-initializer is omitted, the base class or member subobject is value-
initialized (see 8.5);

— otherwise, the subobject indicated by menrinitializer-id is direct-initialized using expression-list as the
initializer (see 8.5).

201

| SO/IEC 14882:2003(E) O ISO/IEC

12.6.2 Initializing bases and members 12 Special member functions

[Example:
struct BL { Bi(int); /* ... */ };
struct B2 { B2(int); /* ... */ };
struct D: Bl, B2 {

D(int);
Bl b;
const int c;

}s

D::D(int a) : B2(a+l), Bl(at+2), c(at+3), b(at4)

(1% ... %}

D d(10);
—end example] There is a sequence point (1.9) after the initialization of each base and member. The
expression-list of a meminitializer is evaluated as part of the initialization of the corresponding base or
member.

If a given nonstatic data member or base class is hot named by a meminitializer-id (including the case
where there is no memrinitializer-list because the constructor has no ctor-initializer), then

— If the entity is a nonstatic data member of (possibly cv-qualified) class type (or array thereof) or a base
class, and the entity classis a non-POD class, the entity is default-initialized (8.5). If the entity isanon-
static data member of a const-qualified type, the entity class shall have a user-declared default construc-
tor.

— Otherwise, the entity is not initialized. If the entity is of const-qualified type or reference type, or of a
(possibly cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
aconst-qualified type, the program isill-formed.

After the call to a constructor for class X has completed, if a member of X is neither specified in the
constructor’s memtinitializers, nor default-initialized, nor value-initialized, nor given a value during execu-
tion of the body of the constructor, the member has indeterminate value.

Initialization shall proceed in the following order:

— First, and only for the constructor of the most derived class as described bel ow, virtual base classes shall
beinitialized in the order they appear on a depth-first |eft-to-right traversal of the directed acyclic graph
of base classes, where “left-to-right” is the order of appearance of the base class hames in the derived
class base-specifier-list.

— Then, direct base classes shall be initialized in declaration order as they appear in the base-specifier-list
(regardless of the order of the mentinitializers).

— Then, nonstatic data members shall be initialized in the order they were declared in the class definition
(again regardless of the order of the memtinitializers).

— Finally, the body of the constructor is executed.

[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the
reverse order of initialization.]

All sub-objects representing virtual base classes are initialized by the constructor of the most derived class
(1.8). If the constructor of the most derived class does not specify a meminitializer for avirtual base class
V, then V' s default constructor is called to initialize the virtual base class subobject. If V does not have an
accessible default constructor, the initialization isill-formed. A mentinitializer naming a virtual base class
shall be ignored during execution of the constructor of any class that is not the most derived class. [Exam-
ple:

202

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.6.2 Initializing bases and members

class V {
public:
V() ;
V(int);
/..
s

class A: public virtual V {
public:

A()s

A(int);

/..
b

class B : public virtual V{
public:

B();

B(int);

/..
s

class C: public A public B, private virtual V {
public:

c);

Clint);

/..
b

ACA(Int i) ovE) [/ L)}

B::B(int i) {/* ... *}

C:C(int i) {/* ... *}

V v(l); /1 useV(int)
A a(2); /1 useV(int)

B b(3); /1 useV()
Cc(4); /1 useV()

—end example]

Names in the expression-list of a mem-initializer are evaluated in the scope of the constructor for which the
memrinitializer is specified. [Example:

class X {
int a;
int b;
int i;
int j;

public:

const int& r;
X(int i): r(a), b(i), i(i), j(this->i) {}
s

initializes X: : r torefer to X: : a, initializes X: : b with the value of the constructor parameter i , initializes
X: i with the value of the constructor parameter i , and initializes X: : j with the value of X: : i ; this
takes place each time an object of class X is created.] [Note: because the menrinitializer are evaluated in
the scope of the constructor, the t hi s pointer can be used in the expression-list of a mentinitializer to
refer to the object being initialized.]

Member functions (including virtual member functions, 10.3) can be called for an object under construc-
tion. Similarly, an object under construction can be the operand of the t ypei d operator (5.2.8) or of a
dynam c_cast (5.2.7). However, if these operations are performed in a ctor-initializer (or in afunction

203

| SO/IEC 14882:2003(E) O ISO/IEC

12.6.2 Initializing bases and members 12 Special member functions

called directly or indirectly from a ctor-initializer) before all the memtinitializers for base classes have
completed, the result of the operation is undefined. [Example:

class A {
public:
A(int);
b
class B : public A{
int j;
public:
int f();
B() : A(f()), /1 undefined: calls member function
/| but base A not yet initialized
JfFQO)) {1} /| well-defined: bases are all initialized
class C{
public:
Clint);
b
class D: public B, C{
int i;
public:
D) : Cf()), /1 undefined: calls member function
/1 but base C not yet initialized
i(fQ)) {1} /| well-defined: bases are all initialized
—end example]

[Note: 12.7 describes the result of virtual function calls, t ypei d and dynami ¢_cast s during construc-
tion for the well-defined cases; that is, describes the polymorphic behavior of an object under construction.

]

12.7 Construction and destruction [class.cdtor]

For an object of non-POD class type (clause 9), before the constructor begins execution and after the
destructor finishes execution, referring to any nonstatic member or base class of the object results in unde-
fined behavior. [Example:

struct X { int i; };

struct Y : X { };

struct A{ int a; };

struct B: public A{ int j; Yvy; };

extern B bobj;

B* pb = &bobj; /1 OK

int* pl = &bobj. a; /1 undefined, refers to base class member
int* p2 = &obj.y.i; /1 undefined, refers to member’s member
A* pa = &bobj; /1 undefined, upcast to a base class type
B bobj ; /| definition of bobj

extern X xobj;

int* p3 = &obj.i; /1 OK, XisaPOD class

X xobj ;

204

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.7 Construction and destruction

For another example,

struct W{ int j; };

struct X : public virtual W{ };

struct Y {
int *p;
X X;
Y() p(&.j) /1 undefined, x is not yet constructed
{1}

b

—end example]

To explicitly or implicitly convert a pointer (an lvalue) referring to an object of class X to a pointer (refer-
ence) to adirect or indirect base class B of X, the construction of X and the construction of all of itsdirect or
indirect bases that directly or indirectly derive from B shall have started and the destruction of these classes
shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer to (or
access the value of) a direct nonstatic member of an object obj , the construction of obj shall have started
and its destruction shall not have completed, otherwise the computation of the pointer value (or accessing
the member value) results in undefined behavior. [Example:

struct A { };
struct B : virtual A{ };
struct C: B { };
struct D: virtual A { D(A*); };
struct X { X(A*); };
struct E: C D, X{
E() : D(this), /| undefined: upcast from E* to A*
/' might use path E* - D* - A*
/[but Dis not constructed
/1 D((C*)this),// defined:
/| E* - C* defined because E() has started
/1 and C* - A* defined because
/1 Cfully constructed
X(this) /| defined: upon construction of X,
/| C/B/D/A sublattice is fully constructed
{1}
b
—end example]

Member functions, including virtual functions (10.3), can be called during construction or destruction
(12.6.2). When a virtual function is called directly or indirectly from a constructor (including from the
memtinitializer for a data member) or from a destructor, and the object to which the call applies is the
object under construction or destruction, the function called is the one defined in the constructor or
destructor’s own class or in one of its bases, but not afunction overriding it in a class derived from the con-
structor or destructor’s class, or overriding it in one of the other base classes of the most derived object
(1.8). If the virtual function call uses an explicit class member access (5.2.5) and the object-expression
refers to the object under construction or destruction but its type is neither the constructor or destructor’s
own class or one of its bases, the result of the call is undefined. [Example:

class V {
public:
virtual void f();
virtual void g();
i

205

| SO/IEC 14882:2003(E) O ISO/IEC

12.7 Construction and destruction 12 Special member functions

class A: public virtual V{

public:
virtual void f();
b
class B : public virtual V{
public:
virtual void g();
B(V*, A*);
b
class D: public A B {
public:
virtual void f();
virtual void g();
D() : B((A*)this, this) { }
b
B::B(W v, A* a) {
f(); [/ callsV::f,notA: :f
a(); /1 callsB::g,notD: : g
v->g(); /'l v isbase of B, the call iswell-defined, callsB: : g
a->f(); /"1 undefined behavior, a’stype not a base of B
}
—end example]

Thet ypei d operator (5.2.8) can be used during construction or destruction (12.6.2). When t ypei d is
used in a constructor (including from the mem-initializer for a data member) or in a destructor, or used in a
function called (directly or indirectly) from a constructor or destructor, if the operand of t ypei d refersto
the object under construction or destruction, t ypei d yieldsthet ype_i nf o representing the constructor
or destructor’s class. If the operand of t ypei d refers to the object under construction or destruction and
the static type of the operand is neither the constructor or destructor’s class nor one of its bases, the result of
t ypei d isundefined.

Dynam c_casts (5.27) can be used during construction or destruction (12.6.2). When a
dynam c_cast isused in a constructor (including from the mem-initializer for a data member) or in a
destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the
operand of thedynam c_cast refersto the object under construction or destruction, this object is consid-
ered to be a most derived object that has the type of the constructor or destructor’s class. If the operand of
the dynam c_cast refers to the object under construction or destruction and the static type of the
operand is not a pointer to or object of the constructor or destructor’s own class or one of its bases, the
dynam c_cast resultsin undefined behavior.

[Example:
class V {
public:
virtual void f();
i

class A: public virtual V { };

class B: public virtual V {
public:

B(V*, A*);
b

206

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.7 Construction and destruction

class D: public A B {

public:
D() : B((A*)this, this) { }
b
B::B(W v, A* a) {
typei d(*this); /'l type_infofor B
typei d(*v); /1 well-defined: * v has type V, a base of B
/'] yieldst ype_i nf o for B
typei d(*a); /1 undefined behavior: type A not a base of B
dynam c_cast <B*>(v); /1 well-defined: v of type V*, V base of B
/] resultsin B*
dynam c_cast <B*>(a); /1 undefined behavior,
/| a hastype A*, Anot a base of B
}
—end example]
12.8 Copying class objects [class.copy]

A class object can be copied in two ways, by initidization (12.1, 8.5), including for function argument
passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, these two
operations are implemented by a copy constructor (12.1) and copy assignment operator (13.5.3).

A non-template constructor for class X is acopy constructor if its first parameter is of type X&, const X&,
vol atile X&or const volatile X&, and either there are no other parameters or else al other
parameters have default arguments (8.3.6).106) [Example: X:: X(const X&) and X:: X(X& i nt=1)
are copy constructors.

class X {
/..
public:
X(int);
X(const X& int = 1);
1
X a(l); /1 callsX(int);
X b(a, 0); /] callsX(const X&, int);
X c =b; /| callsX(const X&, int);

—end example] [Note: all forms of copy constructor may be declared for aclass. [Example:

class X {

/..
public:

X(const X&) ;

X(X&) ; /1 OK
b

—end example] —end note] [Note: if a class X only has a copy constructor with a parameter of type X&,
aninitializer of typeconst Xorvol ati | e X cannot initialize an object of type (possibly cv-qualified) X.
[Example:

100 Because atemplate constructor is never acopy constructor, the presence of such atemplate does not suppress the implicit declara-
tion of a copy constructor. Template constructors participate in overload resolution with other constructors, including copy construc-
tors, and atemplate constructor may be used to copy an object if it provides a better match than other constructors.

207

| SO/IEC 14882:2003(E) O ISO/IEC

12.8 Copying class obj ects 12 Special member functions
struct X {
X(); /| default constructor
X(X&) ; /| copy constructor with a nonconst parameter
b
const X cx;
X X = ¢x; /] error —X: : X(X&) cannot copy cx into x

—end example] —end note]

A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-
qualified) X and either there are no other parameters or else all other parameters have default arguments. A
member function template is never instantiated to perform the copy of a class object to an object of its class
type. [Example:

struct S {
tenpl at e<typenane T> S(T);
b

S f();

void g() {
S a(f()); // doesnotinstantiate member template
}

—end example]

If the class definition does not explicitly declare a copy constructor, one is declared implicitly. Thus, for
the class definition

struct X {
X(const X& int);
s
acopy constructor isimplicitly-declared. If the user-declared constructor islater defined as
X::X(const X& x, int i =0) { /* ... */ }

then any use of X's copy constructor isill-formed because of the ambiguity; no diagnostic is required.
Theimplicitly-declared copy constructor for aclass X will have the form
X X(const X&)
if
— each direct or virtual base class B of X has a copy constructor whose first parameter is of type const
B&or const vol ati | e B&, and

— for all the nonstatic data members of X that are of a class type M(or array thereof), each such class type
has a copy constructor whose first parameter is of typeconst M&or const vol ati |l e M&

Otherwise, the implicitly declared copy constructor will have the form
X1 X(X&)
Animplicitly-declared copy constructor isani nl i ne publ i ¢ member of its class.
A copy constructor for class X istrivial if it isimplicitly declared and if
— class X has no virtual functions (10.3) and no virtual base classes (10.1), and
— each direct base class of X hasatrivial copy constructor, and

— for all the nonstatic data members of X that are of class type (or array thereof), each such class type has

00 This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a vol ati | e Ivalue; see
C.18.

208

10

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.8 Copying class objects

atrivial copy constructor;
otherwise the copy constructor is non-trivial.

An implicitly-declared copy constructor is implicitly defined if it is used to initialize an object of its class
type from a copy of an object of its class type or of a class type derived from its class type 08) [Note: the
copy constructor is implicitly defined even if the implementation elided its use (12.2).] A program isill-
formed if the class for which a copy constructor isimplicitly defined has:

— anonstatic data member of class type (or array thereof) with an inaccessible or ambiguous copy con-
structor, or

— ahase class with an inaccessible or ambiguous copy constructor.

Before the implicitly-declared copy constructor for aclassisimplicitly defined, all implicitly-declared copy
constructors for its direct and virtual base classes and its nonstatic data members shall have been implicitly
defined. [Note: an implicitly-declared copy constructor has an exception-specification (15.4).]

The implicitly-defined copy constructor for class X performs a memberwise copy of its subobjects. The
order of copying is the same as the order of initialization of bases and members in a user-defined construc-
tor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

— if the subobject is of class type, the copy constructor for the classis used;
— if the subobject is an array, each element is copied, in the manner appropriate to the element type;
— if the subobject is of scalar type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see
12.6.2).

A user-declared copy assignment operator X: : oper at or = is a non-static non-template member function
of class X with exactly one parameter of type X, X&, const X&, vol atil e X& or const vol atil e
x&.1%9) [Note: an overloaded assignment operator must be declared to have only one parameter; see 13.5.3.
] [Note: more than one form of copy assignment operator may be declared for aclass. | [Note: if aclass X
only has a copy assignment operator with a parameter of type X&, an expression of type const X cannot be
assigned to an object of type X. [Example:

struct X {

X();

X& oper at or =(X&) ;
s
const X cX;
X X;
void f() {

X = CX; /] error:

/1 X::operator=(X& cannotassigncx into x

}

—end example] —end note]

If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly.
Theimplicitly-declared copy assignment operator for aclass X will have the form

X& X::operator=(const X&)
if

1U8) 5ee 8.5 for more details on direct and copy initialization.

109) Because a template assignment operator iS never a copy assignment operator, the presence of such a template does not suppress
the implicit declaration of a copy assignment operator. Template assignment operators participate in overload resolution with other
assignment operators, including copy assignment operators, and a template assignment operator may be used to assign an object if it
provides a better match than other assignment operators.

209

11

12

13

| SO/IEC 14882:2003(E) O ISO/IEC

12.8 Copying class obj ects 12 Special member functions

— each direct base class B of X has a copy assignment operator whose parameter is of type const B&,
const vol atil e B&orB, and

— for all the nonstatic data members of X that are of a class type M(or array thereof), each such class type
halsl(% copy assignment operator whose parameter is of type const Mg, const vol atile M& or
M

Otherwise, the implicitly declared copy assignment operator will have the form
X& X: : operator =(X&)

Theimplicitly-declared copy assignment operator for class X has the return type X&; it returns the object for
which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy
assignment operator isan i nl i ne publ i ¢ member of its class. Because a copy assignment operator is
implicitly declared for aclass if not declared by the user, a base class copy assignment operator is always
hidden by the copy assignment operator of a derived class (13.5.3). A using-declaration (7.3.3) that brings
in from a base class an assignment operator with a parameter type that could be that of a copy-assignment
operator for the derived class is not considered an explicit declaration of a copy-assignment operator and
does not suppress the implicit declaration of the derived class copy-assignment operator; the operator intro-
duced by the using-declaration is hidden by the implicitly-declared copy-assignment operator in the
derived class.

A copy assignment operator for class Xistrivial if it isimplicitly declared and if
— class X has no virtual functions (10.3) and no virtual base classes (10.1), and
— each direct base class of X hasatrivial copy assignment operator, and

— for all the nonstatic data members of X that are of class type (or array thereof), each such class type has
atrivial copy assignment operator;

otherwise the copy assignment operator is non-trivial.

An implicitly-declared copy assignment operator is implicitly defined when an object of its class type is
assigned a value of its class type or a value of a class type derived from its class type. A program is ill-
formed if the class for which a copy assignment operator isimplicitly defined has:

— anonstatic data member of const type, or
— anonstatic data member of reference type, or

— anonstatic data member of class type (or array thereof) with an inaccessible copy assignment operator,
or

— abase class with an inaccessible copy assignment operator.

Before the implicitly-declared copy assignment operator for a class is implicitly defined, all implicitly-
declared copy assignment operators for its direct base classes and its nonstatic data members shall have
been implicitly defined. [Note: an implicitly-declared copy assignment operator has an exception-
specification (15.4).]

Theimplicitly-defined copy assignment operator for class X performs memberwise assignment of its subob-
jects. The direct base classes of X are assigned first, in the order of their declaration in the base-specifier-

list, and then the immediate nonstatic data members of X are assigned, in the order in which they were
declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

— if the subobject is of classtype, the copy assignment operator for the classis used (asif by explicit qual-
ification; that is, ignoring any possible virtual overriding functions in more derived classes);

— if the subobject is an array, each element is assigned, in the manner appropriate to the element type;

19 This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bindtoavol ati | e Ivalue;
seeC.1.8.

210

14

15

O ISO/IEC | SO/IEC 14882:2003(E)

12 Special member functions 12.8 Copying class objects

— if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the
implicitly-defined copy assignment operator. [Example:

struct V { };

struct A: virtual V{ };

struct B : virtual V { };
struct C: B, A{ };

it is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy
assignment operator for C. —end example]

A program isill-formed if the copy constructor or the copy assignment operator for an object is implicitly
used and the special member function is not accessible (clause 11). [Note: Copying one object into another
using the copy constructor or the copy assignment operator does not change the layout or size of either
object.]

When certain criteria are met, an implementation is allowed to omit the copy construction of a class object,
even if the copy constructor and/or destructor for the object have side effects. In such cases, the implemen-
tation treats the source and target of the omitted copy operation as simply two different ways of referring to
the same object, and the destruction of that object occurs at the later of the times when the two objects
would have been destroyed without the opti mization.**? This elision of copy operations is permitted in the
following circumstances (which may be combined to eliminate multiple copies):

— inareturn statement in a function with a class return type, when the expression is the name of a
non-volatile automatic object with the same cv-unqualified type as the function return type, the copy
operation can be omitted by constructing the automatic object directly into the function’s return value

— when atemporary class object that has not been bound to a reference (12.2) would be copied to a class
object with the same cv-unqualified type, the copy operation can be omitted by constructing the tempo-
rary object directly into the target of the omitted copy

[Example:
class Thing {
public:
Thing();
“Thing();
Thi ng(const Thi ng&);
s

Thing f() {
Thing t;
return t;

}

Thing t2 = f();

Here the criteriafor elision can be combined to eliminate two calls to the copy constructor of class Thi ng:
the copying of the local automatic object t into the temporary object for the return value of function f ()
and the copying of that temporary object into object t 2. Effectively, the construction of the local object t
can be viewed as directly initializing the global object t 2, and that object’s destruction will occur at pro-
gram exit. —end example]

) Because only one object is destroyed instead of two, and one copy constructor is not executed, there is till one object destroyed
for each one constructed.

211

I SO/IEC 14882:2003(E) O ISO/IEC

Blank page

212

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13 Overloading

13 Overloading [over]

When two or more different declarations are specified for a single name in the same scope, that name is
said to be overloaded. By extension, two declarations in the same scope that declare the same name but
with different types are called overloaded declarations. Only function declarations can be overloaded;
object and type declarations cannot be overloaded.

When an overloaded function name is used in a call, which overloaded function declaration is being refer-
enced is determined by comparing the types of the arguments at the point of use with the types of the
parameters in the overloaded declarations that are visible at the point of use. This function selection pro-
cessis called overload resolution and is defined in 13.3. [Example:

doubl e abs(doubl e);

int abs(int);
abs(1); /1 call abs(int);
abs(1.0); /| call abs(doubl e);
—end example]
13.1 Overloadable declarations [over.load]

Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope. [Note: this
restriction applies to explicit declarations in a scope, and between such declarations and declarations made
through a using-declaration (7.3.3). It does not apply to sets of functions fabricated as a result of hame
lookup (e.g., because of using-directives) or overload resolution (e.g., for operator functions).]

