
B C Reference number
ISO/IEC 14882:2003(E)

INTERNATIONAL
STANDARD

ISO/IEC
14882

Second edition
2003-10-15

Programming languages — C++

Langages de programmation — C++

Adopted by INCITS (InterNational Committee for Information Technology Standards) as an American National Standard.

Date of ANSI Approval: 12/29/2003

Published by American National Standards Institute,
25 West 43rd Street, New York, New York 10036

Copyright 2003 by Information Technology Industry Council (ITI).
All rights reserved.

These materials are subject to copyright claims of International Standardization Organization (ISO), International
Electrotechnical Commission (IEC), American National Standards Institute (ANSI), and Information Technology Industry Council
(ITI). Not for resale. No part of this publication may be reproduced in any form, including an electronic retrieval system, without
the prior written permission of ITI. All requests pertaining to this standard should be submitted to ITI, 1250 Eye Street NW,
Washington, DC 20005.

Printed in the United States of America

ISO/IEC 14882:2003(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2003 — All rights reserved

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved iii

Contents

1 General ..1

1.1 Scope..1

1.2 Normative references ...1

1.3 Terms and definitions ...1
1.3.1 argument ...1
1.3.2 diagnostic message ...2
1.3.3 dynamic type ...2
1.3.4 ill-formed program..2
1.3.5 implementation-defined behavior ...2
1.3.6 implementation limits ...2
1.3.7 locale-specific behavior ..2
1.3.8 multibyte character ...2
1.3.9 parameter ..2
1.3.10 signature ..2
1.3.11 static type ..2
1.3.12 undefined behavior ...2
1.3.13 unspecified behavior ...3
1.3.14 well-formed program ..3

1.4 Implementation compliance...3

1.5 Structure of this International Standard ...4

1.6 Syntax notation ..4

1.7 The C + + memory model ...4

1.8 The C + + object model ..4

1.9 Program execution ...5

ISO/IEC 14882:2003(E)

iv © ISO/IEC 2003 — All rights reserved

1.10 Acknowledgments ...8

2 Lexical conventions ..9

2.1 Phases of translation ..9

2.2 Character sets ...10

2.3 Trigraph sequences ..11

2.4 Preprocessing tokens ...11

2.5 Alternative tokens ..12

2.6 Tokens..12

2.7 Comments ..12

2.8 Header names ...13

2.9 Preprocessing numbers ..13

2.10 Identifiers ...13

2.11 Keywords ...14

2.12 Operators and punctuators ...15

2.13 Literals ...15
2.13.1 Integer literals ...15
2.13.2 Character literals ...16
2.13.3 Floating literals ...18
2.13.4 String literals ...19
2.13.5 Boolean literals ...19

3 Basic concepts ..21

3.1 Declarations and definitions ..21

3.2 One definition rule ...22

3.3 Declarative regions and scopes ..24
3.3.1 Point of declaration ...25
3.3.2 Local scope ...26
3.3.3 Function prototype scope ..26
3.3.4 Function scope ..27
3.3.5 Namespace scope ..27
3.3.6 Class scope..27
3.3.7 Name hiding..28

3.4 Name lookup ..29
3.4.1 Unqualified name lookup ...29
3.4.2 Argument-dependent name lookup ...32
3.4.3 Qualified name lookup ...34

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved v

3.4.3.1 Class members ...35
3.4.3.2 Namespace members ...35
3.4.4 Elaborated type specifiers ...39
3.4.5 Class member access ..40
3.4.6 Using-directives and namespace aliases ...41

3.5 Program and linkage ..41

3.6 Start and termination..43
3.6.1 Main function..43
3.6.2 Initialization of non-local objects ...44
3.6.3 Termination...45

3.7 Storage duration ...46
3.7.1 Static storage duration ..46
3.7.2 Automatic storage duration...46
3.7.3 Dynamic storage duration ...47
3.7.3.1 Allocation functions...47
3.7.3.2 Deallocation functions ...48
3.7.4 Duration of sub-objects...48

3.8 Object Lifetime ..49

3.9 Types..52
3.9.1 Fundamental types ..53
3.9.2 Compound types ...55
3.9.3 CV-qualifiers ..55

3.10 Lvalues and rvalues ...56

4 Standard conversions ..59

4.1 Lvalue-to-rvalue conversion ..59

4.2 Array-to-pointer conversion ..60

4.3 Function-to-pointer conversion ...60

4.4 Qualification conversions ..60

4.5 Integral promotions ..61

4.6 Floating point promotion ...61

4.7 Integral conversions ...62

4.8 Floating point conversions ...62

4.9 Floating-integral conversions ..62

4.10 Pointer conversions ..62

4.11 Pointer to member conversions ...63

ISO/IEC 14882:2003(E)

vi © ISO/IEC 2003 — All rights reserved

4.12 Boolean conversions ..63

5 Expressions ...65

5.1 Primary expressions ...66

5.2 Postfix expressions ..68
5.2.1 Subscripting ..68
5.2.2 Function call ...68
5.2.3 Explicit type conversion (functional notation) ...70
5.2.4 Pseudo destructor call ...70
5.2.5 Class member access ..70
5.2.6 Increment and decrement ..71
5.2.7 Dynamic cast ..72
5.2.8 Type identification ..73
5.2.9 Static cast ..74
5.2.10 Reinterpret cast ...75
5.2.11 Const cast ..76

5.3 Unary expressions ..78
5.3.1 Unary operators...78
5.3.2 Increment and decrement ..79
5.3.3 Sizeof ..79
5.3.4 New ...80
5.3.5 Delete ..83

5.4 Explicit type conversion (cast notation) ..84

5.5 Pointer-to-member operators ...85

5.6 Multiplicative operators ...85

5.7 Additive operators ...86

5.8 Shift operators ..87

5.9 Relational operators ...87

5.10 Equality operators ..88

5.11 Bitwise AND operator ..89

5.12 Bitwise exclusive OR operator ...89

5.13 Bitwise inclusive OR operator ...89

5.14 Logical AND operator ..89

5.15 Logical OR operator ...90

5.16 Conditional operator ..90

5.17 Assignment operators ..91

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved vii

5.18 Comma operator ..92

5.19 Constant expressions ...92

6 Statements ...95

6.1 Labeled statement ..95

6.2 Expression statement ...95

6.3 Compound statement or block ...95

6.4 Selection statements...96
6.4.1 The if statement ..97
6.4.2 The switch statement ..97

6.5 Iteration statements ..97
6.5.1 The while statement ...98
6.5.2 The do statement ..98
6.5.3 The for statement..99

6.6 Jump statements ...99
6.6.1 The break statement ...99
6.6.2 The continue statement..100
6.6.3 The return statement ..100
6.6.4 The goto statement ...100

6.7 Declaration statement ..100

6.8 Ambiguity resolution ...101

7 Declarations ..103

7.1 Specifiers ...104
7.1.1 Storage class specifiers ...105
7.1.2 Function specifiers ..106
7.1.3 The typedef specifier..107
7.1.4 The friend specifier ..108
7.1.5 Type specifiers ..108
7.1.5.1 The cv-qualifiers ..109
7.1.5.2 Simple type specifiers ..110
7.1.5.3 Elaborated type specifiers ..111

7.2 Enumeration declarations ..112

7.3 Namespaces ...114
7.3.1 Namespace definition ...114
7.3.1.1 Unnamed namespaces ..115
7.3.1.2 Namespace member definitions ...115
7.3.2 Namespace alias ..117
7.3.3 The using declaration ..117
7.3.4 Using directive ..123

7.4 The asm declaration ..126

ISO/IEC 14882:2003(E)

viii © ISO/IEC 2003 — All rights reserved

7.5 Linkage specifications ...126

8 Declarators ..131

8.1 Type names ..132

8.2 Ambiguity resolution ...132

8.3 Meaning of declarators ..134
8.3.1 Pointers ...135
8.3.2 References ...135
8.3.3 Pointers to members ...136
8.3.4 Arrays ...137
8.3.5 Functions...138
8.3.6 Default arguments ...141

8.4 Function definitions ...144

8.5 Initializers ..145
8.5.1 Aggregates ..147
8.5.2 Character arrays ..150
8.5.3 References ...150

9 Classes ..153

9.1 Class names ...153

9.2 Class members ...155

9.3 Member functions ..157
9.3.1 Nonstatic member functions ...158
9.3.2 The this pointer ...160

9.4 Static members...160
9.4.1 Static member functions ...161
9.4.2 Static data members ..161

9.5 Unions ..162

9.6 Bit-fields ..163

9.7 Nested class declarations ...164

9.8 Local class declarations ...165

9.9 Nested type names ...166

10 Derived classes ...167

10.1 Multiple base classes ...168

10.2 Member name lookup ..169

10.3 Virtual functions ..172

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved ix

10.4 Abstract classes ..176

11 Member access control ...179

11.1 Access specifiers ..180

11.2 Accessibility of base classes and base class members ...181

11.3 Access declarations ..182

11.4 Friends ...183

11.5 Protected member access ...186

11.6 Access to virtual functions...187

11.7 Multiple access ..188

11.8 Nested classes ..188

12 Special member functions...189

12.1 Constructors ...189

12.2 Temporary objects ...191

12.3 Conversions ...192
12.3.1 Conversion by constructor ..193
12.3.2 Conversion functions ..194

12.4 Destructors ...195

12.5 Free store ...198

12.6 Initialization ...199
12.6.1 Explicit initialization ..200
12.6.2 Initializing bases and members ...201

12.7 Construction and destruction ...204

12.8 Copying class objects ..207

13 Overloading ..213

13.1 Overloadable declarations..213

13.2 Declaration matching ...215

13.3 Overload resolution ...216
13.3.1 Candidate functions and argument lists ..217
13.3.1.1 Function call syntax ...218
13.3.1.1.1 Call to named function..218
13.3.1.1.2 Call to object of class type ..219
13.3.1.2 Operators in expressions ..220

ISO/IEC 14882:2003(E)

x © ISO/IEC 2003 — All rights reserved

13.3.1.3 Initialization by constructor ...222
13.3.1.4 Copy-initialization of class by user-defined conversion..222
13.3.1.5 Initialization by conversion function ...222
13.3.1.6 Initialization by conversion function for direct reference binding ..223
13.3.2 Viable functions ..223
13.3.3 Best Viable Function ..223
13.3.3.1 Implicit conversion sequences ...225
13.3.3.1.1 Standard conversion sequences ..227
13.3.3.1.2 User-defined conversion sequences ..227
13.3.3.1.3 Ellipsis conversion sequences...228
13.3.3.1.4 Reference binding ...228
13.3.3.2 Ranking implicit conversion sequences...228

13.4 Address of overloaded function ...230

13.5 Overloaded operators ...232
13.5.1 Unary operators...233
13.5.2 Binary operators..233
13.5.3 Assignment ...233
13.5.4 Function call ...234
13.5.5 Subscripting ..234
13.5.6 Class member access ..234
13.5.7 Increment and decrement ..234

13.6 Built-in operators ...235

14 Templates ..239

14.1 Template parameters ..240

14.2 Names of template specializations ...242

14.3 Template arguments...244
14.3.1 Template type arguments ..245
14.3.2 Template non-type arguments ..246
14.3.3 Template template arguments ...248

14.4 Type equivalence ...248

14.5 Template declarations ..249
14.5.1 Class templates ...249
14.5.1.1 Member functions of class templates...249
14.5.1.2 Member classes of class templates ..250
14.5.1.3 Static data members of class templates..250
14.5.2 Member templates ..251
14.5.3 Friends ..252
14.5.4 Class template partial specializations ...254
14.5.4.1 Matching of class template partial specializations ..256
14.5.4.2 Partial ordering of class template specializations ..257
14.5.4.3 Members of class template specializations ..257
14.5.5 Function templates ..258
14.5.5.1 Function template overloading ..259
14.5.5.2 Partial ordering of function templates ...260

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xi

14.6 Name resolution ...261
14.6.1 Locally declared names ..264
14.6.2 Dependent names ..267
14.6.2.1 Dependent types...268
14.6.2.2 Type-dependent expressions ..268
14.6.2.3 Value-dependent expressions ..269
14.6.2.4 Dependent template arguments ..269
14.6.3 Non-dependent names...270
14.6.4 Dependent name resolution ..270
14.6.4.1 Point of instantiation ..270
14.6.4.2 Candidate functions ...271
14.6.5 Friend names declared within a class template ...271

14.7 Template instantiation and specialization ..272
14.7.1 Implicit instantiation ...273
14.7.2 Explicit instantiation ...276
14.7.3 Explicit specialization ...277

14.8 Function template specializations ..282
14.8.1 Explicit template argument specification ...283
14.8.2 Template argument deduction ..285
14.8.2.1 Deducing template arguments from a function call ...287
14.8.2.2 Deducing template arguments taking the address of a function template288
14.8.2.3 Deducing conversion function template arguments...288
14.8.2.4 Deducing template arguments from a type ..288
14.8.3 Overload resolution ..293

15 Exception handling ...297

15.1 Throwing an exception ..298

15.2 Constructors and destructors..300

15.3 Handling an exception ...300

15.4 Exception specifications ..302

15.5 Special functions ..304
15.5.1 The terminate() function ..304
15.5.2 The unexpected() function ..305
15.5.3 The uncaught_exception() function ...305

15.6 Exceptions and access ..305

16 Preprocessing directives ...307

16.1 Conditional inclusion ...308

16.2 Source file inclusion ..309

16.3 Macro replacement ..310
16.3.1 Argument substitution ..311
16.3.2 The # operator ..311
16.3.3 The ## operator ..312

ISO/IEC 14882:2003(E)

xii © ISO/IEC 2003 — All rights reserved

16.3.4 Rescanning and further replacement...312
16.3.5 Scope of macro definitions ...312

16.4 Line control ..314

16.5 Error directive ..314

16.6 Pragma directive ..314

16.7 Null directive ...314

16.8 Predefined macro names ..315

17 Library introduction ..317

17.1 Definitions ...317
17.1.1 arbitrary-positional stream ..317
17.1.2 character ..317
17.1.3 character container type ..317
17.1.4 comparison function ...317
17.1.5 component...318
17.1.6 default behavior ..318
17.1.7 handler function ..318
17.1.8 iostream class templates ...318
17.1.9 modifier function ..318
17.1.10 object state ..318
17.1.11 narrow-oriented iostream classes ..318
17.1.12 NTCTS ..318
17.1.13 observer function ..318
17.1.14 replacement function...318
17.1.15 required behavior ..318
17.1.16 repositional stream ..319
17.1.17 reserved function...319
17.1.18 traits class..319
17.1.19 wide-oriented iostream classes ...319

17.2 Additional definitions ..319

17.3 Method of description (Informative) ...319
17.3.1 Structure of each subclause...319
17.3.1.1 Summary ..320
17.3.1.2 Requirements ...320
17.3.1.3 Specifications ...320
17.3.1.4 C Library ..321
17.3.2 Other conventions ...321
17.3.2.1 Type descriptions ...321
17.3.2.1.1 Enumerated types..322
17.3.2.1.2 Bitmask types..322
17.3.2.1.3 Character sequences ..323
17.3.2.1.3.1 Byte strings ..323
17.3.2.1.3.2 Multibyte strings ..324
17.3.2.1.3.3 Wide-character sequences ..324
17.3.2.2 Functions within classes ..324
17.3.2.3 Private members ..324

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xiii

17.4 Library-wide requirements ..324
17.4.1 Library contents and organization ..325
17.4.1.1 Library contents ...325
17.4.1.2 Headers ..325
17.4.1.3 Freestanding implementations ...326
17.4.2 Using the library ...326
17.4.2.1 Headers ..326
17.4.2.2 Linkage ..327
17.4.3 Constraints on programs ...327
17.4.3.1 Reserved names ...327
17.4.3.1.1 Macro names ...327
17.4.3.1.2 Global names ..327
17.4.3.1.3 External linkage ..328
17.4.3.1.4 Types...328
17.4.3.2 Headers ..328
17.4.3.3 Derived classes ..328
17.4.3.4 Replacement functions...328
17.4.3.5 Handler functions...329
17.4.3.6 Other functions ..329
17.4.3.7 Function arguments ...330
17.4.3.8 Required paragraph ..330
17.4.4 Conforming implementations ...330
17.4.4.1 Headers ..330
17.4.4.2 Restrictions on macro definitions ..330
17.4.4.3 Global or non-member functions ...330
17.4.4.4 Member functions ..331
17.4.4.5 Reentrancy ...331
17.4.4.6 Protection within classes..331
17.4.4.7 Derived classes ..331
17.4.4.8 Restrictions on exception handling ..331

18 Language support library ..333

18.1 Types..333

18.2 Implementation properties ...334
18.2.1 Numeric limits ..334
18.2.1.1 Class template numeric_limits ...334
18.2.1.2 numeric_limits members ..335
18.2.1.3 Type float_round_style ...339
18.2.1.4 Type float_denorm_style ...340
18.2.1.5 numeric_limits specializations ...340
18.2.2 C Library ...341

18.3 Start and termination..342

18.4 Dynamic memory management ...343
18.4.1 Storage allocation and deallocation ..343
18.4.1.1 Single-object forms ..343
18.4.1.2 Array forms ..345
18.4.1.3 Placement forms ..345
18.4.2 Storage allocation errors ...346
18.4.2.1 Class bad_alloc ..346
18.4.2.2 Type new_handler..347

ISO/IEC 14882:2003(E)

xiv © ISO/IEC 2003 — All rights reserved

18.4.2.3 set_new_handler ...347

18.5 Type identification ...347
18.5.1 Class type_info ...347
18.5.2 Class bad_cast ...348
18.5.3 Class bad_typeid...349

18.6 Exception handling ..349
18.6.1 Class exception ...349
18.6.2 Violating exception-specifications..350
18.6.2.1 Class bad_exception ..350
18.6.2.2 Type unexpected_handler ...351
18.6.2.3 set_unexpected..351
18.6.2.4 unexpected ...351
18.6.3 Abnormal termination ...351
18.6.3.1 Type terminate_handler ...351
18.6.3.2 set_terminate ..352
18.6.3.3 terminate..352
18.6.4 uncaught_exception ...352

18.7 Other runtime support ..352

19 Diagnostics library ..355

19.1 Exception classes ...355
19.1.1 Class logic_error ..355
19.1.2 Class domain_error ..356
19.1.3 Class invalid_argument ..356
19.1.4 Class length_error ..356
19.1.5 Class out_of_range ..357
19.1.6 Class runtime_error ...357
19.1.7 Class range_error ..357
19.1.8 Class overflow_error ...357
19.1.9 Class underflow_error...358

19.2 Assertions ..358

19.3 Error numbers ..358

20 General utilities library ...359

20.1 Requirements ...359
20.1.1 Equality comparison ...359
20.1.2 Less than comparison ...359
20.1.3 Copy construction ...360
20.1.4 Default construction..360
20.1.5 Allocator requirements ...360

20.2 Utility components...363
20.2.1 Operators...364
20.2.2 Pairs ..364

20.3 Function objects ...365
20.3.1 Base...367

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xv

20.3.2 Arithmetic operations ...367
20.3.3 Comparisons ...368
20.3.4 Logical operations ..369
20.3.5 Negators ..369
20.3.6 Binders ..370
20.3.6.1 Class template binder1st ...370
20.3.6.2 bind1st...370
20.3.6.3 Class template binder2nd ...370
20.3.6.4 bind2nd...371
20.3.7 Adaptors for pointers to functions ..371
20.3.8 Adaptors for pointers to members ..372

20.4 Memory..374
20.4.1 The default allocator ...374
20.4.1.1 allocator members ..375
20.4.1.2 allocator globals ...376
20.4.2 Raw storage iterator ..376
20.4.3 Temporary buffers ..377
20.4.4 Specialized algorithms ..377
20.4.4.1 uninitialized_copy ..377
20.4.4.2 uninitialized_fill ..378
20.4.4.3 uninitialized_fill_n ...378
20.4.5 Class template auto_ptr...378
20.4.5.1 auto_ptr constructors..379
20.4.5.2 auto_ptr members ..379
20.4.5.3 auto_ptr conversions ..380
20.4.6 C Library ...380

20.5 Date and time ...381

21 Strings library ...383

21.1 Character traits ...383
21.1.1 Character traits requirements ..383
21.1.2 traits typedefs ..385
21.1.3 char_traits specializations ...385
21.1.3.1 struct char_traits<char>..385
21.1.3.2 struct char_traits<wchar_t>...386

21.2 String classes ...387

21.3 Class template basic_string ..389
21.3.1 basic_string constructors ...393
21.3.2 basic_string iterator support ..396
21.3.3 basic_string capacity ...396
21.3.4 basic_string element access ...398
21.3.5 basic_string modifiers ...398
21.3.5.1 basic_string::operator+=..398
21.3.5.2 basic_string::append ...398
21.3.5.3 basic_string::assign ...399
21.3.5.4 basic_string::insert ...400
21.3.5.5 basic_string::erase..401
21.3.5.6 basic_string::replace ...401
21.3.5.7 basic_string::copy ..402

ISO/IEC 14882:2003(E)

xvi © ISO/IEC 2003 — All rights reserved

21.3.5.8 basic_string::swap ..403
21.3.6 basic_string string operations ..403
21.3.6.1 basic_string::find ..403
21.3.6.2 basic_string::rfind..404
21.3.6.3 basic_string::find_first_of...404
21.3.6.4 basic_string::find_last_of ...405
21.3.6.5 basic_string::find_first_not_of ...405
21.3.6.6 basic_string::find_last_not_of ...406
21.3.6.7 basic_string::substr ...406
21.3.6.8 basic_string::compare ...406
21.3.7 basic_string non-member functions ..407
21.3.7.1 operator+..407
21.3.7.2 operator== ...408
21.3.7.3 operator!= ...408
21.3.7.4 operator<..409
21.3.7.5 operator>..409
21.3.7.6 operator<= ...409
21.3.7.7 operator>= ...410
21.3.7.8 swap..410
21.3.7.9 Inserters and extractors ..410

21.4 Null-terminated sequence utilities ...411

22 Localization library ...415

22.1 Locales ...415
22.1.1 Class locale ..416
22.1.1.1 locale types ...418
22.1.1.1.1 Type locale::category...418
22.1.1.1.2 Class locale::facet ...420
22.1.1.1.3 Class locale::id...420
22.1.1.2 locale constructors and destructor ...421
22.1.1.3 locale members ...422
22.1.1.4 locale operators ...422
22.1.1.5 locale static members ..423
22.1.2 locale globals ...423
22.1.3 Convenience interfaces ...423
22.1.3.1 Character classification ..423
22.1.3.2 Character conversions ..424

22.2 Standard locale categories...424
22.2.1 The ctype category ..424
22.2.1.1 Class template ctype ...424
22.2.1.1.1 ctype members ...425
22.2.1.1.2 ctype virtual functions ...426
22.2.1.2 Class template ctype_byname ..427
22.2.1.3 ctype specializations ...428
22.2.1.3.1 ctype<char> destructor ...429
22.2.1.3.2 ctype<char> members ..429
22.2.1.3.3 ctype<char> static members ...430
22.2.1.3.4 ctype<char> virtual functions...430
22.2.1.4 Class ctype_byname<char> ...431
22.2.1.5 Class template codecvt ..431
22.2.1.5.1 codecvt members ..432

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xvii

22.2.1.5.2 codecvt virtual functions ..433
22.2.1.6 Class template codecvt_byname ...435
22.2.2 The numeric category ...435
22.2.2.1 Class template num_get ..435
22.2.2.1.1 num_get members ..437
22.2.2.1.2 num_get virtual functions ..437
22.2.2.2 Class template num_put ..439
22.2.2.2.1 num_put members ..440
22.2.2.2.2 num_put virtual functions ..440
22.2.3 The numeric punctuation facet ...443
22.2.3.1 Class template numpunct..443
22.2.3.1.1 numpunct members ...444
22.2.3.1.2 numpunct virtual functions ..445
22.2.3.2 Class template numpunct_byname ...445
22.2.4 The collate category ..445
22.2.4.1 Class template collate ..445
22.2.4.1.1 collate members ..446
22.2.4.1.2 collate virtual functions ..446
22.2.4.2 Class template collate_byname ...447
22.2.5 The time category ...447
22.2.5.1 Class template time_get..447
22.2.5.1.1 time_get members ...448
22.2.5.1.2 time_get virtual functions ..449
22.2.5.2 Class template time_get_byname ...450
22.2.5.3 Class template time_put..450
22.2.5.3.1 time_put members ...451
22.2.5.3.2 time_put virtual functions ..451
22.2.5.4 Class template time_put_byname ...451
22.2.6 The monetary category ...452
22.2.6.1 Class template money_get ...452
22.2.6.1.1 money_get members ...452
22.2.6.1.2 money_get virtual functions ...452
22.2.6.2 Class template money_put ...454
22.2.6.2.1 money_put members ...454
22.2.6.2.2 money_put virtual functions ...454
22.2.6.3 Class template moneypunct ...455
22.2.6.3.1 moneypunct members ...456
22.2.6.3.2 moneypunct virtual functions ...456
22.2.6.4 Class template moneypunct_byname ..457
22.2.7 The message retrieval category...458
22.2.7.1 Class template messages..458
22.2.7.1.1 messages members ...458
22.2.7.1.2 messages virtual functions ..459
22.2.7.2 Class template messages_byname ...459
22.2.8 Program-defined facets ...459

22.3 C Library Locales ..463

23 Containers library ...465

23.1 Container requirements ..465
23.1.1 Sequences ...468
23.1.2 Associative containers ..471

ISO/IEC 14882:2003(E)

xviii © ISO/IEC 2003 — All rights reserved

23.2 Sequences ..474
23.2.1 Class template deque ..477
23.2.1.1 deque constructors, copy, and assignment ..479
23.2.1.2 deque capacity ...480
23.2.1.3 deque modifiers ...480
23.2.1.4 deque specialized algorithms ..480
23.2.2 Class template list ..481
23.2.2.1 list constructors, copy, and assignment ...483
23.2.2.2 list capacity ...484
23.2.2.3 list modifiers ...484
23.2.2.4 list operations ..484
23.2.2.5 list specialized algorithms ...486
23.2.3 Container adaptors ..486
23.2.3.1 Class template queue ...486
23.2.3.2 Class template priority_queue ...487
23.2.3.2.1 priority_queue constructors ..488
23.2.3.2.2 priority_queue members ...488
23.2.3.3 Class template stack ...488
23.2.4 Class template vector ...489
23.2.4.1 vector constructors, copy, and assignment ..491
23.2.4.2 vector capacity ...492
23.2.4.3 vector modifiers...492
23.2.4.4 vector specialized algorithms ..493
23.2.5 Class vector<bool> ..493

23.3 Associative containers ...495
23.3.1 Class template map...497
23.3.1.1 map constructors, copy, and assignment ...499
23.3.1.2 map element access ...500
23.3.1.3 map operations ..500
23.3.1.4 map specialized algorithms ...500
23.3.2 Class template multimap...500
23.3.2.1 multimap constructors..503
23.3.2.2 multimap operations ..503
23.3.2.3 multimap specialized algorithms ...503
23.3.3 Class template set...503
23.3.3.1 set constructors, copy, and assignment ...505
23.3.3.2 set specialized algorithms ...506
23.3.4 Class template multiset...506
23.3.4.1 multiset constructors..508
23.3.4.2 multiset specialized algorithms ...508
23.3.5 Class template bitset ...509
23.3.5.1 bitset constructors ..510
23.3.5.2 bitset members ...511
23.3.5.3 bitset operators ...514

24 Iterators library ...515

24.1 Iterator requirements ..515
24.1.1 Input iterators ..516
24.1.2 Output iterators ...517
24.1.3 Forward iterators ...518
24.1.4 Bidirectional iterators ...519
24.1.5 Random access iterators..519

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xix

24.2 Header <iterator> synopsis ..520

24.3 Iterator primitives ..522
24.3.1 Iterator traits..522
24.3.2 Basic iterator ...523
24.3.3 Standard iterator tags ..524
24.3.4 Iterator operations ...525