Certain function declarations cannot be overloaded:
— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter types cannot be overloaded
if any of them isast ati ¢ member function declaration (9.4). Likewise, member function template
declarations with the same name, the same parameter types, and the same template parameter lists can-
not be overloaded if any of them isa st at i ¢ member function template declaration. The types of the
implicit object parameters constructed for the member functions for the purpose of overload resolution
(13.3.1) are not considered when comparing parameter types for enforcement of thisrule. In contrast, if
thereisno st at i ¢ member function declaration among a set of member function declarations with the
same name and the same parameter types, then these member function declarations can be overloaded if
they differ in the type of their implicit object parameter. [Example: the following illustrates this distinc-
tion:

class X {
static void f();
void f(); /1 ill-formed
void f() const; /1 ill-formed
void f() const volatile,; /1 ill-formed
void g();
void g() const; /1 OK: no staticg
void g() const volatile; /| OK: nostaticg

b

—end example]

[Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the
same function and therefore cannot be overloaded:

213

| SO/IEC 14882:2003(E) O ISO/IEC

13.1 Overloadable declarations 13 Overloading

— Parameter declarations that differ only in the use of equivalent typedef “types’ are equivalent. A
t ypedef isnot aseparate type, but only a synonym for another type (7.1.3). [Example:

typedef int Int;

void f(int i);

void f(Int i); /' OK: redeclaration of f (i nt)

void f(int i) { /* ... */ }

void f(Int i) { /* ... */ } /'l error: redefinition of f (i nt)
—end example]

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function
declarations. [Example:

enumE { a };

void f(int i) { /* ... *[}
void f(Ei) {/* ... *}
—end example]

— Parameter declarations that differ only in a pointer * versus an array [] are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent
array dimensions are significant in parameter types (8.3.4). [Example:

nt f(char*);

i

int f(char[]); /| sameasf (char*);
int f(char[7]); /| sameasf (char*);
int f(char[9]); /| sameasf (char*);

nt g(char(*)[10]);

i

int g(char[5][10]); /| sameasg(char(*)[10]);

int g(char[7][10]); /1 sameasg(char(*)[10]);

int g(char(*)[20]); /| differentfromg(char (*)[10]);
—end example]

— Parameter declarations that differ only in that one is a function type and the other is a pointer to the
same function type are equivalent. That is, the function type is adjusted to become a pointer to function
type (8.3.5). [Example:

void h(int());

void h(int (*)()); /| redeclarationof h(i nt ())
void h(int x()) { } /'l definitionof h(i nt())
void h(int (*x)()) { } /1 ill-formed: redefinition of h(i nt ())

]

— Parameter declarations that differ only in the presence or absence of const and/or vol atil e are
equivalent. That is, the const and vol ati | e type-specifiers for each parameter type are ignored
when determining which function is being declared, defined, or called. [Example:

t ypedef const int clnt;

int f (int);

int f (const int); /| redeclaration of f (i nt)

int f (int) { ...} /| definitionof f (i nt)

int f (clnt) { ... } /'l error: redefinition of f (i nt)
—end example]

Only theconst andvol ati | e type-specifiers at the outermost level of the parameter type specifica
tion are ignored in this fashion; const and vol at i | e type-specifiers buried within a parameter type
specification are significant and can be used to distinguish overloaded function declarations.'? In

12 When a parameter type includes a function type, such as in the case of a parameter type that is a pointer to function, the const
andvol ati | e type-specifiers at the outermost level of the parameter type specifications for the inner function type are also ignored.

214

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.1 Overloadable declar ations

particular, for any type T, “pointer to T,” “pointer to const T,” and “pointer tovol ati | e T" are con-
sidered distinct parameter types, as are “reference to T,” “reference to const T,” and “reference to
vol atileT.

— Two parameter declarations that differ only in their default arguments are equivalent. [Example: con-
sider the following:

void f (int i, int j);
void f (int i, int j = 99); /'l OK: redeclarationof f (i nt, int)
void f (int i =88, int j); /| OK: redeclaration of f (i nt, int)
void f (); /1 OK: overloaded declaration of f
void prog ()
{

f (1, 2); /1 OK:calf(int, int)

f (1); [/ OK:calf(int, int)

fQ); [l Error:f(int, int) orf()?

}

—end example] —end note]

13.2 Declaration matching [over.dcl]

Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class is not in the same
scope as afunction member of the same name in abase class. [Example:

class B {
public:
int f(int);
s
class D: public B {
public:

int f(char*);
s
HereD: : f (char*) hidesB: : f (i nt) rather than overloading it.
void h(D* pd)
{

pd->f(1); /| error:
/1 D::f(char*) hidesB: : f(int)
pd->B::f(1); /1 OK
pd->f (" Ben"); /1 OK,callsD: : f
}
—end example]

A locally declared function is not in the same scope as a function in a containing scope. [Example:
int f(char*);
void g()
{

extern f(int);
f("asdf"); /] error: f (int) hidesf (char*)
/| sothereisnof (char *) inthisscope

215

| SO/IEC 14882:2003(E) O ISO/IEC

13.2 Declaration matching 13 Overloading

void caller ()

{
extern void callee(int, int);
{
extern void callee(int); /1 hidescal | ee(int, int)
call ee(88, 99); /| error: onlycal | ee(i nt) inscope
}
}
—end example]

Different versions of an overloaded member function can be given different accessrules. [Example:

class buffer {

private:
char* p;
int size;
prot ect ed:
buffer(int s, char* store) { size = s; p = store; }
/..
public:
buffer(int s) { p = new char[size = s]; }
/..
s
—end example]
13.3 Overload resolution [over.match]

Overload resolution is a mechanism for selecting the best function to call given alist of expressions that are
to be the arguments of the call and a set of candidate functions that can be called based on the context of the
call. The selection criteria for the best function are the number of arguments, how well the arguments
match the types of the parameters of the candidate function, how well (for nonstatic member functions) the
object matches the implied object parameter, and certain other properties of the candidate function. [Note:
the function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed.]

Overload resolution selects the function to call in seven distinct contexts within the language:
— invocation of afunction named in the function call syntax (13.3.1.1.1);

— invocation of afunction call operator, a pointer-to-function conversion function, a reference-to-pointer-
to-function conversion function, or a reference-to-function conversion function on a class object named
in the function call syntax (13.3.1.1.2);

— invocation of the operator referenced in an expression (13.3.1.2);
— invocation of a constructor for direct-initialization (8.5) of aclass object (13.3.1.3);
— invocation of a user-defined conversion for copy-initiaization (8.5) of aclass object (13.3.1.4);

— invocation of a conversion function for initialization of an object of a nonclass type from an expression
of classtype (13.3.1.5); and

— invocation of a conversion function for conversion to an lvalue to which a reference (8.5.3) will be
directly bound (13.3.1.6).

Each of these contexts defines the set of candidate functions and the list of arguments in its own unique
way. But, once the candidate functions and argument lists have been identified, the selection of the best
function isthe samein all cases:

— Firgt, a subset of the candidate functions—those that have the proper number of arguments and meet

216

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.3 Overload resolution

certain other conditions—is selected to form a set of viable functions (13.3.2).

— Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed
to match each argument to the corresponding parameter of each viable function.

If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds,
and the best viable function is not accessible (clause 11) in the context in which it is used, the program is
ill-formed.

13.3.1 Candidate functions and argument lists [over.match.funcs]

The subclauses of 13.3.1 describe the set of candidate functions and the argument list submitted to overload
resolution in each of the seven contexts in which overload resolution is used. The source transformations
and constructions defined in these subclauses are only for the purpose of describing the overload resolution
process. Animplementation is not required to use such transformations and constructions.

The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous set,
a member function is considered to have an extra parameter, called the implicit object parameter, which
represents the object for which the member function has been called. For the purposes of overload resolu-
tion, both static and non-static member functions have an implicit object parameter, but constructors do not.

Similarly, when appropriate, the context can construct an argument list that contains an implied object
argument to denote the object to be operated on. Since arguments and parameters are associated by posi-
tion within their respective lists, the convention is that the implicit object parameter, if present, is aways
the first parameter and the implied object argument, if present, is always the first argument.

For non-static member functions, the type of the implicit object parameter is “reference to cv X” where X is
the class of which the function is a member and cv is the cv-qualification on the member function declara-
tion. [Example: for aconst member function of class X, the extra parameter is assumed to have type “ref-
erencetoconst X'.] For conversion functions, the function is considered to be a member of the class of
the implicit object argument for the purpose of defining the type of the implicit object parameter. For non-
conversion functions introduced by a using-declaration into a derived class, the function is considered to be
a member of the derived class for the purpose of defining the type of the implicit object parameter. For
static member functions, the implicit object parameter is considered to match any object (since if the func-
tion is selected, the object is discarded). [Note: no actual type is established for the implicit object parame-
ter of a static member function, and no attempt will be made to determine a conversion sequence for that
parameter (13.3.3).]

During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter;
— no user-defined conversions can be applied to achieve atype match with it; and

— even if the implicit object parameter is not const -qualified, an rvalue temporary can be bound to the
parameter as long as in all other respects the temporary can be converted to the type of the implicit
object parameter.

Because only one user-defined conversion is alowed in an implicit conversion sequence, special rules
apply when selecting the best user-defined conversion (13.3.3, 13.3.3.1). [Example:

class T {
public:

T(O);
1.

217

| SO/IEC 14882:2003(E) O ISO/IEC

13.3.1 Candidate functions and argument lists 13 Overloading

class C: T{

public:
Clint);
/..
1
Ta-=1, /1 ill-formed: T(C(1)) nottried
—end example]

In each case where a candidate is a function template, candidate function template specializations are gener-
ated using template argument deduction (14.8.3, 14.8.2). Those candidates are then handled as candidate
functions in the usua Way.11 A given name can refer to one or more function templates and aso to a set
of overloaded non-template functions. In such a case, the candidate functions generated from each function
template are combined with the set of non-template candidate functions.

13.3.1.1 Function call syntax [over.match.call]

Recall from 5.2.2, that a function call is a postfix-expression, possibly nested arbitrarily deep in parenthe-
ses, followed by an optional expression-list enclosed in parentheses:

(-(opt POStfix-expression) ...) oo (EXpression-list,,)

Overload resolution is required if the postfix-expression is the name of a function, a function template
(14.5.5), an object of classtype, or a set of pointers-to-function.

13.3.1.1.1 describes how overload resolution is used in the first two of the above cases to determine the
function to call. 13.3.1.1.2 describes how overload resolution is used in the third of the above cases to
determine the function to call.

The fourth case arises from a postfix-expression of the form &F, where F names a set of overloaded func-
tions. In the context of a function call, the set of functions named by F shall contain only non-member
functions and static member functions™®. And in this context using &F behaves the same as using the
name F by itself. Thus, (&F) (expression-list,,) issmply (F) (expression-list,,), whichis discussed
in 13.3.1.1.1. (Theresolution of &F in other contextsis described in 13.4.)

13.3.1.1.1 Call to named function [over.call.func]

Of interest in 13.3.1.1.1 are only those function calls in which the postfix-expression ultimately contains a
name that denotes one or more functions that might be called. Such a postfix-expression, perhaps nested
arbitrarily deep in parentheses, has one of the following forms:
postfix-expression:
postfix-expression . id-expression
postfix-expression - > id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified func-
tion calls.

In qualified function calls, the name to be resolved is an id-expression and is preceded by an - > or . oper-
ator. Since the construct A- >B is generally equivalent to (* A) . B, the rest of clause 13 assumes, without
loss of generality, that all member function calls have been normalized to the form that uses an object and
the. operator. Furthermore, clause 13 assumes that the postfix-expression that is the left operand of the .

operator hastype“cv T” where T denotes acl ass™®. Under this assumption, the id-expression in the call is
looked up as a member function of T following the rules for looking up names in classes (10.2). If a

) The process of argument deduction fully determines the parameter types of the function template specializations, i.e., the parame-
ters of function template speciaizations contain no template parameter types. Therefore the function template specializations can be
t{%ed asnormal (non-template) functions for the remainder of overload resolution.

If F names a non-static member function, &F is a pointer-to-member, which cannot be used with the function call syntax.
115) Note that cv-qualifiers on the type of objects are significant in overload resolution for both Ivalue and class rvalue objects.

218

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.3.1.1.1 Call to named function

member function is found, that function and its overloaded declarations constitute the set of candidate func-
tions. The argument list is the expression-list in the call augmented by the addition of the left operand of
the. operator in the normalized member function call asthe implied object argument (13.3.1).

In unqualified function calls, the name is not qualified by an - > or . operator and has the more general
form of a primary-expression. The name is looked up in the context of the function call following the nor-
mal rules for name lookup in function calls (3.4.2). If the name resolves to a non-member function declara-
tion, that function and its overloaded declarations constitute the set of candidate functions™*®. The argu-
ment list is the same as the expression-list in the call. |f the name resolves to a nonstatic member function,
then the function call is actually a member function call. If thekeywordt hi s (9.3.2) isin scope and refers
to the class of that member function, or a derived class thereof, then the function call is transformed into a
normalized qualified function call using (*t hi s) as the postfix-expression to the left of the . operator.
The candidate functions and argument list are as described for qualified function calls above. If the key-
word t hi s isnot in scope or refers to another class, then name resolution found a static member of some
class T. Inthiscase, al overloaded declarations of the function namein T become candidate functions and
a contrived object of type T becomes the implied object argumentlm. The call isill-formed, however, if
overload resolution selects one of the non-static member functions of T in this case.

13.3.1.1.2 Call to object of classtype [over.call.object]

If the primary-expression E in the function call syntax evaluates to a class object of type“cv T”, then the set
of candidate functionsincludes at least the function call operators of T. The function call operators of T are
obtained by ordinary lookup of the name oper at or () inthe context of (E) . operat or ().

In addition, for each conversion function declared in T of the form
oper at or conversion-type-id () cv-qualifier;

where cv-qualifier is the same cv-qudlification as, or a greater cv-qualification than, cv, and where
conversion-type-id denotes the type “pointer to function of (P1,...,Pn) returning R’, or the type “reference
to pointer to function of (P1,...,Pn) returning R’, or the type “reference to function of (P1,...,Pn) returning
R’, asurrogate call function with the unique name call-function and having the form

R call-function (conversion-type-id F, P1 al,..,Pn an) { return F (al,..,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candi-
date functions for each conversion function declared in an accessible base class provided the function is not
hidden within T by another intervening decl aration™®).

If such a surrogate call function is selected by overload resolution, its body, as defined above, will be exe-
cuted to convert E to the appropriate function and then to invoke that function with the arguments of the
cal.

The argument list submitted to overload resolution consists of the argument expressions present in the func-
tion call syntax preceded by the implied object argument (E) . [Note: when comparing the call against the
function call operators, the implied object argument is compared against the implicit object parameter of
the function call operator. When comparing the call against a surrogate call function, the implied object
argument is compared against the first parameter of the surrogate call function. The conversion function
from which the surrogate call function was derived will be used in the conversion sequence for that parame-
ter since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter. | [Example:

119 Because of the usual name hidi ng rules, these will be introduced by declarations or by using-directives all found in the same block
or all found at namespace scope.

An implied object argument must be contrived to correspond to the implicit object parameter attributed to member functions dur-
ing overload resolution. It isnot used in the call to the selected function. Since the member functions all have the sameimplicit object
Q%a)nmeter, the contrived object will not be the cause to select or reject afunction.

Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolu-
tion because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution can-
not select amatch to the call that is uniquely better than such undifferentiable functions.

219

| SO/IEC 14882:2003(E) O ISO/IEC

13.3.1.1.2 Call to object of classtype 13 Overloading

int f1(int);

int f2(float);

typedef int (*fpl)(int);

typedef int (*fp2)(float);

struct A {
operator fpl() { return f1; }
operator fp2() { return f2; }

a;
int i =a(l); /| Callsf 1 via pointer returned from
/| conversion function
—end example]
13.3.1.2 Operatorsin expressions [over.match.oper]

If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is
assumed to be a built-in operator and interpreted according to clause 5. [Note: because. ,. *,and: : can-
not be overloaded, these operators are always built-in operators interpreted according to clause 5. ?: can-
not be overloaded, but the rules in this subclause are used to determine the conversions to be applied to the
second and third operands when they have class or enumeration type (5.16).] [Example:

class String {
public:
String (const String&);
String (char*);
operator char* ();

1
String operator + (const String& const String&);
void f(void)
{
char* p= "one" + "two"; /1 ill-formed because neither
/| operand has user defined type
int | =1+ 1; /| Always evaluatesto 2 even if
/| user defined types exist which
/1 would perform the operation.
}
—end example]

If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function or built-in operator is to be invoked to implement the operator. Therefore, the
operator notation is first transformed to the equivalent function-call notation as summarized in Table 8
(where @denotes one of the operators covered in the specified subclause).

Table 8—relationship between operator and function call notation

ESubcIause QExpron gAsmember function QAsnon—member function 0
5[3.5. 1 H@ E‘(a).operat or@ () Hoperat or@(a) E’
M3.5.2 pa@® n(a).operator@(b) operator@(a, b) 0

.5.3 [pa=b O(a).operator= (b) QO O
(13.5.5 Oa[b] U(a).operator[](b) O U
th3.5.6 UHa-> U(a).operator-> () U O
%3. 5.7 Ha@ H(a) .operator @ (0) Hoper ator@(a, 0) H

220

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.3.1.2 Operatorsin expressions

For aunary operator @with an operand of atype whose cv-unqualified versionis T1, and for a binary oper-
ator @with aleft operand of atype whose cv-unqualified versionis T1 and aright operand of a type whose
cv-ungualified version is T2, three sets of candidate functions, designated member candidates, non-member
candidates and built-in candidates, are constructed as follows:

— If T1 is a class type, the set of member candidates is the result of the qualified lookup of
T1:: oper at or @(13.3.1.1.1); otherwise, the set of member candidates is empty.

— The set of non-member candidates is the result of the unqualified lookup of oper at or @in the context
of the expression according to the usual rules for name lookup in unqualified function calls (3.4.2)
except that all member functions are ignored. However, if no operand has a class type, only those non-
member functions in the lookup set that have afirst parameter of type T1 or “reference to (possibly cv-
qualified) T1”, when T1 is an enumeration type, or (if there is a right operand) a second parameter of
type T2 or “reference to (possibly cv-qualified) T2”, when T2 is an enumeration type, are candidate
functions.

— For the operator , , the unary operator &, or the operator - >, the built-in candidates set is empty. For all
other operators, the built-in candidates include all of the candidate operator functions defined in 13.6
that, compared to the given operator,

— have the same operator name, and
— accept the same number of operands, and

— accept operand types to which the given operand or operands can be converted according to
13.3.3.1, and

— do not have the same parameter type list as any non-template non-member candidate.
For the built-in assignment operators, conversions of the |eft operand are restricted as follows:
— no temporaries are introduced to hold the |eft operand, and

— no user-defined conversions are applied to the left operand to achieve a type match with the left-most
parameter of a built-in candidate.

For all other operators, no such restrictions apply.

The set of candidate functions for overload resolution is the union of the member candidates, the non-
member candidates, and the built-in candidates. The argument list contains all of the operands of the opera-
tor. The best function from the set of candidate functions is selected according to 13.3.2 and 1333119

[Example:

struct A {
operator int();
b
A operator+(const A& const A&);

void m() {
A a, b;
a + b; /| operator+(a,b) chosenoverint(a) +int(b)

}
—end example]

If abuilt-in candidate is selected by overload resolution, the operands are converted to the types of the cor-
responding parameters of the selected operation function. Then the operator is treated as the corresponding
built-in operator and interpreted according to clause 5.

The second operand of operator - > isignored in selecting an oper at or - > function, and is not an argu-
ment when the oper at or - > function is called. When oper at or - > returns, the operator - > is applied
to the value returned, with the original second operand.120

1191 the set of candidate functionsis empty, overload resolution is unsuccessful.
120) If the value returned by the oper at or - > function has class type, this may result in selecting and calling another oper at or - >

221

10

| SO/IEC 14882:2003(E) O ISO/IEC

13.3.1.2 Operatorsin expressions 13 Overloading

If the operator is the operator , , the unary operator &, or the operator - >, and there are no viable functions,
then the operator is assumed to be the built-in operator and interpreted according to clause 5.

[Note: the lookup rules for operators in expressions are different than the lookup rules for operator function
names in afunction call, as shown in the following example:

struct A{ };
voi d operator + (A A);

struct B {

voi d operator + (B);
void f ();

b

A a;

void B::f() {
operator+ (a,a); /| ERROR — global operator hidden by member
a + a; /1 OK —callsglobal oper at or +

}
—end note]

13.3.1.3 Initialization by constructor [over.match.ctor]

When objects of classtype are direct-initialized (8.5), or copy-initialized from an expression of the same or
aderived class type (8.5), overload resolution selects the constructor. For direct-initialization, the candidate
functions are all the constructors of the class of the object being initialized. For copy-initialization, the can-
didate functions are al the converting constructors (12.3.1) of that class. The argument list is the
expression-list within the parentheses of theinitializer.

13.3.1.4 Copy-initialization of class by user-defined conversion [over.match.copy]

Under the conditions specified in 8.5, as part of a copy-initiaization of an object of class type, a user-
defined conversion can be invoked to convert an initializer expression to the type of the object being initial-
ized. Overload resolution is used to select the user-defined conversion to be invoked. Assuming that “cvl
T" isthe type of the object being initialized, with T a class type, the candidate functions are selected as fol-
lows:

— The converting constructors (12.3.1) of T are candidate functions.

— When the type of the initializer expression is a class type “cv S”, the conversion functions of S and its
base classes are considered. Those that are not hidden within S and yield a type whose cv-unqualified
versionisthe sametypeas T or isaderived class thereof are candidate functions. Conversion functions
that return “referenceto X’ return Ivalues of type X and are therefore considered to yield X for this pro-
cess of selecting candidate functions.

In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument
will be compared against the first parameter of the constructors and against the implicit object parameter of
the conversion functions.]

13.3.1.5 Initialization by conversion function [over.match.conv]

Under the conditions specified in 8.5, as part of an initialization of an object of nonclass type, a conversion
function can be invoked to convert an initializer expression of class type to the type of the object being ini-
tialized. Overload resolution is used to select the conversion function to be invoked. Assuming that “cvl
T” is the type of the object being initialized, and “cv S” is the type of the initializer expression, with S a
class type, the candidate functions are selected as follows:

function. The process repeats until an oper at or - > function returns avalue of non-classtype.

222

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.3.1.5 Initialization by conversion function

— The conversion functions of S and its base classes are considered. Those that are not hidden within S
and yield type T or a type that can be converted to type T via a standard conversion segquence
(13.3.3.1.1) are candidate functions. Conversion functions that return a cv-qualified type are considered
to yield the cv-unqualified version of that type for this process of selecting candidate functions. Con-
version functions that return “reference to cv2 X” return lvalues of type “cv2 X" and are therefore con-
sidered to yield X for this process of selecting candidate functions.