24.4 Predefined iterators ..525
24.4.1 Reverse iterators ...525
24.4.1.1 Class template reverse_iterator ..526
24.4.1.2 reverse_iterator requirements ...527
24.4.1.3 reverse_iterator operations ...527
24.4.1.3.1 reverse_iterator constructor ...527
24.4.1.3.2 Conversion ..527
24.4.1.3.3 operator*...527
24.4.1.3.4 operator-> ..528
24.4.1.3.5 operator++ ..528
24.4.1.3.6 operator-- ..528
24.4.1.3.7 operator+...528
24.4.1.3.8 operator+= ..528
24.4.1.3.9 operator-...529
24.4.1.3.10 operator-= ..529
24.4.1.3.11 operator[] ..529
24.4.1.3.12 operator== ..529
24.4.1.3.13 operator<...529
24.4.1.3.14 operator!= ..529
24.4.1.3.15 operator>...529
24.4.1.3.16 operator>= ..530
24.4.1.3.17 operator<= ..530
24.4.1.3.18 operator-...530
24.4.1.3.19 operator+...530
24.4.2 Insert iterators ...530
24.4.2.1 Class template back_insert_iterator ...531
24.4.2.2 back_insert_iterator operations ..531
24.4.2.2.1 back_insert_iterator constructor ...531
24.4.2.2.2 back_insert_iterator::operator= ..531
24.4.2.2.3 back_insert_iterator::operator* ..531
24.4.2.2.4 back_insert_iterator::operator++..531
24.4.2.2.5 back_inserter ...532
24.4.2.3 Class template front_insert_iterator ..532
24.4.2.4 front_insert_iterator operations ...532
24.4.2.4.1 front_insert_iterator constructor ...532
24.4.2.4.2 front_insert_iterator::operator=..532
24.4.2.4.3 front_insert_iterator::operator*..532
24.4.2.4.4 front_insert_iterator::operator++ ...533
24.4.2.4.5 front_inserter...533
24.4.2.5 Class template insert_iterator ...533
24.4.2.6 insert_iterator operations ..533
24.4.2.6.1 insert_iterator constructor ...533
24.4.2.6.2 insert_iterator::operator= ..533
24.4.2.6.3 insert_iterator::operator* ..534
24.4.2.6.4 insert_iterator::operator++..534
24.4.2.6.5 inserter ...534

ISO/IEC 14882:2003(E)

xx © ISO/IEC 2003 — All rights reserved

24.5 Stream iterators ..534
24.5.1 Class template istream_iterator ...534
24.5.1.1 istream_iterator constructors and destructor ...535
24.5.1.2 istream_iterator operations ...535
24.5.2 Class template ostream_iterator ...536
24.5.2.1 ostream_iterator constructors and destructor ...537
24.5.2.2 ostream_iterator operations ...537
24.5.3 Class template istreambuf_iterator ..537
24.5.3.1 Class template istreambuf_iterator::proxy ..538
24.5.3.2 istreambuf_iterator constructors ...539
24.5.3.3 istreambuf_iterator::operator* ...539
24.5.3.4 istreambuf_iterator::operator++ ...539
24.5.3.5 istreambuf_iterator::equal ...539
24.5.3.6 operator== ...539
24.5.3.7 operator!= ...539
24.5.4 Class template ostreambuf_iterator ..540
24.5.4.1 ostreambuf_iterator constructors ...540
24.5.4.2 ostreambuf_iterator operations ..540

25 Algorithms library ..543

25.1 Non-modifying sequence operations ...551
25.1.1 For each ..551
25.1.2 Find ...552
25.1.3 Find End..552
25.1.4 Find First...552
25.1.5 Adjacent find ..553
25.1.6 Count...553
25.1.7 Mismatch ..553
25.1.8 Equal ...554
25.1.9 Search ...554

25.2 Mutating sequence operations ...555
25.2.1 Copy ..555
25.2.2 Swap ...555
25.2.3 Transform ...556
25.2.4 Replace ...556
25.2.5 Fill ...557
25.2.6 Generate ..557
25.2.7 Remove ...557
25.2.8 Unique...558
25.2.9 Reverse ...558
25.2.10 Rotate ..559
25.2.11 Random shuffle ...559
25.2.12 Partitions ...560

25.3 Sorting and related operations ...560
25.3.1 Sorting...561
25.3.1.1 sort..561
25.3.1.2 stable_sort ...561
25.3.1.3 partial_sort...561
25.3.1.4 partial_sort_copy...562
25.3.2 Nth element ...562
25.3.3 Binary search ..562

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xxi

25.3.3.1 lower_bound ...562
25.3.3.2 upper_bound ...563
25.3.3.3 equal_range ...563
25.3.3.4 binary_search ..563
25.3.4 Merge ..564
25.3.5 Set operations on sorted structures ...564
25.3.5.1 includes ..565
25.3.5.2 set_union..565
25.3.5.3 set_intersection ...565
25.3.5.4 set_difference..566
25.3.5.5 set_symmetric_difference..566
25.3.6 Heap operations ..566
25.3.6.1 push_heap..567
25.3.6.2 pop_heap ..567
25.3.6.3 make_heap..567
25.3.6.4 sort_heap..567
25.3.7 Minimum and maximum ..568
25.3.8 Lexicographical comparison ...568
25.3.9 Permutation generators ...569

25.4 C library algorithms ...569

26 Numerics library ...571

26.1 Numeric type requirements ..571

26.2 Complex numbers ..572
26.2.1 Header <complex> synopsis ...572
26.2.2 Class template complex ...573
26.2.3 complex specializations ...574
26.2.4 complex member functions..575
26.2.5 complex member operators..575
26.2.6 complex non-member operations ..576
26.2.7 complex value operations ..578
26.2.8 complex transcendentals ..578

26.3 Numeric arrays ...579
26.3.1 Header <valarray> synopsis ...579
26.3.2 Class template valarray...582
26.3.2.1 valarray constructors..584
26.3.2.2 valarray assignment ...584
26.3.2.3 valarray element access ...585
26.3.2.4 valarray subset operations ...585
26.3.2.5 valarray unary operators ..586
26.3.2.6 valarray computed assignment ..586
26.3.2.7 valarray member functions ..587
26.3.3 valarray non-member operations ..588
26.3.3.1 valarray binary operators ...588
26.3.3.2 valarray logical operators ..589
26.3.3.3 valarray transcendentals...590
26.3.4 Class slice...590
26.3.4.1 slice constructors ...591
26.3.4.2 slice access functions ..591
26.3.5 Class template slice_array ...591

ISO/IEC 14882:2003(E)

xxii © ISO/IEC 2003 — All rights reserved

26.3.5.1 slice_array constructors ..592
26.3.5.2 slice_array assignment ..592
26.3.5.3 slice_array computed assignment ...592
26.3.5.4 slice_array fill function ...593
26.3.6 The gslice class ..593
26.3.6.1 gslice constructors..594
26.3.6.2 gslice access functions ..594
26.3.7 Class template gslice_array ...594
26.3.7.1 gslice_array constructors ..595
26.3.7.2 gslice_array assignment..595
26.3.7.3 gslice_array computed assignment...595
26.3.7.4 gslice_array fill function...596
26.3.8 Class template mask_array ..596
26.3.8.1 mask_array constructors ...596
26.3.8.2 mask_array assignment ..596
26.3.8.3 mask_array computed assignment..597
26.3.8.4 mask_array fill function ...597
26.3.9 Class template indirect_array ..597
26.3.9.1 indirect_array constructors ...598
26.3.9.2 indirect_array assignment ...598
26.3.9.3 indirect_array computed assignment ..598
26.3.9.4 indirect_array fill function ..599

26.4 Generalized numeric operations ..599
26.4.1 Accumulate ...599
26.4.2 Inner product ...600
26.4.3 Partial sum ..600
26.4.4 Adjacent difference ...601

26.5 C Library ..601

27 Input/output library ...605

27.1 Iostreams requirements ..605
27.1.1 Imbue Limitations ...605
27.1.2 Positioning Type Limitations ...605

27.2 Forward declarations..605

27.3 Standard iostream objects ..608
27.3.1 Narrow stream objects ..608
27.3.2 Wide stream objects ..609

27.4 Iostreams base classes ..610
27.4.1 Types...610
27.4.2 Class ios_base ...611
27.4.2.1 Types..613
27.4.2.1.1 Class ios_base::failure ..613
27.4.2.1.2 Type ios_base::fmtflags ..613
27.4.2.1.3 Type ios_base::iostate ..614
27.4.2.1.4 Type ios_base::openmode ..615
27.4.2.1.5 Type ios_base::seekdir ..615
27.4.2.1.6 Class ios_base::Init ...615
27.4.2.2 ios_base fmtflags state functions ..616

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xxiii

27.4.2.3 ios_base locale functions ...616
27.4.2.4 ios_base static members ...617
27.4.2.5 ios_base storage functions ..617
27.4.2.6 ios_base callbacks ..618
27.4.2.7 ios_base constructors/destructors ...618
27.4.3 Class template fpos ..618
27.4.3.1 fpos Members ..618
27.4.3.2 fpos requirements ..618
27.4.4 Class template basic_ios ..619
27.4.4.1 basic_ios constructors ...620
27.4.4.2 Member functions ..621
27.4.4.3 basic_ios iostate flags functions ..622
27.4.5 ios_base manipulators ...623
27.4.5.1 fmtflags manipulators ..623
27.4.5.2 adjustfield manipulators ...624
27.4.5.3 basefield manipulators ..625
27.4.5.4 floatfield manipulators ...625

27.5 Stream buffers ..625
27.5.1 Stream buffer requirements ..626
27.5.2 Class template basic_streambuf<charT,traits> ..626
27.5.2.1 basic_streambuf constructors ...628
27.5.2.2 basic_streambuf public member functions ..629
27.5.2.2.1 Locales ..629
27.5.2.2.2 Buffer management and positioning ...629
27.5.2.2.3 Get area ...629
27.5.2.2.4 Putback ...630
27.5.2.2.5 Put area ...630
27.5.2.3 basic_streambuf protected member functions..630
27.5.2.3.1 Get area access ..630
27.5.2.3.2 Put area access ..631
27.5.2.4 basic_streambuf virtual functions ..631
27.5.2.4.1 Locales ..631
27.5.2.4.2 Buffer management and positioning ...631
27.5.2.4.3 Get area ...632
27.5.2.4.4 Putback ...633
27.5.2.4.5 Put area ...634

27.6 Formatting and manipulators ...635
27.6.1 Input streams ...636
27.6.1.1 Class template basic_istream..636
27.6.1.1.1 basic_istream constructors...638
27.6.1.1.2 Class basic_istream::sentry ..638
27.6.1.2 Formatted input functions ..639
27.6.1.2.1 Common requirements..639
27.6.1.2.2 Arithmetic Extractors..639
27.6.1.2.3 basic_istream::operator>> ..640
27.6.1.3 Unformatted input functions ..641
27.6.1.4 Standard basic_istream manipulators ...645
27.6.1.5 Class template basic_iostream ...646
27.6.1.5.1 basic_iostream constructors ..646
27.6.1.5.2 basic_iostream destructor ..646
27.6.2 Output streams ..646
27.6.2.1 Class template basic_ostream..646

ISO/IEC 14882:2003(E)

xxiv © ISO/IEC 2003 — All rights reserved

27.6.2.2 basic_ostream constructors..648
27.6.2.3 Class basic_ostream::sentry ...648
27.6.2.4 basic_ostream seek members ..649
27.6.2.5 Formatted output functions ..650
27.6.2.5.1 Common requirements..650
27.6.2.5.2 Arithmetic Inserters ..650
27.6.2.5.3 basic_ostream::operator<< ..650
27.6.2.5.4 Character inserter function templates ...651
27.6.2.6 Unformatted output functions ..652
27.6.2.7 Standard basic_ostream manipulators ...653
27.6.3 Standard manipulators ..653

27.7 String-based streams ..655
27.7.1 Class template basic_stringbuf ..656
27.7.1.1 basic_stringbuf constructors ...657
27.7.1.2 Member functions ..657
27.7.1.3 Overridden virtual functions ..658
27.7.2 Class template basic_istringstream ..660
27.7.2.1 basic_istringstream constructors ...660
27.7.2.2 Member functions ..661
27.7.3 Class basic_ostringstream ...661
27.7.3.1 basic_ostringstream constructors ...662
27.7.3.2 Member functions ..662
27.7.4 Class template basic_stringstream...662
27.7.5 basic_stringstream constructors ..663
27.7.6 Member functions ...663

27.8 File-based streams ...664
27.8.1 File streams ...664
27.8.1.1 Class template basic_filebuf..664
27.8.1.2 basic_filebuf constructors..665
27.8.1.3 Member functions ..666
27.8.1.4 Overridden virtual functions ..667
27.8.1.5 Class template basic_ifstream ...669
27.8.1.6 basic_ifstream constructors ...670
27.8.1.7 Member functions ..670
27.8.1.8 Class template basic_ofstream ...671
27.8.1.9 basic_ofstream constructors ...671
27.8.1.10 Member functions ..672
27.8.1.11 Class template basic_fstream..672
27.8.1.12 basic_fstream constructors..673
27.8.1.13 Member functions ..673
27.8.2 C Library files ...673

Annex A (informative) Grammar summary ..675

A.1 Keywords ..675

A.2 Lexical conventions ..675

A.3 Basic concepts...679

A.4 Expressions ...679

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xxv

A.5 Statements ...682

A.6 Declarations ..683

A.7 Declarators ..685

A.8 Classes ..687

A.9 Derived classes..688

A.10 Special member functions ...688

A.11 Overloading ..688

A.12 Templates ..689

A.13 Exception handling ...689

A.14 Preprocessing directives..690

Annex B (informative) Implementation quantities ..693

Annex C (informative) Compatibility ...695

C.1 C + + and ISO C ...695
C.1.1 Clause 2: lexical conventions ...695
C.1.2 Clause 3: basic concepts ..696
C.1.3 Clause 5: expressions ...698
C.1.4 Clause 6: statements ...699
C.1.5 Clause 7: declarations ..699
C.1.6 Clause 8: declarators ..701
C.1.7 Clause 9: classes...702
C.1.8 Clause 12: special member functions...703
C.1.9 Clause 16: preprocessing directives ...704

C.2 Standard C library ...704
C.2.1 Modifications to headers ..706
C.2.2 Modifications to definitions ...706
C.2.2.1 Type wchar_t...706
C.2.2.2 Header <iso646.h> ..707
C.2.2.3 Macro NULL..707
C.2.3 Modifications to declarations ...707
C.2.4 Modifications to behavior ..707
C.2.4.1 Macro offsetof(type, member-designator) ..707
C.2.4.2 Memory allocation functions ..707

Annex D (normative) Compatibility features ..709

D.1 Increment operator with bool operand ...709

D.2 static keyword ...709

D.3 Access declarations ...709

ISO/IEC 14882:2003(E)

xxvi © ISO/IEC 2003 — All rights reserved

D.4 Implicit conversion from const strings ...709

D.5 Standard C library headers ..709

D.6 Old iostreams members ..709

D.7 char* streams ...711
D.7.1 Class strstreambuf ...711
D.7.1.1 strstreambuf constructors ...713
D.7.1.2 Member functions ...714
D.7.1.3 strstreambuf overridden virtual functions ..714
D.7.2 Class istrstream..717
D.7.2.1 istrstream constructors ..717
D.7.2.2 Member functions ...717
D.7.3 Class ostrstream..718
D.7.3.1 ostrstream constructors ..718
D.7.3.2 Member functions ...718
D.7.4 Class strstream ..719
D.7.4.1 strstream constructors ..719
D.7.4.2 strstream destructor ..720
D.7.4.3 strstream operations ...720

Annex E (normative) Universal-character-names ...721

Index ...723

ISO/IEC 14882:2003(E)

© ISO/IEC 2003 — All rights reserved xxvii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14882 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

This second edition cancels and replaces the first edition (ISO/IEC 14882:1998), which has been technically
revised.

_ __

INTERNATIONAL STANDARD  ISO/IEC ISO/IEC 14882:2003(E)
_ __

Programming languages – C + +

1 General [intro]

[intro.scope] 1.1 Scope

1 This International Standard specifies requirements for implementations of the C + + programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C + +. Other requirements and relaxations of the first requirement appear at various places within this
International Standard.

2 C + + is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1990 Programming languages – C (1.2). In addition to the facilities provided by C, C + +
provides additional data types, classes, templates, exceptions, namespaces, inline functions, operator over-
loading, function name overloading, references, free store management operators, and additional library
facilities.

[intro.refs] 1.2 Normative references

1

ISO/IEC 2382 (all parts), Information technology – Vocabulary

ISO/IEC 9899:1999, Programming languages – C

ISO/IEC 10646-1:2000, Information technology – Universal Multiple-Octet Coded Character Set
(UCS) – Part 1: Architecture and Basic Multilingual Plane

2 The library described in clause 7 of ISO/IEC 9899:1990 and clause 7 of ISO/IEC 9899/Amd.1:1995 is here-
inafter called the Standard C Library.1)

[intro.defs] 1.3 Terms et definitions

2 Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

[defns.argument] 1.3.1 argument
an expression in the comma-separated list bounded by the parentheses in a function call expression, a
sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like
macro invocation, the operand of throw, or an expression, type-id or template-name in the comma-
separated list bounded by the angle brackets in a template instantiation. Also known as an actual argument
or actual parameter.

1) With the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Standard C + + library.

1

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

For the purposes of this document, the definitions given in ISO/IEC 2382 and the following apply.
17.1 defines additional terms that are used only in clauses 17 through 27.

ISO/IEC 14882:2003(E)  ISO/IEC

1.3.2 diagnostic message 1 General

[defns.diagnostic] 1.3.2 diagnostic message
a message belonging to an implementation-defined subset of the implementation’s output messages.

[defns.dynamic.type] 1.3.3 dynamic type
the type of the most derived object (1.8) to which the lvalue denoted by an lvalue expression refers. [Exam-
ple: if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class D, derived
from B (clause 10), the dynamic type of the expression *p is “D.” References (8.3.2) are treated similarly.]
The dynamic type of an rvalue expression is its static type.

[defns.ill.formed] 1.3.4 ill-formed program
input to a C + + implementation that is not a well-formed program (1.3.14).

[defns.impl.defined] 1.3.5 implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation shall document.

[defns.impl.limits] 1.3.6 implementation limits
restrictions imposed upon programs by the implementation.

[defns.locale.specific] 1.3.7 locale-specific behavior
behavior that depends on local conventions of nationality, culture, and language that each implementation
shall document.

[defns.multibyte] 1.3.8 multibyte character
a sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment. The extended character set is a superset of the basic character set (2.2).

[defns.parameter] 1.3.9 parameter
an object or reference declared as part of a function declaration or definition, or in the catch clause of an
exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-
separated list bounded by the parentheses immediately following the macro name in a function-like macro
definition; or a template-parameter. Parameters are also known as formal arguments or formal parameters.

[defns.signature] 1.3.10 signature
the information about a function that participates in overload resolution (13.3): the types of its parameters
and, if the function is a class member, the cv- qualifiers (if any) on the function itself and the class in which
the member function is declared.2) The signature of a function template specialization includes the types of
its template arguments (14.5.5.1).

[defns.static.type] 1.3.11 static type
the type of an expression (3.9), which type results from analysis of the program without considering execu-
tion semantics. The static type of an expression depends only on the form of the program in which the
expression appears, and does not change while the program is executing.

[defns.undefined] 1.3.12 undefined behavior
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this
International Standard imposes no requirements. Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior. [Note: permissible unde-
fined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a
diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are

2) Function signatures do not include return type, because that does not participate in overload resolution.

2

 ISO/IEC ISO/IEC 14882:2003(E)

1 General 1.3.12 undefined behavior

required to be diagnosed.]

[defns.unspecified] 1.3.13 unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation. The
implementation is not required to document which behavior occurs. [Note: usually, the range of possible
behaviors is delineated by this International Standard.]

[defns.well.formed] 1.3.14 well-formed program
a C + + program constructed according to the syntax rules, diagnosable semantic rules, and the One Defini-
tion Rule (3.2).

[intro.compliance] 1.4 Implementation compliance

1 The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard
except for those rules containing an explicit notation that “no diagnostic is required” or which are described
as resulting in “undefined behavior.”

2 Although this International Standard states only requirements on C + + implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or execu-
tion of programs. Such requirements have the following meaning:

— If a program contains no violations of the rules in this International Standard, a conforming implemen-
tation shall, within its resource limits, accept and correctly execute3) that program.

— If a program contains a violation of any diagnosable rule, a conforming implementation shall issue at
least one diagnostic message, except that

— If a program contains a violation of a rule for which no diagnostic is required, this International Stan-
dard places no requirement on implementations with respect to that program.

3 For classes and class templates, the library clauses specify partial definitions. Private members (clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library clauses.

4 For functions, function templates, objects, and values, the library clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library clauses.

5 The names defined in the library have namespace scope (7.3). A C + + translation unit (2.1) obtains access to
these names by including the appropriate standard library header (16.2).

6 The templates, classes, functions, and objects in the library have external linkage (3.5). The implementa-
tion provides definitions for standard library entities, as necessary, while combining translation units to
form a complete C + + program (2.1).

7 Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this
International Standard defines the set of available libraries. A freestanding implementation is one in which
execution may take place without the benefit of an operating system, and has an implementation-defined set
of libraries that includes certain language-support libraries (17.4.1.3).

8 A conforming implementation may have extensions (including additional library functions), provided they
do not alter the behavior of any well-formed program. Implementations are required to diagnose programs
that use such extensions that are ill-formed according to this International Standard. Having done so, how-
ever, they can compile and execute such programs.

3) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

3

ISO/IEC 14882:2003(E)  ISO/IEC

1.5 Structure of this International Standard 1 General

[intro.structure] 1.5 Structure of this International Standard

1 Clauses 2 through 16 describe the C + + programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifica-
tions.

2 Clauses 17 through 27 (the library clauses) describe the Standard C + + library, which provides definitions
for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates (clause 14),
classes (clause 9), functions (8.3.5), and objects (clause 7).

3 Annex B recommends lower bounds on the capacity of conforming implementations.

4 Annex C summarizes the evolution of C + + since its first published description, and explains in detail the
differences between C + + and C. Certain features of C + + exist solely for compatibility purposes; Annex D
describes those features.

5 Finally, Annex E says what characters are valid in universal-character names in C + + identifiers (2.10).

6 Throughout this International Standard, each example is introduced by “[Example:” and terminated by “]”.
Each note is introduced by “[Note:” and terminated by “]”. Examples and notes may be nested.

[syntax] 1.6 Syntax notation

1 In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines
except in a few cases where a long set of alternatives is presented on one line, marked by the phrase “one
of.” An optional terminal or nonterminal symbol is indicated by the subscript “opt,” so

{ expressionopt }

indicates an optional expression enclosed in braces.

2 Names for syntactic categories have generally been chosen according to the following rules:

— X-name is a use of an identifier in a context that determines its meaning (e.g. class-name, typedef-
name).

— X-id is an identifier with no context-dependent meaning (e.g. qualified-id).

— X-seq is one or more X’s without intervening delimiters (e.g. declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g. expression-list is a sequence of expres-
sions separated by commas).

[intro.memory] 1.7 The C + + memory model

1 The fundamental storage unit in the C + + memory model is the byte. A byte is at least large enough to con-
tain any member of the basic execution character set and is composed of a contiguous sequence of bits, the
number of which is implementation-defined. The least significant bit is called the low-order bit; the most
significant bit is called the high-order bit. The memory available to a C + + program consists of one or more
sequences of contiguous bytes. Every byte has a unique address.

2 [Note: the representation of types is described in 3.9.]

[intro.object] 1.8 The C + + object model

1 The constructs in a C + + program create, destroy, refer to, access, and manipulate objects. An object is a
region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the
way that objects do.] An object is created by a definition (3.1), by a new-expression (5.3.4) or by the
implementation (12.2) when needed. The properties of an object are determined when the object is created.
An object can have a name (clause 3). An object has a storage duration (3.7) which influences its lifetime
(3.8). An object has a type (3.9). The term object type refers to the type with which the object is created.

4

 ISO/IEC ISO/IEC 14882:2003(E)

1 General 1.8 The C + + object model

Some objects are polymorphic (10.3); the implementation generates information associated with each such
object that makes it possible to determine that object’s type during program execution. For other objects,
the interpretation of the values found therein is determined by the type of the expressions (clause 5) used to
access them.

2 Objects can contain other objects, called sub-objects. A sub-object can be a member sub-object (9.2), a
base class sub-object (clause 10), or an array element. An object that is not a sub-object of any other object
is called a complete object.

3 For every object x, there is some object called the complete object of x, determined as follows:

— If x is a complete object, then x is the complete object of x.

— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

4 If a complete object, a data member (9.2), or an array element is of class type, its type is considered the
most derived class, to distinguish it from the class type of any base class subobject; an object of a most
derived class type is called a most derived object.

5 Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class sub-objects may have zero size. An object of POD4) type (3.9) shall occupy
contiguous bytes of storage.

6 [Note: C + + provides a variety of built-in types and several ways of composing new types from existing
types (3.9).]

[intro.execution] 1.9 Program execution

1 The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementa-
tions. In particular, they need not copy or emulate the structure of the abstract machine. Rather, conform-
ing implementations are required to emulate (only) the observable behavior of the abstract machine as
explained below.5)

2 Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, sizeof(int)). These constitute the parameters of the abstract
machine. Each implementation shall include documentation describing its characteristics and behavior in
these respects. Such documentation shall define the instance of the abstract machine that corresponds to
that implementation (referred to as the ‘‘corresponding instance’’ below).

3 Certain other aspects and operations of the abstract machine are described in this International Standard as
unspecified (for example, order of evaluation of arguments to a function). Where possible, this Interna-
tional Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the
abstract machine. An instance of the abstract machine can thus have more than one possible execution
sequence for a given program and a given input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of
dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior
of programs that contain undefined behavior.]

5 A conforming implementation executing a well-formed program shall produce the same observable behav-
ior as one of the possible execution sequences of the corresponding instance of the abstract machine with
the same program and the same input. However, if any such execution sequence contains an undefined
operation, this International Standard places no requirement on the implementation executing that program

4) The acronym POD stands for “plain old data.”
5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this Interna-
tional Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable behavior
of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that its value is not used
and that no side effects affecting the observable behavior of the program are produced.

5

ISO/IEC 14882:2003(E)  ISO/IEC

1.9 Program execution 1 General

with that input (not even with regard to operations preceding the first undefined operation).

6 The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and
calls to library I/O functions.6)

7 Accessing an object designated by a volatile lvalue (3.10), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. Evaluation of an expression might produce side effects. At certain
specified points in the execution sequence called sequence points, all side effects of previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place.7)

8 Once the execution of a function begins, no expressions from the calling function are evaluated until execu-
tion of the called function has completed.8)

9 When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with
type other than volatile sig_atomic_t are unspecified, and the value of any object not of
volatile sig_atomic_t that is modified by the handler becomes undefined.

10 An instance of each object with automatic storage duration (3.7.2) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

11 The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous evaluations are complete and
subsequent evaluations have not yet occurred.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
messages actually appear prior to a program waiting for input. What constitutes an interactive device is
implementation-defined.

[Note: more stringent correspondences between abstract and actual semantics may be defined by each
implementation.]

12 A full-expression is an expression that is not a subexpression of another expression. If a language construct
is defined to produce an implicit call of a function, a use of the language construct is considered to be an
expression for the purposes of this definition.

13 [Note: certain contexts in C + + cause the evaluation of a full-expression that results from a syntactic con-
struct other than expression (5.18). For example, in 8.5 one syntax for initializer is

(expression-list)

but the resulting construct is a function call upon a constructor function with expression-list as an argument
list; such a function call is a full-expression. For example, in 8.5, another syntax for initializer is

= initializer-clause

but again the resulting construct might be a function call upon a constructor function with one assignment-
expression as an argument; again, the function call is a full-expression.]

6) An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those
functions as ‘‘observable behavior’’ as well.
7) Note that some aspects of sequencing in the abstract machine are unspecified; the preceding restriction upon side effects applies to
that particular execution sequence in which the actual code is generated. Also note that when a call to a library I/O function returns,
the side effect is considered complete, even though some external actions implied by the call (such as the I/O itself) may not have com-
pleted yet.
8) In other words, function executions do not interleave with each other.

6

 ISO/IEC ISO/IEC 14882:2003(E)

1 General 1.9 Program execution

14 [Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expres-
sions (8.3.6) are considered to be created in the expression that calls the function, not the expression that
defines the default argument.]

15 [Note: operators can be regrouped according to the usual mathematical rules only where the operators really
are associative or commutative.9) For example, in the following fragment

int a, b;
/*...*/
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is
next added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in
which overflows produce an exception and in which the range of values representable by an int is
[–32768,+32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values for a and b were, respectively, –32754 and –15, the sum a + b would produce an
exception while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

a = (a + (b + 32765));

since the values for a and b might have been, respectively, 4 and –8 or –17 and 12. However on a machine
in which overflows do not produce an exception and in which the results of overflows are reversible, the
above expression statement can be rewritten by the implementation in any of the above ways because the
same result will occur.]

16 There is a sequence point at the completion of evaluation of each full-expression10).

17 When calling a function (whether or not the function is inline), there is a sequence point after the evaluation
of all function arguments (if any) which takes place before execution of any expressions or statements in
the function body. There is also a sequence point after the copying of a returned value and before the exe-
cution of any expressions outside the function11). Several contexts in C + + cause evaluation of a function
call, even though no corresponding function call syntax appears in the translation unit. [Example: evalua-
tion of a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another
example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax
appears.] The sequence points at function-entry and function-exit (as described above) are features of the
function calls as evaluated, whatever the syntax of the expression that calls the function might be.

18 In the evaluation of each of the expressions

a && b
a || b
a ? b : c
a , b

using the built-in meaning of the operators in these expressions (5.14, 5.15, 5.16, 5.18), there is a sequence

9) Overloaded operators are never assumed to be associative or commutative.
10) As specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor func-
tions for temporary objects takes place, usually in reverse order of the construction of each temporary object.
11) The sequence point at the function return is not explicitly specified in ISO C, and can be considered redundant with sequence
points at full-expressions, but the extra clarity is important in C + +. In C + +, there are more ways in which a called function can termi-
nate its execution, such as the throw of an exception.

7

ISO/IEC 14882:2003(E)  ISO/IEC

1.9 Program execution 1 General

point after the evaluation of the first expression12).

[intro.ack] 1.10 Acknowledgments

1 The C + + programming language as described in this International Standard is based on the language as
described in Chapter R (Reference Manual) of Stroustrup: The C + + Programming Language (second edi-
tion, Addison-Wesley Publishing Company, ISBN 0–201–53992–6, copyright  1991 AT&T). That, in
turn, is based on the C programming language as described in Appendix A of Kernighan and Ritchie: The C
Programming Language (Prentice-Hall, 1978, ISBN 0–13–110163–3, copyright  1978 AT&T).

2 Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was
published as The Draft Standard C + + Library (Prentice-Hall, ISBN 0–13–117003–1, copyright  1995 P.J.
Plauger).

3 All rights in these originals are reserved.

12) The operators indicated in this paragraph are the built-in operators, as described in clause 5. When one of these operators is over-
loaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation,
and the operands form an argument list, without an implied sequence point between them.

8

 ISO/IEC ISO/IEC 14882:2003(E)

2 Lexical conventions [lex]

1 The text of the program is kept in units called source files in this International Standard. A source file
together with all the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive
#include, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing direc-
tives, is called a translation unit. [Note: a C + + program need not all be translated at the same time.]

2 [Note: previously translated translation units and instantiation units can be preserved individually or in
libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions
whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or
manipulation of data files. Translation units can be separately translated and then later linked to produce an
executable program. (3.5).]

[lex.phases] 2.1 Phases of translation

1 The precedence among the syntax rules of translation is specified by the following phases.13)

1 Physical source file characters are mapped, in an implementation-defined manner, to the basic source
character set (introducing new-line characters for end-of-line indicators) if necessary. Trigraph
sequences (2.3) are replaced by corresponding single-character internal representations. Any source file
character not in the basic source character set (2.2) is replaced by the universal-character-name that des-
ignates that character. (An implementation may use any internal encoding, so long as an actual
extended character encountered in the source file, and the same extended character expressed in the
source file as a universal-character-name (i.e. using the \uXXXX notation), are handled equivalently.)

2 Each instance of a new-line character and an immediately preceding backslash character is deleted,
splicing physical source lines to form logical source lines. If, as a result, a character sequence that
matches the syntax of a universal-character-name is produced, the behavior is undefined. If a source
file that is not empty does not end in a new-line character, or ends in a new-line character immediately
preceded by a backslash character, the behavior is undefined.

3 The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters
(including comments). A source file shall not end in a partial preprocessing token or partial com-
ment14). Each comment is replaced by one space character. New-line characters are retained. Whether
each nonempty sequence of white-space characters other than new-line is retained or replaced by one
space character is implementation-defined. The process of dividing a source file’s characters into pre-
processing tokens is context-dependent. [Example: see the handling of < within a #include prepro-
cessing directive.]

4 Preprocessing directives are executed and macro invocations are expanded. If a character sequence that
matches the syntax of a universal-character-name is produced by token concatenation (16.3.3), the
behavior is undefined. A #include preprocessing directive causes the named header or source file to
be processed from phase 1 through phase 4, recursively.

5 Each source character set member, escape sequence, or universal-character-name in character literals
and string literals is converted to a member of the execution character set (2.13.2, 2.13.4).

6 Adjacent ordinary string literal tokens are concatenated. Adjacent wide string literal tokens are concate-
nated.

7 White-space characters separating tokens are no longer significant. Each preprocessing token is

13) Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.
14) A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that requires a ter-
minating sequence of characters, such as a header-name that is missing the closing " or >. A partial comment would arise from a
source file ending with an unclosed /* comment.

9

ISO/IEC 14882:2003(E)  ISO/IEC

2.1 Phases of translation 2 Lexical conventions

converted into a token. (2.6). The resulting tokens are syntactically and semantically analyzed and
translated. [Note: Source files, translation units and translated translation units need not necessarily be
stored as files, nor need there be any one-to-one correspondence between these entities and any external
representation. The description is conceptual only, and does not specify any particular implementation.
]

8 Translated translation units and instantiation units are combined as follows: [Note: some or all of these
may be supplied from a library.] Each translated translation unit is examined to produce a list of
required instantiations. [Note: this may include instantiations which have been explicitly requested
(14.7.2).] The definitions of the required templates are located. It is implementation-defined whether
the source of the translation units containing these definitions is required to be available. [Note: an
implementation could encode sufficient information into the translated translation unit so as to ensure
the source is not required here.] All the required instantiations are performed to produce instantiation
units. [Note: these are similar to translated translation units, but contain no references to uninstantiated
templates and no template definitions.] The program is ill-formed if any instantiation fails.

9 All external object and function references are resolved. Library components are linked to satisfy exter-
nal references to functions and objects not defined in the current translation. All such translator output
is collected into a program image which contains information needed for execution in its execution
environment.

[lex.charset] 2.2 Character sets

1 The basic source character set consists of 96 characters: the space character, the control characters repre-
senting horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters:15)

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
_ { } [] # () < > % : ; . ? * + - / ˆ & | ˜ ! = , \ " ’

2 The universal-character-name construct provides a way to name other characters.

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

The character designated by the universal-character-name \UNNNNNNNN is that character whose character
short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name
\uNNNN is that character whose character short name in ISO/IEC 10646 is 0000NNNN. If the hexadecimal
value for a universal character name is less than 0x20 or in the range 0x7F-0x9F (inclusive), or if the uni-
versal character name designates a character in the basic source character set, then the program is ill-
formed.

3 The basic execution character set and the basic execution wide-character set shall each contain all the
members of the basic source character set, plus control characters representing alert, backspace, and car-
riage return, plus a null character (respectively, null wide character), whose representation has all zero bits.
For each basic execution character set, the values of the members shall be non-negative and distinct from
one another. In both the source and execution basic character sets, the value of each character after 0 in the
above list of decimal digits shall be one greater than the value of the previous. The execution character set
and the execution wide-character set are supersets of the basic execution character set and the basic

15) The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC 10646
which corresponds to the ASCII character set. However, because the mapping from source file characters to the source character set
(described in translation phase 1) is specified as implementation-defined, an implementation is required to document how the basic
source characters are represented in source files.

10

 ISO/IEC ISO/IEC 14882:2003(E)

2 Lexical conventions 2.2 Character sets

execution wide-character set, respectively. The values of the members of the execution character sets are
implementation-defined, and any additional members are locale-specific.

[lex.trigraph] 2.3 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three charac-
ters (“trigraph sequences”) is replaced by the single character indicated in Table 1.

Table 1—trigraph sequences
_ __
trigraph replacement trigraph replacement trigraph replacement_ ___ __
??= # ??([??< {_ __
??/ \ ??)] ??> }_ __
??’ ˆ ??! | ??- ˜_ __ 
























2 [Example:

??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)

becomes

#define arraycheck(a,b) a[b] || b[a]

—end example]

3 No other trigraph sequence exists. Each ? that does not begin one of the trigraphs listed above is not
changed.

[lex.pptoken] 2.4 Preprocessing tokens

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

1 Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an
identifier, a literal, an operator, or a punctuator.

2 A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6.
The categories of preprocessing token are: header names, identifiers, preprocessing numbers, character
literals, string literals, preprocessing-op-or-punc, and single non-white-space characters that do not lexi-
cally match the other preprocessing token categories. If a ’ or a " character matches the last category, the
behavior is undefined. Preprocessing tokens can be separated by white space; this consists of comments
(2.7), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As
described in clause 16, in certain circumstances during translation phase 4, white space (or the absence
thereof) serves as more than preprocessing token separation. White space can appear within a preprocess-
ing token only as part of a header name or between the quotation characters in a character literal or string
literal.

3 If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing
token is the longest sequence of characters that could constitute a preprocessing token, even if that would
cause further lexical analysis to fail.

4 [Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid
floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might

11

ISO/IEC 14882:2003(E)  ISO/IEC

2.4 Preprocessing tokens 2 Lexical conventions

produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program frag-
ment 1E1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is
a macro name.]

5 [Example: The program fragment x+++++y is parsed as x ++ ++ + y, which, if x and y are of built-in
types, violates a constraint on increment operators, even though the parse x ++ + ++ y might yield a
correct expression.]

[lex.digraph] 2.5 Alternative tokens

1 Alternative token representations are provided for some operators and punctuators16).

2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token,
except for its spelling17). The set of alternative tokens is defined in Table 2.

Table 2—alternative tokens
_ __
alternative primary alternative primary alternative primary_ ___ __

<% { and && and_eq &=_ __
%> } bitor | or_eq |=_ __
<: [or || xor_eq ˆ=_ __
:>] xor ˆ not !_ __
%: # compl ˜ not_eq !=_ __
%:%: ## bitand &_ __ 












































[lex.token] 2.6 Tokens

token:
identifier
keyword
literal
operator
punctuator

1 There are five kinds of tokens: identifiers, keywords, literals,18) operators, and other separators. Blanks,
horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, “white space”), as described
below, are ignored except as they serve to separate tokens. [Note: Some white space is required to separate
otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic
characters.]

[lex.comment] 2.7 Comments

1 The characters /* start a comment, which terminates with the characters */. These comments do not nest.
The characters // start a comment, which terminates with the next new-line character. If there is a form-
feed or a vertical-tab character in such a comment, only white-space characters shall appear between it and
the new-line that terminates the comment; no diagnostic is required. [Note: The comment characters //,
/*, and */ have no special meaning within a // comment and are treated just like other characters. Simi-
larly, the comment characters // and /* have no special meaning within a /* comment.]

16) These include “digraphs” and additional reserved words. The term “digraph” (token consisting of two characters) is not perfectly
descriptive, since one of the alternative preprocessing-tokens is %:%: and of course several primary tokens contain two characters.
Nonetheless, those alternative tokens that aren’t lexical keywords are colloquially known as “digraphs”.
17) Thus the “stringized” values (16.3.2) of [and <: will be different, maintaining the source spelling, but the tokens can otherwise be
freely interchanged.
18) Literals include strings and character and numeric literals.

12

 ISO/IEC ISO/IEC 14882:2003(E)

2 Lexical conventions 2.8 Header names

[lex.header] 2.8 Header names

header-name:
<h-char-sequence>
"q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

new-line and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

new-line and "

1 Header name preprocessing tokens shall only appear within a #include preprocessing directive (16.2).
The sequences in both forms of header-names are mapped in an implementation-defined manner to headers
or to external source file names as specified in 16.2.

2 If either of the characters ’ or \, or either of the character sequences /* or // appears in a q-char-
sequence or a h-char-sequence, or the character " appears in a h-char-sequence, the behavior is unde-
fined.19)

[lex.ppnumber] 2.9 Preprocessing numbers

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

1 Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and all floating literal
tokens (2.13.3).

2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion (as
part of translation phase 7, 2.1) to an integral literal token or a floating literal token.

[lex.name] 2.10 Identifiers

identifier:
nondigit
identifier nondigit
identifier digit

19) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

13

ISO/IEC 14882:2003(E)  ISO/IEC

2.10 Identifiers 2 Lexical conventions

nondigit: one of
universal-character-name
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an iden-
tifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in
Annex E. Upper- and lower-case letters are different. All characters are significant.20)

2 In addition, some identifiers are reserved for use by C + + implementations and standard libraries (17.4.3.1.2)
and shall not be used otherwise; no diagnostic is required.

[lex.key] 2.11 Keywords

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated
as keywords in phase 7):

Table 3—keywords
_ __
asm do if return typedef
auto double inline short typeid
bool dynamic_cast int signed typename
break else long sizeof union
case enum mutable static unsigned
catch explicit namespace static_cast using
char export new struct virtual
class extern operator switch void
const false private template volatile
const_cast float protected this wchar_t
continue for public throw while
default friend register true
delete goto reinterpret_cast try_ __ 


































2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are
reserved and shall not be used otherwise:

Table 4—alternative representations
_ ___
and and_eq bitand bitor compl not
not_eq or or_eq xor xor_eq_ ___ 





20) On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in form-
ing valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to encode the \u
in a universal-character-name. Extended characters may produce a long external identifier, but C + + does not place a translation limit on
significant characters for external identifiers. In C + +, upper- and lower-case letters are considered different for all identifiers, including
external identifiers.

14

 ISO/IEC ISO/IEC 14882:2003(E)

2 Lexical conventions 2.12 Operators and punctuators

[lex.operators] 2.12 Operators and punctuators

1 The lexical representation of C + + programs includes a number of preprocessing tokens which are used in
the syntax of the preprocessor or are converted into tokens for operators and punctuators:

preprocessing-op-or-punc: one of
{ } [] # ## ()
<: :> <% %> %: %:%: ; : ...
new delete ? :: . .*
+ - * / % ˆ & | ˜
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and and_eq bitand bitor compl not not_eq
or or_eq xor xor_eq

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.1).

[lex.literal] 2.13 Literals

1 There are several kinds of literals.21)

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

[lex.icon] 2.13.1 Integer literals

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

21) The term “literal” generally designates, in this International Standard, those tokens that are called “constants” in ISO C.

15

ISO/IEC 14882:2003(E)  ISO/IEC

2.13.1 Integer literals 2 Lexical conventions

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

1 An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have a
prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence of
digits is the most significant. A decimal integer literal (base ten) begins with a digit other than 0 and con-
sists of a sequence of decimal digits. An octal integer literal (base eight) begins with the digit 0 and con-
sists of a sequence of octal digits.22) A hexadecimal integer literal (base sixteen) begins with 0x or 0X and
consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through f
and A through F with decimal values ten through fifteen. [Example: the number twelve can be written 12,
014, or 0XC.]

2 The type of an integer literal depends on its form, value, and suffix. If it is decimal and has no suffix, it has
the first of these types in which its value can be represented: int, long int; if the value cannot be repre-
sented as a long int, the behavior is undefined. If it is octal or hexadecimal and has no suffix, it has the
first of these types in which its value can be represented: int, unsigned int, long int, unsigned
long int. If it is suffixed by u or U, its type is the first of these types in which its value can be repre-
sented: unsigned int, unsigned long int. If it is suffixed by l or L, its type is the first of these
types in which its value can be represented: long int, unsigned long int. If it is suffixed by ul,
lu, uL, Lu, Ul, lU, UL, or LU, its type is unsigned long int.

3 A program is ill-formed if one of its translation units contains an integer literal that cannot be represented
by any of the allowed types.

[lex.ccon] 2.13.2 Character literals

character-literal:
’c-char-sequence’
L’c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

22) The digits 8 and 9 are not octal digits.

16

 ISO/IEC ISO/IEC 14882:2003(E)

2 Lexical conventions 2.13.2 Character literals

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

1 A character literal is one or more characters enclosed in single quotes, as in ’x’, optionally preceded by
the letter L, as in L’x’. A character literal that does not begin with L is an ordinary character literal, also
referred to as a narrow-character literal. An ordinary character literal that contains a single c-char has type
char, with value equal to the numerical value of the encoding of the c-char in the execution character set.
An ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharac-
ter literal has type int and implementation-defined value.

2 A character literal that begins with the letter L, such as L’x’, is a wide-character literal. A wide-character
literal has type wchar_t.23) The value of a wide-character literal containing a single c-char has value
equal to the numerical value of the encoding of the c-char in the execution wide-character set. The value of
a wide-character literal containing multiple c-chars is implementation-defined.

3 Certain nongraphic characters, the single quote ’, the double quote ", the question mark ?, and the back-
slash \, can be represented according to Table 5.

Table 5—escape sequences
_ ______________________________
new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \’
double quote " \"
octal number ooo \ooo
hex number hhh \xhhh_ ______________________________ 


































The double quote " and the question mark ?, can be represented as themselves or by the escape sequences
\" and \? respectively, but the single quote ’ and the backslash \ shall be represented by the escape
sequences \’ and \\ respectively. If the character following a backslash is not one of those specified, the
behavior is undefined. An escape sequence specifies a single character.

23) They are intended for character sets where a character does not fit into a single byte.

17

ISO/IEC 14882:2003(E)  ISO/IEC

2.13.2 Character literals 2 Lexical conventions

4 The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to spec-
ify the value of the desired character. The escape \xhhh consists of the backslash followed by x followed
by one or more hexadecimal digits that are taken to specify the value of the desired character. There is no
limit to the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is ter-
minated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a
character literal is implementation-defined if it falls outside of the implementation-defined range defined
for char (for ordinary literals) or wchar_t (for wide literals).

5 A universal-character-name is translated to the encoding, in the execution character set, of the character
named. If there is no such encoding, the universal-character-name is translated to an implementation-
defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an
actual extended character is encountered in the source text. Therefore, all extended characters are described
in terms of universal-character-names. However, the actual compiler implementation may use its own
native character set, so long as the same results are obtained.]

[lex.fcon] 2.13.3 Floating literals

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

1 A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed
integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of
decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the
decimal point or the letter e (or E) and the exponent (not both) can be omitted. The integer part, the
optional decimal point and the optional fraction part form the significant part of the floating literal. The
exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled
value is in the range of representable values for its type, the result is the scaled value if representable, else
the larger or smaller representable value nearest the scaled value, chosen in an implementation-defined
manner. The type of a floating literal is double unless explicitly specified by a suffix. The suffixes f and
F specify float, the suffixes l and L specify long double. If the scaled value is not in the range of
representable values for its type, the program is ill-formed.

18

 ISO/IEC ISO/IEC 14882:2003(E)

2 Lexical conventions 2.13.3 Floating literals

[lex.string] 2.13.4 String literals

string-literal:
"s-char-sequenceopt"
L"s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

1 A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally
beginning with the letter L, as in "..." or L"...". A string literal that does not begin with L is an ordi-
nary string literal, also referred to as a narrow string literal. An ordinary string literal has type “array of n
const char” and static storage duration (3.7), where n is the size of the string as defined below, and is
initialized with the given characters. A string literal that begins with L, such as L"asdf", is a wide string
literal. A wide string literal has type “array of n const wchar_t” and has static storage duration, where
n is the size of the string as defined below, and is initialized with the given characters.

2 Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-
defined. The effect of attempting to modify a string literal is undefined.

3 In translation phase 6 (2.1), adjacent narrow string literals are concatenated and adjacent wide string literals
are concatenated. If a narrow string literal token is adjacent to a wide string literal token, the behavior is
undefined. Characters in concatenated strings are kept distinct. [Example:

"\xA" "B"

contains the two characters ’\xA’ and ’B’ after concatenation (and not the single hexadecimal character
’\xAB’).]

4 After any necessary concatenation, in translation phase 7 (2.1), ’\0’ is appended to every string literal so
that programs that scan a string can find its end.

5 Escape sequences and universal-character-names in string literals have the same meaning as in character lit-
erals (2.13.2), except that the single quote ’ is representable either by itself or by the escape sequence \’,
and the double quote " shall be preceded by a \. In a narrow string literal, a universal-character-name may
map to more than one char element due to multibyte encoding. The size of a wide string literal is the total
number of escape sequences, universal-character-names, and other characters, plus one for the terminating
L’\0’. The size of a narrow string literal is the total number of escape sequences and other characters,
plus at least one for the multibyte encoding of each universal-character-name, plus one for the terminating
’\0’.

[lex.bool] 2.13.5 Boolean literals

boolean-literal:
false
true

1 The Boolean literals are the keywords false and true. Such literals have type bool. They are not lval-
ues.

19

ISO/IEC 14882:2003(E)  ISO/IEC

20

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3 Basic concepts

3 Basic concepts [basic]

1 [Note: this clause presents the basic concepts of the C + + language. It explains the difference between an
object and a name and how they relate to the notion of an lvalue. It introduces the concepts of a declaration
and a definition and presents C + +’s notion of type, scope, linkage, and storage duration. The mechanisms
for starting and terminating a program are discussed. Finally, this clause presents the fundamental types of
the language and lists the ways of constructing compound types from these.

2 This clause does not cover concepts that affect only a single part of the language. Such concepts are dis-
cussed in the relevant clauses.]

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, instance of a
function, enumerator, type, class member, template, or namespace.

4 A name is a use of an identifier (2.10) that denotes an entity or label (6.6.4, 6.1). A variable is introduced
by the declaration of an object. The variable’s name denotes the object.

5 Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is intro-
duced either by a goto statement (6.6.4) or a labeled-statement (6.1)Blank page.

6 Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine
whether or not a name denotes one of these entities before parsing the program that contains it. The process
that determines this is called name lookup (3.4).

7 Two names are the same if

— they are identifiers composed of the same character sequence; or

— they are the names of overloaded operator functions formed with the same operator; or

— they are the names of user-defined conversion functions formed with the same type.

8 An identifier used in more than one translation unit can potentially refer to the same entity in these transla-
tion units depending on the linkage (3.5) of the identifier specified in each translation unit.

[basic.def] 3.1 Declarations and definitions

1 A declaration (clause 7) introduces names into a translation unit or redeclares names introduced by previous
declarations. A declaration specifies the interpretation and attributes of these names.

2 A declaration is a definition unless it declares a function without specifying the function’s body (8.4), it
contains the extern specifier (7.1.1) or a linkage-specification24) (7.5) and neither an initializer nor a
function-body, it declares a static data member in a class declaration (9.4), it is a class name declaration
(9.1), or it is a typedef declaration (7.1.3), a using-declaration (7.3.3), or a using-directive (7.3.4).

24) Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a defini-
tion.

21

ISO/IEC 14882:2003(E)  ISO/IEC

3.1 Declarations and definitions 3 Basic concepts

3 [Example: all but one of the following are definitions:

int a; // defines a
extern const int c = 1; // defines c
int f(int x) { return x+a; } // defines f and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X

int x; // defines nonstatic data member x
static int y; // declares static data member y
X(): x(0) { } // defines a constructor of X

};
int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N::d
namespace N1 = N; // defines N1
X anX; // defines anX

whereas these are just declarations:

extern int a; // declares a
extern const int c; // declares c
int f(int); // declares f
struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares N::d

—end example]

4 [Note: in some circumstances, C + + implementations implicitly define the default constructor (12.1), copy
constructor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [Example: given

struct C {
string s; // string is the standard library class (clause 21)

};

int main()
{

C a;
C b = a;
b = a;

}

the implementation will implicitly define functions to make the definition of C equivalent to

struct C {
string s;
C(): s() { }
C(const C& x): s(x.s) { }
C& operator=(const C& x) { s = x.s; return *this; }
˜C() { }

};

—end example] —end note]

5 [Note: a class name can also be implicitly declared by an elaborated-type-specifier (3.3.1).]

6 A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

[basic.def.odr] 3.2 One definition rule

1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration
type or template.

22

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.2 One definition rule

2 An expression is potentially evaluated unless it appears where an integral constant expression is required
(see 5.19), is the operand of the sizeof operator (5.3.3), or is the operand of the typeid operator and
the expression does not designate an lvalue of polymorphic class type (5.2.8). An object or non-overloaded
function is used if its name appears in a potentially-evaluated expression. A virtual member function is
used if it is not pure. An overloaded function is used if it is selected by overload resolution when referred
to from a potentially-evaluated expression. [Note: this covers calls to named functions (5.2.2), operator
overloading (clause 13), user-defined conversions (12.3.2), allocation function for placement new (5.3.4),
as well as non-default initialization (8.5). A copy constructor is used even if the call is actually elided by
the implementation.] An allocation or deallocation function for a class is used by a new expression appear-
ing in a potentially-evaluated expression as specified in 5.3.4 and 12.5. A deallocation function for a class
is used by a delete expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5.
A copy-assignment function for a class is used by an implicitly-defined copy-assignment function for
another class as specified in 12.8. A default constructor for a class is used by default initialization as speci-
fied in 8.5. A constructor for a class is used as specified in 8.5. A destructor for a class is used as specified
in 12.4.

3 Every program shall contain exactly one definition of every non-inline function or object that is used in that
program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the
standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8).
An inline function shall be defined in every translation unit in which it is used.

4 Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the
class type to be complete. [Example: the following complete translation unit is well-formed, even though it
never defines X:

struct X; // declare X as a struct type
struct X* x1; // use X in pointer formation
X* x2; // use X in pointer formation

—end example] [Note: the rules for declarations and expressions describe in which contexts complete class
types are required. A class type T must be complete if:

— an object of type T is defined (3.1, 5.3.4), or

— an lvalue-to-rvalue conversion is applied to an lvalue referring to an object of type T (4.1), or

— an expression is converted (either implicitly or explicitly) to type T (clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4), or

— an expression that is not a null pointer constant, and has type other than void *, is converted to the
type pointer to T or reference to T using an implicit conversion (clause 4), a dynamic_cast (5.2.7) or
a static_cast (5.2.9), or

— a class member access operator is applied to an expression of type T (5.2.5), or

— the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or

— a function with a return type or argument type of type T is defined (3.1) or called (5.2.2), or

— an lvalue of type T is assigned to (5.17).]

5 There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function
with external linkage (7.1.2), class template (clause 14), non-static function template (14.5.5), static data
member of a class template (14.5.1.3), member function of a class template (14.5.1.1), or template special-
ization for which some template parameters are not specified (14.7, 14.5.4) in a program provided that each
definition appears in a different translation unit, and provided the definitions satisfy the following require-
ments. Given such an entity named D defined in more than one translation unit, then

— each definition of D shall consist of the same sequence of tokens; and

— in each definition of D, corresponding names, looked up according to 3.4, shall refer to an entity defined
within the definition of D, or shall refer to the same entity, after overload resolution (13.3) and after
matching of partial template specialization (14.8.3), except that a name can refer to a const object

23

ISO/IEC 14882:2003(E)  ISO/IEC

3.2 One definition rule 3 Basic concepts

with internal or no linkage if the object has the same integral or enumeration type in all definitions of D,
and the object is initialized with a constant expression (5.19), and the value (but not the address) of the
object is used, and the object has the same value in all definitions of D; and

— in each definition of D, the overloaded operators referred to, the implicit calls to conversion functions,
constructors, operator new functions and operator delete functions, shall refer to the same function, or to
a function defined within the definition of D; and

— in each definition of D, a default argument used by an (implicit or explicit) function call is treated as if
its token sequence were present in the definition of D; that is, the default argument is subject to the three
requirements described above (and, if the default argument has sub-expressions with default arguments,
this requirement applies recursively).25)

— if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly
defined in every translation unit where it is used, and the implicit definition in every translation unit
shall call the same constructor for a base class or a class member of D. [Example:

// translation unit 1:
struct X {

X(int);
X(int, int);

};
X::X(int = 0) { }
class D: public X { };
D d2; // X(int) called by D()

// translation unit 2:
struct X {

X(int);
X(int, int);

};
X::X(int = 0, int = 0) { }
class D: public X { }; // X(int, int) called by D();

// D()’s implicit definition
// violates the ODR

—end example] If D is a template, and is defined in more than one translation unit, then the last four
requirements from the list above shall apply to names from the template’s enclosing scope used in the
template definition (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the
definitions of D satisfy all these requirements, then the program shall behave as if there were a single
definition of D. If the definitions of D do not satisfy these requirements, then the behavior is undefined.