The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

13.3.1.6 Initialization by conversion function for direct reference binding [over.match.ref]

Under the conditions specified in 8.5.3, a reference can be bound directly to an Ivalue that is the result of
applying a conversion function to an initializer expression. Overload resolution is used to select the con-
version function to be invoked. Assuming that “cvl T” is the underlying type of the reference being initial-
ized, and “cv S” is the type of the initializer expression, with S a class type, the candidate functions are
selected asfollows:

— The conversion functions of S and its base classes are considered. Those that are not hidden within S
and yield type “reference to cv2 T2”, where “cvl T” is reference-compatible (8.5.3) with “cv2 T2”, are
candidate functions.

The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

13.3.2 Viablefunctions [over.match.viable]

From the set of candidate functions constructed for a given context (13.3.1), a set of viable functionsis cho-
sen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.3.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

First, to be aviable function, a candidate function shall have enough parameters to agree in number with the
argumentsin thelist.

— If thereare margumentsin the list, all candidate functions having exactly m parameters are viable.

— A candidate function having fewer than m parametersis viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to ‘‘match the ellipsis” (13.3.3.1.3) .

— A candidate function having more than m parameters is viable only if the (m+1)—st parameter has a
default argument (8.3.6).121 For the purposes of overload resolution, the parameter list is truncated on
theright, so that there are exactly m parameters.

Second, for F to be a viable function, there shall exist for each argument an implicit conversion sequence
(13.3.3.1) that converts that argument to the corresponding parameter of F. If the parameter has reference
type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a
reference to non-const cannot be bound to an rvalue can affect the viability of the function (see
13.3.3.1.4).

13.3.3 Best Viable Function [over.match.best]

Define ICSi(F) asfollows:

— if Fisastatic member function, ICS1(F) is defined such that ICS1(F) is neither better nor worse than

ICS1(G) for any function G, and, symmetrically, ICS1(G) is neither better nor worse than ICS1(F)*??);

i;;) According to 8.3.6, parameters following the (m+ 1)—st parameter must al so have default arguments.
) If afunction is a static member function, this definition means that the first argument, the implied object parameter, has no effect
in the determination of whether the function is better or worse than any other function.

223

2

| SO/IEC 14882:2003(E) O ISO/IEC

13.3.3 Best Viable Function 13 Overloading

otherwise,

— let ICSIi(F) denote the implicit conversion sequence that converts the i-th argument in the list to the type
of the i-th parameter of viable function F. 13.3.3.1 defines the implicit conversion sequences and
13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion sequence
Or worse conversion sequence than another.

Given these definitions, a viable function F1 is defined to be a better function than another viable function
F2 if for all argumentsi, ICSi(F1) is not aworse conversion sequence than ICSi(F2), and then

— for some argument j, ICSj(F1) is abetter conversion sequence than ICSj(F2), or, if not that,
— F1 isanon-template function and F2 is a function template specialization, or, if not that,

— F1 and F2 are function template specializations, and the function template for F1 is more specialized
than the template for F2 according to the partial ordering rules described in 14.5.5.2, or, if not that,

— the context is an initialization by user-defined conversion (see 8.5, 13.3.1.5, and 13.3.1.6) and the stan-
dard conversion sequence from the return type of F1 to the destination type (i.e., the type of the entity
being initialized) is a better conversion sequence than the standard conversion sequence from the return
type of F2 to the destination type. [Example:

struct A {
AQ);
operator int();
oper at or doubl e();

int i = a; /1 a. operator int() followed by no conversion
/| isbetter than a. oper at or doubl e() followed by
/| aconversiontoi nt

float x = ga; / 1 ambiguous. both possibilities require conversions,
/| and neither is better than the other

—end example]

If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed™®®.

129 The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a
function Wthat is not worse than any opponent it faced. Although another function F that Wdid not face might be at least as good as W
F cannot be the best function because at some point in the tournament F encountered another function G such that F was not better than
G Hence, Wis either the best function or there is no best function. So, make a second pass over the viable functions to verify that Wis
better than all other functions.

224

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.3.3 Best Viable Function

[Example:
void Fcn(const int*, short);
void Fen(int*, int);
int i;
short s = 0;

void f() {
Fen(& , s); /| isambiguous because
[/l & - int* isbetterthan& - const int*
/] buts - short isalsobetter thans - i nt
Fen(& , 1L); /| callsFen(int*, int),because
/]l & - int* isbetterthan& - const int*
/1 and1L - short and 1L - i nt areindistinguishable
Fen(& ,’'c’); /| callsFen(int*, int),because
/] & - int* isbetterthan& - const int*
/] andc - int isbetter thanc - short
}
—end example]

If the best viable function resolves to a function for which multiple declarations were found, and if at least
two of these declarations — or the declarations they refer to in the case of using-declarations — specify a
default argument that made the function viable, the program isill-formed. [Example:

namespace A {
extern "C' void f(int
}

namespace B {
extern "C'" void f(int
}

using A :f;
using B::f;

5);

5);

voi d use() {
f(3); /1 OK, default argument was not used for viability
f(); /| Error: found default argument twice

}
—end example]

13.3.3.1 Implicit conver sion sequences [over .best.ics]

An implicit conversion sequence is a sequence of conversions used to convert an argument in a function
call to the type of the corresponding parameter of the function being called. The sequence of conversionsis
an implicit conversion as defined in clause 4, which meansit is governed by the rules for initialization of an
object or reference by asingle expression (8.5, 8.5.3).

Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the
argument and how these are converted to match the corresponding properties of the parameter. Other prop-
erties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the
argument is a hit-field areignored. So, although an implicit conversion sequence can be defined for agiven
argument-parameter pair, the conversion from the argument to the parameter might still beill-formed in the
final analysis.

A well-formed implicit conversion sequence is one of the following forms:

— astandard conversion sequence (13.3.3.1.1),

225

10

| SO/IEC 14882:2003(E) O ISO/IEC

13.3.3.1 Implicit conversion sequences 13 Overloading

— auser-defined conversion sequence (13.3.3.1.2), or
— andllipsis conversion sequence (13.3.3.1.3).

However, when considering the argument of a user-defined conversion function that is a candidate by
13.3.1.3 when invoked for the copying of the temporary in the second step of a class copy-initialization, or
by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, only standard conversion sequences and ellipsis conversion
seguences are allowed.

For the case where the parameter type is areference, see 13.3.3.1.4.

When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization
of the parameter from the argument expression. The implicit conversion sequence is the one required to
convert the argument expression to an rvalue of the type of the parameter. [Note: when the parameter has a
class type, thisis a conceptual conversion defined for the purposes of clause 13; the actual initialization is
defined in terms of constructors and is not a conversion.] Any difference in top-level cv-qualification is
subsumed by the initialization itself and does not constitute a conversion. [Example: a parameter of type A
can be initialized from an argument of type const A. Theimplicit conversion sequence for that case is
the identity sequence; it contains no “conversion” from const Ato A.] When the parameter has a class
type and the argument expression has the same type, the implicit conversion sequence is an identity conver-
sion. When the parameter has a class type and the argument expression has a derived class type, the
implicit conversion sequence is a derived-to-base Conversion from the derived class to the base class.
[Note: there is no such standard conversion; this derived-to-base Conversion exists only in the description
of implicit conversion sequences.] A derived-to-base Conversion has Conversion rank (13.3.3.1.1).

In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
isthe standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence associated with the parameter is defined to be the unique conversion sequence
designated the ambiguous conversion sequence. For the purpose of ranking implicit conversion sequences
as described in 13.3.3.2, the ambiguous conversion sequence is treated as a user-defined sequence that is
indistinguishable from any other user-defined conversion sequmce124). If afunction that uses the ambigu-
ous conversion sequence is selected as the best viable function, the call will be ill-formed because the

12%) The ambi guous conversion sequence is ranked with user-defined conversion sequences because multiple conversion sequences for
an argument can exist only if they involve different user-defined conversions. The ambiguous conversion sequence is indistinguishable
from any other user-defined conversion sequence because it represents at least two user-defined conversion sequences, each with a dif-
ferent user-defined conversion, and any other user-defined conversion sequence must be indistinguishable from at least one of them.

This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters. Con-
sider thisexample,

class B;
class A{ A (B&; };
class B { operator A (); };

class C{ C (B&; };

void f(A) { }

void f(C { }

B b;

f(b); /| ambiguous because b -> C via constructor and
/1 b - Avia constructor or conversion function.

If it werenot for thisrule, f (A) would be eliminated as aviable function for the call f (b) causing overload resolution to select f (C)
as the function to call even though it is not clearly the best choice. On the other hand, if an f (B) were to be declared then f (b)
would resolveto that f (B) because the exact match with f (B) is better than any of the sequences required to match f (A) .

226

11

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.3.3.1 Implicit conversion sequences

conversion of one of the arguments in the call is ambiguous.

The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

13.3.3.1.1 Standard conversion sequences [over.ics.scq)

Table 9 summarizes the conversions defined in clause 4 and partitions them into four digoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. [Note: these categories are
orthogonal with respect to lvalue-ness, cv-qualification, and data representation: the Lvalue Transforma-
tions do not change the cv-qualification or data representation of the type; the Qualification Adjustments do
not change the lvalue-ness or data representation of the type; and the Promotions and Conversions do not
change the lvalue-ness or cv-qualification of the type.]

[Note: As described in clause 4, a standard conversion sequence is either the Identity conversion by itself
(that is, no conversion) or consists of one to three conversions from the other four categories. At most one
conversion from each category is alowed in a single standard conversion sequence. If there are two or
more conversions in the sequence, the conversions are applied in the canonical order: Lvalue
Transfor mation, Promotion or Conversion, Qualification Adjustment. —end note]

Each conversion in Table 9 also has an associated rank (Exact Match, Promotion, or Conversion). These
are used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is deter-
mined by considering the rank of each conversion in the sequence and the rank of any reference binding
(13.3.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of
those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

Table 9—conversions

[IConversion O Category 0 Rank USubclause O
. .) .) [[
H\lo conversions required 0O | dentity 0 0 0O
[l value-to-rvalue conversion g O O 41 O
Efb\rray-to_pm nter conversion ﬁ Lvalue Transformation E Exact Match 4.2
Function-to-pointer conversion [O o 43 0
LQualification conversions UQualification Adjustment U 0 44 O
.]] []
Hntegral promotions [Promotion O Promotion O %2 [
[Floating point promotion d d O 46 O
H ntegral conversions ﬁ H QU 4.7 UQ
Floating point conversions 0 0 o 48 0
0 iNo-i ' O , O O O
Fl gan ng mtegra_\l conversions = Conversion 0 Conversion 4.9
Pointer conversions N 0 0410 O
[(Pointer to member conversions [O O 411 O
q
HSOOI €an conversions H E DD 412 DD
13.3.3.1.2 User-defined conversion sequences [over.ics.user]

A user-defined conversion sequence consists of an initial standard conversion sequence followed by a
user-defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined
conversion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the
source type to the type required by the argument of the constructor. If the user-defined conversion is speci-
fied by a conversion function (12.3.2), the initial standard conversion sequence converts the source type to
theimplicit object parameter of the conversion function.

The second standard conversion sequence converts the result of the user-defined conversion to the target
type for the sequence. Since an implicit conversion sequence is an initialization, the specia rules for
initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-

227

| SO/IEC 14882:2003(E) O ISO/IEC

13.3.3.1.2 User -defined conver sion sequences 13 Overloading

defined conversion sequence (see 13.3.3 and 13.3.3.1).

If the user-defined conversion is specified by a template conversion function, the second standard conver-
sion sequence must have exact match rank.

A conversion of an expression of class type to the same class type is given Exact Match rank, and a conver-
sion of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact
that a copy constructor (i.e., a user-defined conversion function) is called for those cases.

13.3.3.1.3 Ellipsis conversion sequences [over.ics.elipsis]

An dllipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called.

13.3.3.1.4 Reference binding [over.icsref]

When a parameter of reference type binds directly (8.5.3) to an argument expression, the implicit conver-
sion sequence is the identity conversion, unless the argument expression has atype that is a derived class of
the parameter type, in which case the implicit conversion sequence is a derived-to-base Conversion
(13.3.3.1). [Example:

struct A {};

struct B : public A {} b;

int f(A8);

int f(B&);

int i =f(b); /| Callsf (B&), an exact match, rather than
/1 f (A&, aconversion

—end example] If the parameter binds directly to the result of applying a conversion function to the argu-
ment expression, the implicit conversion sequence is a user-defined conversion sequence (13.3.3.1.2), with
the second standard conversion sequence either an identity conversion or, if the conversion function returns
an entity of atype that isaderived class of the parameter type, a derived-to-base Conversion.

When a parameter of reference type is not bound directly to an argument expression, the conversion
seguence is the one required to convert the argument expression to the underlying type of the reference
according to 13.3.3.1. Conceptually, this conversion sequence corresponds to copy-initializing a temporary
of the underlying type with the argument expression. Any difference in top-level cv-qualification is sub-
sumed by the initialization itself and does not constitute a conversion.

A standard conversion sequence cannot be formed if it requires binding a reference to non-const to an
rvalue (except when binding an implicit object parameter; see the specia rules for that case in 13.3.1).
[Note: this means, for example, that a candidate function cannot be a viable function if it has anon-const
reference parameter (other than the implicit object parameter) and the corresponding argument is a tempo-
rary or would require one to be created to initialize the reference (see 8.5.3). |

Other restrictions on binding a reference to a particular argument do not affect the formation of a standard
conversion sequence, however. [Example: a function with a“referenceto i nt ” parameter can be aviable
candidate even if the corresponding argument is an i nt bit-field. The formation of implicit conversion
sequences treats the i nt bit-field as an i nt Ivalue and finds an exact match with the parameter. If the
function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibi-
tion on binding anon-const referenceto abit-field (8.5.3).]

The binding of areference to an expression that is reference-compatible with added qualification influences
the rank of a standard conversion; see 13.3.3.2 and 8.5.3.
13.3.3.2 Ranking implicit conversion sequences [over.icsrank]

13.3.3.2 defines a partial ordering of implicit conversion sequences based on the relationships better
conversion sequence and better conversion. If an implicit conversion sequence Sl is defined by these rules
to be a better conversion sequence than S2, then it is also the case that S2 is a worse conversion sequence
than S1. If conversion sequence Sl is neither better than nor worse than conversion sequence S2, S1 and

228

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.3.3.2 Ranking implicit conversion sequences

S2 are said to be indistinguishable conversion sequences.
When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— astandard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined conver-
sion sequence or an ellipsis conversion sequence, and

— auser-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.3.3.1.3).

Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one
of the following rules apply:

— Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence
S2 if

— S1 is a proper subsequence of S2 (comparing the conversion sequences in the canonical form
defined by 13.3.3.1.1, excluding any Lvalue Transformation; the identity conversion sequence is
considered to be a subsequence of any non-identity conversion sequence) or, if not that,

— therank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distinguish-
able by the rulesin the paragraph below, or, if not that,

— S1 and S2 differ only in their qualification conversion and yield similar types T1 and T2 (4.4),
respectively, and the cv-qualification signature of type T1 is a proper subset of the cv-qualification
signature of type T2, and S1 is not the deprecated string literal array-to-pointer conversion (4.2).
[Example:

int f(const int *);

int f(int *);

int i;

int j =f(&); /1 Callsf (int *)
—end example] or, if not that,

— S1 and S2 are reference bindings (8.5.3), and the types to which the references refer are the same
type except for top-level cv-qualifiers, and the type to which the reference initialized by S2 refersis
more cv-qualified than the type to which the reference initialized by S1 refers. [Example:

int f(const int &);
int f(int &;

int g(const int &);
int g(int);

i
jo=f(i); /] Callsf (int &
int k =g(i); /| ambiguous

a.f(); /1 CallsX::f() const
b.f(); /] CallsX::f()
—end example]

— User-defined conversion sequence UL is a better conversion sequence than another user-defined conver-
sion sequence U2 if they contain the same user-defined conversion function or constructor and if the
second standard conversion sequence of Ul is better than the second standard conversion sequence of

229

| SO/IEC 14882:2003(E) O ISO/IEC

13.3.3.2 Ranking implicit conversion sequences 13 Overloading

2. [Example:
struct A {
operator short();
}oa
int f(int);
int f(float);
int i =f(a); /| Callsf (int),becauseshort - intis
/| better thanshort - fl oat.

—end example]

Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a Pro-
motion, which is a better conversion than a Conversion. Two conversion sequences with the same rank are
indistinguishable unless one of the following rules applies:

— A conversion that is not a conversion of a pointer, or pointer to member, to bool is better than another
conversion that is such a conversion.

— If class B isderived directly or indirectly from class A, conversion of B* to A* is better than conversion
of B* tovoi d*, and conversion of A* tovoi d* isbetter than conversion of B* tovoi d*.

— If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from
Bl

— conversion of C* to B* is better than conversion of C* to A* , [Example:

struct A {};

struct B : public A {};

struct C: public B {};

C *pc;

int f(A*);

int f(B*);

int i =f(pc); /'l Callsf(B*)

—end example]

— binding of an expression of type C to a reference of type B& is better than binding an expression of
type Cto areference of type A&,

— conversion of A: : * to B: : * isbetter than conversionof A: : * toC. : *,
— conversion of Cto B is better than conversion of Cto A,
— conversion of B* to A* is better than conversion of C* to A*,

— binding of an expression of type B to a reference of type A& is better than binding an expression of
type Cto areference of type A&,

— conversionof B: : * to C: : * is better than conversionof A: : * toC; : *, and

— conversion of B to A is better than conversion of Cto A.
[Note: compared conversion sequences will have different source types only in the context of comparing
the second standard conversion sequence of an initialization by user-defined conversion (see 13.3.3); in all
other contexts, the source typeswill be the same and the target types will be different.]

13.4 Address of overloaded function [over.over]

A use of an overloaded function name without arguments is resolved in certain contexts to a function, a
pointer to function or a pointer to member function for a specific function from the overload set. A func-
tion template name is considered to name a set of overloaded functions in such contexts. The function
selected is the one whose type matches the target type required in the context. The target can be

— an object or reference being initialized (8.5, 8.5.3),
— theleft side of an assignment (5.17),

230

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.4 Address of overloaded function

— aparameter of afunction (5.2.2),

— aparameter of auser-defined operator (13.5),

— thereturn value of afunction, operator function, or conversion (6.6.3),
— anexplicit type conversion (5.2.3, 5.2.9, 5.4), or

— anon-type template-parameter (14.3.2).

The overloaded function name can be preceded by the & operator. An overloaded function name shall not
be used without arguments in contexts other than those listed. [Note: any redundant set of parentheses sur-
rounding the overloaded function nameisignored (5.1).]

If the name is a function template, template argument deduction is done (14.8.2.2), and if the argument
deduction succeeds, the resulting template argument list is used to generate a single function template spe-
cialization, which is added to the set of overloaded functions considered.

Non-member functions and static member functions match targets of type “pointer-to-function” or
“reference-to-function.” Nonstatic member functions match targets of type “pointer-to-member-function;”
the function type of the pointer to member is used to select the member function from the set of overloaded
member functions. If a nonstatic member function is selected, the reference to the overloaded function
nameis required to have the form of a pointer to member as described in 5.3.1.

If more than one function is selected, any function template speciaizations in the set are eliminated if the
set also contains a non-template function, and any given function template specialization F1 is eliminated if
the set contains a second function template specialization whose function template is more specialized than
the function template of F1 according to the partial ordering rules of 14.5.5.2. After such eliminations, if
any, there shall remain exactly one selected function.

[Example:
int f(double);
int f(int);
int (*pfd)(double) = &f; /| selectsf (doubl e)
int (*pfi)(int) = &f; /'l selectsf (i nt)
int (*pfe)(...) = &f; /| error: type mismatch
int (&fi)(int) =f; /| selectsf (i nt)
int (&fd)(double) = f; /| selectsf (doubl e)
void g() {

(int (*)(int))&f; /| cast expression as selector

}

The initidization of pf e isill-formed because no f () with typei nt (...) has been defined, and not
because of any ambiguity. For another example,

struct X {
int f(int);
static int f(long);
b
int (X:*pl)(int) = &KX :f; /1 OK
i nt (*p2)(int) = &KX :f; /| error: mismatch
int (*p3)(long) = &X :f; /1 OK
int (X:*pd4)(long) = &K :f; /'l error: mismatch
int (X:*p5)(int) = &X:f); /'] error: wrong syntax for

/| pointer to member
& X :f); /1 OK

int (*pb6) (I ong)
—end example]

[Note: if f () and g() are both overloaded functions, the cross product of possibilities must be considered
toresolvef (&g) , or the equivalent expressionf (Q) .]

231

| SO/IEC 14882:2003(E) O ISO/IEC

13.4 Address of overloaded function 13 Overloading

[Note: there are no standard conversions (clause 4) of one pointer-to-function type into another. In particu-
lar, even if Bisapublic base of D, we have

D* f();
B* (*pl)() = &f; /'l error
void g(D*);
void (*p2)(B*) = &g; /'l error
—end note]
13.5 Overloaded operators [over.oper]

A function declaration having one of the following operator-function-ids as its name declares an operator
function. An operator function is said to implement the operator named in its operator-function-id.

operator-function-id:
oper at or operator
oper at or operator < template-argument-list,, >

operator: one of

new delete new] del ete[]

+ - * / % - & | ~

| = < > += - = * = /| = Y%=
~= &= | = << >> >>= <<= == | =
<= >= && | ++ -- ->* o>

0 Il

[Note: the last two operators are function call (5.2.2) and subscripting (5.2.1). The operators newf],
delete[],(),and[] areformed from more than onetoken.]

Both the unary and binary forms of
+ - * &
can be overloaded.
The following operators cannot be overloaded:
Lx . ?:
nor can the preprocessing symbols # and ## (clause 16).

Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.5.1 - 13.5.7). They can be explicitly called, however, using the operator-function-id as the
name of the function in the function call syntax (5.2.2). [Example:

conplex z = a.operator+(bh); /1 conpl ex z = a+b;
voi d* p = operator new(sizeof (int)*n);

—end example]

The alocation and deallocation functions, oper at or new, oper at or new], operat or del ete
and oper at or del et e[], are described completely in 3.7.3. The attributes and restrictions found in the
rest of this subclause do not apply to them unless explicitly stated in 3.7.3.

An operator function shall either be a non-static member function or be a non-member function and have at
least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enu-
meration. It is not possible to change the precedence, grouping, or number of operands of operators. The
meaning of the operators =, (unary) & and, (comma), predefined for each type, can be changed for spe-
cific class and enumeration types by defining operator functions that implement these operators. Operator
functions are inherited in the same manner as other base class functions.

The identities among certain predefined operators applied to basic types (for example, ++a = a+=1) need
not hold for operator functions. Some predefined operators, such as +=, require an operand to be an lvalue

232

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.5 Overloaded operators

when applied to basic types; thisis not required by operator functions.

An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator,
as described in the rest of this subclause.

Operators not mentioned explicitly in subclauses 13.5.3 through 13.5.7 act as ordinary unary and binary
operators obeying therulesof 13.5.1 or 13.5.2.

13.5.1 Unary operators [over.unary]

A prefix unary operator shall be implemented by a non-static member function (9.3) with no parameters or
anon-member function with one parameter. Thus, for any prefix unary operator @ @ can be interpreted as
either x. operat or @) or oper at or @ x) . If both forms of the operator function have been declared,
the rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5.7 for an explanation of the
postfix unary operators ++ and - - .

The unary and binary forms of the same operator are considered to have the same name. [Note: conse-
guently, aunary operator can hide a binary operator from an enclosing scope, and vice versa. |

13.5.2 Binary operators [over.binary]

A binary operator shall be implemented either by a non-static member function (9.3) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator @ x @ can be interpreted as
either x. operator @y) or operator @x, y). If both forms of the operator function have been
declared, the rulesin 13.3.1.2 determines which, if any, interpretation is used.

13.5.3 Assignment [over.ass]

An assignment operator shall be implemented by a non-static member function with exactly one parameter.
Because a copy assignment operator oper at or = is implicitly declared for a class if not declared by the
user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the
derived class.

Any assignment operator, even the copy assignment operator, can be virtual. [Note: for a derived class D
with a base class B for which a virtual copy assignment has been declared, the copy assignment operator in
D does not override B's virtual copy assignment operator. [Example:

struct B {
virtual int operator= (int);
virtual B& operator= (const B&);
b
struct D: B {
virtual int operator= (int);
virtual D& operator= (const B&);

b
D dobj 1;
D dobj 2;
B* bptr = &dobj 1;
void f() {
bptr - >oper at or =(99) ; /'l callsD: : operator=(int)
*bptr = 99; /| ditto
bptr->oper at or =(dobj 2); // callsD:: oper at or =(const B&)
*pbptr = dobj 2; /| ditto
dobj 1 = dobj 2; /| callsimplicitly-declared
/1 D::operator=(const D&)
}

—end example] —end note]

233

| SO/IEC 14882:2003(E) O ISO/IEC

13.5.4 Function call 13 Overloading

13.5.4 Function call [over.call]

oper at or () shal be a non-static member function with an arbitrary number of parameters. It can have
default arguments. It implements the function call syntax

postfix-expression (expression-listy,)

where the postfix-expression evaluates to a class object and the possibly empty expression-list matches the
parameter list of an oper at or () member function of the class. Thus, acal x(argl,...) isinter-
preted as x. operator () (argl,...) foraclassobject x of type T if T:: operator () (T1, T2,
T3) exists and if the operator is selected as the best match function by the overload resolution mechanism
(13.3.3).

13.5.5 Subscripting [over.sub]

operat or[] shal be a non-static member function with exactly one parameter. It implements the sub-
scripting syntax

postfix-expression [expression]

Thus, a subscripting expression X[y] isinterpreted asx. operat or[] (y) for aclassobject x of type T
if T: :operator[] (T1l) existsand if the operator is selected as the best match function by the overload
resolution mechanism (13.3.3).

13.5.6 Classmember access [over .ref]

oper at or - > shall be a non-static member function taking no parameters. It implements class member
accessusing - >

postfix-expression - > id-expression

An expression x->m is interpreted as (x. operator->())->m for a class object x of type T if
T:: operator->() existsand if the operator is selected as the best match function by the overload reso-
[ution mechanism (13.3).

13.5.7 Increment and decr ement [over.inc]

The user-defined function called oper at or ++ implements the prefix and postfix ++ operator. If this
function is amember function with no parameters, or a non-member function with one parameter of class or
enumeration type, it defines the prefix increment operator ++ for objects of that type. If the function is a
member function with one parameter (which shall be of type i nt) or a hon-member function with two
parameters (the second of which shall be of type i nt), it defines the postfix increment operator ++ for
objects of that type. When the postfix increment is called as a result of using the ++ operator, the i nt

argument will have value zero. 1) [Example:

class X {

public:
X& operator++(); /| prefix ++a
X operat or++(int); /'l postfix a++

b

class Y { };

Y& operator++(Y&); /| prefix ++b

Y operator++(Y& int); /| postfix b++

129) Calling oper at or ++ explicitly, as in expressions like a. oper at or ++(2), has no specia properties: The argument to
oper at or ++is2.

234

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.5.7 Increment and decr ement

void f(Xa, Yb) {

++a; /1 a.operator++();
a++; /'l a.operator++(0);
++b; /| operator++(b);
b++; /| operator++(h, 0);
a.operator++(); /| explicit call: like ++a;
a. oper at or ++(0) ; /1 explicit call: like a++;
oper at or ++(b) ; /'l explicit call: like ++b;
operator ++(h, 0); /1 explicit call: like b++;
}
—end example]

The prefix and postfix decrement operators - - are handled analogously.

13.6 Built-in operators [over .built]

The candidate operator functions that represent the built-in operators defined in clause 5 are specified in
this subclause. These candidate functions participate in the operator overload resolution process as
described in 13.3.1.2 and are used for no other purpose. [Note: because built-in operators take only
operands with non-class type, and operator overload resolution occurs only when an operand expression
originally has class or enumeration type, operator overload resolution can resolve to a built-in operator only
when an operand has a class type that has a user-defined conversion to a non-class type appropriate for the
operator, or when an operand has an enumeration type that can be converted to a type appropriate for the
operator. Also note that some of the candidate operator functions given in this subclause are more permis-
sive than the built-in operators themselves. Asdescribed in 13.3.1.2, after a built-in operator is selected by
overload resolution the expression is subject to the requirements for the built-in operator given in clause 5,
and therefore to any additional semantic constraints given there. If there is a user-written candidate with
the same name and parameter types as a built-in candidate operator function, the built-in operator function
is hidden and is not included in the set of candidate functions.]

In this subclause, the term promoted integral type is used to refer to those integral types which are pre-
served by integral promotion (including e.g. i nt and | ong but excluding e.g. char). Similarly, theterm
promoted arithmetic type refers to promoted integral types plus floating types. [Note: in all cases where a
promoted integral type or promoted arithmetic type is required, an operand of enumeration type will be
acceptable by way of the integral promotions.]

For every pair (T, VQ), where T is an arithmetic type, and VQ is either vol ati | e or empty, there exist
candidate operator functions of the form

VQ T& oper at or ++(VQT&) ;
T operator++(VQTE&, int);

For every pair (T, VQ), where T is an arithmetic type other than bool, and VQ is either vol atil e or
empty, there exist candidate operator functions of the form

VQ T& operator--(VQT&) ;
T operator--(VQT& int);

For every pair (T, VQ), where T isa cv-qualified or cv-unqualified object type, and VQ iseither vol ati | e
or empty, there exist candidate operator functions of the form

T*VQ& operat or ++(T*VQ&) ;

T*VQ& operator--(T*VQ&) ;

T* oper at or ++(T*VQ&, int);

T operator--(T*VQ&, int);

For every cv-qualified or cv-unqualified object type T, there exist candidate operator functions of the form

235

10

11

12

13

14

15

| SO/IEC 14882:2003(E) O ISO/IEC

13.6 Built-in operators 13 Overloading

T& operator*(T*);

For every function type T, there exist candidate operator functions of the form
T& operator*(T*);

For every type T, there exist candidate operator functions of the form

T* operat or +(T*);

For every promoted arithmetic type T, there exist candidate operator functions of the form
T operator+(T);
T operator-(T);
For every promoted integral type T, there exist candidate operator functions of the form
T operator™(T);
For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, C1 is the same type as C2 or is a

derived class of C2, T is an object type or a function type, and CV1 and CV2 are cv-qualifier-segs, there
exist candidate operator functions of the form

CV12T& operator->*(CV1Cl*, CV2TC2 :*);
where CV12 is the union of CV1 and CV2.

For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form

LR operator*(L, R);
LR operator/ (L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);

where LR is the result of the usual arithmetic conversions between typesL and R.

For every cv-qualified or cv-unqualified object type T there exist candidate operator functions of the form

T operator+(T*, ptrdiff_t);
T& operator[](T*, ptrdiff_t);
T* operator-(T*, ptrdiff_t);
T* operator+(ptrdiff_t, T*);
T& operator[](ptrdiff_t, T*);

For every T, where T isapointer to object type, there exist candidate operator functions of the form
ptrdiff _t operator-(T, T);

For every pointer or enumeration type T, there exist candidate operator functions of the form

bool operator<(T, T);
bool operator>(T, T);
bool operator<=(T, T);
bool operator>=(T, T);
bool operator==(T, T);
bool operator!=(T, T);

236

16

17

18

19

20

21

22

23

24

O ISO/IEC | SO/IEC 14882:2003(E)

13 Overloading 13.6 Built-in operators

For every pointer to member type T, there exist candidate operator functions of the form

bool operator==(T, T);
bool operator!=(T, T);

For every pair of promoted integral typesL and R, there exist candidate operator functions of the form

LR operator% L, R);
LR operator&L, R);
LR operator” (L, R);
LR operator| (L, R);
L operator<<(L, R);
L operator>>(L, R);

where LR isthe result of the usual arithmetic conversions between typesL and R.

For every triple (L, VQ, R), where L is an arithmetic type, VQ is either vol ati | e or empty, and Ris a
promoted arithmetic type, there exist candidate operator functions of the form

VQ L& operator=(VQL& R);

VQ L& operator*=(VQL& R);

VQ L& operator/=(VQL& R);

VQ L& operator+=(VQL& R);

VQ L& operator-=(VQL& R);

For every pair (T, VQ), where T is any type and VQ is either vol ati | e or empty, there exist candidate
operator functions of the form

T*VQ& operator=(T*VQ& T*);

For every pair (T, VQ), where T is an enumeration or pointer to member type and VQ is either vol ati | e
or empty, there exist candidate operator functions of the form

VQ T& operator=(VQ T& T);

For every pair (T, VQ), where T isa cv-qualified or cv-unqualified object type and VQ is either vol ati | e
or empty, there exist candidate operator functions of the form

T*VQ& operator+=(T*VQ& ptrdiff_t);
T*VQ& operator-=(T*VQ& ptrdiff_t);

For every triple (L, VQ, R), where L is an integral type, VQ is either vol ati | e or empty, and Ris a pro-
moted integral type, there exist candidate operator functions of the form

VQ L& operator%(VQL& R);
VQL& operat or<<=(VQL& R);
VQL& operator>>=(VQL& R);
VQ L& operator&=(VQL& R);
VQ L& operator”=(VQL& R);
VQ L& operator|=(VQL& R);

There aso exist candidate operator functions of the form

bool operator! (bool);
bool oper at or &(bool , bool);
bool operator| | (bool, bool);

For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form
LR operator?(bool, L, R);

where LR is the result of the usual arithmetic conversions between types L and R. [Note: as with all these
descriptions of candidate functions, this declaration serves only to describe the built-in operator for pur-
poses of overload resolution. The operator “?” cannot be overloaded.]

237

25

| SO/IEC 14882:2003(E) O ISO/IEC

13.6 Built-in operators 13 Overloading

For every type T, where T is a pointer or pointer-to-member type, there exist candidate operator functions
of theform

T operator?(bool, T, T);

238

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates [temp]

A template defines afamily of classes or functions.

template-declaration:
export . tenplate < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

The declaration in atemplate-declaration shall
— declare or define afunction or aclass, or

— define a member function, a member class or a static data member of a class template or of a class
nested within a class template, or

— define amember template of aclass or classtemplate.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration
defines afunction, aclass, or a static data member.

A template-declaration can appear only as a namespace scope or class scope declaration. In a function
template declaration, the declarator-id shall be a template-name (i.e., not a template-id). [Note: in a class
template declaration, if the class name is a template-id, the declaration declares a class template partial spe-
cialization (14.5.4).]

In atemplate-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the dec-
laration shall contain at most one declarator. When such a declaration is used to declare a class template,
no declarator is permitted.

A template name has linkage (3.5). A non-member function template can have internal linkage; any other
template name shall have external linkage. Entities generated from atemplate with internal linkage are dis-
tinct from all entities generated in other trandlation units. A template, a template explicit specialization
(14.7.3), or a class template partial specialization shall not have C linkage. If the linkage of one of theseis
something other than C or G+, the behavior is implementation-defined. Template definitions shall obey
the one definition rule (3.2). [Note: default arguments for function templates and for member functions of
class templates are considered definitions for the purpose of template instantiation (14.5) and must also
obey the one definition rule.]

A class template shall not have the same name as any other template, class, function, object, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.4). Except that afunc-
tion template can be overloaded either by (non-template) functions with the same name or by other function
templates with the same name (14.8.3), a template name declared in namespace scope or in class scope
shall be uniquein that scope.

A namespace-scope declaration or definition of a non-inline function template, a non-inline member func-
tion template, a non-inline member function of a class template or a static data member of a class template
may be preceded by the export keyword. If such atemplate is defined in the same trandlation unit in
which it is declared as exported, the definition is considered to be exported. The first declaration of the
template containing the expor t keyword must not follow the definition.

Declaring a class template exported is equivalent to declaring al of its non-inline function members, static
data members, member classes, member class templates and non-inline function member templates which
are defined in that translation unit exported.

239

| SO/IEC 14882:2003(E) O ISO/IEC

14 Templates 14 Templates

Templates defined in an unnamed namespace shall not be exported. A template shall be exported only once
in aprogram. An implementation is not required to diagnose a violation of thisrule. A non-exported tem-
plate must be defined in every trandlation unit in which it isimplicitly instantiated (14.7.1), unless the cor-
responding specialization is explicitly instantiated (14.7.2) in some trandation unit; no diagnostic is
required. [Note: See also 14.7.2.] An exported template need only be declared (and not necessarily
defined) in a trandation unit in which it is instantiated. A function template declared both exported and
inlineisjust inline and not exported.

[Note: an implementation may require that a trandation unit containing the definition of an exported tem-
plate be compiled before any trandlation unit containing an instantiation of that template.]

14.1 Template parameters [temp.param]
The syntax for template-parametersis:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
cl ass identifier
cl ass identifier,, = type-id
t ypenane identifier
t ypenane identifier,, = type-id
tenpl ate <template-parameter-list > cl ass identifier,
tenpl ate <template-parameter-list > cl ass identifier,, = id-expression

There is no semantic difference between cl ass and t ypenane in a template-parameter. t ypenane
followed by an unqualified-id names a template type parameter. t ypenane followed by a qualified-id
denotes the type in a non-type 126) parameter-declaration. A storage class shall not be specified in a
template-parameter declaration. [Note: atemplate parameter may be a class template. For example,

tenpl ate<class T> class nyarray { /* ... */ };

tenpl ate<class K, class V, tenplate<class T> class C = nyarray>

class Map {
C<K> key;
C<V> val ue;
/..
}s
—end note]

A type-parameter defines its identifier to be a type-name (if declared with cl ass or t ypenane) or
template-name (if declared with t enpl at e) in the scope of the template declaration. [Note: because of
the name lookup rules, a template-parameter that could be interpreted as either a non-type template-
parameter or a type-parameter (because its identifier is the name of an already existing class) is taken as a
type-parameter. For example,

class T { /* ... *| };
int i;

tenplate<class T, T i> void f(T t)

{
Ttl=1i; /| template-parameters T and i

T t2 =iy /| global namespace members T and i
}

125) gince template template-parameters and template template-arguments are treated as types for descriptive purposes, the terms
non-type parameter and non-type argument are used to refer to non-type, non-template parameters and arguments.

240

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.1 Template parameters

Here, the template f has a type-parameter called T, rather than an unnamed non-type template-parameter
of classT.]

A non-type template-parameter shall have one of the following (optionally cv-qualified) types:
— integral or enumeration type,

— pointer to object or pointer to function,

— reference to object or reference to function,

— pointer to member.

[Note: other types are disallowed either explicitly below or implicitly by the rules governing the form of
template-arguments (14.3).] The top-level cv-qualifiers on the template-parameter are ignored when
determining itstype.

A non-type non-reference template-parameter is not an lvalue. It shall not be assigned to or in any other
way have its value changed. A non-type non-reference template-parameter cannot have its address taken.
When a non-type non-reference template-parameter is used as an initializer for areference, a temporary is
always used. [Example:

tenpl at e<const X& x, int i> void f()

{
i ++; /'l error: change of template-parameter value
&X; /1 OK
& ; /| error: address of non-reference template-parameter
int&ri =1i; /'l error: non-const reference bound to temporary
const int&cri =i; /1 OK: const reference bound to temporary

}

—end example]

A non-type template-parameter shall not be declared to have floating point, class, or void type. [Example:

t enpl at e<doubl e d> cl ass X; /] error
t enpl at e<doubl e* pd> cl ass Y; /1 OK
t enpl at e<doubl e& rd> cl ass Z; /1 OK

—end example]

A non-type template-parameter of type “array of T" or “function returning T” is adjusted to be of type
“pointer to T” or “pointer to function returning T”, respectively. [Example:

tenpl ate<int *a> struct R{ /* ... */ };

tenpl ate<int b[5]> struct S{ /* ... */ };

int p;

R<&p> w, /1 OK

S<&p> X; /' OK dueto parameter adjustment

int v[5];

R<v> y; /1 OK dueto implicit argument conversion

S<v> z; /1 OK due to both adjustment and conversion
—end example]

A default template-argument is a template-argument (14.3) specified after = in a template-parameter. A
default template-argument may be specified for any kind of template-parameter (type, non-type, template).
A default template-argument may be specified in a class template declaration or a class template definition.
A default template-argument shall not be specified in a function template declaration or afunction template
definition, nor in the template-parameter-list of the definition of a member of a class template. A default
template-argument shall not be specified in afriend template declaration.

241

10

11

12

13

14
15

| SO/IEC 14882:2003(E) O ISO/IEC

14.1 Template parameters 14 Templates

The set of default template-arguments available for use with atemplate declaration or definition is obtained
by merging the default arguments from the definition (if in scope) and all declarations in scope in the same
way default function arguments are (8.3.6). [Example:

tenpl ate<class T1l, class T2 = int> class A
tenpl ate<class Tl = int, class T2> class A

is equivalent to
tenpl ate<class Tl = int, class T2 = int> class A
—end example]

If atemplate-parameter has a default template-argument, all subsequent template-parameters shall have a
default template-argument supplied. [Example:

templ ate<class Tl = int, class T2> cl ass B; /] error
—end example]

A template-parameter shall not be given default arguments by two different declarations in the same scope.
[Example:

tenpl ate<class T
tenpl ate<class T

int> class X;
int>class X { /*... */ }; Il error

—end example]

The scope of atemplate-parameter extends from its point of declaration until the end of its template. In par-
ticular, a template-parameter can be used in the declaration of subsequent template-parameters and their
default arguments. [Example:

tenpl ate<class T, T* p, class U= T>class X { /* ... */ };
tenpl ate<class T> void f(T* p = new T);

—end example]
A template-parameter shall not be used in its own default argument.

When parsing a default template-argument for a non-type template-parameter, the first non-nested > is
taken as the end of the template-parameter-list rather than a greater-than operator. [Example:

tenplate<int i =3 >4 > /| syntax error
class X { /I* ... *| };
template<int i = (3 > 4) > /1 OK
class Y { /* ... *| };
—end example]
14.2 Names of template specializations [temp.names]

A template specialization (14.7) can be referred to by atemplate-id:
template-id:
template-name < template-argument-list,, >
template-name:

identifier

template-argument-list:
template-argument
template-argument-list , template-argument

242

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.2 Names of template specializations

template-argument:
assignment-expression
type-id
id-expression
[Note: the name lookup rules (3.4) are used to associate the use of a name with a template declaration; that
is, to identify aname as atemplate-name. |

For atemplate-name to be explicitly qualified by the template arguments, the name must be known to refer
to atemplate.

After name lookup (3.4) finds that a name is a template-name, if this name is followed by a <, the < is
always taken as the beginning of a template-argument-list and never as a name followed by the less-than
operator. When parsing a template-id, the first non-nested >127) s taken as the end of the template-
argument-list rather than a greater-than operator. [Example:

tenplate<int i>class X { /* ... */ };

X< 1>2 > x1; /'l syntax error

X<(1>2) > X2; /1 OK

tenpl ate<class T> class Y { /* ... */ };

Y< X<1> > x3; /1 OK

Y<X<6>> 1> > x4; /1 OK: Y<X X< (6>>1) >>
—end example]

When the name of a member template speciaization appears after . or - > in a postfix-expression, or after
nested-name-specifier in a qualified-id, and the postfix-expression or qualified-id explicitly depends on a
template-parameter (14.6.2), the member template name must be prefixed by the keyword t enpl at e.
Otherwise the name is assumed to name a non-template. [Example:

class X {
public:
tenpl ate<size_t> X* alloc();
tenpl ate<size_t> static X* adjust();

s
tenpl ate<class T> void f(T* p)
{
T* pl = p->alloc<200>();
/1 ill-formed: < means lessthan
T* p2 = p->tenplate all oc<200>();
/' OK: < starts template argument list
T::adj ust <100>();
/1 ill-formed: < means lessthan
T::tenpl ate adj ust<100>();
/1 OK: < starts template argument list
}
—end example]

If a name prefixed by the keyword t enpl at e is not the name of a member template, the program isill-
formed. [Note: the keyword t enpl at e may not be applied to non-template members of class templates.
] Furthermore, names of member templates shall not be prefixed by the keyword t enpl at e if the postfix-
expression or qualified-id does not appear in the scope of a template. [Note: just as is the case with the
t ypenane prefix, thet enpl at e prefix is alowed in cases where it is not strictly necessary; i.e., when

1277 A > that encloses the type-id of a dynam c_cast, static_cast, rei nterpret_cast or const_cast, or which
encloses the template-ar guments of a subsequent template-id, is considered nested for the purpose of this description.

243

| SO/IEC 14882:2003(E) O ISO/IEC

14.2 Names of template specializations 14 Templates

the expression on the left of the - > or ., or the nested-name-specifier is not dependent on a template-
parameter. |

A template-id that names a class template specialization is a class-name (clause 9).

14.3 Template arguments [temp.arg]

There are three forms of template-argument, corresponding to the three forms of template-parameter: type,
non-type and template. The type and form of each template-argument specified in a template-id shall
match the type and form specified for the corresponding parameter declared by the template in its
template-parameter-list. [Example:

tenpl ate<class T> class Array {

T v;
int sz;
public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
/..
i
Array<int> vi1(20);
t ypedef conpl ex<doubl e> dconpl ex; /| conpl ex isa standard

/'l library template
Array<dconpl ex> v2(30);
Array<dconpl ex> v3(40);

void bar() {
vi[3] = 7;
v2[3] = v3.elenm(4) = dconpl ex(7,8);
}
—end example]

In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id, regard-
less of the form of the corresponding template-par ameter.1?® [Example:

tenpl ate<class T> void f();
tenplate<int 1> void f();
void g()

f<int()>(); /1 int() isatype-id: call thefirstf ()
}

—end example]

The name of a template-argument shall be accessible at the point where it is used as a template-argument.
[Note: if the name of the template-argument is accessible at the point where it is used as a template-
argument, there is no further access restriction in the resulting instantiation where the corresponding
template-parameter nameisused.] [Example:

125) Thereis no such ambiguity in a default template-argument because the form of the template-parameter determines the allowable
forms of the template-argument.

244

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.3 Template arguments

tenpl ate<class T> class X {

static T t;
s
class Y {
private:
struct S{ /* ... *[};
X<S> x; /] OK: Sisaccessible
/1 X<Y::S>hasa static member of typeY: : S
/1 OK: eventhoughY: : Sisprivate
b
X<Y::S> vy, /'] error: Snot accessible

—end example] For atemplate-argument of class type, the template definition has no special access rights
to the inaccessible members of the template argument type.

4 When default template-arguments are used, a template-argument list can be empty. In that case the empty
<> brackets shall still be used as the template-argument-list. [Example:

tenpl ate<class T = char> class String;

String<>* p; /1 OK: String<char>
String* q; /'l syntax error
—end example]
5 An explicit destructor call (12.4) for an object that has a type that is a class template specialization may

explicitly specify the template-arguments. [Example:

tenpl ate<cl ass T> struct A {

“AO)

b

void f(A<int>* p, A<int>* q) {
p->A<int>::"A(); /1 OK: destructor call
g->A<i nt>::"A<i nt>(); /1 OK: destructor call

}

—end example]
6 If the use of atemplate-argument gives rise to an ill-formed construct in the instantiation of atemplate spe-

cialization, the program isill-formed.

7 When the template in a template-id is an overloaded function template, both non-template functions in the
overload set and function templates in the overload set for which the template-arguments do not match the
template-parameters are ignored. If none of the function templates have matching template-parameters,
the programis ill-formed.

14.3.1 Templatetype arguments [temp.arg.type]
1 A template-argument for a template-parameter which is atype shall be atype-id.
2 A local type, atype with no linkage, an unnamed type or a type compounded from any of these types shall
not be used as a template-argument for atemplate type-parameter. [Example:
template <class T> class X { /* ... */ };
void f()
{
struct S{ /* ... *[};
X<S> x3; /| error: local type used as template-argument
X<S*> x4; /'] error: pointer to local type used as template-argument
}

—end example] [Note: atemplate type argument may be an incomplete type (3.9).]

245

| SO/IEC 14882:2003(E) O ISO/IEC

14.3.1 Template type arguments 14 Templates

If a declaration acquires a function type through a type dependent on a template-parameter and this causes
adeclaration that does not use the syntactic form of a function declarator to have function type, the program
isill-formed. [Example:

tenpl ate<cl ass T> struct A {

static T t;
b
typedef int function();
A<function> a; /I ill-formed: would declare A<f uncti on>: : t
/| asa static member function
—end example]
14.3.2 Template non-type arguments [temp.arg.nontype]

A template-argument for a non-type, non-template template-parameter shall be one of:
— anintegral constant-expression of integral or enumeration type; or
— the name of anon-type template-parameter; or

— the address of an object or function with externa linkage, including function templates and function
template-ids but excluding non-static class members, expressed as & id-expression where the & is
optiona if the name refers to a function or array, or if the corresponding template-parameter is a refer-
ence; or

— apointer to member expressed as described in 5.3.1 .

[Note: A string literal (2.13.4) does not satisfy the requirements of any of these categories and thusis not an
acceptable template-argument. [Example:

tenpl ate<class T, char* p> class X {

/..
X() s
X(const char* q) { /* ... */ }
b
X<i nt, " Studebaker"> x1; /| error: string literal as template-argument
char p[] = "Vivisectionist";
X<int, p> x2; /1 OK

—end example] —end note]

[Note: Addresses of array elements and names or addresses of non-static class members are not acceptable
template-arguments. [Example:

tenplate<int* p> class X { };

int a[10];

struct S{ int m static int s; } s;

X<&a[2] > x3; /'l error: address of array element
X<&s. > x4; /| error: address of non-static member
X<&s. s> xb; /] error: &S: : s must be used

X<&S: : s> Xx6; /| OK: address of static member

—end example] —end note]

[Note: Temporaries, unnamed Ivalues, and named Ivalues that do not have external linkage are not accept-
able template-arguments when the corresponding template-parameter has referencetype. [Example:

246

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.3.2 Template non-type ar guments
tenpl ate<const int& CRI> struct B{ /* ... */ };
B<1> b2; /| error: temporary would be required for template argument
int ¢c =1,
B<c> b1; /1 OK

—end example] —end note]

The following conversions are performed on each expression used as a non-type template-argument. If a
non-type template-argument cannot be converted to the type of the corresponding template-parameter then
the program is ill-formed.

— for a non-type template-parameter of integral or enumeration type, integral promotions (4.5) and inte-
gral conversions (4.7) are applied.

— for a non-type template-parameter of type pointer to object, qualification conversions (4.4) and the
array-to-pointer conversion (4.2) are applied. [Note: In particular, neither the null pointer conversion
(4.120) nor the derived-to-base conversion (4.10) are applied. Although 0 is a valid template-argument
for a non-type template-parameter of integral type, it is not a valid template-argument for a non-type
template-parameter of pointer type.]

— For anon-type template-parameter of type reference to object, no conversions apply. The type referred
to by the reference may be more cv-qualified than the (otherwise identical) type of the template-
argument. The template-parameter is bound directly to the template-argument, which must be an
Ivalue.

— For a non-type template-parameter of type pointer to function, only the function-to-pointer conversion
(4.3) isapplied. If the template-argument represents a set of overloaded functions (or a pointer to such),
the matching function is selected from the set (13.4).

— For a non-type template-parameter of type reference to function, no conversions apply. If the
template-argument represents a set of overloaded functions, the matching function is selected from the
set (13.4).

— For a non-type template-parameter of type pointer to member function, no conversions apply. If the
template-argument represents a set of overloaded member functions, the matching member function is
selected from the set (13.4).

— For a non-type template-parameter of type pointer to data member, qualification conversions (4.4) are
applied.

[Example:
t enpl at e<const int* pci> struct X { /* ... *| };
int ai[10];
X<ai > xi; /| array to pointer and qualification conversions
struct Y { /[* ... * };
tenpl at e<const Y& b> struct Z { /* ... */ };
Yy,
Z<y> z; /1 no conversion, but note extra cv-qualification
tenpl ate<int (&pa)[5]> struct W{ /* ... */ };
int b[5];
Web> w; /] no conversion

247

| SO/IEC 14882:2003(E) O ISO/IEC

14.3.2 Template non-type ar guments 14 Templates

void f(char);

void f(int);
templ ate<void (*pf)(int)> struct A{ /* ... */ };
A<&f > a; /| selectsf (i nt)
—end example]
14.3.3 Templatetemplate arguments [temp.arg.template]

A template-argument for atemplate template-parameter shall be the name of a class template, expressed as
id-expression. Only primary class templates are considered when matching the template template argument
with the corresponding parameter; partial specializations are not considered even if their parameter lists
match that of the template template parameter.

Any partial specializations (14.5.4) associated with the primary class template are considered when a spe-
cialization based on the template template-parameter is instantiated. If a specialization is not visible at the
point of instantiation, and it would have been selected had it been visible, the program is ill-formed; no
diagnostic isrequired. [Example:

tenpl at e<cl ass T> class A { /| primary template
int x;

}s

tenpl at e<cl ass T> class A<T*> { // partial specialization
I ong x;

s

t enpl at e<t enpl at e<cl ass U> class V> class C {
V<int> v;
V<int*> z;

s

C<A> c; /1 V<i nt > within C<A> uses the primary template,

/] soc.y.x hastypei nt
/1 V<i nt *> within C<A> uses the partial specialization,
/'l soc. z.x hastypel ong

—end example]

14.4 Type equivalence [temp.type]

Two template-ids refer to the same class or function if their template names are identical, they refer to the
same template, their type template-arguments are the same type, their non-type template-arguments of inte-
gral or enumeration type have identical values, their non-type template-arguments of pointer or reference
type refer to the same external object or function, and their template template-arguments refer to the same
template. [Example:

tenpl ate<class E, int size> class buffer { /* ... */ };
buf f er<char, 2*512> x;
buf f er <char, 1024> vy;

declaresx andy to be of the same type, and

templ ate<class T, void(*err_fct)()> class list { /* ... */ };
list<int, &rror_handl er1> x1;

list<int, &rror_handl er2> x2;

list<int, &rror_handl er2> x3;

i st<char, &rror_handl er 2> x4;

declares x2 and x 3 to be of the sametype. Their type differs from the types of x1 and x4.]

248

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.5 Template declar ations

14.5 Template declarations [temp.decls]

A template-id, that is, the template-name followed by a template-argument-list shall not be specified in the
declaration of aprimary template declaration. [Example:

tenpl ate<class T1, class T2, int I> class A<T1, T2, 1> { }; /'l error
tenpl ate<class T1, int |I> void sort<Tl, I>(T1l data[l]); /'l error

—end example] [Note: however, this syntax is allowed in class template partial specializations (14.5.4).]

For purposes of name lookup and instantiation, default arguments of function templates and default argu-
ments of member functions of class templates are considered definitions; each default argument is a sepa-
rate definition which is unrelated to the function template definition or to any other default arguments.

14.5.1 Classtemplates [temp.class]

A class template defines the layout and operations for an unbounded set of related types. [Example: asin-
gle class template Li st might provide a common definition for list of i nt, list of f1 oat, and list of
pointersto Shapes.]

[Example: An array class template might be declared like this:

tenpl at e<cl ass T> class Array {
T v;
int sz;
public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
/..
b

The prefix t enpl at e <cl ass T> specifies that atemplate is being declared and that a type-name T will
be used in the declaration. In other words, Ar r ay isa parameterized type with T asits parameter. |

When amember function, amember class, a static data member or a member template of a classtemplateis
defined outside of the class template definition, the member definition is defined as a template definition in
which the template-parameters are those of the class template. The names of the template parameters used
in the definition of the member may be different from the template parameter names used in the class tem-
plate definition. The template argument list following the class template name in the member definition
shall name the parameters in the same order as the one used in the template parameter list of the member.

[Example:
tenpl ate<cl ass T1, class T2> struct A {

void f1();

void f2();
s
tenpl ate<class T2, class T1> void A<T2, T1>::f1() { } /1 OK
tenpl ate<class T2, class T1> void A<T1,T2>::f2() { } /'l error

—end example]

In a redeclaration, partial specialization, explicit specialization or explicit instantiation of a class template,
the class-key shall agreein kind with the original class template declaration (7.1.5.3).

14.5.1.1 Member functions of classtemplates [temp.mem.func]

A member function of a class template may be defined outside of the class template definitionin whichitis
declared. [Example:

249

| SO/IEC 14882:2003(E) O ISO/IEC

14.5.1.1 Member functions of classtemplates 14 Templates

tenpl ate<class T> class Array {
™ Vv;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
/..

}

declares three function templates. The subscript function might be defined like this:

tenpl ate<cl ass T> T& Array<T>::operator[](int i)

{
if (i<0 || sz<=i) error("Array: range error");
return v[i];
}
—end example]

The template-arguments for a member function of a class template are determined by the template-
arguments of the type of the object for which the member function is called. [Example: the template-
argument for Array<T>: : operator[] () will be determined by the Ar r ay to which the subscripting
operation is applied.

Array<int> v1(20);
Array<dconpl ex> v2(30);

vi[3] = 7; /1 Array<int>::operator[]()
v2[3] = dconplex(7,8); /1 Array<dconpl ex>::operator[]()
—end example]

14.5.1.2 Member classes of classtemplates [temp.mem.class]

A class member of a class template may be defined outside the class template definition in which it is
declared. [Note: the class member must be defined beforeits first use that requires an instantiation (14.7.1).

For example,

tenpl at e<cl ass T> struct A {

cl ass B;
s
A<int>::B* bl; /1 OK: requires A to be defined but not A: : B
tenpl ate<cl ass T> class A<T>::B { };
A<int>::B b2; /1 OK: requires A: : B to be defined
—end note]

14.5.1.3 Static data members of classtemplates [temp.static]

A definition for a static data member may be provided in a namespace scope enclosing the definition of the
static member’ s classtemplate. [Example:

tenpl at e<cl ass T> class X {
static T s;

s

tenpl ate<class T> T X<T>:.:s = 0;

—end example]

250

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.5.2 Member templates

14.5.2 Member templates [temp.mem]

A template can be declared within a class or class template; such atemplate is called a member template. A
member template can be defined within or outside its class definition or class template definition. A mem-
ber template of a class template that is defined outside of its class template definition shall be specified with
the template-parameters of the class template followed by the template-parameters of the member tem-
plate. [Example:

tenpl ate<cl ass T> class string {

public:
tenpl at e<cl ass T2> int conpare(const T2&);
tenpl at e<cl ass T2> string(const string<T2>&s) { /* ... */ }
/..

b

t enpl at e<cl ass T> tenpl ate<class T2> int string<T>::conpare(const T2& s)

{
}

—end example]

/..

A local class shall not have member templates. Access control rules (clause 11) apply to member template
names. A destructor shall not be a member template. A norma (non-template) member function with a
given name and type and a member function template of the same name, which could be used to generate a
specialization of the same type, can both be declared in a class. When both exist, a use of that name and
type refers to the non-template member unless an explicit template argument list is supplied. [Example:

tenpl ate <class T> struct A {
void f(int);
tenpl ate <class T2> void f(T2);

s
tenplate <> void A<int>::f(int) { } / 1 non-template member
tenplate <> tenplate <> void A<int>::f<>(int) { } /| template member
int main()
{
A<char > ac;
ac.f(1); /| non-template
ac.f('c'); /| template
ac. f<>(1); /| template
}
—end example]

A member function template shall not be virtual. [Example:

tenpl ate <class T> struct AA {
tenpl ate <class C virtual void g(0; /'l error
virtual void f(); /1 OK

s
—end example]

A specidization of a member function template does not override a virtual function from a base class.
[Example:
class B {
virtual void f(int);

b

251

| SO/IEC 14882:2003(E) O ISO/IEC

14.5.2 Member templates 14 Templates

class D: public B {

tenplate <class T> void f(T); /| doesnot overrideB: : f (i nt)
void f(int i) { f<>(i); } /| overriding function that calls
/| the template instantiation
i
—end example]

A specialization of atemplate conversion function is referenced in the same way as a hon-template conver-
sion function that converts to the same type. [Example:

struct A {
tenpl ate <class T> operator T*();
s
tenpl ate <class T> A::operator T*(){ return 0; }
tenplate <> A::operator char*(){ return O; } /| specialization
tenpl ate A::operator void*(); /| explicit instantiation
int main()
{
A a;
int* ip;
ip = a.operator int*(); /| explicit call to template operator
/1 A::operator int*()
}

—end example] [Note: because the explicit template argument list follows the function template name, and
because conversion member function templates and constructor member function templates are called with-
out using a function name, there is no way to provide an explicit template argument list for these function
templates.]

A specialization of atemplate conversion function is not found by name lookup. Instead, any template con-
version functions visible in the context of the use are considered. For each such operator, if argument
deduction succeeds (14.8.2.3), the resulting specialization is used as if found by name lookup.

A using-declaration in a derived class cannot refer to a specialization of atemplate conversion function in a
base class.

Overload resolution (13.3.3.2) and partial ordering (14.5.5.2) are used to select the best conversion function
among multiple template conversion functions and/or non-template conversion functions.
14.5.3 Friends [temp.friend]

A friend of a class or class template can be a function template or class template, a specialization of a func-
tion template or class template, or an ordinary (nontemplate) function or class. For afriend function decla-
ration that is not atemplate declaration:

— if the name of the friend is a qualified or unqualified template-id, the friend declaration refers to a spe-
cialization of afunction template, otherwise

— if the name of the friend is a qualified-id and a matching nontemplate function is found in the specified
class or namespace, the friend declaration refers to that function, otherwise,

— if the name of the friend is a qualified-id and a matching specialization of a function template is found
in the specified class or namespace, the friend declaration refers to that function template specialization,
otherwise,

— the name shall be an unqualified-id that declares (or redeclares) an ordinary (nontemplate) function.

[Example:

252

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.5.3 Friends

tenpl at e<cl ass T> cl ass task;
tenpl at e<cl ass T> task<T>* preenpt (task<T>*);

t enpl at e<cl ass T> cl ass task {
/..
friend void next_tinme();
friend void process(task<T>*);
friend task<T>* preenpt<T>(task<T>*);
templ ate<class C friend int func(C;

friend class task<int>;
tenpl ate<cl ass P> friend class frd;
/1l ..

}s

Here, each specialization of the t ask class template has the function next _ti ne as a friend; because
pr ocess does not have explicit template-arguments, each specialization of the t ask class template has
an appropriately typed function pr ocess as afriend, and this friend is not a function template specializa-
tion; because the friend pr eenpt has an explicit template-argument <T>, each speciaization of thet ask
class template has the appropriate specialization of the function template pr eenpt as a friend; and each
speciaization of thet ask class template has all speciaizations of the function template f unc as friends.
Similarly, each specialization of thet ask classtemplate has the class template speciaization t ask<i nt >
asafriend, and has all specializations of the classtemplatef r d asfriends. —end example]

A friend function declaration that is not a template declaration and in which the name of the friend is an
unqualified template-id shall refer to a specialization of a function template declared in the nearest enclos-
ing namespace scope. [Example:

namespace N {
tenplate <class T> void f(T);
void g(int);
namespace M {
tenpl ate <class T> void h(T);
tenplate <class T> void i(T);
struct A {
friend void f<>(int); [/ ill-formed—N: : f
friend void h<>(int); /1 OK=M:h
friend void g(int); /1 OK—new decl of M : g
tenplate <class T> void i(T);
friend void i<>(int); [ill-formed —A: @i

}
—end example]

A friend template may be declared within a class or class template. A friend function template may be
defined within a class or class template, but a friend class template may not be defined in a class or class
template. In these cases, all specializations of the friend class or friend function template are friends of the
class or class template granting friendship. [Example:

class A {
tenpl ate<class T> friend class B; /1 OK
tenpl ate<class T> friend void f(T){ /* ... */ } /1 OK
b
—end example]

A template friend declaration specifies that all specializations of that template, whether they are implicitly
instantiated (14.7.1), partially specialized (14.5.4) or explicitly specialized (14.7.3), are friends of the class
containing the template friend declaration. [Example:

253

10

| SO/IEC 14882:2003(E) O ISO/IEC

14.5.3 Friends 14 Templates
class X {
tenpl ate<class T> friend struct A
class Y { };
b
tenpl ate<class T> struct A { X :Y ab; }; /1 OK
tenpl ate<cl ass T> struct A<T*> { X :Y ab; }; /1 OK
—end example]

When a function is defined in a friend function declaration in a class template, the function is defined at
each instantiation of the class template. The function is defined even if it is never used. The same restric-
tions on multiple declarations and definitions which apply to non-template function declarations and defini-
tions also apply to these implicit definitions. [Note: if the function definition isill-formed for a given spe-
cialization of the enclosing class template, the program isill-formed even if the function is never used.]

A member of a class template may be declared to be a friend of a non-template class. In this case, the cor-
responding member of every specialization of the class template is afriend of the class granting friendship.
[Example:

tenpl at e<cl ass T> struct A {

struct B { };
void f();
b
class C{
tenpl ate<class T> friend struct A<T>::B;
tenpl ate<class T> friend void A<T>::f();
b
—end example]

[Note: afriend declaration may first declare amember of an enclosing namespace scope (14.6.5).]
A friend template shall not be declared in alocal class.

Friend declarations shall not declare partial specializations. [Example:

tenpl ate<class T> class A { };
class X {
tenpl ate<cl ass T> friend class A<T*>; /] error

s
—end example]

When a friend declaration refers to a specialization of a function template, the function parameter declara-
tions shall not include default arguments, nor shall the inline specifier be used in such a declaration.