[basic.scope] 3.3 Declarative regions and scopes

1 Every name is introduced in some portion of program text called a declarative region, which is the largest
part of the program in which that name is valid, that is, in which that name may be used as an unqualified
name to refer to the same entity. In general, each particular name is valid only within some possibly dis-
contiguous portion of program text called its scope. To determine the scope of a declaration, it is some-
times convenient to refer to the potential scope of a declaration. The scope of a declaration is the same as
its potential scope unless the potential scope contains another declaration of the same name. In that case,
the potential scope of the declaration in the inner (contained) declarative region is excluded from the scope
of the declaration in the outer (containing) declarative region.

25) 8.3.6 describes how default argument names are looked up.

24

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.3 Declarative regions and scopes

2 [Example: in

int j = 24;
int main()
{

int i = j, j;
j = 42;

}

the identifier j is declared twice as a name (and used twice). The declarative region of the first j includes
the entire example. The potential scope of the first j begins immediately after that j and extends to the end
of the program, but its (actual) scope excludes the text between the , and the }. The declarative region of
the second declaration of j (the j immediately before the semicolon) includes all the text between { and },
but its potential scope excludes the declaration of i. The scope of the second declaration of j is the same
as its potential scope.]

3 The names declared by a declaration are introduced into the scope in which the declaration occurs, except
that the presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (3.3.1), and
using-directives (7.3.4) alter this general behavior.

4 Given a set of declarations in a single declarative region, each of which specifies the same unqualified
name,

— they shall all refer to the same entity, or all refer to functions and function templates; or

— exactly one declaration shall declare a class name or enumeration name that is not a typedef name and
the other declarations shall all refer to the same object or enumerator, or all refer to functions and func-
tion templates; in this case the class name or enumeration name is hidden (3.3.7). [Note: a namespace
name or a class template name must be unique in its declarative region (7.3.2, clause 14).]

[Note: these restrictions apply to the declarative region into which a name is introduced, which is not neces-
sarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers
(3.3.1) and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing name-
space; these restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the
declarative region where the declaration appears and also introduce a (possibly not visible) name into an
enclosing namespace; these restrictions apply to both regions.]

5 [Note: the name lookup rules are summarized in 3.4.]

[basic.scope.pdecl] 3.3.1 Point of declaration

1 The point of declaration for a name is immediately after its complete declarator (clause 8) and before its
initializer (if any), except as noted below. [Example:

int x = 12;
{ int x = x; }

Here the second x is initialized with its own (indeterminate) value.]

2 [Note: a nonlocal name remains visible up to the point of declaration of the local name that hides it.
[Example:

const int i = 2;
{ int i[i]; }

declares a local array of two integers.]]

3 The point of declaration for an enumerator is immediately after its enumerator-definition. [Example:

const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12.]

25

ISO/IEC 14882:2003(E)  ISO/IEC

3.3.1 Point of declaration 3 Basic concepts

4 After the point of declaration of a class member, the member name can be looked up in the scope of its
class. [Note: this is true even if the class is an incomplete class. For example,

struct X {
enum E { z = 16 };
int b[X::z]; // OK

};

—end note]

5 The point of declaration of a class first declared in an elaborated-type-specifier is as follows:

— for an elaborated-type-specifier of the form

class-key identifier ;

the elaborated-type-specifier declares the identifier to be a class-name in the scope that contains the
declaration, otherwise

— for an elaborated-type-specifier of the form

class-key identifier

if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a
function defined in namespace scope, the identifier is declared as a class-name in the namespace that
contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the small-
est non-class, non-function-prototype scope that contains the declaration. [Note: if the elaborated-
type-specifier designates an enumeration, the identifier must refer to an already declared enum-name. If
the identifier in the elaborated-type-specifier is a qualified-id, it must refer to an already declared
class-name or enum-name. See 3.4.4.]

6 [Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace,
but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope
and object declarations with the extern specifier at block scope refer to delarations that are members of
an enclosing namespace, but they do not introduce new names into that scope.]

7 [Note: For point of instantiation of a template, see 14.6.4.1 .]

[basic.scope.local] 3.3.2 Local scope

1 A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration
(3.3.1) and ends at the end of its declarative region.

2 The potential scope of a function parameter name in a function definition (8.4) begins at its point of decla-
ration. If the function has a function-try-block the potential scope of a parameter ends at the end of the last
associated handler, else it ends at the end of the outermost block of the function definition. A parameter
name shall not be redeclared in the outermost block of the function definition nor in the outermost block of
any handler associated with a function-try-block.

3 The name in a catch exception-declaration is local to the handler and shall not be redeclared in the outer-
most block of the handler.

4 Names declared in the for-init-statement, and in the condition of if, while, for, and switch statements
are local to the if, while, for, or switch statement (including the controlled statement), and shall not
be redeclared in a subsequent condition of that statement nor in the outermost block (or, for the if state-
ment, any of the outermost blocks) of the controlled statement; see 6.4.

[basic.scope.proto] 3.3.3 Function prototype scope

1 In a function declaration, or in any function declarator except the declarator of a function definition (8.4),
names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest
enclosing function declarator.

26

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.3.4 Function scope

[basic.funscope] 3.3.4 Function scope

1 Labels (6.1) have function scope and may be used anywhere in the function in which they are declared.
Only labels have function scope.

[basic.scope.namespace] 3.3.5 Namespace scope

1 The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by an
original-namespace-name is the concatenation of the declarative regions established by each of the
namespace-definitions in the same declarative region with that original-namespace-name. Entities declared
in a namespace-body are said to be members of the namespace, and names introduced by these declarations
into the declarative region of the namespace are said to be member names of the namespace. A namespace
member name has namespace scope. Its potential scope includes its namespace from the name’s point of
declaration (3.3.1) onwards; and for each using-directive (7.3.4) that nominates the member’s namespace,
the member’s potential scope includes that portion of the potential scope of the using-directive that follows
the member’s point of declaration. [Example:

namespace N {
int i;
int g(int a) { return a; }
int j();
void q();

}
namespace { int l=1; }
// the potential scope of l is from its point of declaration
// to the end of the translation unit

namespace N {
int g(char a) // overloads N::g(int)
{

return l+a; // l is from unnamed namespace
}

int i; // error: duplicate definition
int j(); // OK: duplicate function declaration

int j() // OK: definition of N::j()
{

return g(i); // calls N::g(int)
}
int q(); // error: different return type

}

—end example]

2 A namespace member can also be referred to after the :: scope resolution operator (5.1) applied to the
name of its namespace or the name of a namespace which nominates the member’s namespace in a using-
directive; see 3.4.3.2.

3 The outermost declarative region of a translation unit is also a namespace, called the global namespace. A
name declared in the global namespace has global namespace scope (also called global scope). The poten-
tial scope of such a name begins at its point of declaration (3.3.1) and ends at the end of the translation unit
that is its declarative region. Names with global namespace scope are said to be global.

[basic.scope.class] 3.3.6 Class scope

1 The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following
the name’s declarator, but also of all function bodies, default arguments, and constructor ctor-
initializers in that class (including such things in nested classes).

27

ISO/IEC 14882:2003(E)  ISO/IEC

3.3.6 Class scope 3 Basic concepts

2) A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in the
completed scope of S. No diagnostic is required for a violation of this rule.

3) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the pro-
gram is ill-formed, no diagnostic is required.

4) A name declared within a member function hides a declaration of the same name whose scope extends
to or past the end of the member function’s class.

5) The potential scope of a declaration that extends to or past the end of a class definition also extends to
the regions defined by its member definitions, even if the members are defined lexically outside the
class (this includes static data member definitions, nested class definitions, member function definitions
(including the member function body and, for constructor functions (12.1), the ctor-initializer (12.6.2))
and any portion of the declarator part of such definitions which follows the identifier, including a
parameter-declaration-clause and any default arguments (8.3.6). [Example:

typedef int c;
enum { i = 1 };

class X {
char v[i]; // error: i refers to ::i

// but when reevaluated is X::i
int f() { return sizeof(c); } // OK: X::c
char c;
enum { i = 2 };

};

typedef char* T;
struct Y {

T a; // error: T refers to ::T
// but when reevaluated is Y::T

typedef long T;
T b;

};

typedef int I;
class D {

typedef I I; // error, even though no reordering involved
};

—end example]

2 The name of a class member shall only be used as follows:

— in the scope of its class (as described above) or a class derived (clause 10) from its class,

— after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its
class,

— after the -> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,

— after the :: scope resolution operator (5.1) applied to the name of its class or a class derived from its
class.

[basic.scope.hiding] 3.3.7 Name hiding

1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived
class (10.2).

2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumer-
ator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are
declared in the same scope (in any order) with the same name, the class or enumeration name is hidden
wherever the object, function, or enumerator name is visible.

28

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.3.7 Name hiding

3 In a member function definition, the declaration of a local name hides the declaration of a member of the
class with the same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the
declaration of a member of a base class of the same name; see 10.2.

4 During the lookup of a name qualified by a namespace name, declarations that would otherwise be made
visible by a using-directive can be hidden by declarations with the same name in the namespace containing
the using-directive; see (3.4.3.2).

5 If a name is in scope and is not hidden it is said to be visible.

[basic.lookup] 3.4 Name lookup

1 The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names
(7.3) and class-names (9.1)) wherever the grammar allows such names in the context discussed by a partic-
ular rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup
shall find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one
declaration with a name if it finds the name to be a function name; the declarations are said to form a set of
overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The
access rules (clause 11) are considered only once name lookup and function overload resolution (if applica-
ble) have succeeded. Only after name lookup, function overload resolution (if applicable) and access
checking have succeeded are the attributes introduced by the name’s declaration used further in expression
processing (clause 5).

2 A name “looked up in the context of an expression” is looked up as an unqualified name in the scope where
the expression is found.

3 The injected-class-name of a class (clause 9) is also considered to be a member of that class for the pur-
poses of name hiding and lookup.

4 [Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are dis-
cussed in 3.3.]

[basic.lookup.unqual] 3.4.1 Unqualified name lookup

1 In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the
respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is
found, the program is ill-formed.

2 The declarations from the namespace nominated by a using-directive become visible in a namespace
enclosing the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in
3.4.1, the declarations from the namespace nominated by the using-directive are considered members of
that enclosing namespace.

3 The lookup for an unqualified name used as the postfix-expression of a function call is described in 3.4.2.
[Note: for purposes of determining (during parsing) whether an expression is a postfix-expression for a
function call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpre-
tation of an expression. For example,

typedef int f;
struct A {

friend void f(A &);
operator int();
void g(A a) {

f(a);
}

};

The expression f(a) is a cast-expression equivalent to int(a). Because the expression is not a function
call, the argument-dependent name lookup (3.4.2) does not apply and the friend function f is not found.]

29

ISO/IEC 14882:2003(E)  ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

4 A name used in global scope, outside of any function, class or user-declared namespace, shall be declared
before its use in global scope.

5 A name used in a user-declared namespace outside of the definition of any function or class shall be
declared before its use in that namespace or before its use in a namespace enclosing its namespace.

6 A name used in the definition of a function following the function’s declarator-id26) that is a member of
namespace N (where, only for the purpose of exposition, N could represent the global scope) shall be
declared before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be
declared before its use in namespace N or, if N is a nested namespace, shall be declared before its use in one
of N’s enclosing namespaces.
[Example:

namespace A {
namespace N {

void f();
}

}
void A::N::f() {

i = 5;
// The following scopes are searched for a declaration of i:
// 1) outermost block scope of A::N::f, before the use of i
// 2) scope of namespace N
// 3) scope of namespace A
// 4) global scope, before the definition of A::N::f

}

—end example]

7 A name used in the definition of a class X outside of a member function body or nested class definition27)

shall be declared in one of the following ways:

— before its use in class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), before the definition of X in Y, or shall be a member of a base class
of Y (this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),28)

or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the definition of class X
in namespace N or in one of N’s enclosing namespaces.

[Example:

namespace M {
class B { };

}

26) This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-declaration-
clause or used in the function body.
27) This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in the class
definition.
28) This lookup applies whether the definition of X is nested within Y’s definition or whether X’s definition appears in a namespace
scope enclosing Y’s definition (9.7).

30

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.4.1 Unqualified name lookup

namespace N {
class Y : public M::B {

class X {
int a[i];

};
};

}

// The following scopes are searched for a declaration of i:
// 1) scope of class N::Y::X, before the use of i
// 2) scope of class N::Y, before the definition of N::Y::X
// 3) scope of N::Y’s base class M::B
// 4) scope of namespace N, before the definition of N::Y
// 5) global scope, before the definition of N

—end example] [Note: when looking for a prior declaration of a class or function introduced by a friend
declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2.]
[Note: 3.3.6 further describes the restrictions on the use of names in a class definition. 9.7 further describes
the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions on the
use of names in local class definitions.]

8 A name used in the definition of a member function (9.3) of class X following the function’s declarator-
id29) shall be declared in one of the following ways:

— before its use in the block in which it is used or in an enclosing block (6.3), or

— shall be a member of class X or be a member of a base class of X (10.2), or

— if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y
(this lookup applies in turn to Y’s enclosing classes, starting with the innermost enclosing class),30) or

— if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block
enclosing the definition of class X, or

— if X is a member of namespace N, or is a nested class of a class that is a member of N, or is a local class
or a nested class within a local class of a function that is a member of N, before the member function
definition, in namespace N or in one of N’s enclosing namespaces.

[Example:

class B { };
namespace M {

namespace N {
class X : public B {

void f();
};

}
}
void M::N::X::f() {

i = 16;
}

29) That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-declaration-
clause, in the function body, or in an expression of a mem-initializer in a constructor definition.
30) This lookup applies whether the member function is defined within the definition of class X or whether the member function is
defined in a namespace scope enclosing X’s definition.

31

ISO/IEC 14882:2003(E)  ISO/IEC

3.4.1 Unqualified name lookup 3 Basic concepts

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of M::N::X::f, before the use of i
// 2) scope of class M::N::X
// 3) scope of M::N::X’s base class B
// 4) scope of namespace M::N
// 5) scope of namespace M
// 6) global scope, before the definition of M::N::X::f

—end example] [Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function
definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8 fur-
ther describes the restrictions on the use of names in local class definitions.]

9 Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class
granting friendship shall proceed as described for lookup in member function definitions. If the friend
function is not defined in the class granting friendship, name lookup in the friend function definition
shall proceed as described for lookup in namespace member function definitions.

10 In a friend declaration naming a member function, a name used in the function declarator and not part of
a template-argument in a template-id is first looked up in the scope of the member function’s class. If it is
not found, or if the name is part of a template-argument in a template-id, the look up is as described for
unqualified names in the definition of the class granting friendship. [Example:

struct A {
typedef int AT;
void f1(AT);
void f2(float);

};
struct B {

typedef float BT;
friend void A::f1(AT); // parameter type is A::AT
friend void A::f2(BT); // parameter type is B::BT

};

—end example]

11 During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause
or used in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are
visible and hide the names of entities declared in the block, class or namespace scopes containing the func-
tion declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments.
12.6.2 further describes the restrictions on the use of names in a ctor-initializer.]

12 A name used in the definition of a static data member of class X (9.4.2) (after the qualified-id of the
static member) is looked up as if the name was used in a member function of X. [Note: 9.4.2 further
describes the restrictions on the use of names in the definition of a static data member.]

13 A name used in the handler for a function-try-block (clause 15) is looked up as if the name was used in the
outermost block of the function definition. In particular, the function parameter names shall not be rede-
clared in the exception-declaration nor in the outermost block of a handler for the function-try-block.
Names declared in the outermost block of the function definition are not found when looked up in the scope
of a handler for the function-try-block. [Note: but function parameter names are found.]

14 [Note: the rules for name lookup in template definitions are described in 14.6.]

[basic.lookup.koenig] 3.4.2 Argument-dependent name lookup

1 When an unqualified name is used as the postfix-expression in a function call (5.2.2), other namespaces not
considered during the usual unqualified lookup (3.4.1) may be searched, and namespace-scope friend func-
tion declarations (11.4) not otherwise visible may be found. These modifications to the search depend on
the types of the arguments (and for template template arguments, the namespace of the template argument).

32

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.4.2 Argument-dependent name lookup

2 For each argument type T in the function call, there is a set of zero or more associated namespaces and a set
of zero or more associated classes to be considered. The sets of namespaces and classes is determined
entirely by the types of the function arguments (and the namespace of any template template argument).
Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of
namespaces and classes are determined in the following way:

— If T is a fundamental type, its associated sets of namespaces and classes are both empty.

— If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a
member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces
in which its associated classes are defined.

— If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is
class member, its associated class is the member’s class; else it has no associated class.

— If T is a pointer to U or an array of U, its associated namespaces and classes are those associated with U.

— If T is a function type, its associated namespaces and classes are those associated with the function
parameter types and those associated with the return type.

— If T is a pointer to a member function of a class X, its associated namespaces and classes are those asso-
ciated with the function parameter types and return type, together with those associated with X.

— If T is a pointer to a data member of class X, its associated namespaces and classes are those associated
with the member type together with those associated with X.

— If T is a template-id, its associated namespaces and classes are the namespace in which the template is
defined; for member templates, the member template’s class; the namespaces and classes associated
with the types of the template arguments provided for template type parameters (excluding template
template parameters); the namespaces in which any template template arguments are defined; and the
classes in which any member templates used as template template arguments are defined. [Note: non-
type template arguments do not contribute to the set of associated namespaces.]

In addition, if the argument is the name or address of a set of overloaded functions and/or function tem-
plates, its associated classes and namespaces are the union of those associated with each of the members of
the set: the namespace in which the function or function template is defined and the classes and namespaces
associated with its (non-dependent) parameter types and return type.

2a If the ordinary unqualified lookup of the name finds the declaration of a class member function, the associ-
ated namespaces and classes are not considered. Otherwise the set of declarations found by the lookup of
the function name is the union of the set of declarations found using ordinary unqualified lookup and the set
of declarations found in the namespaces and classes associated with the argument types. [Note: the name-
spaces and classes associated with the argument types can include namespaces and classes already consid-
ered by the ordinary unqualified lookup.] [Example:

namespace NS {
class T { };
void f(T);

}
NS::T parm;
int main() {

f(parm); // OK: calls NS::f
}

—end example]

3 When considering an associated namespace, the lookup is the same as the lookup performed when the asso-
ciated namespace is used as a qualifier (3.4.3.2) except that:

— Any using-directives in the associated namespace are ignored.

— Any namespace-scope friend functions declared in associated classes are visible within their respective
namespaces even if they are not visible during an ordinary lookup (11.4).

33

ISO/IEC 14882:2003(E)  ISO/IEC

3.4.3 Qualified name lookup 3 Basic concepts

[basic.lookup.qual] 3.4.3 Qualified name lookup

1 The name of a class or namespace member can be referred to after the :: scope resolution operator (5.1)
applied to a nested-name-specifier that nominates its class or namespace. During the lookup for a name
preceding the :: scope resolution operator, object, function, and enumerator names are ignored. If the
name found is not a class-name (clause 9) or namespace-name (7.3.1), the program is ill-formed. [Exam-
ple:

class A {
public:

static int n;
};
int main()
{

int A;
A::n = 42; // OK
A b; // ill-formed: A does not name a type

}

—end example]

2 [Note: Multiply qualified names, such as N1::N2::N3::n, can be used to refer to members of nested
classes (9.7) or members of nested namespaces.]

3 In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being
declared are looked up in the defining namespace scope; names following the qualified-id are looked up in
the scope of the member’s class or namespace. [Example:

class X { };
class C {

class X { };
static const int number = 50;
static X arr[number];

};
X C::arr[number]; // ill-formed:

// equivalent to: ::X C::arr[C::number];
// not to: C::X C::arr[C::number];

—end example]

4 A name prefixed by the unary scope operator :: (5.1) is looked up in global scope, in the translation unit
where it is used. The name shall be declared in global namespace scope or shall be a name whose declara-
tion is visible in global scope because of a using-directive (3.4.3.2). The use of :: allows a global name to
be referred to even if its identifier has been hidden (3.3.7).

5 If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as
types in the scope designated by the nested-name-specifier. In a qualified-id of the form:

::opt nested-name-specifier ˜ class-name

where the nested-name-specifier designates a namespace scope, and in a qualified-id of the form:

::opt nested-name-specifier class-name :: ˜ class-name

the class-names are looked up as types in the scope designated by the nested-name-specifier. [Example:

34

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.4.3 Qualified name lookup

struct C {
typedef int I;

};
typedef int I1, I2;
extern int* p;
extern int* q;
p->C::I::˜I(); // I is looked up in the scope of C
q->I1::˜I2(); // I2 is looked up in the scope of

// the postfix-expression

struct A {
˜A();

};
typedef A AB;
int main()
{

AB *p;
p->AB::˜AB(); // explicitly calls the destructor for A

}

—end example] [Note: 3.4.5 describes how name lookup proceeds after the . and -> operators.]

[class.qual] 3.4.3.1 Class members

1 If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-
specifier is looked up in the scope of the class (10.2), except for the cases listed below. The name shall rep-
resent one or more members of that class or of one of its base classes (clause 10). [Note: a class member
can be referred to using a qualified-id at any point in its potential scope (3.3.6).] The exceptions to the
name lookup rule above are the following:

— a destructor name is looked up as specified in 3.4.3;

— a conversion-type-id of an operator-function-id is looked up both in the scope of the class and in the
context in which the entire postfix-expression occurs and shall refer to the same type in both contexts;

— the template-arguments of a template-id are looked up in the context in which the entire postfix-
expression occurs.

1a If the nested-name-specifier nominates a class C, and the name specified after the nested-name-specifier,
when looked up in C, is the injected-class-name of C (clause 9), the name is instead considered to name the
constructor of class C. Such a constructor name shall be used only in the declarator-id of a constructor def-
inition that appears outside of the class definition. [Example:

struct A { A(); };
struct B: public A { B(); };

A::A() { }
B::B() { }

B::A ba; // object of type A
A::A a; // error, A::A is not a type name

—end example]

2 A class member name hidden by a name in a nested declarative region or by the name of a derived class
member can still be found if qualified by the name of its class followed by the :: operator.

[namespace.qual] 3.4.3.2 Namespace members

1 If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-
name-specifier is looked up in the scope of the namespace, except that the template-arguments of a
template-id are looked up in the context in which the entire postfix-expression occurs.

35

ISO/IEC 14882:2003(E)  ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

2 Given X::m (where X is a user-declared namespace), or given ::m (where X is the global namespace), let
S be the set of all declarations of m in X and in the transitive closure of all namespaces nominated by
using-directives in X and its used namespaces, except that using-directives are ignored in any namespace,
including X, directly containing one or more declarations of m. No namespace is searched more than once
in the lookup of a name. If S is the empty set, the program is ill-formed. Otherwise, if S has exactly one
member, or if the context of the reference is a using-declaration (7.3.3), S is the required set of declarations
of m. Otherwise if the use of m is not one that allows a unique declaration to be chosen from S, the program
is ill-formed. [Example:

int x;
namespace Y {

void f(float);
void h(int);

}

namespace Z {
void h(double);

}

namespace A {
using namespace Y;
void f(int);
void g(int);
int i;

}

namespace B {
using namespace Z;
void f(char);
int i;

}

namespace AB {
using namespace A;
using namespace B;
void g();

}

36

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.4.3.2 Namespace members

void h()
{

AB::g(); // g is declared directly in AB,
// therefore S is { AB::g() } and AB::g() is chosen

AB::f(1); // f is not declared directly in AB so the rules are
// applied recursively to A and B;
// namespace Y is not searched and Y::f(float)
// is not considered;
// S is { A::f(int), B::f(char) } and overload
// resolution chooses A::f(int)

AB::f(’c’); // as above but resolution chooses B::f(char)

AB::x++; // x is not declared directly in AB, and
// is not declared in A or B, so the rules are
// applied recursively to Y and Z,
// S is { } so the program is ill-formed

AB::i++; // i is not declared directly in AB so the rules are
// applied recursively to A and B,
// S is { A::i, B::i } so the use is ambiguous
// and the program is ill-formed

AB::h(16.8); // h is not declared directly in AB and
// not declared directly in A or B so the rules are
// applied recursively to Y and Z,
// S is { Y::h(int), Z::h(double) } and overload
// resolution chooses Z::h(double)

}

3 The same declaration found more than once is not an ambiguity (because it is still a unique declaration).
For example:

namespace A {
int a;

}

namespace B {
using namespace A;

}

namespace C {
using namespace A;

}

namespace BC {
using namespace B;
using namespace C;

}

void f()
{

BC::a++; // OK: S is { A::a, A::a }
}

namespace D {
using A::a;

}

namespace BD {
using namespace B;
using namespace D;

}

37

ISO/IEC 14882:2003(E)  ISO/IEC

3.4.3.2 Namespace members 3 Basic concepts

void g()
{

BD::a++; // OK: S is { A::a, A::a }
}

4 Because each referenced namespace is searched at most once, the following is well-defined:

namespace B {
int b;

}

namespace A {
using namespace B;
int a;

}

namespace B {
using namespace A;

}

void f()
{

A::a++; // OK: a declared directly in A, S is { A::a }
B::a++; // OK: both A and B searched (once), S is { A::a }
A::b++; // OK: both A and B searched (once), S is { B::b }
B::b++; // OK: b declared directly in B, S is { B::b }

}

—end example]

5 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of
the member, and if one declaration introduces a class name or enumeration name and the other declarations
either introduce the same object, the same enumerator or a set of functions, the non-type name hides the
class or enumeration name if and only if the declarations are from the same namespace; otherwise (the dec-
larations are from different namespaces), the program is ill-formed. [Example:

namespace A {
struct x { };
int x;
int y;

}

namespace B {
struct y {};

}

namespace C {
using namespace A;
using namespace B;
int i = C::x; // OK, A::x (of type int)
int j = C::y; // ambiguous, A::y or B::y

}

—end example]

6 In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the
qualified-id for the namespace member has the form

nested-name-specifier unqualified-id

the unqualified-id shall name a member of the namespace designated by the nested-name-specifier. [Exam-
ple:

38

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.4.3.2 Namespace members

namespace A {
namespace B {

void f1(int);
}
using namespace B;

}
void A::f1(int) { } // ill-formed, f1 is not a member of A

—end example] However, in such namespace member declarations, the nested-name-specifier may rely on
using-directives to implicitly provide the initial part of the nested-name-specifier. [Example:

namespace A {
namespace B {

void f1(int);
}

}

namespace C {
namespace D {

void f1(int);
}

}

using namespace A;
using namespace C::D;
void B::f1(int){} // OK, defines A::B::f1(int)

—end example]

[basic.lookup.elab] 3.4.4 Elaborated type specifiers

1 An elaborated-type-specifier may be used to refer to a previously declared class-name or enum-name even
though the name has been hidden by a non-type declaration (3.3.7). The class-name or enum-name in the
elaborated-type-specifier may either be a simple identifer or be a qualified-id.

2 If the name in the elaborated-type-specifier is a simple identifer, and unless the elaborated-type-specifier
has the following form:

class-key identifier ;

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If
this name lookup finds a typedef-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-
specifier refers to an enum-name and this lookup does not find a previously declared enum-name, the
elaborated-type-specifier is ill-formed. If the elaborated-type-specifier refers to an class-name and this
lookup does not find a previously declared class-name, or if the elaborated-type-specifier has the form:

class-key identifier ;

the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.1.

3 If the name is a qualified-id, the name is looked up according its qualifications, as described in 3.4.3, but
ignoring any non-type names that have been declared. If this name lookup finds a typedef-name, the
elaborated-type-specifier is ill-formed. If this name lookup does not find a previously declared class-name
or enum-name, the elaborated-type-specifier is ill-formed. [Example:

struct Node {
struct Node* Next; // OK: Refers to Node at global scope
struct Data* Data; // OK: Declares type Data

// at global scope and member Data
};

39

ISO/IEC 14882:2003(E)  ISO/IEC

3.4.4 Elaborated type specifiers 3 Basic concepts

struct Data {
struct Node* Node; // OK: Refers to Node at global scope
friend struct ::Glob; // error: Glob is not declared

// cannot introduce a qualified type (7.1.5.3)
friend struct Glob; // OK: Refers to (as yet) undeclared Glob

// at global scope.
/* ... */

};

struct Base {
struct Data; // OK: Declares nested Data
struct ::Data* thatData; // OK: Refers to ::Data
struct Base::Data* thisData; // OK: Refers to nested Data
friend class ::Data; // OK: global Data is a friend
friend class Data; // OK: nested Data is a friend
struct Data { /* ... */ }; // Defines nested Data

};

struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data

—end example]

[basic.lookup.classref] 3.4.5 Class member access

1 In a class member access expression (5.2.5), if the . or -> token is immediately followed by an identifier
followed by a <, the identifier must be looked up to determine whether the < is the beginning of a template
argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object
expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression
and shall name a class or function template. If the lookup in the class of the object expression finds a tem-
plate, the name is also looked up in the context of the entire postfix-expression and

— if the name is not found, the name found in the class of the object expression is used, otherwise

— if the name is found in the context of the entire postfix-expression and does not name a class template,
the name found in the class of the object expression is used, otherwise

— if the name found is a class template, it must refer to the same entity as the one found in the class of the
object expression, otherwise the program is ill-formed.