14.5.4 Classtemplate partial specializations [temp.class.spec]

A primary class template declaration is one in which the class template name is an identifier. A template
declaration in which the class template name is a template-id, is a partial specialization of the class tem-
plate named in the template-id. A partial specidization of a class template provides an aternative defini-
tion of the template that is used instead of the primary definition when the arguments in a specialization
match those given in the partial specialization (14.5.4.1). The primary template shall be declared before
any specializations of that template. If a template is partially specialized then that partial specialization
shall be declared before the first use of that partial speciaization that would cause an implicit instantiation
to take place, in every trandlation unit in which such a use occurs; no diagnostic is required.

When a partial speciaization is used within the instantiation of an exported template, and the unspecialized
template name is non-dependent in the exported template, a declaration of the partial specialization must be
declared before the definition of the exported template, in the translation unit containing that definition. A
similar restriction applies to explicit specialization; see 14.7.

254

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.5.4 Classtemplate partial specializations

Each class template partial specidization is a distinct template and definitions shall be provided for the
members of atemplate partial specialization (14.5.4.3).

[Example:
tenpl ate<class T1, class T2, int I> class A {1} /1 #1
templ ate<class T, int |> class A<T, T*, 1> { }; 11 #2
tenpl ate<class T1, class T2, int |I> class A<T1*, T2, I> { }; /1 #3
t enpl at e<cl ass T> class A<int, T*, 5> { }; /1 #4
tenpl ate<class T1, class T2, int |> class A<T1, T2*, 1> { }; /1 #5

Thefirst declaration declares the primary (unspecialized) classtemplate. The second and subsequent decla
rations declare partial specializations of the primary template.]

The template parameters are specified in the angle bracket enclosed list that immediately follows the key-
word t enpl at e. For partia speciaizations, the template argument list is explicitly written immediately
following the class template name. For primary templates, this list is implicitly described by the template
parameter list. Specifically, the order of the template arguments is the sequence in which they appear in the
template parameter list. [Example: the template argument list for the primary template in the example
aboveis<T1l, T2, | >.] [Note: the template argument list shall not be specified in the primary template
declaration. For example,

tenpl ate<class T1, class T2, int I> class A<T1, T2, 1> { }; /1 error
—end note]

A class template partial specialization may be declared or redeclared in any namespace scope in which its
definition may be defined (14.5.1 and 14.5.2). [Example:

t enpl at e<cl ass T> struct A {
class C{
tenpl at e<cl ass T2> struct B { };
b
b

/| partial specialization of A<T>: : C. : B<T2>
tenpl at e<cl ass T> tenpl at e<cl ass T2>
struct A<T>::C :B<T2*> { };

A<short>:: C. :B<int*> absip; /| uses partial specialization
—end example]

Partial specialization declarations themselves are not found by name lookup. Rather, when the primary
template name is used, any previously declared partia specializations of the primary template are also con-
sidered. One consequence is that a using-declaration which refers to a class template does not restrict the
set of partial specializations which may be found through the using-declaration. [Example:

namespace N {
tenpl ate<cl ass T1, class T2> class A { }; /'l primary template
}

using N : A /| refersto the primary template

nanespace N {

tenpl ate<cl ass T> class A<T, T*> { }; /| partial specialization
}
A<int,int*> a; /'l usesthe partial specialization, which is found through
/| the using declaration which refers to the primary template
—end example]

255

10

| SO/IEC 14882:2003(E) O ISO/IEC

14.5.4 Class template partial specializations 14 Templates

A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type argu-
ments are specialized.

Within the argument list of a class template partial specialization, the following restrictions apply:

— A partially specialized non-type argument expression shall not involve a template parameter of the par-
tial specialization except when the argument expression isasimple identifier. [Example:

tenplate <int |, int J> struct A {};

tenplate <int |> struct A<I+5, 1*2> {}; // error

tenplate <int |, int J> struct B {};

tenplate <int |> struct B<l, I> {}; /1 OK
—end example]

— The type of atemplate parameter corresponding to a specialized non-type argument shall not be depen-
dent on a parameter of the specialization. [Example:

tenplate <class T, T t> struct C {};
tenpl ate <class T> struct C<T, 1>; /] error

tenplate< int X, int (*array_ptr)[X > class A {};
int array[5];
tenplate< int X > class A<X &array> { }; /'] error

—end example]

— The argument list of the specialization shall not be identical to the implicit argument list of the primary
template.

The template parameter list of a specialization shall not contain default template argument val ues. 2%

14.5.4.1 Matching of classtemplate partial specializations [temp.class.spec.match]

When aclass template is used in a context that requires an instantiation of the class, it is necessary to deter-
mine whether the instantiation isto be generated using the primary template or one of the partial specializa-
tions. Thisis done by matching the template arguments of the class template specialization with the tem-
plate argument lists of the partial specializations.

— If exactly one matching specialization is found, the instantiation is generated from that specialization.

— If more than one matching specialization is found, the partial order rules (14.5.4.2) are used to deter-
mine whether one of the specializations is more specialized than the others. If none of the specializa-
tionsis more specialized than al of the other matching specializations, then the use of the class template
is ambiguous and the program isill-formed.

— If no matches are found, the instantiation is generated from the primary template.

A partia specialization matches a given actual template argument list if the template arguments of the par-
tial specialization can be deduced from the actual template argument list (14.8.2). [Example:

A<int, int, 1> al; /] uses#1

A<int, int*, 1> a2z /] uses#2, Tisint, | isl

A<int, char*, 5> ag3; /] uses#4, Tischar

A<int, char*, 1> a4, |/ uses#5, Tlisint,T2ischar,!| isl

A<int*, int*, 2> ab; /| ambiguous. matches #3 and #5
—end example]

A non-type template argument can also be deduced from the value of an actual template argument of a
non-type parameter of the primary template. [Example: the declaration of a2 above.]

129) Thereisno way in which they could be used.

256

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.5.4.1 Matching of classtemplate partial specializations

In atype name that refers to a class template specialization, (e.g., A<i nt, int, 1>) theargument list
must match the template parameter list of the primary template. The template arguments of a specialization
are deduced from the arguments of the primary template.

14.5.4.2 Partial ordering of classtemplate specializations [temp.class.order]

For two class template partial specializations, the first is at least as specialized as the second if, given the
following rewrite to two function templates, the first function template is at |east as specialized as the sec-
ond according to the ordering rules for function templates (14.5.5.2):

— thefirst function template has the same template parameters as the first partial specialization and has a
single function parameter whose type is a class template specialization with the template arguments of
the first partial specialization, and

— the second function template has the same template parameters as the second partial specialization and
has a single function parameter whose type is a class template specialization with the template argu-
ments of the second partial specialization.

[Example:
tenplate<int I, int J, class T> class X { };
tenplate<int |, int J> class X<I, J, int>{ }; /1 #1
tenpl ate<int > class X<I, I, int>{ }; /1 #2
tenmplate<int I, int J>void f(X<I, J, int>); Il #A
tenpl ate<int 1> void f(X<Il, I, int>); /1 #B

The partial specialization #2 is more specialized than the partial speciaization #1 because the function
template #B is more specialized than the function template #A according to the ordering rules for function
templates.]

14.5.4.3 Members of classtemplate specializations [temp.class.spec.mfunc]

The template parameter list of a member of a class template partial specialization shall match the template
parameter list of the class template partial speciaization. The template argument list of amember of aclass
template partial specialization shall match the template argument list of the class template partial special-
ization. A class template speciaization is a distinct template. The members of the class template partial
speciaization are unrelated to the members of the primary template. Class template partial speciaization
members that are used in away that requires a definition shall be defined; the definitions of members of the
primary template are never used as definitions for members of a class template partial specialization. An
explicit specialization of a member of a class template partial speciaization is declared in the same way as
an explicit specialization of the primary template. [Example:

/| primary template

tenplate<class T, int |I> struct A {
void f();

b

tenplate<class T, int I> void A<T,I>:f() { }

/| classtemplate partial specialization

tenpl at e<cl ass T> struct A<T, 2> {
void f();
void g();
void h();

s

/1 member of classtemplate partial specialization
tenpl ate<class T> void A<T,2>::9() { }

257

| SO/IEC 14882:2003(E) O ISO/IEC

14.5.4.3 Member s of classtemplate specializations 14 Templates

/| explicit specialization
tenpl at e<> void A<char,2>::h() { }

int main()

{
A<char, 0> a0;
A<char, 2> a2;

ao.f(); /'] OK, uses definition of primary template’ s member
a2.9(); /1 OK, uses definition of
/| partial specialization’s member
a2.h(); /1 OK, uses definition of
/| explicit specialization’s member
a2.f(); /1 ill-formed, no definition of f for A<T, 2>
/| the primary templateis not used here
}
—end example]

If a member template of a class template is partially specialized, the member template partial specializa-
tions are member templates of the enclosing class template; if the enclosing class template is instantiated
(14.7.1, 14.7.2), adeclaration for every member template partial speciaization is also instantiated as part of
creating the members of the class template specialization. If the primary member templateis explicitly spe-
cialized for agiven (implicit) specialization of the enclosing class template, the partial specializations of the
member template are ignored for this specialization of the enclosing class template. If a partial specializa-
tion of the member template is explicitly specialized for a given (implicit) specialization of the enclosing
class template, the primary member template and its other partial specializations are still considered for this
specialization of the enclosing class template. [Example:

tenpl at e<cl ass T> struct A {

tenpl at e<cl ass T2> struct B {}; /1 #1
t enpl at e<cl ass T2> struct B<T2*> {}; 11 #2
s
tenpl at e<> tenpl at e<cl ass T2> struct A<short>::B {}; /1 #3
A<char>::B<int*> abcip; /] uses#2
A<short>:: B<int*> absip; /] uses#3
A<char>::B<int> abci; /| uses#l
—end example]
14.5.5 Function templates [temp.fct]

A function template defines an unbounded set of related functions. [Example: a family of sort functions
might be declared like this:

tenpl ate<class T> class Array { };
tenpl at e<cl ass T> void sort (Array<T>&);

—end example]

A function template can be overloaded with other function templates and with normal (non-template) func-
tions. A normal function is not related to a function template (i.e., it is never considered to be a specializa-
tion), even if it has the same name and type as a potentially generated function template specializati on. 20

L3 That is, declarations of non-template functions do not merely guide overload resolution of function template specializations with
the same name. If such a non-template function is used in a program, it must be defined; it will not be implicitly instantiated using the
function template definition.

258

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.5.5.1 Function template overloading

14.5.5.1 Function template overloading [temp.over.link]

It is possible to overload function templates so that two different function template specializations have the
sametype. [Example:

/Il filel.c Il file2.c
t enpl at e<cl ass T> tenpl at e<cl ass T>

void f(T*); void f(T);
void g(int* p) { void h(int* p) {

f(p); /I call f(p); /1 call

/1 f<int>(int*) [l f<int*>(int*)
} }
—end example]

Such specializations are distinct functions and do not violate the one definition rule (3.2).

The signature of afunction template specialization consists of the signature of the function template and of
the actual template arguments (whether explicitly specified or deduced).

The signature of a function template consists of its function signature, its return type and its template
parameter list. The names of the template parameters are significant only for establishing the relationship
between the template parameters and the rest of the signature. [Note: two distinct function templates may
have identical function return types and function parameter lists, even if overload resolution alone cannot
distinguish them.

tenpl ate<cl ass T> void f();

tenplate<int 1> void f(); /1 OK: overloads the first template
/| distinguishable with an explicit template argument list

—end note]

When an expression that references a template parameter is used in the function parameter list or the return
type in the declaration of a function template, the expression that references the template parameter is part
of the signature of the function template. Thisis necessary to permit a declaration of a function template in
one tranglation unit to be linked with another declaration of the function template in another translation unit
and, conversely, to ensure that function templates that are intended to be distinct are not linked with one
another. [Example:

template <int |, int J> A<I+J> f(A<I> A<J>); /] #1
tenplate <int K, int L> A<K+L> f(A<K>, A<L>); /] sameas#1
template <int |, int J> A<I-J> f(A<I> A<J>); /| different from #1

—end example] [Note: Most expressions that use template parameters use non-type template parameters,
but it is possible for an expression to reference a type parameter. For example, a template type parameter
canbeusedinthe si zeof operator.]

Two expressions involving template parameters are considered equivalent if two function definitions con-
taining the expressions would satisfy the one definition rule (3.2), except that the tokens used to name the
template parameters may differ as long as a token used to name a template parameter in one expression is
replaced by another token that names the same template parameter in the other expression. [Example:

tenplate <int |, int J> void f(A<I+J>); /1 #1
template <int K, int L> void f(A<K+L>); /| sameas#1

—end example] Two expressions involving template parameters that are not equivalent are functionally
equivalent if, for any given set of template arguments, the evaluation of the expression results in the same
value.

Two function templates are equivalent if they are declared in the same scope, have the same name, have
identical template parameter lists, and have return types and parameter lists that are equivalent using the
rules described above to compare expressions involving template parameters. Two function templates are
functionally equivalent if they are equivalent except that one or more expressions that involve template
parameters in the return types and parameter lists are functionally equivalent using the rules described

259

| SO/IEC 14882:2003(E) O ISO/IEC

14.5.5.1 Function template overloading 14 Templates

above to compare expressions involving template parameters. If a program contains declarations of func-
tion templates that are functionally equivalent but not equivalent, the program isill-formed; no diagnostic is
required.

[Note: This rule guarantees that equivalent declarations will be linked with one another, while not requiring
implementations to use heroic efforts to guarantee that functionally equivalent declarations will be treated
asdistinct. For example, the last two declarations are functionally equivalent and would cause a program to
beill-formed:

/| Guaranteed to be the same
tenplate <int |> void f(A<I> A<lI+10>);
template <int 1> void f(A<l> A<l+10>);

/| Guaranteed to be different
tenplate <int |> void f(A<I> A<lI+10>);
template <int |> void f (A<l > A<l+11>);

/1 1ll-formed, no diagnostic required
tenplate <int |> void f(A<I> A<lI+10>);
template <int |> void f(A<I> A<l +1+2+3+4>);

—end note]

14.5.5.2 Partial ordering of function templates [temp.func.order]

If a function template is overloaded, the use of a function template specialization might be ambiguous
because template argument deduction (14.8.2) may associate the function template specialization with more
than one function template declaration. Partial ordering of overloaded function template declarations is
used in the following contexts to select the function template to which a function template specialization
refers:

— during overload resolution for a call to afunction template specialization (13.3.3);
— when the address of a function template specialization is taken;

— when a placement operator delete that is a function template specialization is selected to match a place-
ment operator new (3.7.3.2, 5.3.4);

— when afriend function declaration (14.5.3), an explicit instantiation (14.7.2) or an explicit specialization
(14.7.3) refersto afunction template specialization.

Given two overloaded function templates, whether one is more specialized than another can be determined
by transforming each template in turn and using argument deduction (14.8.2) to compare it to the other.

The transformation used is:

— For each type template parameter, synthesize a unique type and substitute that for each occurrence of
that parameter in the function parameter list, or for atemplate conversion function, in the return type.

— For each non-type template parameter, synthesize a unique value of the appropriate type and substitute
that for each occurrence of that parameter in the function parameter list, or for a template conversion
function, in the return type.

— For each template template parameter, synthesize a unique class template and substitute that for each
occurrence of that parameter in the function parameter list, or for a template conversion function, in the
return type.

Using the transformed function parameter list, perform argument deduction against the other function tem-
plate. The transformed templateis at least as specialized as the other if, and only if, the deduction succeeds
and the deduced parameter types are an exact match (so the deduction does not rely on implicit conver-
sions).

260

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.5.5.2 Partial ordering of function templates

A template is more specialized than another if, and only if, it is at least as speciaized as the other template
and that template is not at least as specialized asthe first. [Example:

tenpl ate<class T> struct A { A(); };
tenpl ate<class T> void f(T);

tenpl ate<cl ass T> void f(T*);
tenpl ate<cl ass T> void f(const T*);

tenpl ate<cl ass T> void g(T);
tenpl ate<cl ass T> void g(T&);

tenpl at e<cl ass T> void h(const T&);
t enpl at e<cl ass T> voi d h(A<T>&);

void () {
const int *p;
f(p); /'l f(const T*) ismorespecializedthanf (T) or f (T*)
float x;
a(x); /1 Ambiguous: g(T) or g(T&)
A<int> z;
h(z); /| overload resolution selects h(A<T>&)
const A<int> z2;
h(z2); /'l h(const T&) iscalled because h(A<T>&) isnot callable
}
—end example]

The presence of unused ellipsis and default arguments has no effect on the partial ordering of function tem-
plates. [Example:

tenpl ate<class T> void f(T); /1 #1
tenpl ate<class T> void f(T*, int=1); /1 #2
tenpl ate<class T> void g(T); /1 #3
tenpl ate<class T> void g(T*, ...); /1 #4

int nain() {
int* ip;
f(ip); /] calls#2
g(ip); /] calls#4
}

—end example]

14.6 Nameresolution [temp.res]
Three kinds of names can be used within atemplate definition:

— The name of the template itself, and names declared within the template itself.

— Names dependent on atemplate-parameter (14.6.2).

— Names from scopes which are visible within the template definition.

A name used in a template declaration or definition and that is dependent on a template-parameter is
assumed not to name a type unless the applicable name lookup finds a type hame or the name is qualified
by the keyword t ypenane. [Example:

261

| SO/IEC 14882:2003(E) O ISO/IEC

14.6 Nameresolution 14 Templates

[/ no B declared here
class X;

tenpl ate<class T> class Y {

class ZzZ; /| forward declaration of member class
void f() {
X* al; /| declare pointer to X
T* az; /| declarepointer to T
Y* a3; /| declare pointer to Y<T>
Z* a4; /| declare pointer to Z
typedef typenanme T:.:A TA
TA* ab; /| declare pointer to T'sA
t ypename T::A* a6; /| declare pointer to T'SA
T:: A* a7, /1 T:: Aisnot atype name:

/1 multiply T: : Aby a7; ill-formed,
/1 no visible declaration of a7
B* a8; /| Bisnot atype hame:
/' multiply B by a8; ill-formed,
/1 novisible declarations of B and a8

b
—end example]

A qualified-id that refersto atype and in which the nested-name-specifier depends on a template-parameter
(14.6.2) shall be prefixed by the keyword t ypenare to indicate that the qualified-id denotes a type, form-
ing an elaborated-type-specifier (7.1.5.3).

elaborated-type-specifier:

typenane :: ., nested-name-specifier identifier
typenane :: ., nested-name-specifier t enpl at e, template-id

If aspecialization of atemplate isinstantiated for a set of template-arguments such that the qualified-id pre-
fixed by t ypenane does not denote a type, the specialization is ill-formed. The usual qualified name
lookup (3.4.3) isused to find the qualified-id even in the presence of t ypenane. [Example:

struct A {
struct X { };
int X
s
tenpl ate<class T> void f(T t) {
typenanme T:: X Xx; /1 ill-formed: finds the data member X
/1 not the member type X
}
—end example]

Thekeyword t ypenane shall only be used in template declarations and definitions, including in the return
type of a function template or member function template, in the return type for the definition of a member
function of a classtemplate or of a class nested within a class template, and in the type-specifier for the def-
inition of a static member of a class template or of a class nested within a class template. The keyword
t ypenane shall be applied only to qualified names, but those names need not be dependent. The keyword
t ypenane shall be used only in contexts in which dependent names can be used. This includes template
declarations and definitions but excludes explicit specialization declarations and explicit instantiation decla-
rations. The keyword t ypenane is not permitted in a base-specifier or in amem-initializer; in these con-
texts a qualified-id that depends on a template-parameter (14.6.2) isimplicitly assumed to be a type name.

262

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.6 Nameresolution

Within the definition of a class template or within the definition of a member of a class template, the key-
word t ypenane is not required when referring to the unqualified name of a previously declared member
of the class template that declares a type. The keyword t ypenane shall always be specified when the
member is referred to using a qualified name, even if the qualifier is simply the class template name.
[Example:
tenpl ate<cl ass T> struct A {
typedef int B;

A :B b; /1 ill-formed: typename required before A: : B
void f(A<T>::B); /1 ill-formed: typename required before A<T>: : B
typename A::B g(); /1 OK

}s

The keyword t ypenane is required whether the qualified name is A or A<T> because A or A<T> are syn-
onyms within a class template with the parameter list <T>.]

Knowing which names are type names allows the syntax of every template definition to be checked. No
diagnostic shall be issued for a template definition for which a valid specialization can be generated. If no
valid specidization can be generated for atemplate definition, and that template is not instantiated, the tem-
plate definition isill-formed, no diagnostic required. If atype used in a non-dependent name is incomplete
at the point at which atemplate is defined but is complete at the point at which an instantiation is done, and
if the completeness of that type affects whether or not the program is well-formed or affects the semantics
of the program, the program is ill-formed; no diagnostic is required. [Note: if a template is instantiated,
errors will be diagnosed according to the other rules in this Standard. Exactly when these errors are diag-
nosed is a quality of implementation issue.] [Example:

int j;
tenpl at e<cl ass T> class X {
/..
void f(Tt, int i, char* p)
{
t =1i; /| diagnosed if X: : f isinstantiated
/| andtheassignmenttot isanerror
p=i; /1 may be diagnosed even if X: : f is
/1 not instantiated
p =i /1 may be diagnosed even if X: : f is
/| not instantiated
}
void g(Tt) {
+; /1 may be diagnosed even if X: : g is
/| not instantiated
}
b
—end example]

When looking for the declaration of a name used in a template definition, the usual lookup rules (3.4.1,
3.4.2) are used for nondependent names. The lookup of names dependent on the template parameters is
postponed until the actual template argument is known (14.6.2). [Example:

263

10

| SO/IEC 14882:2003(E) O ISO/IEC

14.6 Nameresolution 14 Templates

#i ncl ude <i ostreanr
usi ng nanmespace std;

tenpl at e<cl ass T> cl ass Set {
™ p;
int cnt;

public:
Set ();
Set <T>(const Set <T>&);
void printall ()

{
for (int i = 0; i<cnt; i++)
cout << p[i] << '\n’;
}
Il ..

}s

inthe example, i isthelocal variablei declaredinpri ntal |, cnt isthe member cnt declared in Set ,
and cout is the standard output stream declared in i ost r eam However, not every declaration can be
found this way; the resolution of some names must be postponed until the actual template-arguments are
known. For example, even though the name oper at or << is known within the definition of
printall () and a declaration of it can be found in <i ostrean®, the actual declaration of
oper at or << needed to print p[i] cannot be known until it isknown what type T is (14.6.2).]

If a name does not depend on a template-parameter (as defined in 14.6.2), a declaration (or set of declara
tions) for that name shall be in scope at the point where the name appears in the template definition; the
name is bound to the declaration (or declarations) found at that point and this binding is not affected by
declarations that are visible at the point of instantiation. [Example:

void f(char);

tenpl ate<class T> void g(T t)

{
f(1); /'l f(char)
f(T(1)); /| dependent
f(t); /| dependent
dd++; /1 not dependent
/'l error: declaration for dd not found
}
void f(int);
doubl e dd;
void h()
{
a(2); /1 will cause one call of f (char) followed
/1 bytwocallsof f (int)
g('a); /1 will causethreecallsof f (char)
}
—end example]

[Note: for purposes of name lookup, default arguments of function templates and default arguments of
member functions of class templates are considered definitions (14.5). —end note]

14.6.1 Locally declared names [temp.local]

Like normal (non-template) classes, class templates have an injected-class-name (clause 9). The injected-
class-name can be used with or without a template-argument-list. When it is used without a template-
argument-list, it is equivalent to the injected-class-name followed by the template-parameters of the class
template enclosed in <>. When it is used with a template-argument-list, it refers to the specified class

264

2a

2b

2c

2d

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.6.1 L ocally declared names

template specialization, which could be the current specialization or another specialization.

Within the scope of a class template specialization or partial specialization, when the injected-class-nameis
not followed by a <, it is equivalent to the injected-class-name followed by the template-arguments of the
class template specialization or partial specialization enclosed in <>. [Example:

tenpl ate<class T> class V;
tenpl ate<> class Y<int> {

Y* p; /| meaning Y<i nt >
Y<char >* q; /| meaning Y<char >
b
—end example]

Theinjected-class-name of aclass template or class template specialization can be used either with or with-
out atemplate-argument-list wherever it isin scope. [Example:

tenpl ate <class T> struct Base {
Base* p;
s

tenpl ate <class T> struct Derived: public Base<T> {
typenanme Derived:: Base* p; // meaningDerived:: Base<T>
s

—end example]

A lookup that finds an injected-class-name (10.2) can result in an ambiguity in certain cases (for example,
if it is found in more than one base class). If al of the injected-class-names that are found refer to special-
izations of the same class template, and if the name is followed by a template-argument-list, the reference
refersto the class template itself and not a specialization thereof, and is not ambiguous. [Example:

tenpl ate <class T> struct Base { };
tenpl ate <class T> struct Derived: Base<int> Base<char> {

t ypenane Derived:: Base b; /'] error: ambiguous
t ypenane Derived: : Base<doubl e> d; /1 OK
s
—end example]

When the normal name of the template (i.e., the name from the enclosing scope, not the injected-class-
name) is used without a template-argument-list, it refers to the class template itself and not a specialization
of the template. [Example:

tenpl ate <class T> class X {

X* p; /| meaning X<T>
X<T>* p2;
X<i nt>* p3;
X p4; /| error: missing template argument list
/'] :: X doesnot refer to the injected-class-name
s
—end example]

Within the scope of a class template, when the unqualified name of a nested class of the class template is
referred to, it is equivalent to the name of the nested class qualified by the name of the enclosing class tem-
plate. [Example:

tenpl ate <class T> struct A {
class B{ }; /1 Bisequivalentto A: : B, whichis equivalent to A<T>: : B,

/' which is dependent.
class C: B{ };

s
—end example]

265

| SO/IEC 14882:2003(E) O ISO/IEC

14.6.1 L ocally declared names 14 Templates

The scope of a template-parameter extends from its point of declaration until the end of its template. A
template-parameter hides any entity with the same name in the enclosing scope. [Note: this implies that a
template-parameter can be used in the declaration of subsequent template-parameters and their default
arguments but cannot be used in preceding template-parameters or their default arguments. For example,

tenplate<class T, T* p, class U= T>class X { /* ... */ };
tenpl ate<class T> void f(T* p = new T);

This also implies that atemplate-parameter can be used in the specification of base classes. For example,

tenpl ate<class T> class X : public Array<T> { /* ... */ };
templ ate<class T> class Y : public T { /* ... */ };

The use of atemplate-parameter as a base class implies that a class used as a template-argument must be
defined and not just declared when the class template is instantiated.]

A template-parameter shall not be redeclared within its scope (including nested scopes). A template-
parameter shall not have the same name as the template name. [Example:

tenplate<class T, int i> class Y {

int T; /| error: template-parameter redeclared
void f() {
char T; /'l error: template-parameter redeclared
}
i
tenpl at e<cl ass X> cl ass X; /'l error: template-parameter redeclared
—end example]

In the definition of a member of a class template that appears outside of the class template definition, the
name of amember of this template hides the name of atemplate-parameter. [Example:

tenpl ate<class T> struct A {

struct B{ /* ... */ };
void f();
b
tenpl at e<cl ass B> void A::f() {
B b; /1 A'sB, not the template parameter
}
—end example]

In the definition of a member of a class template that appears outside of the namespace containing the class
template definition, the name of a template-parameter hides the name of a member of this namespace.
[Example:

namespace N {
class C{ };
t enpl at e<cl ass T> class B {

void f(T);
b
}
tenpl ate<class C void N :B<C::f(O {
C b; /| Cisthetemplate parameter, not N: : C
}
—end example]

In the definition of a class template or in the definition of a member of such atemplate that appears outside
of the template definition, for each base class which does not depend on a template-parameter (14.6.2), if
the name of the base class or the name of a member of the base class is the same as the name of a template-
parameter, the base class name or member name hides the template-parameter name (3.3.7). [Example:

266

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.6.1 L ocally declared names

struct A {
struct B{ /* ... */ };
int a;
int Y,

}

tenpl ate<class B, class a> struct X : A {
B b; // A'sB
a b; /] error: A'saisn’'t atype name

s
—end example]

14.6.2 Dependent names [temp.dep]

Inside a template, some constructs have semantics which may differ from one instantiation to another.
Such a construct depends on the template parameters. In particular, types and expressions may depend on
the type and/or value of template parameters (as determined by the template arguments) and this determines
the context for name lookup for certain names. Expressions may be type-dependent (on the type of atem-
plate parameter) or value-dependent (on the value of a non-type template parameter). In an expression of
the form:

postfix-expression (expression-list,,)

where the postfix-expression is an identifier, the identifier denotes a dependent name if and only if any of
the expressions in the expression-list is a type-dependent expression (14.6.2.2). If an operand of an opera-
tor is a type-dependent expression, the operator also denotes a dependent name. Such names are unbound
and are looked up at the point of the template instantiation (14.6.4.1) in both the context of the template
definition and the context of the point of instantiation.

[Example:
tenpl ate<class T> struct X : B<T> {
typenane T::A* pa;
void f(B<T>* pb) ({
static int i = B<T>::i;
pb->j ++;

}s

the base class name B<T>, thetypename T: : A, the names B<T>: : i and pb- >j explicitly depend on the
template-parameter. —end exampl €]

In the definition of a class template or a member of a class template, if a base class of the class template
depends on a template-parameter, the base class scope is not examined during unqualified name lookup
either at the point of definition of the class template or member or during an instantiation of the class tem-
plate or member. [Example:

t ypedef double A
tenpl at e<cl ass T> class B {
typedef int A

b
tenpl at e<cl ass T> struct X : B<T> {

A a; /| a hastypedoubl e
b

The type name A in the definition of X<T> binds to the typedef name defined in the global namespace
scope, not to the typedef name defined in the base class B<T>. | [Example:

267

| SO/IEC 14882:2003(E) O ISO/IEC

14.6.2 Dependent names 14 Templates

struct A {
struct B{ /* ... */ };
int a;
int Y,

}

int a;

tenpl ate<class T> struct Y : T {

struct B{ /* ... */ };
B b; /| TheBdefinedinY
void f(int i) { a=1; } /Il ::a
Y* p; [Y<T>
1
Y<A> ya,

The members A: : B, A: : a, and A: : Y of the template argument A do not affect the binding of names in
Y<A>.]

14.6.2.1 Dependent types [temp.dep.type]
A typeisdependent if itis

— atemplate parameter,

— aqualified-id with a nested-name-specifier which contains a class-name that names a dependent type or
whose unqualified-id names a dependent type,

— acv-qualified type where the cv-unqualified type is dependent,
— acompound type constructed from any dependent type,

— an array type constructed from any dependent type or whose size is specified by a constant expression
that is value-dependent,

— atemplate-id in which either the template name is a template parameter or any of the template argu-
ments is a dependent type or an expression that is type-dependent or value-dependent.

14.6.2.2 Type-dependent expressions [temp.dep.expr]

Except as described below, an expression is type-dependent if any subexpression is type-dependent.

t hi s istype-dependent if the class type of the enclosing member function is dependent (14.6.2.1).

An id-expression istype-dependent if it contains:

— anidentifier that was declared with a dependent type,

— atemplate-id that is dependent,

— aconversion-function-id that specifies a dependent type,

— anested-name-specifier that contains a class-name that names a dependent type.

Expressions of the following forms are type-dependent only if the type specified by the type-id, simple-
type-specifier or new-type-id is dependent, even if any subexpression is type-dependent:

268

4

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.6.2.2 Type-dependent expressions

simple-type-specifier (expression-list,,,)

" lopt NEw new-placement,, new-type-id new-initializer,,,
" Iopt NEW new-placement,, (type-id) new-initializer,y,
dynami c_cast < typeid > (expression)
static_cast < typeid > (expression)

const _cast < typeiid > (expression)
reinterpret_cast < typeid > (expression)

(type-id) cast-expression

Expressions of the following forms are never type-dependent (because the type of the expression cannot be
dependent):
literal
postfix-expression . pseudo-destructor-name
postfix-expression - > pseudo-destructor-name
si zeof unary-expression
si zeof (typeid)
typeid (expression)
typeid (typeid)
Dlopt delete cast-expression
“iopt delete [] cast-expression
t hrow assignment-expression,,

14.6.2.3 Value-dependent expressions [temp.dep.constexpr]

Except as described below, a constant expression is vaue-dependent if any subexpression is value-
dependent.

An identifier isvalue-dependent if it is:
— aname declared with a dependent type,
— the name of a non-type template parameter,

— a constant with integral or enumeration type and is initialized with an expression that is value-
dependent.

Expressions of the following form are value-dependent if the unary-expression is type-dependent or the
type-id is dependent (even if si zeof unary-expression and si zeof (type-id) arenot type-dependent):

si zeof unary-expression
si zeof (typeid)

Expressions of the following form are value-dependent if either the type-id or simple-type-specifier is
dependent or the expression or cast-expression is value-dependent:

simple-type-specifier (expression-list,,,)
static_cast < typeid > (expression)
const _cast < typeid > (expression)
reinterpret_cast < typeid > (expression)
(type-id) cast-expression

14.6.2.4 Dependent template arguments [temp.dep.temp]
A type template-argument is dependent if the type it specifiesis dependent.

An integral non-type template-argument is dependent if the constant expression it specifies is value-
dependent.

A non-integral non-type template-argument is dependent if its type is dependent or it has either of the fol-
lowing forms

269

| SO/IEC 14882:2003(E) O ISO/IEC

14.6.2.4 Dependent template arguments 14 Templates

qualified-id
& qualified-id

and contains a nested-name-specifier which specifies a class-name that names a dependent type.

A template template-argument is dependent if it names a template-parameter or is a qualified-id with a
nested-name-specifier which contains a class-name that names a dependent type.

14.6.3 Non-dependent names [temp.nondep]

Non-dependent names used in a template definition are found using the usual name lookup and bound at the
point they are used. [Example:

voi d g(double);

void h();
tenpl ate<cl ass T> class Z {
public:
void f() {
g(1); /| callsg(doubl e)
h++; /1 ill-formed: cannot increment function;
/| this could be diagnosed either here or
/| at the point of instantiation
}
i
void g(int); /1 not in scope at the point of the template
/| definition, not considered for the call g(1)
—end example]
14.6.4 Dependent nameresolution [temp.dep.req]

In resolving dependent names, names from the following sources are considered:
— Declarations that are visible at the point of definition of the template.

— Declarations from namespaces associated with the types of the function arguments both from the instan-
tiation context (14.6.4.1) and from the definition context.

14.6.4.1 Point of instantiation [temp.point]

For a function template specialization, a member function template specialization, or a specialization for a
member function or static data member of a class template, if the speciaization is implicitly instantiated
because it is referenced from within another template specialization and the context from which it is refer-
enced depends on atemplate parameter, the point of instantiation of the specialization is the point of instan-
tiation of the enclosing specialization. Otherwise, the point of instantiation for such a specialization imme-
diately follows the namespace scope declaration or definition that refers to the specialization.

If afunction template or member function of a class templateis called in away which uses the definition of
a default argument of that function template or member function, the point of instantiation of the default
argument is the point of instantiation of the function template or member function specialization.

For a class template specialization, a class member template specialization, or a specialization for a class
member of a class template, if the speciaization is implicitly instantiated because it is referenced from
within another template specialization, if the context from which the speciaization is referenced depends
on a template parameter, and if the specialization is not instantiated previous to the instantiation of the
enclosing template, the point of instantiation isimmediately before the point of instantiation of the enclos-
ing template. Otherwise, the point of instantiation for such a speciaization immediately precedes the
namespace scope declaration or definition that refers to the specialization.

270

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.6.4.1 Point of instantiation

If avirtual function isimplicitly instantiated, its point of instantiation is immediately following the point of
instantiation of its enclosing class template specialization.

An explicit instantiation directive is an instantiation point for the specialization or specializations specified
by the explicit instantiation directive.

The instantiation context of an expression that depends on the template arguments is the set of declarations
with external linkage declared prior to the point of instantiation of the template specialization in the same
trangdation unit.

A specialization for afunction template, a member function template, or of a member function or static data
member of a class template may have multiple points of instantiations within a translation unit. A special-
ization for a class template has at most one point of instantiation within a translation unit. A specialization
for any template may have points of instantiation in multiple trandation units. If two different points of
instantiation give a template specialization different meanings according to the one definition rule (3.2), the
program isill-formed, no diagnostic required.

14.6.4.2 Candidate functions [temp.dep.candidate]

For afunction call that depends on a template parameter, if the function name is an unqualified-id but not a
template-id, the candidate functions are found using the usual lookup rules (3.4.1, 3.4.2) except that:

— For the part of the lookup using unqualified name lookup (3.4.1), only function declarations with exter-
nal linkage from the template definition context are found.

— For the part of the lookup using associated namespaces (3.4.2), only function declarations with external
linkage found in either the template definition context or the template instantiation context are found.

If the call would be ill-formed or would find a better match had the lookup within the associated name-
spaces considered al the function declarations with external linkage introduced in those namespaces in all
trandation units, not just considering those declarations found in the template definition and template
instantiation contexts, then the program has undefined behavior.

14.6.5 Friend namesdeclared within a classtemplate [temp.inject]

Friend classes or functions can be declared within a class template. When a template is instantiated, the
names of its friends are treated as if the specialization had been explicitly declared at its point of instantia-
tion.

As with non-template classes, the names of namespace-scope friend functions of a class template special-
ization are not visible during an ordinary lookup unless explicitly declared at namespace scope (11.4).
Such names may be found under the rules for associated classes (3.4.2).131) [Example:

tenpl at e<typenane T> cl ass nunber {

public:
number (i nt);
/..
friend nunber gcd(nunber& x, nunber& y);
/...
s

135 Friend declarations do not introduce new namesinto any scope, either when the template is declared or when it isinstantiated.

271

| SO/IEC 14882:2003(E) O ISO/IEC

14.6.5 Friend names declared within a class template 14 Templates
voi d g()
nunmber <doubl e> a(3), b(4);
/..
a = gcd(a, b); /| finds gcd because nunber <doubl e>isan
/| associated class, making gcd visible
/'l inits namespace (global scope)
b = gcd(3,4); /I ill-formed; gcd isnot visible
}
—end example]
14.7 Templateinstantiation and specialization [temp.spec]

The act of instantiating a function, a class, a member of a class template or a member templateis referred to
as template instantiation.

A function instantiated from a function template is called an instantiated function. A class instantiated from
aclasstemplate is called an instantiated class. A member function, a member class, or a static data member
of a class template instantiated from the member definition of the class template is called, respectively, an
instantiated member function, member class or static data member. A member function instantiated from a
member function template is called an instantiated member function. A member class instantiated from a
member class templateis called an instantiated member class.

An explicit specialization may be declared for a function template, a class template, a member of a class
template or a member template. An explicit specialization declaration isintroduced by t enpl at e<>. In
an explicit specialization declaration for a class template, a member of a class template or a class member
template, the name of the class that is explicitly specialized shall be a template-id. In the explicit special-
ization declaration for a function template or a member function template, the name of the function or
member function explicitly specialized may be atemplate-id. [Example:

tenplate<class T = int> struct A {

static int x;
b
tenpl ate<class U> void g(U { }
t enpl at e<> struct A<double> { }; /'l specializefor T == doubl e
tenpl ate<> struct A<> { }; /'l specializefor T ==i nt
tenpl ate<> void g(char) { } /| specialize for U== char

/1 Uis deduced from the parameter type

tenpl ate<> void g<int>(int) { } /'l specializefor U==i nt
tenpl ate<> int A<char>::x = 0; /'l specializefor T == char
tenplate<class T = int> struct B {

static int x;
H
tenplate<> int B<>:x = 1; /| specializefor T==i nt

—end example]

An instantiated template speciaization can be either implicitly instantiated (14.7.1) for a given argument
list or be explicitly instantiated (14.7.2). A specialization is a class, function, or class member that is either
instantiated or explicitly specialized (14.7.3).

No program shall explicitly instantiate any template more than once, both explicitly instantiate and explic-
itly specialize a template, or specialize a template more than once for a given set of template-arguments.
Animplementation is not required to diagnose aviolation of thisrule.

Each class template specialization instantiated from a template has its own copy of any static members.
[Example:

272

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.7 Template instantiation and specialization

tenpl ate<class T> class X {
static T s;
Il ..
s
tenplate<class T> T X<T>:.:s = O0;
X<i nt> aa;
X<char *> bb;

X<i nt > hasastatic member s of typei nt and X<char * > has astatic member s of typechar *.]

14.7.1 Implicit instantiation [temp.inst]

Unless a class template specialization has been explicitly instantiated (14.7.2) or explicitly specialized
(14.7.3), the class template speciaization isimplicitly instantiated when the specializationis referenced in a
context that requires a completely-defined object type or when the completeness of the class type affects the
semantics of the program. The implicit instantiation of a class template specialization causes the implicit
instantiation of the declarations, but not of the definitions or default arguments, of the class member func-
tions, member classes, static data members and member templates; and it causes the implicit instantiation
of the definitions of member anonymous unions. Unless a member of a class template or a member tem-
plate has been explicitly instantiated or explicitly specialized, the specialization of the member isimplicitly
instantiated when the specialization is referenced in a context that requires the member definition to exist;
in particular, the initialization (and any associated side-effects) of a static data member does not occur
unless the static data member isitself used in away that requires the definition of the static data member to
exist.

Unless a function template specialization has been explicitly instantiated or explicitly specialized, the func-
tion template specialization is implicitly instantiated when the specialization is referenced in a context that
requires a function definition to exist. Unless a call isto a function template explicit speciaization or to a
member function of an explicitly specialized class template, a default argument for a function template or a
member function of a class template is implicitly instantiated when the function is called in a context that
requires the value of the default argument.

[Example:
tenpl ate<cl ass T> class Z {
public:
void f();
void g();
s
void h()
{
Z<int> a; /| instantiation of class Z<i nt > required
Z<char >* p; /| insgtantiation of class Z<char > not
/1 required
Z<doubl e>* q; /| instantiation of class Z<doubl e>
/'l not required
a.f(); /| instantiation of Z<i nt >: : f () required
p->9(); /| instantiation of class Z<char > required, and
/| instantiation of Z<char >: : g() required
}

Nothing in this example requires cl ass Z<doubl e>, Z<int>::g(), or Z<char>::f() to be
implicitly instantiated.]

A class template specidization isimplicitly instantiated if the class type is used in a context that requires a
completely-defined object type or if the completeness of the class type affects the semantics of the program;
in particular, if an expression whose type is a class template specialization is involved in overload resolu-
tion, pointer conversion, pointer to member conversion, the class template specialization is implicitly

273

| SO/IEC 14882:2003(E) O ISO/IEC

14.7.1 Implicit instantiation 14 Templates

instantiated (3.2); in addition, a class template specialization is implicitly instantiated if the operand of a
delete expression is of class type or is of pointer to class type and the class type is a template specialization.
[Example:

tenpl ate<class T> class B{ /* ... */ };
tenpl ate<class T> class D: public B<T> { /* ... */ };

void f(void*);
voi d f(B<int>*);

voi d g(D<int>* p, D<char>* pp, D<doubl e> ppp)

f(p); /| instantiation of D<i nt > required: call f (B<i nt >*)
B<char>* q = pp; /| instantiation of D<char > required:
/' convert D<char >* to B<char >*
del et e ppp; /| instantiation of D<doubl e> required
}
—end example]

If the overload resolution process can determine the correct function to call without instantiating a class
template definition, it is unspecified whether that instantiation actually takes place. [Example:

tenpl ate <class T> struct S {
operator int();

}s

void f(int);
voi d f(S<int>&);
void f(S<float>);

void g(S<int>& sr) {
f(sr); /| instantiation of S<i nt > allowed but not required
/| instantiation of S<f | oat > allowed but not required

b
—end example]

If an implicit instantiation of a class template specialization is required and the template is declared but not
defined, the program isill-formed. [Example:

tenpl at e<cl ass T> cl ass X;

X<char > ch; /| error: definition of X required
—end example]

The implicit instantiation of a class template does not cause any static data members of that class to be
implicitly instantiated.

If afunction template or a member function template specialization is used in away that involves overload
resolution, a declaration of the specialization isimplicitly instantiated (14.8.3).