2 If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expres-
sion is of a class type C (or of pointer to a class type C), the unqualified-id is looked up in the scope of class
C. If the type of the object expression is of pointer to scalar type, the unqualified-id is looked up in the con-
text of the complete postfix-expression.

3 If the unqualified-id is ˜type-name, and the type of the object expression is of a class type C (or of pointer to
a class type C), the type-name is looked up in the context of the entire postfix-expression and in the scope of
class C. The type-name shall refer to a class-name. If type-name is found in both contexts, the name shall
refer to the same class type. If the type of the object expression is of scalar type, the type-name is looked
up in the scope of the complete postfix-expression.

4 If the id-expression in a class member access is a qualified-id of the form

class-name-or-namespace-name::...

the class-name-or-namespace-name following the . or -> operator is looked up both in the context of the
entire postfix-expression and in the scope of the class of the object expression. If the name is found only in
the scope of the class of the object expression, the name shall refer to a class-name. If the name is found
only in the context of the entire postfix-expression, the name shall refer to a class-name or namespace-

40

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.4.5 Class member access

name. If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same
entity. [Note: the result of looking up the class-name-or-namespace-name is not required to be a unique
base class of the class type of the object expression, as long as the entity or entities named by the qualified-
id are members of the class type of the object expression and are not ambiguous according to 10.2.

struct A {
int a;

};
struct B: virtual A { };
struct C: B { };
struct D: B { };
struct E: public C, public D { };
struct F: public A { };

void f() {
E e;
e.B::a = 0; // OK, only one A::a in E

F f;
f.A::a = 1; // OK, A::a is a member of F

}

—end note]

5 If the qualified-id has the form

::class-name-or-namespace-name::...

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.

6 If the nested-name-specifier contains a class template-id (14.2), its template-arguments are evaluated in the
context in which the entire postfix-expression occurs.

7 If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both
the context in which the entire postfix-expression occurs and in the context of the class of the object expres-
sion (or the class pointed to by the pointer expression).

[basic.lookup.udir] 3.4.6 Using-directives and namespace aliases

1 When looking up a namespace-name in a using-directive or namespace-alias-definition, only namespace
names are considered.

[basic.link] 3.5 Program and linkage

1 A program consists of one or more translation units (clause 2) linked together. A translation unit consists
of a sequence of declarations.

translation-unit:
declaration-seqopt

2 A name is said to have linkage when it might denote the same object, reference, function, type, template,
namespace or value as a name introduced by a declaration in another scope:

— When a name has external linkage, the entity it denotes can be referred to by names from scopes of
other translation units or from other scopes of the same translation unit.

— When a name has internal linkage, the entity it denotes can be referred to by names from other scopes in
the same translation unit.

— When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.

3 A name having namespace scope (3.3.5) has internal linkage if it is the name of

— an object, reference, function or function template that is explicitly declared static or,

41

ISO/IEC 14882:2003(E)  ISO/IEC

3.5 Program and linkage 3 Basic concepts

— an object or reference that is explicitly declared const and neither explicitly declared extern nor
previously declared to have external linkage; or

— a data member of an anonymous union.

4 A name having namespace scope has external linkage if it is the name of

— an object or reference, unless it has internal linkage; or

— a function, unless it has internal linkage; or

— a named class (clause 9), or an unnamed class defined in a typedef declaration in which the class has the
typedef name for linkage purposes (7.1.3); or

— a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the
enumeration has the typedef name for linkage purposes (7.1.3); or

— an enumerator belonging to an enumeration with external linkage; or

— a template, unless it is a function template that has internal linkage (clause 14); or

— a namespace (7.3), unless it is declared within an unnamed namespace.

5 In addition, a member function, static data member, class or enumeration of class scope has external link-
age if the name of the class has external linkage.

6 The name of a function declared in block scope, and the name of an object declared by a block scope
extern declaration, have linkage. If there is a visible declaration of an entity with linkage having the
same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block
scope declaration declares that same entity and receives the linkage of the previous declaration. If there is
more than one such matching entity, the program is ill-formed. Otherwise, if no matching entity is found,
the block scope entity receives external linkage.
[Example:

static void f();
static int i = 0; //1
void g() {

extern void f(); // internal linkage
int i; //2: i has no linkage
{

extern void f(); // internal linkage
extern int i; //3: external linkage

}
}

There are three objects named i in this program. The object with internal linkage introduced by the decla-
ration in global scope (line //1), the object with automatic storage duration and no linkage introduced by
the declaration on line //2, and the object with static storage duration and external linkage introduced by
the declaration on line //3.]

7 When a block scope declaration of an entity with linkage is not found to refer to some other declaration,
then that entity is a member of the innermost enclosing namespace. However such a declaration does not
introduce the member name in its namespace scope. [Example:

namespace X {
void p()
{

q(); // error: q not yet declared
extern void q(); // q is a member of namespace X

}

42

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.5 Program and linkage

void middle()
{

q(); // error: q not yet declared
}

void q() { /* ... */ } // definition of X::q
}

void q() { /* ... */ } // some other, unrelated q

—end example]

8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local
scope (3.3.2) has no linkage. A name with no linkage (notably, the name of a class or enumeration declared
in a local scope (3.3.2)) shall not be used to declare an entity with linkage. If a declaration uses a typedef
name, it is the linkage of the type name to which the typedef refers that is considered. [Example:

void f()
{

struct A { int x; }; // no linkage
extern A a; // ill-formed
typedef A B;
extern B b; // ill-formed

}

—end example] This implies that names with no linkage cannot be used as template arguments (14.3).

9 Two names that are the same (clause 3) and that are declared in different scopes shall denote the same
object, reference, function, type, enumerator, template or namespace if

— both names have external linkage or else both names have internal linkage and are declared in the same
translation unit; and

— both names refer to members of the same namespace or to members, not by inheritance, of the same
class; and

— when both names denote functions, the function types are identical for purposes of overloading; and

— when both names denote function templates, the signatures (14.5.5.1) are the same.

10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types
specified by all declarations referring to a given object or function shall be identical, except that declara-
tions for an array object can specify array types that differ by the presence or absence of a major array
bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

11 [Note: linkage to non-C + + declarations can be achieved using a linkage-specification (7.5).]

[basic.start] 3.6 Start and termination

[basic.start.main] 3.6.1 Main function

1 A program shall contain a global function called main, which is the designated start of the program. It is
implementation-defined whether a program in a freestanding environment is required to define a main
function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-
up contains the execution of constructors for objects of namespace scope with static storage duration; termi-
nation contains the execution of destructors for objects with static storage duration.]

2 An implementation shall not predefine the main function. This function shall not be overloaded. It shall
have a return type of type int, but otherwise its type is implementation-defined. All implementations
shall allow both of the following definitions of main:

int main() { /* ... */ }

43

ISO/IEC 14882:2003(E)  ISO/IEC

3.6.1 Main function 3 Basic concepts

and

int main(int argc, char* argv[]) { /* ... */ }

In the latter form argc shall be the number of arguments passed to the program from the environment in
which the program is run. If argc is nonzero these arguments shall be supplied in argv[0] through
argv[argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBSs)
(17.3.2.1.3.2) and argv[0] shall be the pointer to the initial character of a NTMBS that represents the
name used to invoke the program or "". The value of argc shall be nonnegative. The value of
argv[argc] shall be 0. [Note: it is recommended that any further (optional) parameters be added after
argv.]

3 The function main shall not be used (3.2) within a program. The linkage (3.5) of main is
implementation-defined. A program that declares main to be inline or static is ill-formed. The
name main is not otherwise reserved. [Example: member functions, classes, and enumerations can be
called main, as can entities in other namespaces.]

4 Calling the function

void exit(int);

declared in <cstdlib> (18.3) terminates the program without leaving the current block and hence with-
out destroying any objects with automatic storage duration (12.4). If exit is called to end a program dur-
ing the destruction of an object with static storage duration, the program has undefined behavior.

5 A return statement in main has the effect of leaving the main function (destroying any objects with auto-
matic storage duration) and calling exit with the return value as the argument. If control reaches the end
of main without encountering a return statement, the effect is that of executing

return 0;

[basic.start.init] 3.6.2 Initialization of non-local objects

1 Objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other initialization
takes place. Zero-initialization and initialization with a constant expression are collectively called static
initialization; all other initialization is dynamic initialization. Objects of POD types (3.9) with static stor-
age duration initialized with constant expressions (5.19) shall be initialized before any dynamic initial-
ization takes place. Objects with static storage duration defined in namespace scope in the same translation
unit and dynamically initialized shall be initialized in the order in which their definition appears in the
translation unit. [Note: 8.5.1 describes the order in which aggregate members are initialized. The initial-
ization of local static objects is described in 6.7.]

2 An implementation is permitted to perform the initialization of an object of namespace scope with static
storage duration as a static initialization even if such initialization is not required to be done statically, pro-
vided that

— the dynamic version of the initialization does not change the value of any other object of namespace
scope with static storage duration prior to its initialization, and

— the static version of the initialization produces the same value in the initialized object as would be pro-
duced by the dynamic initialization if all objects not required to be initialized statically were initialized
dynamically.

[Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace
scope with static storage duration potentially requiring dynamic initialization and defined later in the same
translation unit, it is unspecified whether the value of obj2 used will be the value of the fully initialized
obj2 (because obj2 was statically initialized) or will be the value of obj2 merely zero-initialized. For
example,

44

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.6.2 Initialization of non-local objects

inline double fd() { return 1.0; }
extern double d1;
double d2 = d1; // unspecified:

// may be statically initialized to 0.0 or
// dynamically initialized to 1.0

double d1 = fd(); // may be initialized statically to 1.0

—end note]

3 It is implementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of
namespace scope is done before the first statement of main. If the initialization is deferred to some point
in time after the first statement of main, it shall occur before the first use of any function or object defined
in the same translation unit as the object to be initialized.31) [Example:

// – File 1 –
#include "a.h"
#include "b.h"
B b;
A::A(){

b.Use();
}

// – File 2 –
#include "a.h"
A a;

// – File 3 –
#include "a.h"
#include "b.h"
extern A a;
extern B b;

int main() {
a.Use();
b.Use();

}

It is implementation-defined whether either a or b is initialized before main is entered or whether the
initializations are delayed until a is first used in main. In particular, if a is initialized before main is
entered, it is not guaranteed that b will be initialized before it is used by the initialization of a, that is,
before A::A is called. If, however, a is initialized at some point after the first statement of main, b will
be initialized prior to its use in A::A.]

4 If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result
is to call terminate (18.6.3.3).

[basic.start.term] 3.6.3 Termination

1 Destructors (12.4) for initialized objects of static storage duration (declared at block scope or at namespace
scope) are called as a result of returning from main and as a result of calling exit (18.3). These objects
are destroyed in the reverse order of the completion of their constructor or of the completion of their
dynamic initialization. If an object is initialized statically, the object is destroyed in the same order as if the
object was dynamically initialized. For an object of array or class type, all subobjects of that object are
destroyed before any local object with static storage duration initialized during the construction of the sub-
objects is destroyed.

2 If a function contains a local object of static storage duration that has been destroyed and the function is
called during the destruction of an object with static storage duration, the program has undefined behavior

31) An object defined in namespace scope having initialization with side-effects must be initialized even if it is not used (3.7.1).

45

ISO/IEC 14882:2003(E)  ISO/IEC

3.6.3 Termination 3 Basic concepts

if the flow of control passes through the definition of the previously destroyed local object.

3 If a function is registered with atexit (see <cstdlib>, 18.3) then following the call to exit, any
objects with static storage duration initialized prior to the registration of that function shall not be destroyed
until the registered function is called from the termination process and has completed. For an object with
static storage duration constructed after a function is registered with atexit, then following the call to
exit, the registered function is not called until the execution of the object’s destructor has completed. If
atexit is called during the construction of an object, the complete object to which it belongs shall be
destroyed before the registered function is called.

4 Calling the function

void abort();

declared in <cstdlib> terminates the program without executing destructors for objects of automatic or
static storage duration and without calling the functions passed to atexit().

[basic.stc] 3.7 Storage duration

1 Storage duration is the property of an object that defines the minimum potential lifetime of the storage con-
taining the object. The storage duration is determined by the construct used to create the object and is one
of the following:

— static storage duration

— automatic storage duration

— dynamic storage duration

2 Static and automatic storage durations are associated with objects introduced by declarations (3.1) and
implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects
created with operator new (5.3.4).

3 The storage class specifiers static and auto are related to storage duration as described below.

4 The storage duration categories apply to references as well. The lifetime of a reference is its storage dura-
tion.

[basic.stc.static] 3.7.1 Static storage duration

1 All objects which neither have dynamic storage duration nor are local have static storage duration. The
storage for these objects shall last for the duration of the program (3.6.2, 3.6.3).

2 If an object of static storage duration has initialization or a destructor with side effects, it shall not be elimi-
nated even if it appears to be unused, except that a class object or its copy may be eliminated as specified in
12.8.

3 The keyword static can be used to declare a local variable with static storage duration. [Note: 6.7
describes the initialization of local static variables; 3.6.3 describes the destruction of local static
variables.]

4 The keyword static applied to a class data member in a class definition gives the data member static
storage duration.

[basic.stc.auto] 3.7.2 Automatic storage duration

1 Local objects explicitly declared auto or register or not explicitly declared static or extern have
automatic storage duration. The storage for these objects lasts until the block in which they are created
exits.

2 [Note: these objects are initialized and destroyed as described in 6.7.]

46

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.7.2 Automatic storage duration

3 If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed
before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused,
except that a class object or its copy may be eliminated as specified in 12.8.

[basic.stc.dynamic] 3.7.3 Dynamic storage duration

1 Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and
destroyed using delete-expressions (5.3.5). A C + + implementation provides access to, and management of,
dynamic storage via the global allocation functions operator new and operator new[] and the
global deallocation functions operator delete and operator delete[].

2 The library provides default definitions for the global allocation and deallocation functions. Some global
allocation and deallocation functions are replaceable (18.4.1). A C + + program shall provide at most one
definition of a replaceable allocation or deallocation function. Any such function definition replaces the
default version provided in the library (17.4.3.4). The following allocation and deallocation functions
(18.4) are implicitly declared in global scope in each translation unit of a program

void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();
void operator delete[](void*) throw();

These implicit declarations introduce only the function names operator new, operator new[],
operator delete, operator delete[]. [Note: the implicit declarations do not introduce the
names std, std::bad_alloc, and std::size_t, or any other names that the library uses to declare
these names. Thus, a new-expression, delete-expression or function call that refers to one of these functions
without including the header <new> is well-formed. However, referring to std, std::bad_alloc, and
std::size_t is ill-formed unless the name has been declared by including the appropriate header.]
Allocation and/or deallocation functions can also be declared and defined for any class (12.5).

3 Any allocation and/or deallocation functions defined in a C + + program, including the default versions in the
library, shall conform to the semantics specified in 3.7.3.1 and 3.7.3.2.

[basic.stc.dynamic.allocation] 3.7.3.1 Allocation functions

1 An allocation function shall be a class member function or a global function; a program is ill-formed if an
allocation function is declared in a namespace scope other than global scope or declared static in global
scope. The return type shall be void*. The first parameter shall have type size_t (18.1). The first
parameter shall not have an associated default argument (8.3.6). The value of the first parameter shall be
interpreted as the requested size of the allocation. An allocation function can be a function template. Such
a template shall declare its return type and first parameter as specified above (that is, template parameter
types shall not be used in the return type and first parameter type). Template allocation functions shall have
two or more parameters.

2 The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall
return the address of the start of a block of storage whose length in bytes shall be at least as large as the
requested size. There are no constraints on the contents of the allocated storage on return from the alloca-
tion function. The order, contiguity, and initial value of storage allocated by successive calls to an alloca-
tion function is unspecified. The pointer returned shall be suitably aligned so that it can be converted to a
pointer of any complete object type and then used to access the object or array in the storage allocated (until
the storage is explicitly deallocated by a call to a corresponding deallocation function). Even if the size of
the space requested is zero, the request can fail. If the request succeeds, the value returned shall be a non-
null pointer value (4.10) p0 different from any previously returned value p1, unless that value p1 was sub-
sequently passed to an operator delete. The effect of dereferencing a pointer returned as a request for
zero size is undefined.32)

32) The intent is to have operator new() implementable by calling malloc() or calloc(), so the rules are substantially the
same. C + + differs from C in requiring a zero request to return a non-null pointer.

47

ISO/IEC 14882:2003(E)  ISO/IEC

3.7.3.1 Allocation functions 3 Basic concepts

3 An allocation function that fails to allocate storage can invoke the currently installed new_handler
(18.4.2.2), if any. [Note: A program-supplied allocation function can obtain the address of the currently
installed new_handler using the set_new_handler function (18.4.2.3).] If an allocation function
declared with an empty exception-specification (15.4), throw(), fails to allocate storage, it shall return a
null pointer. Any other allocation function that fails to allocate storage shall only indicate failure by throw-
ing an exception of class std::bad_alloc (18.4.2.1) or a class derived from std::bad_alloc.

4 A global allocation function is only called as the result of a new expression (5.3.4), or called directly using
the function call syntax (5.2.2), or called indirectly through calls to the functions in the C + + standard
library. [Note: in particular, a global allocation function is not called to allocate storage for objects with
static storage duration (3.7.1), for objects of type type_info (5.2.8), for the copy of an object thrown by
a throw expression (15.1).]

[basic.stc.dynamic.deallocation] 3.7.3.2 Deallocation functions

1 Deallocation functions shall be class member functions or global functions; a program is ill-formed if deal-
location functions are declared in a namespace scope other than global scope or declared static in global
scope.

2 Each deallocation function shall return void and its first parameter shall be void*. A deallocation func-
tion can have more than one parameter. If a class T has a member deallocation function named operator
delete with exactly one parameter, then that function is a usual (non-placement) deallocation function. If
class T does not declare such an operator delete but does declare a member deallocation function
named operator delete with exactly two parameters, the second of which has type std::size_t
(18.1), then this function is a usual deallocation function. Similarly, if a class T has a member deallocation
function named operator delete[] with exactly one parameter, then that function is a usual (non-
placement) deallocation function. If class T does not declare such an operator delete[] but does
declare a member deallocation function named operator delete[] with exactly two parameters, the
second of which has type std::size_t, then this function is a usual deallocation function. A dealloca-
tion function can be an instance of a function template. Neither the first parameter nor the return type shall
depend on a template parameter. [Note: that is, a deallocation function template shall have a first parameter
of type void* and a return type of void (as specified above).] A deallocation function template shall
have two or more function parameters. A template instance is never a usual deallocation function, regard-
less of its signature.

3 The value of the first argument supplied to one of the deallocation functions provided in the standard
library may be a null pointer value; if so, the call to the deallocation function has no effect. Otherwise, the
value supplied to operator delete(void*) in the standard library shall be one of the values returned
by a previous invocation of either operator new(size_t) or operator new(size_t, const
std::nothrow_t&) in the standard library, and the value supplied to operator
delete[](void*) in the standard library shall be one of the values returned by a previous invocation of
either operator new[](size_t) or operator new[](size_t, const std::nothrow_t&)
in the standard library.

4 If the argument given to a deallocation function in the standard library is a pointer that is not the null
pointer value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, render-
ing invalid all pointers referring to any part of the deallocated storage. The effect of using an invalid
pointer value (including passing it to a deallocation function) is undefined.33)

[basic.stc.inherit] 3.7.4 Duration of sub-objects

1 The storage duration of member subobjects, base class subobjects and array elements is that of their com-
plete object (1.8).

33) On some implementations, it causes a system-generated runtime fault.

48

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.8 Object Lifetime

[basic.life] 3.8 Object Lifetime

1 The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins
when:

— storage with the proper alignment and size for type T is obtained, and

— if T is a class type with a non-trivial constructor (12.1), the constructor call has completed.

The lifetime of an object of type T ends when:

— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or

— the storage which the object occupies is reused or released.

2 [Note: the lifetime of an array object or of an object of POD type (3.9) starts as soon as storage with proper
size and alignment is obtained, and its lifetime ends when the storage which the array or object occupies is
reused or released. 12.6.2 describes the lifetime of base and member subobjects.]

3 The properties ascribed to objects throughout this International Standard apply for a given object only dur-
ing its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends there
are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also, the
behavior of an object under construction and destruction might not be the same as the behavior of an object
whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the con-
struction and destruction phases.]

4 A program may end the lifetime of any object by reusing the storage which the object occupies or by
explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object of a
class type with a non-trivial destructor, the program is not required to call the destructor explicitly before
the storage which the object occupies is reused or released; however, if there is no explicit call to the
destructor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be
implicitly called and any program that depends on the side effects produced by the destructor has undefined
behavior.

5 Before the lifetime of an object has started but after the storage which the object will occupy has been allo-
cated34) or, after the lifetime of an object has ended and before the storage which the object occupied is
reused or released, any pointer that refers to the storage location where the object will be or was located
may be used but only in limited ways. Such a pointer refers to allocated storage (3.7.3.2), and using the
pointer as if the pointer were of type void*, is well-defined. Such a pointer may be dereferenced but the
resulting lvalue may only be used in limited ways, as described below. If the object will be or was of a
class type with a non-trivial destructor, and the pointer is used as the operand of a delete-expression, the
program has undefined behavior. If the object will be or was of a non-POD class type, the program has
undefined behavior if:

— the pointer is used to access a non-static data member or call a non-static member function of the object,
or

— the pointer is implicitly converted (4.10) to a pointer to a base class type, or

— the pointer is used as the operand of a static_cast (5.2.9) (except when the conversion is to
void*, or to void* and subsequently to char*, or unsigned char*).

— the pointer is used as the operand of a dynamic_cast (5.2.7). [Example:

34) For example, before the construction of a global object of non-POD class type (12.7).

49

ISO/IEC 14882:2003(E)  ISO/IEC

3.8 Object Lifetime 3 Basic concepts

struct B {
virtual void f();
void mutate();
virtual ˜B();

};

struct D1 : B { void f(); };
struct D2 : B { void f(); };

void B::mutate() {
new (this) D2; // reuses storage – ends the lifetime of *this
f(); // undefined behavior
... = this; // OK, this points to valid memory

}

void g() {
void* p = malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
&pb; // OK: pb points to valid memory
void* q = pb; // OK: pb points to valid memory
pb->f(); // undefined behavior, lifetime of *pb has ended

}

—end example]

6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy has
been allocated or, after the lifetime of an object has ended and before the storage which the object occupied
is reused or released, any lvalue which refers to the original object may be used but only in limited ways.
Such an lvalue refers to allocated storage (3.7.3.2), and using the properties of the lvalue which do not
depend on its value is well-defined. If an lvalue-to-rvalue conversion (4.1) is applied to such an lvalue, the
program has undefined behavior; if the original object will be or was of a non-POD class type, the program
has undefined behavior if:

— the lvalue is used to access a non-static data member or call a non-static member function of the object,
or

— the lvalue is implicitly converted (4.10) to a reference to a base class type, or

— the lvalue is used as the operand of a static_cast (5.2.9) (except when the conversion is ultimately
to char& or unsigned char&), or

— the lvalue is used as the operand of a dynamic_cast (5.2.7) or as the operand of typeid.

7 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or
released, a new object is created at the storage location which the original object occupied, a pointer that
pointed to the original object, a reference that referred to the original object, or the name of the original
object will automatically refer to the new object and, once the lifetime of the new object has started, can be
used to manipulate the new object, if:

— the storage for the new object exactly overlays the storage location which the original object occupied,
and

— the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and

— the type of the original object is not const-qualified, and, if a class type, does not contain any non-static
data member whose type is const-qualified or a reference type, and

— the original object was a most derived object (1.8) of type T and the new object is a most derived object
of type T (that is, they are not base class subobjects). [Example:

50

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.8 Object Lifetime

struct C {
int i;
void f();
const C& operator=(const C&);

};

const C& C::operator=(const C& other)
{

if (this != &other) {
this->˜C(); // lifetime of *this ends
new (this) C(other); // new object of type C created
f(); // well-defined

}
return *this;

}

C c1;
C c2;
c1 = c2; // well-defined
c1.f(); // well-defined; c1 refers to a new object of type C

—end example]

8 If a program ends the lifetime of an object of type T with static (3.7.1) or automatic (3.7.2) storage duration
and if T has a non-trivial destructor,35) the program must ensure that an object of the original type occupies
that same storage location when the implicit destructor call takes place; otherwise the behavior of the pro-
gram is undefined. This is true even if the block is exited with an exception. [Example:

class T { };
struct B {

˜B();
};

void h() {
B b;
new (&b) T;

} // undefined behavior at block exit

—end example]

9 Creating a new object at the storage location that a const object with static or automatic storage duration
occupies or, at the storage location that such a const object used to occupy before its lifetime ended
results in undefined behavior. [Example:

struct B {
B();
˜B();

};

const B b;

void h() {
b.˜B();
new (&b) const B; // undefined behavior

}

—end example]

35) that is, an object for which a destructor will be called implicitly—either either upon exit from the block for an object with auto-
matic storage duration or upon exit from the program for an object with static storage duration.

51

ISO/IEC 14882:2003(E)  ISO/IEC

3.9 Types 3 Basic concepts

[basic.types] 3.9 Types

1 [Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation
of types. There are two kinds of types: fundamental types and compound types. Types describe objects
(1.8), references (8.3.2), or functions (8.3.5).]

2 For any object (other than a base-class subobject) of POD type T, whether or not the object holds a valid
value of type T, the underlying bytes (1.7) making up the object can be copied into an array of char or
unsigned char.36) If the content of the array of char or unsigned char is copied back into the
object, the object shall subsequently hold its original value. [Example:

#define N sizeof(T)
char buf[N];
T obj; // obj initialized to its original value
memcpy(buf, &obj, N); // between these two calls to memcpy,

// obj might be modified
memcpy(&obj, buf, N); // at this point, each subobject of obj of scalar type

// holds its original value

—end example]

3 For any POD type T, if two pointers to T point to distinct T objects obj1 and obj2, where neither obj1
nor obj2 is a base-class subobject, if the value of obj1 is copied into obj2, using the memcpy library
function, obj2 shall subsequently hold the same value as obj1. [Example:

T* t1p;
T* t2p;

// provided that t2p points to an initialized object ...
memcpy(t1p, t2p, sizeof(T)); // at this point, every subobject of POD type in *t1p contains

// the same value as the corresponding subobject in *t2p

—end example]

4 The object representation of an object of type T is the sequence of N unsigned char objects taken up by
the object of type T, where N equals sizeof(T). The value representation of an object is the set of bits
that hold the value of type T. For POD types, the value representation is a set of bits in the object represen-
tation that determines a value, which is one discrete element of an implementation-defined set of values.37)

5 Object types have alignment requirements (3.9.1, 3.9.2). The alignment of a complete object type is an
implementation-defined integer value representing a number of bytes; an object is allocated at an address
that meets the alignment requirements of its object type.

6 A class that has been declared but not defined, or an array of unknown size or of incomplete element type,
is an incompletely-defined object type.38) Incompletely-defined object types and the void types are incom-
plete types (3.9.1). Objects shall not be defined to have an incomplete type.

7 A class type (such as “class X”) might be incomplete at one point in a translation unit and complete later
on; the type “class X” is the same type at both points. The declared type of an array object might be an
array of incomplete class type and therefore incomplete; if the class type is completed later on in the trans-
lation unit, the array type becomes complete; the array type at those two points is the same type. The
declared type of an array object might be an array of unknown size and therefore be incomplete at one point
in a translation unit and complete later on; the array types at those two points (“array of unknown bound of
T” and “array of N T”) are different types. The type of a pointer to array of unknown size, or of a type
defined by a typedef declaration to be an array of unknown size, cannot be completed. [Example:

36) By using, for example, the library functions (17.4.1.2) memcpy or memmove.
37) The intent is that the memory model of C + + is compatible with that of ISO/IEC 9899 Programming Language C.
38) The size and layout of an instance of an incompletely-defined object type is unknown.