An implementation shall not implicitly instantiate a function template, a member template, a non-virtua
member function, a member class or a static data member of a class template that does not require instantia-
tion. It isunspecified whether or not an implementation implicitly instantiates a virtual member function of
aclass template if the virtual member function would not otherwise be instantiated. The use of atemplate
specidization in a default argument shall not cause the template to be implicitly instantiated except that a
class template may be instantiated where its complete type is needed to determine the correctness of the
default argument. The use of a default argument in a function call causes speciaizations in the default
argument to be implicitly instantiated.

274

10

11

12

13
14

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.7.1 Implicit instantiation

Implicitly instantiated class and function template specializations are placed in the namespace where the
template is defined. Implicitly instantiated specializations for members of a class template are placed in the
namespace where the enclosing class template is defined. Implicitly instantiated member templates are
placed in the namespace where the enclosing class or class template is defined. [Example:

namespace N {
tenpl at e<cl ass T> class List {
public:
T get();
/..

}

tenpl ate<cl ass K, class V> class Map {
N::List<v> It;

V get (K);
/..
b
voi d g(Map<char*,int>& m
int i = mget("N cholas");
/..

}

acal of It.get() from Map<char*,int>::get() would place Li st<int>::get() in the
namespace N rather than in the global namespace. |

If afunctiontemplatef iscalled in away that requires a default argument expression to be used, the depen-
dent names are looked up, the semantics constraints are checked, and the instantiation of any template used
in the default argument expression is done as if the default argument expression had been an expression
used in a function template specialization with the same scope, the same template parameters and the same
access as that of the function template f used at that point. This analysis is called default argument
instantiation. The instantiated default argument is then used as the argument of f .

Each default argument is instantiated independently. [Example:
tenpl ate<class T> void f(T x, Ty =ydef(T()), T z = zdef(T()));

class A { };

A zdef (A);

void g(Aa, Ab, Ac) {
f(a, b, c); /1 no default argument instantiation
f(a, b); /| default argument z = zdef (T()) instantiated
f(a); /1 ill-formed; ydef isnot declared

}

—end example]

[Note: 14.6.4.1 defines the point of instantiation of atemplate specialization.]

There is an implementation-defined quantity that specifies the limit on the total depth of recursive instantia-
tions, which could involve more than one template. The result of an infinite recursion in instantiation is
undefined. [Example:

275

| SO/IEC 14882:2003(E) O ISO/IEC

14.7.1 Implicit instantiation 14 Templates

tenpl ate<class T> class X {
X<T>* p; /1 OK
X<T*> a; /1 implicit generation of X<T> requires
/| theimplicit instantiation of X<T* > which requires
/1 theimplicit instantiation of X<T* * > which ...

s
—end example]

14.7.2 Explicit instantiation [temp.explicit]

A class, a function or member template specialization can be explicitly instantiated from its template. A
member function, member class or static data member of a class template can be explicitly instantiated
from the member definition associated with its class template.

The syntax for explicit instantiation is:

explicit-instantiation:
t enpl at e declaration

If the explicit instantiation is for a class, a function or a member template specialization, the unqualified-id
in the declaration shall be either a template-id or, where al template arguments can be deduced, a
template-name. [Note: the declaration may declare a qualified-id, in which case the unqualified-id of the
qualified-id must be a template-id.] If the explicit instantiation is for a member function, a member class
or a static data member of a class template specialization, the name of the class template speciaization in
the qualified-id for the member declarator shall be atemplate-id. [Example:

tenpl ate<class T> class Array { void nf(); };
tenpl ate class Array<char>;
tenmplate void Array<int>::nf();

tenpl ate<class T> void sort(Array<T>& v) { /* ... */ }
tenpl ate void sort(Array<char>§&); /| argument is deduced here

nanespace N {
tenpl ate<class T> void f(T& { }
}

tenplate void N :f<int>(int&:;
—end example]

A declaration of afunction template shall bein scope at the point of the explicit instantiation of the function
template. A definition of the class or class template containing a member function template shall be in
scope at the point of the explicit instantiation of the member function template. A definition of a class tem-
plate or class member template shall be in scope at the point of the explicit instantiation of the class tem-
plate or class member template. A definition of a class template shall be in scope at the point of an explicit
instantiation of a member function or a static data member of the class template. A definition of a member
class of a class template shall be in scope at the point of an explicit instantiation of the member class. If the
declaration of the explicit instantiation names an implicitly-declared special member function (clause 12),
the program is ill-formed.

The definition of a non-exported function template, a non-exported member function template, or a non-
exported member function or static data member of a class template shall be present in every trandlation
unit in which it is explicitly instantiated.

An explicit instantiation of a class or function template specialization is placed in the namespace in which
the template is defined. An explicit instantiation for a member of a class template is placed in the name-
space where the enclosing class template is defined. An explicit instantiation for a member template is
placed in the namespace where the enclosing class or classtemplate is defined. [Example:

276

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.7.2 Explicit instantiation

namespace N {
tenpl ate<class T> class Y { void nf() { } };

}
tenpl ate class Y<int>; /'l error: classtemplate Y not visible
/'l inthe global namespace
using N:Y;
tenpl ate class Y<int>; /1 OK: explicit instantiation in namespace N
tenpl ate class N:.:Y<char*>; /1 OK: explicit instantiation in namespace N
templ ate void N::Y<double>::nf(); /' OK: explicit instantiation
/1 innamespace N
—end exampl €]

A trailing template-argument can be left unspecified in an explicit instantiation of a function template spe-
cialization or of a member function template specialization provided it can be deduced from the type of a
function parameter (14.8.2). [Example:

tenpl ate<class T> class Array { /* ... */ };
tenpl at e<cl ass T> void sort(Array<T>& v);

/| instantiatesor t (Array<i nt >&) —template-argument deduced
tenpl ate void sort<>(Array<int>&);

—end example]

The explicit instantiation of a class template speciaization implies the instantiation of al of its members
not previously explicitly specialized in the trandation unit containing the explicit instantiation.

The usual access checking rules do not apply to names used to specify explicit instantiations. [Note: In par-
ticular, the template arguments and names used in the function declarator (including parameter types, return
types and exception specifications) may be private types or objects which would normally not be accessible
and the template may be a member template or member function which would not normally be accessible.

]

An explicit instantiation does not constitute a use of a default argument, so default argument instantiation is
not done. [Example:

char* p = 0;
tenpl ate<class T> T g(T = &p);
tenplate int g<int>(int); /1 OK eventhough &p isn'tani nt .
—end example]
14.7.3 Explicit specialization [temp.expl.spec]

An explicit speciaization of any of the following:
— function template

— classtemplate

— member function of aclasstemplate

— static data member of a classtemplate

— member class of aclasstemplate

— member class template of aclasstemplate

— member function template of a classtemplate

can be declared by a declaration introduced by t enpl at e<>; that is:

277

| SO/IEC 14882:2003(E) O ISO/IEC

14.7.3 Explicit specialization 14 Templates

explicit-specialization:
tenpl ate < > declaration

[Example:
tenpl at e<cl ass T> cl ass stream
tenpl ate<> class streanxchar> { /* ... */ };
tenpl ate<class T> class Array { /* ... */ };
tenpl ate<class T> void sort(Array<T>& v) { /* ... */ }

tenpl at e<> voi d sort<char*>(Array<char*>8&)

Given these declarations, st r eam<char > will be used as the definition of streams of chars; other
streams will be handled by class template specidizations instantiated from the class template. Similarly,
sort <char *> will be used as the sort function for arguments of type Ar r ay<char * >; other Arr ay
types will be sorted by functions generated from the template. |

An explicit specialization shall be declared in the namespace of which the template is a member, or, for
member templates, in the namespace of which the enclosing class or enclosing class template is a member.
An explicit speciaization of a member function, member class or static data member of a class template
shall be declared in the namespace of which the class template is a member. Such a declaration may also
be a definition. If the declaration is not a definition, the specialization may be defined later in the name-
space in which the explicit specialization was declared, or in a namespace that encloses the one in which
the explicit specialization was declared.

A declaration of a function template or class template being explicitly specialized shall be in scope at the
point of declaration of an explicit specialization. [Note: a declaration, but not a definition of the templateis
required.] The definition of a class or class template shall be in scope at the point of declaration of an
explicit specialization for amember template of the class or classtemplate. [Example:

tenplate<> class X<int> { /* ... */ }; /'] error: X not atemplate
tenpl at e<cl ass T> cl ass X;

tenpl ate<> class X<char*> { /* ... */ }; /1 OK: Xisatemplate
—end example]

A member function, a member class or a static data member of a class template may be explicitly special-
ized for a class speciadization that is implicitly instantiated; in this case, the definition of the class template
shall be in scope at the point of declaration of the explicit specialization for the member of the class tem-
plate. If such an explicit specialization for the member of a class template names an implicitly-declared
special member function (clause 12), the program isill-formed.

A member of an explicitly specialized class is not implicitly instantiated from the member declaration of
the class template; instead, the member of the class template specialization shall itself be explicitly defined.
In this case, the definition of the class template explicit specialization shall be in scope at the point of decla
ration of the explicit specialization of the member. The definition of an explicitly speciaized classis unre-
lated to the definition of a generated specialization. That is, its members need not have the same names,
types, etc. as the members of the a generated specialization. Definitions of members of an explicitly spe-
cialized class are defined in the same manner as members of normal classes, and not using the explicit spe-
cialization syntax. [Example:

278

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.7.3 Explicit specialization

tenpl ate<cl ass T> struct A {

void f(T) { /* ... */ }
b
tenpl ate<> struct A<int> {
void f(int);
b
void h()
{
A<int> a;
a.f(16); /1 A<i nt >::f must be defined somewhere
}

/| explicit specialization syntax not used for a member of
/1 explicitly specialized class template specialization
void A<int>: :f() { /* ... *I }

—end example]

If atemplate, a member template or the member of a class template is explicitly specialized then that spe-
cialization shall be declared before the first use of that specialization that would cause an implicit instantia-
tion to take place, in every trandation unit in which such a use occurs; no diagnostic isrequired. If the pro-
gram does not provide a definition for an explicit specialization and either the specialization is used in a
way that would cause an implicit instantiation to take place or the member is avirtual member function, the
program is ill-formed, no diagnostic required. An implicit instantiation is never generated for an explicit
speciaization that is declared but not defined. [Example:

tenpl ate<class T> class Array { /* ... */ };
tenpl ate<class T> void sort(Array<T>& v) { /* ... */ }

void f(Array<String>& v)
{

sort(v); /'] use primary template
/] sort (Array<T>&),TisString
}

tenpl ate<> void sort<String>(Array<String>& v); // error: specialization
/| after use of primary template
t enpl at e<> voi d sort<>(Array<char*>& v); /1 OK: sort <char *> not yet used

—end example]

The placement of explicit specialization declarations for function templates, class templates, member func-
tions of class templates, static data members of class templates, member classes of class templates, member
class templates of class templates, member function templates of class templates, member functions of
member templates of class templates, member functions of member templates of non-template classes,
member function templates of member classes of class templates, etc., and the placement of partial special-
ization declarations of class templates, member class templates of non-template classes, member class tem-
plates of class templates, etc., can affect whether a program is well-formed according to the relative posi-
tioning of the explicit specialization declarations and their points of instantiation in the translation unit as
specified above and below. When writing a specialization, be careful about its location; or to make it com-
pilewill be such atrial asto kindle its self-immolation.

When a specialization for which an explicit specialization exists is used within the instantiation of an
exported template, and the unspecialized template name is non-dependent in the exported template, a decla-
ration of the explicit specialization shall be declared before the definition of the exported template, in the
trand ation unit containing that definition. [Example:

279

9

10

11

| SO/IEC 14882:2003(E) O ISO/IEC

14.7.3 Explicit specialization 14 Templates

/1 file#l

#i ncl ude <vector>

/| Primary classtemplatevect or

export tenplate<class T> void f(t) {
std::vector<T> vec; /1 should match the specialization
[* oo

}

/1 file#2
#i ncl ude <vector>
class B { };
/| Explicit specialization of vect or for vect or
namespace std {
tenpl ate<> class vector { /* ... */ };
}

tenpl ate<class T> void f(T);
void g(B b) {
f(b); /1 ill-formed:
/| f should refer tovect or , but the
/| specialization was not declared with the
/| definition of f infile#l

}
—end example]

A template explicit specialization is in the scope of the namespace in which the template was defined.
[Example:
namespace N {

templ ate<class T> class X { /* ... */ };
tenplate<class T> class Y { /* ... */ };
tenplate<> class X<int> { /* ... */ }; [/ OK: specialization
/1 in same namespace
tenpl at e<> cl ass Y<doubl e>; /| forward declare intent to
/| specialize for doubl e
}
tenpl ate<> class N :Y<double> { /* ... */ }; /| OK: specialization
/1 insame namespace
—end exampl €]

A template-id that names a class template explicit speciaization that has been declared but not defined can
be used exactly like the names of other incompletely-defined classes (3.9). [Example:

tenpl at e<cl ass T> cl ass X; /| Xisaclasstemplate
tenpl at e<> cl ass X<int >;

X<i nt>* p; /| OK: pointer to declared class X<i nt >
X<int> x; /'] error: object of incomplete class X<i nt >
—end example]

A trailing template-argument can be left unspecified in the template-id naming an explicit function tem-
plate specialization provided it can be deduced from the function argument type. [Example:

tenpl ate<class T> class Array { /* ... */ };
tenpl at e<cl ass T> void sort(Array<T>& v);

/| explicit specialization for sort (Ar ray<i nt >&)
/1 with deduces template-argument of typei nt
tenpl at e<> voi d sort (Array<i nt>&);

—end example]

280

12
13

14

15

16

17

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.7.3 Explicit specialization

[Note: This paragraph isintentionally empty.]

A function with the same name as a template and a type that exactly matches that of a template specializa-
tionis not an explicit specialization (14.5.5).

An explicit specialization of afunction templateisinline only if it is explicitly declared to be, and indepen-
dently of whether its function templateis. [Example:

tenpl ate<class T> void f(T) { /* ... */ }

tenpl ate<class T> inline T g(T) { /* ... */ }

template<> inline void f<>(int) { /* ... */ } /1 OK:inline

tenmplate<> int g<>(int) { /* ... */ } /1 OK: notinline
—end example]

An explicit specialization of a static data member of atemplate is a definition if the declaration includes an
initializer; otherwise, it is adeclaration. [Note: there is no syntax for the definition of a static data member
of atemplate that requires default initialization.

tenpl ate<> X Q<int>::x;
Thisisadeclaration regardliess of whether X can be default initiaized (8.5).]

A member or a member template of a class template may be explicitly speciaized for a given implicit
instantiation of the class template, even if the member or member template is defined in the class template
definition. An explicit specialization of a member or member template is specified using the template spe-
cialization syntax. [Example:
t enpl at e<cl ass T> struct A {
void f(T);
tenpl at e<cl ass X1> void g1(T, X1);
tenpl at e<cl ass X2> void g2(T, X2);
void h(T) { }
b

/'] specialization
tenplate<> void A<int>::f(int);

/1 out of class member template definition
tenpl at e<cl ass T> tenpl ate<class X1> void A<T>::g1(T, X1) { }

/1 member template specialization
tenpl ate<> tenpl ate<cl ass X1> void A<int>::gl(int, Xl1);

/1 member template specialization
t enpl at e<> tenpl at e<>

void A<int>::gl(int, char); /' X1 deduced aschar
tenpl at e<> tenpl at e<>

voi d A<int>::g2<char>(int, char); // X2 specifiedaschar

/1 member specialization even if defined in class definition
tenpl ate<> void A<int>::h(int) { }

—end example]

A member or a member template may be nested within many enclosing class templates. If the declaration
of an explicit specialization for such a member appears in namespace scope, the member declaration shall
be preceded by at enpl at e<> for each enclosing class template that is explicitly specialized. [Example:

281

18

19

20
21

| SO/IEC 14882:2003(E) O ISO/IEC

14.7.3 Explicit specialization 14 Templates

tenpl at e<cl ass T1> class A {
t enpl at e<cl ass T2> class B {
void nf();

b
}s

tenpl at e<> tenpl at e<> cl ass A<i nt >:: B<doubl e>;
tenpl at e<> tenpl at e<> voi d A<char>::B<char>::nf();

—end example]

In an explicit specialization declaration for amember of a class template or a member template that appears
in namespace scope, the member template and some of its enclosing class templates may remain unspecial-
ized, except that the declaration shall not explicitly specialize a class member template if its enclosing class
templates are not explicitly specialized as well. In such explicit specialization declaration, the keyword
t enpl at e followed by a template-parameter-list shall be provided instead of the t enpl at e<> preced-
ing the explicit specialization declaration of the member. The types of the template-parameters in the
template-parameter-list shall be the same as those specified in the primary template definition. [Example:

t enpl at e<cl ass T1> class A {
tenpl at e<cl ass T2> class B {
tenpl at e<cl ass T3> void nf1(T3);
void nf2();

b
}s

tenpl at e<> tenpl at e<cl ass X>
class A<int>::B { };
tenpl at e<> tenpl at e<> tenpl at e<cl ass T>
voi d A<int>::B<double> :nf1(T t) { }
t enpl at e<cl ass Y> tenpl at e<>
voi d A<Y>::B<double>::nf2() { } /I ill-formed; B<doubl e> is specialized but
/| itsenclosing classtemplate A is not

—end example]

A specialization of a member function template or member class template of a non-specialized class tem-
plate isitself atemplate.

An explicit specialization declaration shall not be afriend declaration.

Default function arguments shall not be specified in a declaration or a definition for one of the following
explicit specializations:

— the explicit specialization of afunction template;
— the explicit specialization of amember function template;

— the explicit specialization of a member function of a class template where the class template specializa-
tion to which the member function specialization belongs isimplicitly instantiated. [Note: default func-
tion arguments may be specified in the declaration or definition of a member function of a class tem-
plate specialization that is explicitly speciaized.]

14.8 Function template specializations [temp.fct.spec]

A function instantiated from a function template is caled a function template specialization; so is an
explicit specialization of a function template. Template arguments can either be explicitly specified when
naming the function template specialization or be deduced (14.8.2) from the context, e.g. from the function
argumentsin a call to the function template specialization.

Each function template specialization instantiated from a template has its own copy of any static variable.
[Example:

282

O ISO/IEC | SO/IEC 14882:2003(E)

14 Templates 14.8 Function template specializations

tenpl ate<class T> void f(T* p)

{
static T s;
/..
b
void g(int a, char* b)
{
f(&); /] call f<int>(int*)
f(&b); /| call f <char*>(char**)
}

Heref <i nt >(i nt *) hasastatic variable s of typei nt and f <char *>(char **) hasastatic variable
s of typechar *.]

14.8.1 Explicit template argument specification [temp.arg.explicit]

Template arguments can be specified when referring to a function template specialization by qualifying the
function template name with the list of template-arguments in the same way as template-arguments are
specified in uses of a class template specialization. [Example:

tenpl at e<cl ass T> void sort(Array<T>& v);
void f(Array<dconpl ex>& cv, Array<int>& ci)

{
sort <dconpl ex>(cv); /'l sort (Array<dconpl ex>&)
sort<int>(ci); /'l sort (Array<int >&)
}
and
tenpl ate<class U, class V> U convert(V v);
voi d g(doubl e d)
{
int i = convert<int, doubl e>(d); /1 int convert (doubl e)
char c¢ = convert<char, doubl e>(d); /| char convert (doubl e)
}
—end example]

A template argument list may be specified when referring to a specialization of a function template
— when afunction is called,

— when the address of a function is taken, when a function initializes a reference to function, or when a
pointer to member function isformed,

— inanexplicit specialization,
— inanexplicit instantiation, or
— inafriend declaration.

Trailing template arguments that can be deduced (14.8.2) may be omitted from the list of explicit template-
arguments. If all of the template arguments can be deduced, they may all be omitted; in this case, the
empty template argument list <> itself may also be omitted. [Example:

tenpl ate<class X, class Y> X f(Y);
void g()
int i
int j

f<int>(5.6); /'l Y isdeduced to bedoubl e
f(5.6); /1 ill-formed: X cannot be deduced

}
—end example] [Note: An empty template argument list can be used to indicate that a given use refersto a

283

| SO/IEC 14882:2003(E) O ISO/IEC

14.8.1 Explicit template argument specification 14 Templates

speciaization of afunction template even when a normal (i.e., nontemplate) function is visible that would
otherwise be used. For example:

tenplate <class T> int f(T); /1 #1

int f(int); /1 #2

int k =f(1); /| uses#2

int | = f<>(1); /| uses#1
—end note]

Template arguments that are present shall be specified in the declaration order of their corresponding
template-parameters. The template argument list shall not specify more template-arguments than there are
corresponding template-parameters. [Example:

tenpl ate<class X, class Y, class Z> X f(Y, 2);
void g()

f<int, char*, doubl e>("aa", 3.0);
f<int,char*>("aa",3.0); // Zisdeducedtobedoubl e

f<int>("aa", 3.0); /1 Y isdeduced to be char *, and
/| Z isdeduced to bedoubl e
f("aa", 3.0); /' error: X cannot be deduced
}
—end example]

Implicit conversions (clause 4) will be performed on a function argument to convert it to the type of the
corresponding function parameter if the parameter type contains no template-parameters that participate in
template argument deduction. [Note: template parameters do not participate in template argument deduc-
tion if they are explicitly specified. For example,

tenpl ate<class T> void f(T);

cl ass Compl ex {
/1.
Conpl ex(doubl e) ;

s
void g()

f <Conpl ex>(1); /1 OK, meansf <Conpl ex>(Conpl ex(1))
}

—end note]

[Note: because the explicit template argument list follows the function template name, and because conver-
sion member function templates and constructor member function templates are called without using a
function name, there is no way to provide an explicit template argument list for these function templates.]

[Note: For simple function names, argument dependent lookup (3.4.2) applies even when the function name
is not visible within the scope of the call. Thisis because the cal till has the syntactic form of a function
cal (3.4.1). But when afunction template with explicit template arguments is used,