52

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.9 Types

class X; // X is an incomplete type
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp; // arrp is a pointer to an incomplete type
UNKA** arrpp;

void foo()
{

xp++; // ill-formed: X is incomplete
arrp++; // ill-formed: incomplete type
arrpp++; // OK: sizeof UNKA* is known

}

struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete

X x;
void bar()
{

xp = &x; // OK; type is ‘‘pointer to X’’
arrp = &arr; // ill-formed: different types
xp++; // OK: X is complete
arrp++; // ill-formed: UNKA can’t be completed

}

—end example]

8 [Note: the rules for declarations and expressions describe in which contexts incomplete types are prohib-
ited.]

9 An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a
void type.

10 Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member types (3.9.2), and cv-
qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD-struct types,
POD-union types (clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collec-
tively called POD types.

11 If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-
compatible enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are
described in 9.2.]

[basic.fundamental] 3.9.1 Fundamental types

1 Objects declared as characters (char) shall be large enough to store any member of the implementation’s
basic character set. If a character from this set is stored in a character object, the integral value of that char-
acter object is equal to the value of the single character literal form of that character. It is implementation-
defined whether a char object can hold negative values. Characters can be explicitly declared unsigned
or signed. Plain char, signed char, and unsigned char are three distinct types. A char, a
signed char, and an unsigned char occupy the same amount of storage and have the same align-
ment requirements (3.9); that is, they have the same object representation. For character types, all bits of
the object representation participate in the value representation. For unsigned character types, all possible
bit patterns of the value representation represent numbers. These requirements do not hold for other types.
In any particular implementation, a plain char object can take on either the same values as a
signed char or an unsigned char; which one is implementation-defined.

2 There are four signed integer types: “signed char”, “short int”, “int”, and “long int.” In this
list, each type provides at least as much storage as those preceding it in the list. Plain ints have the natu-
ral size suggested by the architecture of the execution environment39) ; the other signed integer types are

39) that is, large enough to contain any value in the range of INT_MIN and INT_MAX, as defined in the header <climits>.

53

ISO/IEC 14882:2003(E)  ISO/IEC

3.9.1 Fundamental types 3 Basic concepts

provided to meet special needs.

3 For each of the signed integer types, there exists a corresponding (but different) unsigned integer type:
“unsigned char”, “unsigned short int”, “unsigned int”, and “unsigned long
int,” each of which occupies the same amount of storage and has the same alignment requirements (3.9)
as the corresponding signed integer type40) ; that is, each signed integer type has the same object represen-
tation as its corresponding unsigned integer type. The range of nonnegative values of a signed integer type
is a subrange of the corresponding unsigned integer type, and the value representation of each correspond-
ing signed/unsigned type shall be the same.

4 Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo 2n where n is the num-
ber of bits in the value representation of that particular size of integer.41)

5 Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest
extended character set specified among the supported locales (22.1.1). Type wchar_t shall have the same
size, signedness, and alignment requirements (3.9) as one of the other integral types, called its underlying
type.

6 Values of type bool are either true or false.42) [Note: there are no signed, unsigned, short, or
long bool types or values.] As described below, bool values behave as integral types. Values of type
bool participate in integral promotions (4.5).

7 Types bool, char, wchar_t, and the signed and unsigned integer types are collectively called integral
types.43) A synonym for integral type is integer type. The representations of integral types shall define val-
ues by use of a pure binary numeration system.44) [Example: this International Standard permits 2’s com-
plement, 1’s complement and signed magnitude representations for integral types.]

8 There are three floating point types: float, double, and long double. The type double provides
at least as much precision as float, and the type long double provides at least as much precision as
double. The set of values of the type float is a subset of the set of values of the type double; the set
of values of the type double is a subset of the set of values of the type long double. The value repre-
sentation of floating-point types is implementation-defined. Integral and floating types are collectively
called arithmetic types. Specializations of the standard template numeric_limits (18.2) shall specify
the maximum and minimum values of each arithmetic type for an implementation.

9 The void type has an empty set of values. The void type is an incomplete type that cannot be completed.
It is used as the return type for functions that do not return a value. Any expression can be explicitly con-
verted to type cv void (5.4). An expression of type void shall be used only as an expression statement
(6.2), as an operand of a comma expression (5.18), as a second or third operand of ?: (5.16), as the operand
of typeid, or as the expression in a return statement (6.6.3) for a function with the return type void.

10 [Note: even if the implementation defines two or more basic types to have the same value representation,
they are nevertheless different types.]

40) See 7.1.5.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.
41) This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting unsigned inte-
ger type is reduced modulo the number that is one greater than the largest value that can be represented by the resulting unsigned inte-
ger type.
42) Using a bool value in ways described by this International Standard as ‘‘undefined,’’ such as by examining the value of an unini-
tialized automatic variable, might cause it to behave as if it is neither true nor false.
43) Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to int, unsigned int, long, or
unsigned long, as specified in 4.5.
44) A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits are
additive, begin with 1, and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position.
(Adapted from the American National Dictionary for Information Processing Systems.)

54

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.9.2 Compound types

[basic.compound] 3.9.2 Compound types

1 Compound types can be constructed in the following ways:

— arrays of objects of a given type, 8.3.4;

— functions, which have parameters of given types and return void or references or objects of a given
type, 8.3.5;

— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;

— references to objects or functions of a given type, 8.3.2;

— classes containing a sequence of objects of various types (clause 9), a set of types, enumerations and
functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities
(clause 11);

— unions, which are classes capable of containing objects of different types at different times, 9.5;

— enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a
different enumerated type, 7.2;

— pointers to non-static45) class members, which identify members of a given type within objects of a
given class, 8.3.3.

2 These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4,
8.3.5, and 8.3.2.

3 A pointer to objects of type T is referred to as a “pointer to T.” [Example: a pointer to an object of type int
is referred to as “pointer to int” and a pointer to an object of class X is called a “pointer to X.”] Except for
pointers to static members, text referring to “pointers” does not apply to pointers to members. Pointers to
incomplete types are allowed although there are restrictions on what can be done with them (3.9). A valid
value of an object pointer type represents either the address of a byte in memory (1.7) or a null pointer
(4.10). If an object of type T is located at an address A, a pointer of type cv T* whose value is the address
A is said to point to that object, regardless of how the value was obtained. [Note: for instance, the address
one past the end of an array (5.7) would be considered to point to an unrelated object of the array’s element
type that might be located at that address.] The value representation of pointer types is implementation-
defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible types shall have
the same value representation and alignment requirements (3.9).

4 Objects of cv-qualified (3.9.3) or cv-unqualified type void* (pointer to void), can be used to point to
objects of unknown type. A void* shall be able to hold any object pointer. A cv-qualified or cv-
unqualified (3.9.3) void* shall have the same representation and alignment requirements as a cv-qualified
or cv-unqualified char*.

[basic.type.qualifier] 3.9.3 CV-qualifiers

1 A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete
or incomplete object type or is void (3.9) has three corresponding cv-qualified versions of its type: a
const-qualified version, a volatile-qualified version, and a const-volatile-qualified version. The term object
type (1.8) includes the cv-qualifiers specified when the object is created. The presence of a const speci-
fier in a decl-specifier-seq declares an object of const-qualified object type; such object is called a const
object. The presence of a volatile specifier in a decl-specifier-seq declares an object of volatile-
qualified object type; such object is called a volatile object. The presence of both cv-qualifiers in a decl-
specifier-seq declares an object of const-volatile-qualified object type; such object is called a const volatile
object. The cv-qualified or cv-unqualified versions of a type are distinct types; however, they shall have
the same representation and alignment requirements (3.9).46)

45) Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.
46) The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values
from functions, and members of unions.

55

ISO/IEC 14882:2003(E)  ISO/IEC

3.9.3 CV-qualifiers 3 Basic concepts

2 A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is com-
pounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

3 Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-
qualified, each non-static, non-reference data member of a volatile-qualified class object is volatile-
qualified and similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding cv-qualified
function types.

4 There is a (partial) ordering on cv-qualifiers, so that a type can be said to be more cv-qualified than another.
Table 6 shows the relations that constitute this ordering.

Table 6—relations on const and volatile
_ _____________________________________
no cv-qualifier < const
no cv-qualifier < volatile
no cv-qualifier < const volatile

const < const volatile
volatile < const volatile_ _____________________________________ 














5 In this International Standard, the notation cv (or cv1, cv2, etc.), used in the description of types, represents
an arbitrary set of cv-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, or the
empty set. Cv-qualifiers applied to an array type attach to the underlying element type, so the notation
“cv T,” where T is an array type, refers to an array whose elements are so-qualified. Such array types can
be said to be more (or less) cv-qualified than other types based on the cv-qualification of the underlying ele-
ment types.

[basic.lval] 3.10 Lvalues and rvalues

1 Every expression is either an lvalue or an rvalue.

2 An lvalue refers to an object or function. Some rvalue expressions—those of class or cv-qualified class
type—also refer to objects.47)

3 [Note: some built-in operators and function calls yield lvalues. [Example: if E is an expression of pointer
type, then *E is an lvalue expression referring to the object or function to which E points. As another
example, the function

int& f();

yields an lvalue, so the call f() is an lvalue expression.]]

4 [Note: some built-in operators expect lvalue operands. [Example: built-in assignment operators all expect
their left hand operands to be lvalues.] Other built-in operators yield rvalues, and some expect them.
[Example: the unary and binary + operators expect rvalue arguments and yield rvalue results.] The discus-
sion of each built-in operator in clause 5 indicates whether it expects lvalue operands and whether it yields
an lvalue.]

5 The result of calling a function that does not return a reference is an rvalue. User defined operators are
functions, and whether such operators expect or yield lvalues is determined by their parameter and return
types.

6 An expression which holds a temporary object resulting from a cast to a nonreference type is an rvalue (this
includes the explicit creation of an object using functional notation (5.2.3)).

47) Expressions such as invocations of constructors and of functions that return a class type refer to objects, and the implementation
can invoke a member function upon such objects, but the expressions are not lvalues.

56

 ISO/IEC ISO/IEC 14882:2003(E)

3 Basic concepts 3.10 Lvalues and rvalues

7 Whenever an lvalue appears in a context where an rvalue is expected, the lvalue is converted to an rvalue;
see 4.1, 4.2, and 4.3.

8 The discussion of reference initialization in 8.5.3 and of temporaries in 12.2 indicates the behavior of lval-
ues and rvalues in other significant contexts.

9 Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues
shall always have complete types or the void type; in addition to these types, lvalues can also have incom-
plete types.

10 An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can
also be used to modify its referent under certain circumstances. [Example: a member function called for an
object (9.3) can modify the object.]

11 Functions cannot be modified, but pointers to functions can be modifiable.

12 A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type
is complete, the object at which the pointer points can also be modified.

13 The referent of a const-qualified expression shall not be modified (through that expression), except that if
it is of class type and has a mutable component, that component can be modified (7.1.5.1).

14 If an expression can be used to modify the object to which it refers, the expression is called modifiable. A
program that attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-
formed.

15 If a program attempts to access the stored value of an object through an lvalue of other than one of the fol-
lowing types the behavior is undefined48):

— the dynamic type of the object,

— a cv-qualified version of the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to the dynamic type of the object,

— a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of
the object,

— an aggregate or union type that includes one of the aforementioned types among its members (includ-
ing, recursively, a member of a subaggregate or contained union),

— a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,

— a char or unsigned char type.

48) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

57

ISO/IEC 14882:2003(E)  ISO/IEC

58

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

4 Standard conversions 4 Standard conversions

4 Standard conversions [conv]

1 Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set of
such conversions. A standard conversion sequence is a sequence of standard conversions in the following
order:

— Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion,
and function-to-pointer conversion.

— Zero or one conversion from the following set: integral promotions, floating point promotion, integral
conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to
member conversions, and boolean conversions.

— Zero or one qualification conversion.

[Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions.] A standard
conversion sequence will be applied to an expression if necessary to convert it to a required destination
type.

2 [Note: expressions with a given type will be implicitly converted to other types in several contexts:

— When used as operands of operators. The operator’s requirements for its operands dictate the destina-
tion type (clause 5).

— When used in the condition of an if statement or iteration statement (6.4, 6.5). The destination type is
bool.

— When used in the expression of a switch statement. The destination type is integral (6.4).

— When used as the source expression for an initialization (which includes use as an argument in a func-
tion call and use as the expression in a return statement). The type of the entity being initialized is
(generally) the destination type. See 8.5, 8.5.3.

—end note]

3 An expression e can be implicitly converted to a type T if and only if the declaration “T t=e;” is well-
formed, for some invented temporary variable t (8.5). The effect of the implicit conversion is the same as
performing the declaration and initialization and then using the temporary variable as the result of the con-
version. The result is an lvalue if T is a reference type (8.3.2), and an rvalue otherwise. The expression e
is used as an lvalue if and only if the initialization uses it as an lvalue.

4 [Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an
implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-
defined conversion followed by another standard conversion sequence.

5 There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue con-
version is not done on the operand of the unary & operator. Specific exceptions are given in the descrip-
tions of those operators and contexts.]

[conv.lval] 4.1 Lvalue-to-rvalue conversion

1 An lvalue (3.10) of a non-function, non-array type T can be converted to an rvalue. If T is an incomplete
type, a program that necessitates this conversion is ill-formed. If the object to which the lvalue refers is not
an object of type T and is not an object of a type derived from T, or if the object is uninitialized, a program
that necessitates this conversion has undefined behavior. If T is a non-class type, the type of the rvalue is
the cv-unqualified version of T. Otherwise, the type of the rvalue is T. 49)

49) In C + + class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues never
have cv-qualified types.

59

ISO/IEC 14882:2003(E)  ISO/IEC

4.1 Lvalue-to-rvalue conversion 4 Standard conversions

2 The value contained in the object indicated by the lvalue is the rvalue result. When an lvalue-to-rvalue con-
version occurs within the operand of sizeof (5.3.3) the value contained in the referenced object is not
accessed, since that operator does not evaluate its operand.

3 [Note: See also 3.10.]

[conv.array] 4.2 Array-to-pointer conversion

1 An lvalue or rvalue of type “array of N T” or “array of unknown bound of T” can be converted to an rvalue
of type “pointer to T.” The result is a pointer to the first element of the array.

2 A string literal (2.13.4) that is not a wide string literal can be converted to an rvalue of type “pointer to
char”; a wide string literal can be converted to an rvalue of type “pointer to wchar_t”. In either case,
the result is a pointer to the first element of the array. This conversion is considered only when there is an
explicit appropriate pointer target type, and not when there is a general need to convert from an lvalue to an
rvalue. [Note: this conversion is deprecated. See Annex D.] For the purpose of ranking in overload reso-
lution (13.3.3.1.1), this conversion is considered an array-to-pointer conversion followed by a qualification
conversion (4.4). [Example: "abc" is converted to “pointer to const char” as an array-to-pointer con-
version, and then to “pointer to char” as a qualification conversion.]

[conv.func] 4.3 Function-to-pointer conversion

1 An lvalue of function type T can be converted to an rvalue of type “pointer to T.” The result is a pointer to
the function.50)

2 [Note: See 13.4 for additional rules for the case where the function is overloaded.]

[conv.qual] 4.4 Qualification conversions

1 An rvalue of type “pointer to cv1 T” can be converted to an rvalue of type “pointer to cv2 T” if “cv2 T” is
more cv-qualified than “cv1 T.”

2 An rvalue of type “pointer to member of X of type cv1 T” can be converted to an rvalue of type “pointer to
member of X of type cv2 T” if “cv2 T” is more cv-qualified than “cv1 T.”

3 [Note: Function types (including those used in pointer to member function types) are never cv-qualified
(8.3.5).]

4 A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the fol-
lowing rules:51)

Two pointer types T1 and T2 are similar if there exists a type T and integer n >0 such that:

T1 is cv1 , 0 pointer to cv1 , 1 pointer to . . . cv1 ,n −1 pointer to cv1 ,n T

and

T2 is cv2 , 0 pointer to cv2 , 1 pointer to . . . cv2 ,n −1 pointer to cv2 ,n T

where each cv i , j is const, volatile, const volatile, or nothing. The n-tuple of cv-qualifiers
after the first in a pointer type, e.g., cv1 , 1 , cv1 , 2 , . . . , cv1 ,n in the pointer type T1, is called the cv-
qualification signature of the pointer type. An expression of type T1 can be converted to type T2 if and
only if the following conditions are satisfied:

— the pointer types are similar.

— for every j >0, if const is in cv1 , j then const is in cv2 , j , and similarly for volatile.

— if the cv1 , j and cv2 , j are different, then const is in every cv2 ,k for 0 <k < j.

50) This conversion never applies to nonstatic member functions because an lvalue that refers to a nonstatic member function cannot be
obtained.
51) These rules ensure that const-safety is preserved by the conversion.

60

 ISO/IEC ISO/IEC 14882:2003(E)

4 Standard conversions 4.4 Qualification conversions

[Note: if a program could assign a pointer of type T** to a pointer of type const T** (that is, if line //1
below was allowed), a program could inadvertently modify a const object (as it is done on line //2). For
example,

int main() {
const char c = ’c’;
char* pc;
const char** pcc = &pc; //1: not allowed
*pcc = &c;
*pc = ’C’; //2: modifies a const object

}

—end note]

5 A multi-level pointer to member type, or a multi-level mixed pointer and pointer to member type has the
form:

cv0 P 0 to cv1 P 1 to . . . cvn −1 P n −1 to cvn T

where P i is either a pointer or pointer to member and where T is not a pointer type or pointer to member
type.

6 Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1
and T2 are similar if there exists a type T and integer n >0 such that:

T1 is cv1 , 0 P 0 to cv1 , 1 P 1 to . . . cv1 ,n −1 P n −1 to cv1 ,n T

and

T2 is cv2 , 0 P 0 to cv2 , 1 P 1 to . . . cv2 ,n −1 P n −1 to cv2 ,n T

7 For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to mem-
ber types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.

[conv.prom] 4.5 Integral promotions

1 An rvalue of type char, signed char, unsigned char, short int, or unsigned short
int can be converted to an rvalue of type int if int can represent all the values of the source type; other-
wise, the source rvalue can be converted to an rvalue of type unsigned int.

2 An rvalue of type wchar_t (3.9.1) or an enumeration type (7.2) can be converted to an rvalue of the first
of the following types that can represent all the values of its underlying type: int, unsigned int,
long, or unsigned long.

3 An rvalue for an integral bit-field (9.6) can be converted to an rvalue of type int if int can represent all
the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can rep-
resent all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the
bit-field has an enumerated type, it is treated as any other value of that type for promotion purposes.

4 An rvalue of type bool can be converted to an rvalue of type int, with false becoming zero and true
becoming one.

5 These conversions are called integral promotions.

[conv.fpprom] 4.6 Floating point promotion

1 An rvalue of type float can be converted to an rvalue of type double. The value is unchanged.

2 This conversion is called floating point promotion.

61

ISO/IEC 14882:2003(E)  ISO/IEC

4.7 Integral conversions 4 Standard conversions

[conv.integral] 4.7 Integral conversions

1 An rvalue of an integer type can be converted to an rvalue of another integer type. An rvalue of an enumer-
ation type can be converted to an rvalue of an integer type.

2 If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
integer (modulo 2n where n is the number of bits used to represent the unsigned type). [Note: In a two’s
complement representation, this conversion is conceptual and there is no change in the bit pattern (if there
is no truncation).]

3 If the destination type is signed, the value is unchanged if it can be represented in the destination type (and
bit-field width); otherwise, the value is implementation-defined.

4 If the destination type is bool, see 4.12. If the source type is bool, the value false is converted to zero
and the value true is converted to one.

5 The conversions allowed as integral promotions are excluded from the set of integral conversions.

[conv.double] 4.8 Floating point conversions

1 An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source
value can be exactly represented in the destination type, the result of the conversion is that exact representa-
tion. If the source value is between two adjacent destination values, the result of the conversion is an
implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

2 The conversions allowed as floating point promotions are excluded from the set of floating point conver-
sions.

[conv.fpint] 4.9 Floating-integral conversions

1 An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion trun-
cates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be
represented in the destination type. [Note: If the destination type is bool, see 4.12.]

2 An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point
type. The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next
lower or higher representable value. [Note: loss of precision occurs if the integral value cannot be repre-
sented exactly as a value of the floating type.] If the source type is bool, the value false is converted to
zero and the value true is converted to one.

[conv.ptr] 4.10 Pointer conversions

1 A null pointer constant is an integral constant expression (5.19) rvalue of integer type that evaluates to
zero. A null pointer constant can be converted to a pointer type; the result is the null pointer value of that
type and is distinguishable from every other value of pointer to object or pointer to function type. Two null
pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointer
to cv-qualified type is a single conversion, and not the sequence of a pointer conversion followed by a qual-
ification conversion (4.4).

2 An rvalue of type “pointer to cv T,” where T is an object type, can be converted to an rvalue of type
“pointer to cv void.” The result of converting a “pointer to cv T” to a “pointer to cv void” points to the
start of the storage location where the object of type T resides, as if the object is a most derived object (1.8)
of type T (that is, not a base class subobject).

3 An rvalue of type “pointer to cv D,” where D is a class type, can be converted to an rvalue of type “pointer
to cv B,” where B is a base class (clause 10) of D. If B is an inaccessible (clause 11) or ambiguous (10.2)
base class of D, a program that necessitates this conversion is ill-formed. The result of the conversion is a
pointer to the base class sub-object of the derived class object. The null pointer value is converted to the
null pointer value of the destination type.

62

 ISO/IEC ISO/IEC 14882:2003(E)

4 Standard conversions 4.11 Pointer to member conversions

[conv.mem] 4.11 Pointer to member conversions

1 A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member
pointer value of that type and is distinguishable from any pointer to member not created from a null pointer
constant. Two null member pointer values of the same type shall compare equal. The conversion of a null
pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of
a pointer to member conversion followed by a qualification conversion (4.4).

2 An rvalue of type “pointer to member of B of type cv T,” where B is a class type, can be converted to an
rvalue of type “pointer to member of D of type cv T,” where D is a derived class (clause 10) of B. If B is an
inaccessible (clause 11), ambiguous (10.2) or virtual (10.1) base class of D, a program that necessitates this
conversion is ill-formed. The result of the conversion refers to the same member as the pointer to member
before the conversion took place, but it refers to the base class member as if it were a member of the
derived class. The result refers to the member in D’s instance of B. Since the result has type “pointer to
member of D of type cv T,” it can be dereferenced with a D object. The result is the same as if the pointer to
member of B were dereferenced with the B sub-object of D. The null member pointer value is converted to
the null member pointer value of the destination type.52)

[conv.bool] 4.12 Boolean conversions

1 An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of
type bool. A zero value, null pointer value, or null member pointer value is converted to false; any
other value is converted to true.

52) The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted
compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, clause 10). This inversion is necessary to
ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of
such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted to a void*.

63

ISO/IEC 14882:2003(E)  ISO/IEC

64

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5 Expressions

5 Expressions [expr]

1 [Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions. An expression is a
sequence of operators and operands that specifies a computation. An expression can result in a value and
can cause side effects.

2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (clause 9) or
enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described in
13.5. Overloaded operators obey the rules for syntax specified in clause 5, but the requirements of operand
type, lvalue, and evaluation order are replaced by the rules for function call. Relations between operators,
such as ++a meaning a+=1, are not guaranteed for overloaded operators (13.5), and are not guaranteed for
operands of type bool. —end note]

3 Clause 5 defines the effects of operators when applied to types for which they have not been overloaded.
Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to
types for which they are defined by this Standard. However, these built-in operators participate in overload
resolution, and as part of that process user-defined conversions will be considered where necessary to con-
vert the operands to types appropriate for the built-in operator. If a built-in operator is selected, such con-
versions will be applied to the operands before the operation is considered further according to the rules in
clause 5; see 13.3.1.2, 13.6.

4 Except where noted, the order of evaluation of operands of individual operators and subexpressions of indi-
vidual expressions, and the order in which side effects take place, is unspecified.53) Between the previous
and next sequence point a scalar object shall have its stored value modified at most once by the evaluation
of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored.
The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined. [Example:

i = v[i++]; // the behavior is unspecified
i = 7, i++, i++; // i becomes 9

i = ++i + 1; // the behavior is unspecified
i = i + 1; // the value of i is incremented

—end example]

5 If during the evaluation of an expression, the result is not mathematically defined or not in the range of rep-
resentable values for its type, the behavior is undefined, unless such an expression is a constant expression
(5.19), in which case the program is ill-formed. [Note: most existing implementations of C + + ignore integer
overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all floating point
exceptions vary among machines, and is usually adjustable by a library function.]

6 If an expression initially has the type “reference to T” (8.3.2, 8.5.3), the type is adjusted to “T” prior to any
further analysis, the expression designates the object or function denoted by the reference, and the expres-
sion is an lvalue.

7 An expression designating an object is called an object-expression.

8 Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand,
the lvalue-to-rvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are
applied to convert the expression to an rvalue. [Note: because cv-qualifiers are removed from the type of
an expression of non-class type when the expression is converted to an rvalue, an lvalue expression of type
const int can, for example, be used where an rvalue expression of type int is required.]

53) The precedence of operators is not directly specified, but it can be derived from the syntax.

65

ISO/IEC 14882:2003(E)  ISO/IEC

5 Expressions 5 Expressions

9 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield
result types in a similar way. The purpose is to yield a common type, which is also the type of the result.
This pattern is called the usual arithmetic conversions, which are defined as follows:

— If either operand is of type long double, the other shall be converted to long double.

— Otherwise, if either operand is double, the other shall be converted to double.

— Otherwise, if either operand is float, the other shall be converted to float.

— Otherwise, the integral promotions (4.5) shall be performed on both operands.54)

— Then, if either operand is unsigned long the other shall be converted to unsigned long.

— Otherwise, if one operand is a long int and the other unsigned int, then if a long int can rep-
resent all the values of an unsigned int, the unsigned int shall be converted to a long int;
otherwise both operands shall be converted to unsigned long int.

— Otherwise, if either operand is long, the other shall be converted to long.

— Otherwise, if either operand is unsigned, the other shall be converted to unsigned.

[Note: otherwise, the only remaining case is that both operands are int]

10 The values of the floating operands and the results of floating expressions may be represented in greater
precision and range than that required by the type; the types are not changed thereby.55)

[expr.prim] 5.1 Primary expressions

1 Primary expressions are literals, names, and names qualified by the scope resolution operator ::.

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name
template-id

2 A literal is a primary expression. Its type depends on its form (2.13). A string literal is an lvalue; all other
literals are rvalues.

3 The keyword this names a pointer to the object for which a nonstatic member function (9.3.2) is invoked.
The keyword this shall be used only inside a nonstatic class member function body (9.3) or in a construc-
tor mem-initializer (12.6.2). The type of the expression is a pointer to the function’s class (9.3.2), possibly
with cv-qualifiers on the class type. The expression is an rvalue.

4 The operator :: followed by an identifier, a qualified-id, or an operator-function-id is a primary-
expression. Its type is specified by the declaration of the identifier, qualified-id, or operator-function-id.
The result is the entity denoted by the identifier, qualified-id, or operator-function-id. The result is an
lvalue if the entity is a function or variable. The identifier, qualified-id, or operator-function-id shall have

54) As a consequence, operands of type bool, wchar_t, or an enumerated type are converted to some integral type.
55) The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

66

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.1 Primary expressions

global namespace scope or be visible in global scope because of a using-directive (7.3.4). [Note: the use of
:: allows a type, an object, a function, an enumerator, or a namespace declared in the global namespace to
be referred to even if its identifier has been hidden (3.4.3).]

5 A parenthesized expression is a primary expression whose type and value are identical to those of the
enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The
parenthesized expression can be used in exactly the same contexts as those where the enclosed expression
can be used, and with the same meaning, except as otherwise indicated.

6 An id-expression is a restricted form of a primary-expression. [Note: an id-expression can appear after .
and -> operators (5.2.5).]

7 An identifier is an id-expression provided it has been suitably declared (clause 7). [Note: for operator-
function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for template-ids, see 14.2. A class-name
prefixed by ˜ denotes a destructor; see 12.4. Within the definition of a nonstatic member function, an
identifier that names a nonstatic member is transformed to a class member access expression (9.3.1).] The
type of the expression is the type of the identifier. The result is the entity denoted by the identifier. The
result is an lvalue if the entity is a function, variable, or data member.

qualified-id:
::opt nested-name-specifier templateopt unqualified-id
:: identifier
:: operator-function-id
:: template-id

nested-name-specifier:
class-or-namespace-name :: nested-name-specifieropt

class-or-namespace-name :: template nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

A nested-name-specifier that names a class, optionally followed by the keyword template (14.2), and
then followed by the name of a member of either that class (9.2) or one of its base classes (clause 10), is a
qualified-id; 3.4.3.1 describes name lookup for class members that appear in qualified-ids. The result is the
member. The type of the result is the type of the member. The result is an lvalue if the member is a static
member function or a data member. [Note: a class member can be referred to using a qualified-id at any
point in its potential scope (3.3.6).] Where class-name :: class-name is used, and the two class-names
refer to the same class, this notation names the constructor (12.1). Where class-name :: ˜ class-name is
used, the two class-names shall refer to the same class; this notation names the destructor (12.4). [Note: a
typedef-name that names a class is a class-name (7.1.3). Except as the identifier in the declarator for a con-
structor or destructor definition outside of a class member-specification (12.1, 12.4), a typedef-name that
names a class may be used in a qualified-id to refer to a constructor or destructor.]

8 A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that name-
space (or the name of a member of a namespace made visible by a using-directive) is a qualified-id; 3.4.3.2
describes name lookup for namespace members that appear in qualified-ids. The result is the member. The
type of the result is the type of the member. The result is an lvalue if the member is a function or a vari-
able.

9 In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the
same type in both the context in which the entire qualified-id occurs and in the context of the class denoted
by the nested-name-specifier.

10 An id-expression that denotes a nonstatic data member or nonstatic member function of a class can only be
used:

— as part of a class member access (5.2.5) in which the object-expression refers to the member’s class or a
class derived from that class, or

67

ISO/IEC 14882:2003(E)  ISO/IEC

5.1 Primary expressions 5 Expressions

— to form a pointer to member (5.3.1), or

— in the body of a nonstatic member function of that class or of a class derived from that class (9.3.1), or

— in a mem-initializer for a constructor for that class or for a class derived from that class (12.6.2).

11 A template-id shall be used as an unqualified-id only as specified in 14.7.2, 14.7, and 14.5.4.

[expr.post] 5.2 Postfix expressions

1 Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listopt)
simple-type-specifier (expression-listopt)
typename ::opt nested-name-specifier identifier (expression-listopt)
typename ::opt nested-name-specifier templateopt template-id (expression-listopt)
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list , assignment-expression

pseudo-destructor-name:
::opt nested-name-specifieropt type-name :: ˜ type-name
::opt nested-name-specifier template template-id :: ˜ type-name
::opt nested-name-specifieropt ˜ type-name

[expr.sub] 5.2.1 Subscripting

1 A postfix expression followed by an expression in square brackets is a postfix expression. One of the
expressions shall have the type “pointer to T” and the other shall have enumeration or integral type. The
result is an lvalue of type “T.” The type “T” shall be a completely-defined object type.56) The expression
E1[E2] is identical (by definition) to *((E1)+(E2)). [Note: see 5.3 and 5.7 for details of * and + and
8.3.4 for details of arrays.]

[expr.call] 5.2.2 Function call

1 There are two kinds of function call: ordinary function call and member function57) (9.3) call. A function
call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of
expressions which constitute the arguments to the function. For an ordinary function call, the postfix
expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard
conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling a
function through an expression whose function type has a language linkage that is different from the

56) This is true even if the subscript operator is used in the following common idiom: &x[0].
57) A static member function (9.4) is an ordinary function.

68

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.2.2 Function call

language linkage of the function type of the called function’s definition is undefined (7.5). For a member
function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5)
whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a func-
tion member. The first expression in the postfix expression is then called the object expression, and the call
is as a member of the object pointed to or referred to. In the case of an implicit class member access, the
implied object is the one pointed to by this. [Note: a member function call of the form f() is interpreted
as (*this).f() (see 9.3.1).] If a function or member function name is used, the name can be over-
loaded (clause 13), in which case the appropriate function shall be selected according to the rules in 13.3.
The function called in a member function call is normally selected according to the static type of the object
expression (clause 10), but if that function is virtual and is not specified using a qualified-id then the
function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the
object expression [Note: the dynamic type is the type of the object pointed or referred to by the current
value of the object expression. 12.7 describes the behavior of virtual function calls when the object-
expression refers to an object under construction or destruction.]

2 If no declaration of the called function is visible from the scope of the call the program is ill-formed.

3 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the
virtual keyword), even if the type of the function actually called is different. This type shall be a com-
plete object type, a reference type or the type void.

4 When a function is called, each parameter (8.3.5) shall be initialized (8.5, 12.8, 12.1) with its corresponding
argument. If the function is a nonstatic member function, the “this” parameter of the function (9.3.2)
shall be initialized with a pointer to the object of the call, converted as if by an explicit type conversion
(5.4). [Note: There is no access checking on this conversion; the access checking is done as part of the
(possibly implicit) class member access operator. See 11.2.] When a function is called, the parameters
that have object type shall have completely-defined object type. [Note: this still allows a parameter to be a
pointer or reference to an incomplete class type. However, it prevents a passed-by-value parameter to have
an incomplete class type.] During the initialization of a parameter, an implementation may avoid the con-
struction of extra temporaries by combining the conversions on the associated argument and/or the con-
struction of temporaries with the initialization of the parameter (see 12.2). The lifetime of a parameter ends
when the function in which it is defined returns. The initialization and destruction of each parameter occurs
within the context of the calling function. [Example: the access of the constructor, conversion functions or
destructor is checked at the point of call in the calling function. If a constructor or destructor for a function
parameter throws an exception, the search for a handler starts in the scope of the calling function; in partic-
ular, if the function called has a function-try-block (clause 15) with a handler that could handle the excep-
tion, this handler is not considered.] The value of a function call is the value returned by the called func-
tion except in a virtual function call if the return type of the final overrider is different from the return type
of the statically chosen function, the value returned from the final overrider is converted to the return type
of the statically chosen function.

5 [Note: a function can change the values of its non-const parameters, but these changes cannot affect the val-
ues of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a const-
qualified type, const_cast is required to be used to cast away the constness in order to modify the
argument’s value. Where a parameter is of const reference type a temporary object is introduced if
needed (7.1.5, 2.13, 2.13.4, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant
objects through pointer parameters.]

6 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more
arguments (by using the ellipsis, ... 8.3.5) than the number of parameters in the function definition (8.4).
[Note: this implies that, except where the ellipsis (...) is used, a parameter is available for each argument.
]

7 When there is no parameter for a given argument, the argument is passed in such a way that the receiving
function can obtain the value of the argument by invoking va_arg (18.7). The lvalue-to-rvalue (4.1),
array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the argument
expression. After these conversions, if the argument does not have arithmetic, enumeration, pointer,

69

ISO/IEC 14882:2003(E)  ISO/IEC

5.2.2 Function call 5 Expressions

pointer to member, or class type, the program is ill-formed. If the argument has a non-POD class type
(clause 9), the behavior is undefined. If the argument has integral or enumeration type that is subject to the
integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6), the
value of the argument is converted to the promoted type before the call. These promotions are referred to
as the default argument promotions.

8 The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations
take effect before the function is entered. The order of evaluation of the postfix expression and the argu-
ment expression list is unspecified.

9 Recursive calls are permitted, except to the function named main (3.6.1).

10 A function call is an lvalue if and only if the result type is a reference.

[expr.type.conv] 5.2.3 Explicit type conversion (functional notation)

1 A simple-type-specifier (7.1.5) followed by a parenthesized expression-list constructs a value of the speci-
fied type given the expression list. If the expression list is a single expression, the type conversion expres-
sion is equivalent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If
the simple-type-specifier specifies a class type, the class type shall be complete. If the expression list speci-
fies more than a single value, the type shall be a class with a suitably declared constructor (8.5, 12.1), and
the expression T(x1, x2, ...) is equivalent in effect to the declaration T t(x1, x2, ...); for
some invented temporary variable t, with the result being the value of t as an rvalue.

2 The expression T(), where T is a simple-type-specifier (7.1.5.2) for a non-array complete object type or
the (possibly cv-qualified) void type, creates an rvalue of the specified type, which is value-initialized (8.5;
no initialization is done for the void() case). [Note: if T is a non-class type that is cv-qualified, the
cv-qualifiers are ignored when determining the type of the resulting rvalue (3.10).]

[expr.pseudo] 5.2.4 Pseudo destructor call

1 The use of a pseudo-destructor-name after a dot . or arrow -> operator represents the destructor for the
non-class type named by type-name. The result shall only be used as the operand for the function call oper-
ator (), and the result of such a call has type void. The only effect is the evaluation of the postfix-
expression before the dot or arrow.

2 The left hand side of the dot operator shall be of scalar type. The left hand side of the arrow operator shall
be of pointer to scalar type. This scalar type is the object type. The type designated by the pseudo-
destructor-name shall be the same as the object type. Furthermore, the two type-names in a pseudo-
destructor-name of the form

::opt nested-name-specifieropt type-name :: ˜ type-name

shall designate the same scalar type. The cv-unqualified versions of the object type and of the type desig-
nated by the pseudo-destructor-name shall be the same type.

[expr.ref] 5.2.5 Class member access

1 A postfix expression followed by a dot . or an arrow ->, optionally followed by the keyword template
(14.8.1), and then followed by an id-expression, is a postfix expression. The postfix expression before the
dot or arrow is evaluated;58) the result of that evaluation, together with the id-expression, determine the
result of the entire postfix expression.

2 For the first option (dot) the type of the first expression (the object expression) shall be “class object” (of a
complete type). For the second option (arrow) the type of the first expression (the pointer expression) shall
be “pointer to class object” (of a complete type). In these cases, the id-expression shall name a member of
the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope

58) This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the
id-expression denotes a static member.

70

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.2.5 Class member access

(clause 9), the name of a class is also considered a nested member of that class.] [Note: 3.4.5 describes
how names are looked up after the . and -> operators.]

3 If E1 has the type “pointer to class X,” then the expression E1->E2 is converted to the equivalent form
(*(E1)).E2; the remainder of 5.2.5 will address only the first option (dot)59). Abbreviating object-
expression.id-expression as E1.E2, then the type and lvalue properties of this expression are determined as
follows. In the remainder of 5.2.5, cq represents either const or the absence of const; vq represents
either volatile or the absence of volatile. cv represents an arbitrary set of cv-qualifiers, as defined
in 3.9.3.

4 If E2 is declared to have type “reference to T”, then E1.E2 is an lvalue; the type of E1.E2 is T. Other-
wise, one of the following rules applies.

— If E2 is a static data member, and the type of E2 is T, then E1.E2 is an lvalue; the expression desig-
nates the named member of the class. The type of E1.E2 is T.

— If E2 is a non-static data member, and the type of E1 is “cq1 vq1 X”, and the type of E2 is “cq2 vq2 T”,
the expression designates the named member of the object designated by the first expression. If E1 is
an lvalue, then E1.E2 is an lvalue. Let the notation vq12 stand for the “union” of vq1 and vq2 ; that is,
if vq1 or vq2 is volatile, then vq12 is volatile. Similarly, let the notation cq12 stand for the
“union” of cq1 and cq2; that is, if cq1 or cq2 is const, then cq12 is const. If E2 is declared to be a
mutable member, then the type of E1.E2 is “vq12 T”. If E2 is not declared to be a mutable mem-
ber, then the type of E1.E2 is “cq12 vq12 T”.

— If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to deter-
mine whether E1.E2 refers to a static or a non-static member function.

— If it refers to a static member function, and the type of E2 is “function of (parameter type list)
returning T”, then E1.E2 is an lvalue; the expression designates the static member function. The
type of E1.E2 is the same type as that of E2, namely “function of (parameter type list) returning
T”.

— Otherwise, if E1.E2 refers to a non-static member function, and the type of E2 is “function of
(parameter type list) cv returning T”, then E1.E2 is not an lvalue. The expression designates a
non-static member function. The expression can be used only as the left-hand operand of a member
function call (9.3). [Note: any redundant set of parentheses surrounding the expression is ignored
(5.1).] The type of E1.E2 is “function of (parameter type list) cv returning T”.

— If E2 is a nested type, the expression E1.E2 is ill-formed.

— If E2 is a member enumerator, and the type of E2 is T, the expression E1.E2 is not an lvalue. The
type of E1.E2 is T.

5 [Note: “class objects” can be structures (9.2) and unions (9.5). Classes are discussed in clause 9.]

[expr.post.incr] 5.2.6 Increment and decrement

1 The value obtained by applying a postfix ++ is the value that the operand had before applying the operator.
[Note: the value obtained is a copy of the original value] The operand shall be a modifiable lvalue. The
type of the operand shall be an arithmetic type or a pointer to a complete object type. After the result is
noted, the value of the object is modified by adding 1 to it, unless the object is of type bool, in which case
it is set to true. [Note: this use is deprecated, see annex D.] The result is an rvalue. The type of the
result is the cv-unqualified version of the type of the operand. See also 5.7 and 5.17.

2 The operand of postfix -- is decremented analogously to the postfix ++ operator, except that the operand
shall not be of type bool. [Note: For prefix increment and decrement, see 5.3.2.]

59) Note that if E1 has the type “pointer to class X”, then (*(E1)) is an lvalue.

71

ISO/IEC 14882:2003(E)  ISO/IEC

5.2.7 Dynamic cast 5 Expressions

[expr.dynamic.cast] 5.2.7 Dynamic cast

1 The result of the expression dynamic_cast<T>(v) is the result of converting the expression v to type
T. T shall be a pointer or reference to a complete class type, or “pointer to cv void”. Types shall not be
defined in a dynamic_cast. The dynamic_cast operator shall not cast away constness (5.2.11).

2 If T is a pointer type, v shall be an rvalue of a pointer to complete class type, and the result is an rvalue of
type T. If T is a reference type, v shall be an lvalue of a complete class type, and the result is an lvalue of
the type referred to by T.

3 If the type of v is the same as the required result type (which, for convenience, will be called R in this
description), or it is the same as R except that the class object type in R is more cv-qualified than the class
object type in v, the result is v (converted if necessary).

4 If the value of v is a null pointer value in the pointer case, the result is the null pointer value of type R.

5 If T is “pointer to cv1 B” and v has type “pointer to cv2 D” such that B is a base class of D, the result is a
pointer to the unique B sub-object of the D object pointed to by v. Similarly, if T is “reference to cv1 B”
and v has type “cv2 D” such that B is a base class of D, the result is an lvalue for the unique60) B sub-object
of the D object referred to by v. In both the pointer and reference cases, cv1 shall be the same cv-
qualification as, or greater cv-qualification than, cv2, and B shall be an accessible unambiguous base class
of D. [Example:

struct B {};
struct D : B {};
void foo(D* dp)
{

B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}

—end example]

6 Otherwise, v shall be a pointer to or an lvalue of a polymorphic type (10.3).

7 If T is “pointer to cv void,” then the result is a pointer to the most derived object pointed to by v. Other-
wise, a run-time check is applied to see if the object pointed or referred to by v can be converted to the type
pointed or referred to by T.

8 The run-time check logically executes as follows:

— If, in the most derived object pointed (referred) to by v, v points (refers) to a public base class sub-
object of a T object, and if only one object of type T is derived from the sub-object pointed (referred) to
by v, the result is a pointer (an lvalue referring) to that T object.

— Otherwise, if v points (refers) to a public base class sub-object of the most derived object, and the
type of the most derived object has a base class, of type T, that is unambiguous and public, the result
is a pointer (an lvalue referring) to the T sub-object of the most derived object.

— Otherwise, the run-time check fails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to
reference type throws bad_cast (18.5.2).

60) The most derived object (1.8) pointed or referred to by v can contain other B objects as base classes, but these are ignored.

72

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.2.7 Dynamic cast

[Example:

class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{

D d;
B* bp = (B*)&d; // cast needed to break protection
A* ap = &d; // public derivation, no cast needed
D& dr = dynamic_cast<D&>(*bp); // fails
ap = dynamic_cast<A*>(bp); // fails
bp = dynamic_cast<B*>(ap); // fails
ap = dynamic_cast<A*>(&d); // succeeds
bp = dynamic_cast<B*>(&d); // fails

}

class E : public D, public B {};
class F : public E, public D {};
void h()
{

F f;
A* ap = &f; // succeeds: finds unique A
D* dp = dynamic_cast<D*>(ap); // fails: yields 0

// f has two D sub-objects
E* ep = (E*)ap; // ill-formed:

// cast from virtual base
E* ep1 = dynamic_cast<E*>(ap); // succeeds

}

—end example] [Note: 12.7 describes the behavior of a dynamic_cast applied to an object under con-
struction or destruction.]

[expr.typeid] 5.2.8 Type identification

1 The result of a typeid expression is an lvalue of static type const std::type_info (18.5.1) and
dynamic type const std::type_info or const name where name is an implementation-defined
class derived from std::type_info which preserves the behavior described in 18.5.1.61) The lifetime
of the object referred to by the lvalue extends to the end of the program. Whether or not the destructor is
called for the type_info object at the end of the program is unspecified.

2 When typeid is applied to an lvalue expression whose type is a polymorphic class type (10.3), the result
refers to a type_info object representing the type of the most derived object (1.8) (that is, the dynamic
type) to which the lvalue refers. If the lvalue expression is obtained by applying the unary * operator to a
pointer62) and the pointer is a null pointer value (4.10), the typeid expression throws the bad_typeid
exception (18.5.3).

3 When typeid is applied to an expression other than an lvalue of a polymorphic class type, the result
refers to a type_info object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-
to-pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the type of
the expression is a class type, the class shall be completely-defined. The expression is not evaluated.

4 When typeid is applied to a type-id, the result refers to a type_info object representing the type of the
type-id. If the type of the type-id is a reference type, the result of the typeid expression refers to a
type_info object representing the referenced type. If the type of the type-id is a class type or a reference
to a class type, the class shall be completely-defined. Types shall not be defined in the type-id.

61) The recommended name for such a class is extended_type_info.
62) If p is an expression of pointer type, then *p, (*p), *(p), ((*p)), *((p)), and so on all meet this requirement.

73

ISO/IEC 14882:2003(E)  ISO/IEC

5.2.8 Type identification 5 Expressions

5 The top-level cv-qualifiers of the lvalue expression or the type-id that is the operand of typeid are always
ignored. [Example:

class D { ... };
D d1;
const D d2;

typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true

—end example]

6 If the header <typeinfo> (18.5.1) is not included prior to a use of typeid, the program is ill-formed.

7 [Note: 12.7 describes the behavior of typeid applied to an object under construction or destruction.]

[expr.static.cast] 5.2.9 Static cast

1 The result of the expression static_cast<T>(v) is the result of converting the expression v to type T.
If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be defined
in a static_cast. The static_cast operator shall not cast away constness (5.2.11).

2 An expression e can be explicitly converted to a type T using a static_cast of the form
static_cast<T>(e) if the declaration “T t(e);” is well-formed, for some invented temporary vari-
able t (8.5). The effect of such an explicit conversion is the same as performing the declaration and initial-
ization and then using the temporary variable as the result of the conversion. The result is an lvalue if T is a
reference type (8.3.2), and an rvalue otherwise. The expression e is used as an lvalue if and only if the
initialization uses it as an lvalue.

3 Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion
shall be performed explicitly using a static_cast.

4 Any expression can be explicitly converted to type “cv void.” The expression value is discarded. [Note:
however, if the value is in a temporary variable (12.2), the destructor for that variable is not executed until
the usual time, and the value of the variable is preserved for the purpose of executing the destructor.] The
lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the expression.

5 An lvalue of type “cv1 B”, where B is a class type, can be cast to type “reference to cv2 D”, where D is a
class derived (clause 10) from B, if a valid standard conversion from “pointer to D” to “pointer to B” exists
(4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cv1, and B is not a virtual base
class of D. The result is an lvalue of type “cv2 D.” If the lvalue of type “cv1 B” is actually a sub-object of
an object of type D, the lvalue refers to the enclosing object of type D. Otherwise, the result of the cast is
undefined. [Example:

struct B {};
struct D : public B {};
D d;
B &br = d;

static_cast<D&>(br); // produces lvalue to the original d object

—end example]

6 The inverse of any standard conversion sequence (clause 4), other than the lvalue-to-rvalue (4.1), array-to-
pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using
static_cast. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conver-
sions are applied to the operand. Such a static_cast is subject to the restriction that the explicit con-
version does not cast away constness (5.2.11), and the following additional rules for specific cases:

74

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.2.9 Static cast

7 A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is
unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting
enumeration value is unspecified.

8 An rvalue of type “pointer to cv1 B”, where B is a class type, can be converted to an rvalue of type “pointer
to cv2 D”, where D is a class derived (clause 10) from B, if a valid standard conversion from “pointer to D”
to “pointer to B” exists (4.10), cv2 is the same cv-qualification as, or greater cv-qualification than, cv1, and
B is not a virtual base class of D. The null pointer value (4.10) is converted to the null pointer value of the
destination type. If the rvalue of type “pointer to cv1 B” points to a B that is actually a sub-object of an
object of type D, the resulting pointer points to the enclosing object of type D. Otherwise, the result of the
cast is undefined.

9 An rvalue of type “pointer to member of D of type cv1 T” can be converted to an rvalue of type “pointer to
member of B of type cv2 T”, where B is a base class (clause 10) of D, if a valid standard conversion from
“pointer to member of B of type T” to “pointer to member of D of type T” exists (4.11), and cv2 is the same
cv-qualification as, or greater cv-qualification than, cv1.63) The null member pointer value (4.11) is con-
verted to the null member pointer value of the destination type. If class B contains the original member, or
is a base or derived class of the class containing the original member, the resulting pointer to member
points to the original member. Otherwise, the result of the cast is undefined. [Note: although class B need
not contain the original member, the dynamic type of the object on which the pointer to member is derefer-
enced must contain the original member; see 5.5.]

10 An rvalue of type “pointer to cv1 void” can be converted to an rvalue of type “pointer to cv2 T,” where T
is an object type and cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. A value of
type pointer to object converted to “pointer to cv void” and back to the original pointer type will have its
original value.

[expr.reinterpret.cast] 5.2.10 Reinterpret cast

1 The result of the expression reinterpret_cast<T>(v) is the result of converting the expression v to
type T. If T is a reference type, the result is an lvalue; otherwise, the result is an rvalue and the lvalue-to-
rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the
the expression v. Types shall not be defined in a reinterpret_cast. Conversions that can be per-
formed explicitly using reinterpret_cast are listed below. No other conversion can be performed
explicitly using reinterpret_cast.

2 The reinterpret_cast operator shall not cast away constness. [Note: see 5.2.11 for the definition of
‘‘casting away constness’’. Subject to the restrictions in this section, an expression may be cast to its own
type using a reinterpret_cast operator.]

3 The mapping performed by reinterpret_cast is implementation-defined. [Note: it might, or might
not, produce a representation different from the original value.]

4 A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is
implementation-defined [Note: it is intended to be unsurprising to those who know the addressing structure
of the underlying machine.]

5 A value of integral type or enumeration type can be explicitly converted to a pointer.64) A pointer converted
to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type
will have its original value; mappings between pointers and integers are otherwise implementation-defined.

6 A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect
of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in the
definition of the function is undefined. Except that converting an rvalue of type “pointer to T1” to the type
“pointer to T2” (where T1 and T2 are function types) and back to its original type yields the original

63) Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5 .
64) Converting an integral constant expression (5.19) with value zero always yields a null pointer (4.10), but converting other expres-
sions that happen to have value zero need not yield a null pointer.

75

ISO/IEC 14882:2003(E)  ISO/IEC

5.2.10 Reinterpret cast 5 Expressions

pointer value, the result of such a pointer conversion is unspecified. [Note: see also 4.10 for more details of
pointer conversions.]

7 A pointer to an object can be explicitly converted to a pointer to an object of different type.65) Except that
converting an rvalue of type “pointer to T1” to the type “pointer to T2” (where T1 and T2 are object types
and where the alignment requirements of T2 are no stricter than those of T1) and back to its original type
yields the original pointer value, the result of such a pointer conversion is unspecified.

8 The null pointer value (4.10) is converted to the null pointer value of the destination type.

9 An rvalue of type “pointer to member of X of type T1” can be explicitly converted to an rvalue of type
“pointer to member of Y of type T2” if T1 and T2 are both function types or both object types.66) The null
member pointer value (4.11) is converted to the null member pointer value of the destination type. The
result of this conversion is unspecified, except in the following cases:

— converting an rvalue of type “pointer to member function” to a different pointer to member function
type and back to its original type yields the original pointer to member value.

— converting an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data mem-
ber of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1) and back
to its original type yields the original pointer to member value.

10 An lvalue expression of type T1 can be cast to the type “reference to T2” if an expression of type “pointer
to T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast. That is, a
reference cast reinterpret_cast<T&>(x) has the same effect as the conversion
reinterpret_cast<T>(&x) with the built-in & and * operators. The result is an lvalue that refers
to the same object as the source lvalue, but with a different type. No temporary is created, no copy is made,
and constructors (12.1) or conversion functions (12.3) are not called.67)

[expr.const.cast] 5.2.11 Const cast

1 The result of the expression const_cast<T>(v) is of type T. If T is a reference type, the result is an
lvalue; otherwise, the result is an rvalue and, the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and
function-to-pointer (4.3) standard conversions are performed on the expression v. Types shall not be
defined in a const_cast. Conversions that can be performed explicitly using const_cast are listed
below. No other conversion shall be performed explicitly using const_cast.

2 [Note: Subject to the restrictions in this section, an expression may be cast to its own type using a
const_cast operator.]

3 For two pointer types T1 and T2 where

T1 is cv1 , 0 pointer to cv1 , 1 pointer to . . . cv1 ,n −1 pointer to cv1 ,n T

and

T2 is cv2 , 0 pointer to cv2 , 1 pointer to . . . cv2 ,n −1 pointer to cv2 ,n T

where T is any object type or the void type and where cv1 ,k and cv2 ,k may be different cv-qualifications,
an rvalue of type T1 may be explicitly converted to the type T2 using a const_cast. The result of a
pointer const_cast refers to the original object.

4 An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast
const_cast<T2&> (where T1 and T2 are object types) if a pointer to T1 can be explicitly converted to
the type pointer to T2 using a const_cast. The result of a reference const_cast refers to the

65) The types may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away const-
ness.
66) T1 and T2 may have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away const-
ness.
67) This is sometimes referred to as a type pun.

76

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.2.11 Const cast

original object.

5 For a const_cast involving pointers to data members, multi-level pointers to data members and multi-
level mixed pointers and pointers to data members (4.4), the rules for const_cast are the same as those
used for pointers; the “member” aspect of a pointer to member is ignored when determining where the cv-
qualifiers are added or removed by the const_cast. The result of a pointer to data member
const_cast refers to the same member as the original (uncast) pointer to data member.

6 A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member
pointer value (4.11) is converted to the null member pointer value of the destination type.

7 [Note: Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data
member resulting from a const_cast that casts away a const-qualifier68) may produce undefined behav-
ior (7.1.5.1).]

8 The following rules define the process known as casting away constness. In these rules Tn and Xn repre-
sent types. For two pointer types:

X 1 is T 1cv1 , 1 * . . . cv1 ,N * where T 1 is not a pointer type

X 2 is T 2cv2 , 1 * . . . cv2 ,M * where T 2 is not a pointer type

K is min(N ,M)

casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit con-
version (clause 4) from:

Tcv 1 , (N −K +1) * cv 1 , (N −K +2) * . . . cv1 ,N *

to

Tcv 2 , (M −K +1) * cv 2 , (M −K +2) * . . . cv2 ,M *

9 Casting from an lvalue of type T1 to an lvalue of type T2 using a reference cast casts away constness if a
cast from an rvalue of type “pointer to T1” to the type “pointer to T2” casts away constness.

10 Casting from an rvalue of type “pointer to data member of X of type T1” to the type “pointer to data mem-
ber of Y of type T2” casts away constness if a cast from an rvalue of type “pointer to T1” to the type
“pointer to T2” casts away constness.

11 For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the
“member” aspect of a pointer to member level is ignored when determining if a const cv-qualifier has
been cast away.

12 [Note: some conversions which involve only changes in cv-qualification cannot be done using
const_cast. For instance, conversions between pointers to functions are not covered because such
conversions lead to values whose use causes undefined behavior. For the same reasons, conversions
between pointers to member functions, and in particular, the conversion from a pointer to a const member
function to a pointer to a non-const member function, are not covered.]

68) const_cast is not limited to conversions that cast away a const-qualifier.

77

ISO/IEC 14882:2003(E)  ISO/IEC

5.2.11 Const cast 5 Expressions

[expr.unary] 5.3 Unary expressions

1 Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ˜

[expr.unary.op] 5.3.1 Unary operators

1 The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an
object type, or a pointer to a function type and the result is an lvalue referring to the object or function to
which the expression points. If the type of the expression is “pointer to T,” the type of the result is “T.”
[Note: a pointer to an incomplete type (other than cv void) can be dereferenced. The lvalue thus obtained
can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to an
rvalue, see 4.1.]

2 The result of the unary & operator is a pointer to its operand. The operand shall be an lvalue or a qualified-
id. In the first case, if the type of the expression is “T,” the type of the result is “pointer to T.” In particular,
the address of an object of type “cv T” is “pointer to cv T,” with the same cv-qualifiers. For a qualified-id,
if the member is a static member of type “T”, the type of the result is plain “pointer to T.” If the member is
a nonstatic member of class C of type T, the type of the result is “pointer to member of class C of type
T.” [Example:

struct A { int i; };
struct B : A { };
... &B::i ... // has type int A::*

—end example] [Note: a pointer to member formed from a mutable nonstatic data member (7.1.1) does
not reflect the mutable specifier associated with the nonstatic data member.]

3 A pointer to member is only formed when an explicit & is used and its operand is a qualified-id not
enclosed in parentheses. [Note: that is, the expression &(qualified-id), where the qualified-id is
enclosed in parentheses, does not form an expression of type “pointer to member.” Neither does
qualified-id, because there is no implicit conversion from a qualified-id for a nonstatic member func-
tion to the type “pointer to member function” as there is from an lvalue of function type to the type “pointer
to function” (4.3). Nor is &unqualified-id a pointer to member, even within the scope of the
unqualified-id’s class.]

4 The address of an object of incomplete type can be taken, but if the complete type of that object is a class
type that declares operator&() as a member function, then the behavior is undefined (and no diagnostic
is required). The operand of & shall not be a bit-field.

5 The address of an overloaded function (clause 13) can be taken only in a context that uniquely determines
which version of the overloaded function is referred to (see 13.4). [Note: since the context might determine
whether the operand is a static or nonstatic member function, the context can also affect whether the expres-
sion has type “pointer to function” or “pointer to member function.”]

6 The operand of the unary + operator shall have arithmetic, enumeration, or pointer type and the result is the
value of the argument. Integral promotion is performed on integral or enumeration operands. The type of
the result is the type of the promoted operand.

78

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.3.1 Unary operators

7 The operand of the unary - operator shall have arithmetic or enumeration type and the result is the negation
of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an
unsigned quantity is computed by subtracting its value from 2n , where n is the number of bits in the pro-
moted operand. The type of the result is the type of the promoted operand.

8 The operand of the logical negation operator ! is implicitly converted to bool (clause 4); its value is
true if the converted operand is false and false otherwise. The type of the result is bool.

9 The operand of ˜ shall have integral or enumeration type; the result is the one’s complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted operand. There is an
ambiguity in the unary-expression ˜X(), where X is a class-name. The ambiguity is resolved in favor of
treating ˜ as a unary complement rather than treating ˜X as referring to a destructor.

[expr.pre.incr] 5.3.2 Increment and decrement

1 The operand of prefix ++ is modified by adding 1, or set to true if it is bool (this use is deprecated).
The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer
to a completely-defined object type. The value is the new value of the operand; it is an lvalue. If x is not
of type bool, the expression ++x is equivalent to x+=1. [Note: see the discussions of addition (5.7) and
assignment operators (5.17) for information on conversions.]

2 The operand of prefix -- is modified by subtracting 1. The operand shall not be of type bool. The
requirements on the operand of prefix -- and the properties of its result are otherwise the same as those of
prefix ++. [Note: For postfix increment and decrement, see 5.2.6.]

[expr.sizeof] 5.3.3 Sizeof

1 The sizeof operator yields the number of bytes in the object representation of its operand. The operand
is either an expression, which is not evaluated, or a parenthesized type-id. The sizeof operator shall not
be applied to an expression that has function or incomplete type, or to an enumeration type before all its
enumerators have been declared, or to the parenthesized name of such types, or to an lvalue that designates
a bit-field. sizeof(char), sizeof(signed char) and sizeof(unsigned char) are 1; the
result of sizeof applied to any other fundamental type (3.9.1) is implementation-defined. [Note: in par-
ticular, sizeof(bool) and sizeof(wchar_t) are implementation-defined.69)] [Note: See 1.7 for
the definition of byte and 3.9 for the definition of object representation.]

2 When applied to a reference or a reference type, the result is the size of the referenced type. When applied
to a class, the result is the number of bytes in an object of that class including any padding required for
placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8).
The result of applying sizeof to a base class subobject is the size of the base class type.70) When applied
to an array, the result is the total number of bytes in the array. This implies that the size of an array of n
elements is n times the size of an element.

3 The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a func-
tion.

4 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not
applied to the operand of sizeof.

5 Types shall not be defined in a sizeof expression.

6 The result is a constant of type size_t. [Note: size_t is defined in the standard header
<cstddef>(18.1).]

69) sizeof(bool) is not required to be 1.
70) The actual size of a base class subobject may be less than the result of applying sizeof to the subobject, due to virtual base
classes and less strict padding requirements on base class subobjects.

79

ISO/IEC 14882:2003(E)  ISO/IEC

5.3.4 New 5 Expressions

[expr.new] 5.3.4 New

1 The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied.
The type of that object is the allocated type. This type shall be a complete object type, but not an abstract
class type or array thereof (1.8, 3.9, 10.4). [Note: because references are not objects, references cannot be
created by new-expressions.] [Note: the type-id may be a cv-qualified type, in which case the object cre-
ated by the new-expression has a cv-qualified type.]

new-expression:
::opt new new-placementopt new-type-id new-initializeropt

::opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator [constant-expression]

new-initializer:
(expression-listopt)

Entities created by a new-expression have dynamic storage duration (3.7.3). [Note: the lifetime of such an
entity is not necessarily restricted to the scope in which it is created.] If the entity is a non-array object, the
new-expression returns a pointer to the object created. If it is an array, the new-expression returns a pointer
to the initial element of the array.

2 The new-type-id in a new-expression is the longest possible sequence of new-declarators. [Note: this pre-
vents ambiguities between declarator operators &, *, [], and their expression counterparts.] [Example:

new int * i; // syntax error: parsed as (new int*) i
// not as (new int)*i

The * is the pointer declarator and not the multiplication operator.]

3 [Note: parentheses in a new-type-id of a new-expression can have surprising effects. [Example:

new int(*[10])(); // error

is ill-formed because the binding is

(new int) (*[10])(); // error

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound
types (3.9.2):

new (int (*[10])());

allocates an array of 10 pointers to functions (taking no argument and returning int).]]

4 The type-specifier-seq shall not contain class declarations, or enumeration declarations.

5 When the allocated object is an array (that is, the direct-new-declarator syntax is used or the new-type-id or
type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the
array. [Note: both new int and new int[10] have type int* and the type of new int[i][10] is
int (*)[10].]

80

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.3.4 New

6 Every constant-expression in a direct-new-declarator shall be an integral constant expression (5.19) and
evaluate to a strictly positive value. The expression in a direct-new-declarator shall have integral or enu-
meration type (3.9.1) with a non-negative value. [Example: if n is a variable of type int, then
new float[n][5] is well-formed (because n is the expression of a direct-new-declarator), but
new float[5][n] is ill-formed (because n is not a constant-expression). If n is negative, the effect of
new float[n][5] is undefined.]

7 When the value of the expression in a direct-new-declarator is zero, the allocation function is called to allo-
cate an array with no elements.

8 A new-expression obtains storage for the object by calling an allocation function (3.7.3.1). If the new-
expression terminates by throwing an exception, it may release storage by calling a deallocation function
(3.7.3.2). If the allocated type is a non-array type, the allocation function’s name is operator new and
the deallocation function’s name is operator delete. If the allocated type is an array type, the alloca-
tion function’s name is operator new[] and the deallocation function’s name is
operator delete[]. [Note: an implementation shall provide default definitions for the global alloca-
tion functions (3.7.3, 18.4.1.1, 18.4.1.2). A C + + program can provide alternative definitions of these func-
tions (17.4.3.4) and/or class-specific versions (12.5).]

9 If the new-expression begins with a unary :: operator, the allocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function’s
name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a
class type, the allocation function’s name is looked up in the global scope.

10 A new-expression passes the amount of space requested to the allocation function as the first argument of
type std::size_t. That argument shall be no less than the size of the object being created; it may be
greater than the size of the object being created only if the object is an array. For arrays of char and
unsigned char, the difference between the result of the new-expression and the address returned by the
allocation function shall be an integral multiple of the most stringent alignment requirement (3.9) of any
object type whose size is no greater than the size of the array being created. [Note: Because allocation
functions are assumed to return pointers to storage that is appropriately aligned for objects of any type, this
constraint on array allocation overhead permits the common idiom of allocating character arrays into which
objects of other types will later be placed.]

11 The new-placement syntax is used to supply additional arguments to an allocation function. If used, over-
load resolution is performed on a function call created by assembling an argument list consisting of the
amount of space requested (the first argument) and the expressions in the new-placement part of the new-
expression (the second and succeeding arguments). The first of these arguments has type size_t and the
remaining arguments have the corresponding types of the expressions in the new-placement.

12 [Example:

— new T results in a call of operator new(sizeof(T)),

— new(2,f) T results in a call of operator new(sizeof(T),2,f),

— new T[5] results in a call of operator new[](sizeof(T)*5+x), and

— new(2,f) T[5] results in a call of operator new[](sizeof(T)*5+y,2,f).

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the
new-expression will be offset by this amount from the value returned by operator new[]. This over-
head may be applied in all array new-expressions, including those referencing the library function
operator new[](std::size_t, void*) and other placement allocation functions. The amount
of overhead may vary from one invocation of new to another.]

13 [Note: unless an allocation function is declared with an empty exception-specification (15.4), throw(), it
indicates failure to allocate storage by throwing a bad_alloc exception (clause 15, 18.4.2.1); it returns a
non-null pointer otherwise. If the allocation function is declared with an empty exception-specification,
throw(), it returns null to indicate failure to allocate storage and a non-null pointer otherwise.] If the

81

ISO/IEC 14882:2003(E)  ISO/IEC

5.3.4 New 5 Expressions

allocation function returns null, initialization shall not be done, the deallocation function shall not be called,
and the value of the new-expression shall be null.

14 [Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage
in which space for the object has been reserved. The block of storage is assumed to be appropriately
aligned and of the requested size. The address of the created object will not necessarily be the same as that
of the block if the object is an array.]

15 A new-expression that creates an object of type T initializes that object as follows:

— If the new-initializer is omitted:

— If T is a (possibly cv-qualified) non-POD class type (or array thereof), the object is default-
initialized (8.5). If T is a const-qualified type, the underlying class type shall have a user-declared
default constructor.

— Otherwise, the object created has indeterminate value. If T is a const-qualified type, or a (possibly
cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
const-qualified type, the program is ill-formed;

— If the new-initializer is of the form (), the item is value-initialized (8.5);

— If the new-initializer is of the form (expression-list) and T is a class type, the appropriate constructor is
called, using expression-list as the arguments (8.5);

— If the new-initializer is of the form (expression-list) and T is an arithmetic, enumeration, pointer, or
pointer-to-member type and expression-list comprises exactly one expression, then the object is initial-
ized to the (possibly converted) value of the expression (8.5);

— Otherwise the new-expression is ill-formed.

16 If the new-expression creates an object or an array of objects of class type, access and ambiguity control are
done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the new
expression creates an array of objects of class type, access and ambiguity control are done for the destructor
(12.4).

17 If any part of the object initialization described above71) terminates by throwing an exception and a suitable
deallocation function can be found, the deallocation function is called to free the memory in which the
object was being constructed, after which the exception continues to propagate in the context of the new-
expression. If no unambiguous matching deallocation function can be found, propagating the exception
does not cause the object’s memory to be freed. [Note: This is appropriate when the called allocation func-
tion does not allocate memory; otherwise, it is likely to result in a memory leak.]

18 If the new-expression begins with a unary :: operator, the deallocation function’s name is looked up in the
global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation
function’s name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type
is not a class type or array thereof, the deallocation function’s name is looked up in the global scope.

19 A declaration of a placement deallocation function matches the declaration of a placement allocation func-
tion if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter
types except the first are identical. Any non-placement deallocation function matches a non-placement
allocation function. If the lookup finds a single matching deallocation function, that function will be called;
otherwise, no deallocation function will be called.

20 If a new-expression calls a deallocation function, it passes the value returned from the allocation function
call as the first argument of type void*. If a placement deallocation function is called, it is passed the
same additional arguments as were passed to the placement allocation function, that is, the same arguments
as those specified with the new-placement syntax. If the implementation is allowed to make a copy of any
argument as part of the call to the allocation function, it is allowed to make a copy (of the same original

71) This may include evaluating a new-initializer and/or calling a constructor.

82

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.3.4 New

value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the allo-
cation function. If the copy is elided in one place, it need not be elided in the other.

21 Whether the allocation function is called before evaluating the constructor arguments or after evaluating the
constructor arguments but before entering the constructor is unspecified. It is also unspecified whether the
arguments to a constructor are evaluated if the allocation function returns the null pointer or exits using an
exception.

[expr.delete] 5.3.5 Delete

1 The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.

delete-expression:
::opt delete cast-expression
::opt delete [] cast-expression

The first alternative is for non-array objects, and the second is for arrays. The operand shall have a pointer
type, or a class type having a single conversion function (12.3.2) to a pointer type. The result has type
void.

2 If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned
conversion function, and the converted operand is used in place of the original operand for the remainder of
this section. In either alternative, if the value of the operand of delete is the null pointer the operation
has no effect. In the first alternative (delete object), the value of the operand of delete shall be a pointer
to a non-array object or a pointer to a sub-object (1.8) representing a base class of such an object (clause
10). If not, the behavior is undefined. In the second alternative (delete array), the value of the operand of
delete shall be the pointer value which resulted from a previous array new-expression.72) If not, the
behavior is undefined. [Note: this means that the syntax of the delete-expression must match the type of the
object allocated by new, not the syntax of the new-expression.] [Note: a pointer to a const type can be
the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11) of the pointer
expression before it is used as the operand of the delete-expression.]

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the
static type shall be a base class of the operand’s dynamic type and the static type shall have a virtual
destructor or the behavior is undefined. In the second alternative (delete array) if the dynamic type of the
object to be deleted differs from its static type, the behavior is undefined.73)

4 The cast-expression in a delete-expression shall be evaluated exactly once. If the delete-expression calls
the implementation deallocation function (3.7.3.2), and if the operand of the delete expression is not the
null pointer constant, the deallocation function will deallocate the storage referenced by the pointer thus
rendering the pointer invalid. [Note: the value of a pointer that refers to deallocated storage is indetermi-
nate.]

5 If the object being deleted has incomplete class type at the point of deletion and the complete class has a
non-trivial destructor or a deallocation function, the behavior is undefined.

6 The delete-expression will invoke the destructor (if any) for the object or the elements of the array being
deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in
reverse order of the completion of their constructor; see 12.6.2).

7 The delete-expression will call a deallocation function (3.7.3.2).

8 [Note: An implementation provides default definitions of the global deallocation functions
operator delete() for non-arrays (18.4.1.1) and operator delete[]() for arrays (18.4.1.2).
A C + + program can provide alternative definitions of these functions (17.4.3.4), and/or class-specific ver-
sions (12.5).] When the keyword delete in a delete-expression is preceded by the unary :: operator, the

72) For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression. Zero-
length arrays do not have a first element.
73) This implies that an object cannot be deleted using a pointer of type void* because there are no objects of type void.

83

ISO/IEC 14882:2003(E)  ISO/IEC

5.3.5 Delete 5 Expressions

global deallocation function is used to deallocate the storage.

9 Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

[expr.cast] 5.4 Explicit type conversion (cast notation)

1 The result of the expression (T) cast-expression is of type T. The result is an lvalue if T is a reference
type, otherwise the result is an rvalue. [Note: if T is a non-class type that is cv-qualified, the cv-qualifiers
are ignored when determining the type of the resulting rvalue; see 3.10.]

2 An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator
(dynamic_cast, static_cast, reinterpret_cast, const_cast), or the cast notation.

cast-expression:
unary-expression
(type-id) cast-expression

3 Types shall not be defined in casts.

4 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.

5 The conversions performed by

— a const_cast (5.2.11),

— a static_cast (5.2.9),

— a static_cast followed by a const_cast,

— a reinterpret_cast (5.2.10), or

— a reinterpret_cast followed by a const_cast,

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and
behaviors apply. If a conversion can be interpreted in more than one of the ways listed above, the interpre-
tation that appears first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a
conversion can be interpreted in more than one way as a static_cast followed by a const_cast, the
conversion is ill-formed. [Example:

struct A {};
struct I1 : A {};
struct I2 : A {};
struct D : I1, I2 {};
A *foo(D *p) {

return (A*)(p); // ill-formed static_cast interpretation
}

—end example]

6 The operand of a cast using the cast notation can be an rvalue of type “pointer to incomplete class type”.
The destination type of a cast using the cast notation can be “pointer to incomplete class type”. In such
cases, even if there is a inheritance relationship between the source and destination classes, whether the
static_cast or reinterpret_cast interpretation is used is unspecified.

7 In addition to those conversions, the following static_cast and reinterpret_cast operations
(optionally followed by a const_cast operation) may be performed using the cast notation of explicit
type conversion, even if the base class type is not accessible:

— a pointer to an object of derived class type or an lvalue of derived class type may be explicitly converted
to a pointer or reference to an unambiguous base class type, respectively;

— a pointer to member of derived class type may be explicitly converted to a pointer to member of an
unambiguous non-virtual base class type;

— a pointer to an object of non-virtual base class type, an lvalue of non-virtual base class type, or a pointer

84

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.4 Explicit type conversion (cast notation)

to member of non-virtual base class type may be explicitly converted to a pointer, a reference, or a
pointer to member of a derived class type, respectively.

[expr.mptr.oper] 5.5 Pointer-to-member operators

1 The pointer-to-member operators ->* and .* group left-to-right.

pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

2 The binary operator .* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of class T or of a class of which T
is an unambiguous and accessible base class. The result is an object or a function of the type specified by
the second operand.

3 The binary operator ->* binds its second operand, which shall be of type “pointer to member of T” (where
T is a completely-defined class type) to its first operand, which shall be of type “pointer to T” or “pointer to
a class of which T is an unambiguous and accessible base class.” The result is an object or a function of the
type specified by the second operand.

4 If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is
undefined.

5 The restrictions on cv-qualification, and the manner in which the cv-qualifiers of the operands are combined
to produce the cv-qualifiers of the result, are the same as the rules for E1.E2 given in 5.2.5. [Note: it is not
possible to use a pointer to member that refers to a mutable member to modify a const class object.
For example,

struct S {
mutable int i;

};
const S cs;
int S::* pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // ill-formed: cs is a const object

]

6 If the result of .* or ->* is a function, then that result can be used only as the operand for the function
call operator (). [Example:

(ptr_to_obj->*ptr_to_mfct)(10);

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj.] The
result of a .* expression is an lvalue only if its first operand is an lvalue and its second operand is a
pointer to data member. The result of an ->* expression is an lvalue only if its second operand is a pointer
to data member. If the second operand is the null pointer to member value (4.11), the behavior is unde-
fined.

[expr.mul] 5.6 Multiplicative operators

1 The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

2 The operands of * and / shall have arithmetic or enumeration type; the operands of % shall have integral or
enumeration type. The usual arithmetic conversions are performed on the operands and determine the type

85

ISO/IEC 14882:2003(E)  ISO/IEC

5.6 Multiplicative operators 5 Expressions

of the result.

3 The binary * operator indicates multiplication.

4 The binary / operator yields the quotient, and the binary % operator yields the remainder from the division
of the first expression by the second. If the second operand of / or % is zero the behavior is undefined; oth-
erwise (a/b)*b + a%b is equal to a. If both operands are nonnegative then the remainder is nonnega-
tive; if not, the sign of the remainder is implementation-defined74).

[expr.add] 5.7 Additive operators

1 The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for
operands of arithmetic or enumeration type.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

For addition, either both operands shall have arithmetic or enumeration type, or one operand shall be a
pointer to a completely defined object type and the other shall have integral or enumeration type.

2 For subtraction, one of the following shall hold:

— both operands have arithmetic or enumeration type; or

— both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined
object type; or

— the left operand is a pointer to a completely defined object type and the right operand has integral or
enumeration type.

3 The result of the binary + operator is the sum of the operands. The result of the binary - operator is the dif-
ference resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first
element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type of
the pointer operand. If the pointer operand points to an element of an array object, and the array is large
enough, the result points to an element offset from the original element such that the difference of the sub-
scripts of the resulting and original array elements equals the integral expression. In other words, if the
expression P points to the i-th element of an array object, the expressions (P)+N (equivalently, N+(P))
and (P)-N (where N has the value n) point to, respectively, the i+n-th and i–n-th elements of the array
object, provided they exist. Moreover, if the expression P points to the last element of an array object, the
expression (P)+1 points one past the last element of the array object, and if the expression Q points one
past the last element of an array object, the expression (Q)-1 points to the last element of the array object.
If both the pointer operand and the result point to elements of the same array object, or one past the last ele-
ment of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.

6 When two pointers to elements of the same array object are subtracted, the result is the difference of the
subscripts of the two array elements. The type of the result is an implementation-defined signed integral
type; this type shall be the same type that is defined as ptrdiff_t in the <cstddef> header (18.1). As
with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is unde-
fined. In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an
array object, the expression (P)-(Q) has the value i–j provided the value fits in an object of type
ptrdiff_t. Moreover, if the expression P points either to an element of an array object or one past the
last element of an array object, and the expression Q points to the last element of the same array object, the

74) According to work underway toward the revision of ISO C, the preferred algorithm for integer division follows the rules defined in
the ISO Fortran standard, ISO/IEC 1539:1991, in which the quotient is always rounded toward zero.

86

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.7 Additive operators

expression ((Q)+1)-(P) has the same value as ((Q)-(P))+1 and as -((P)-((Q)+1)), and has
the value zero if the expression P points one past the last element of the array object, even though the
expression (Q)+1 does not point to an element of the array object. Unless both pointers point to elements
of the same array object, or one past the last element of the array object, the behavior is undefined.75)

7 If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original
pointer value. If two pointers point to the same object or both point one past the end of the same array or
both are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the
type ptrdiff_t.

[expr.shift] 5.8 Shift operators

1 The shift operators << and >> group left-to-right.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The operands shall be of integral or enumeration type and integral promotions are performed. The type of
the result is that of the promoted left operand. The behavior is undefined if the right operand is negative, or
greater than or equal to the length in bits of the promoted left operand.

2 The value of E1 << E2 is E1 (interpreted as a bit pattern) left-shifted E2 bit positions; vacated bits are
zero-filled. If E1 has an unsigned type, the value of the result is E1 multiplied by the quantity 2 raised to
the power E2, reduced modulo ULONG_MAX+1 if E1 has type unsigned long, UINT_MAX+1 otherwise.
[Note: the constants ULONG_MAX and UINT_MAX are defined in the header <climits>).]

3 The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of E1 divided
by the quantity 2 raised to the power E2. If E1 has a signed type and a negative value, the resulting value
is implementation-defined.

[expr.rel] 5.9 Relational operators

1 The relational operators group left-to-right. [Example: a<b<c means (a<b)<c and not
(a<b)&&(b<c).]

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operands shall have arithmetic, enumeration or pointer type. The operators < (less than), > (greater
than), <= (less than or equal to), and >= (greater than or equal to) all yield false or true. The type of
the result is bool.

2 The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer
conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer
operand and a null pointer constant) to bring them to their composite pointer type. If one operand is a null
pointer constant, the composite pointer type is the type of the other operand. Otherwise, if one of the

75) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral value
of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and
the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character
pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program)
just after the end of the object in order to satisfy the “one past the last element” requirements.

87

ISO/IEC 14882:2003(E)  ISO/IEC

5.9 Relational operators 5 Expressions

operands has type “pointer to cv1 void”, then the other has type “pointer to cv2 T” and the composite
pointer type is “pointer to cv12 void”, where cv12 is the union of cv1 and cv2. Otherwise, the composite
pointer type is a pointer type similar (4.4) to the type of one of the operands, with a cv-qualification signa-
ture (4.4) that is the union of the cv-qualification signatures of the operand types. [Note: this implies that
any pointer can be compared to a null pointer constant and that any object pointer can be compared to a
pointer to (possibly cv-qualified) void.] [Example:

void *p;
const int *q;
int **pi;
const int *const *pci;
void ct()
{

p <= q; // Both converted to const void * before comparison
pi <= pci; // Both converted to const int *const * before comparison

}

—end example] Pointers to objects or functions of the same type (after pointer conversions) can be com-
pared, with a result defined as follows:

— If two pointers p and q of the same type point to the same object or function, or both point one past the
end of the same array, or are both null, then p<=q and p>=q both yield true and p<q and p>q both
yield false.

— If two pointers p and q of the same type point to different objects that are not members of the same
object or elements of the same array or to different functions, or if only one of them is null, the results
of p<q, p>q, p<=q, and p>=q are unspecified.

— If two pointers point to nonstatic data members of the same object, or to subobjects or array elements of
such members, recursively, the pointer to the later declared member compares greater provided the two
members are not separated by an access-specifier label (11.1) and provided their class is not a union.

— If two pointers point to nonstatic data members of the same object separated by an access-specifier label
(11.1) the result is unspecified.

— If two pointers point to data members of the same union object, they compare equal (after conversion to
void*, if necessary). If two pointers point to elements of the same array or one beyond the end of the
array, the pointer to the object with the higher subscript compares higher.

— Other pointer comparisons are unspecified.

[expr.eq] 5.10 Equality operators

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

1 The == (equal to) and the != (not equal to) operators have the same semantic restrictions, conversions, and
result type as the relational operators except for their lower precedence and truth-value result. [Note: a<b
== c<d is true whenever a<b and c<d have the same truth-value.] Pointers to objects or functions of
the same type (after pointer conversions) can be compared for equality. Two pointers of the same type
compare equal if and only if they are both null, both point to the same function, or both represent the same
address (3.9.2).

2 In addition, pointers to members can be compared, or a pointer to member and a null pointer constant.
Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a
common type. If one operand is a null pointer constant, the common type is the type of the other operand.
Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands,
with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand
types. [Note: this implies that any pointer to member can be compared to a null pointer constant.] If both

88

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.10 Equality operators

operands are null, they compare equal. Otherwise if only one is null, they compare unequal. Otherwise if
either is a pointer to a virtual member function, the result is unspecified. Otherwise they compare equal if
and only if they would refer to the same member of the same most derived object (1.8) or the same subob-
ject if they were dereferenced with a hypothetical object of the associated class type. [Example:

struct B {
int f();

};
struct L : B { };
struct R : B { };
struct D : L, R { };

int (B::*pb)() = &B::f;
int (L::*pl)() = pb;
int (R::*pr)() = pb;
int (D::*pdl)() = pl;
int (D::*pdr)() = pr;
bool x = (pdl == pdr); // false

—end example]

[expr.bit.and] 5.11 Bitwise AND operator

and-expression:
equality-expression
and-expression & equality-expression

1 The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The
operator applies only to integral or enumeration operands.

[expr.xor] 5.12 Bitwise exclusive OR operator

exclusive-or-expression:
and-expression
exclusive-or-expression ˆ and-expression

1 The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function of the
operands. The operator applies only to integral or enumeration operands.

[expr.or] 5.13 Bitwise inclusive OR operator

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

1 The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of its
operands. The operator applies only to integral or enumeration operands.

[expr.log.and] 5.14 Logical AND operator

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

1 The && operator groups left-to-right. The operands are both implicitly converted to type bool (clause 4).
The result is true if both operands are true and false otherwise. Unlike &, && guarantees left-to-right
evaluation: the second operand is not evaluated if the first operand is false.

2 The result is a bool. All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

89

ISO/IEC 14882:2003(E)  ISO/IEC

5.15 Logical OR operator 5 Expressions

[expr.log.or] 5.15 Logical OR operator

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

1 The || operator groups left-to-right. The operands are both implicitly converted to bool (clause 4). It
returns true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-
right evaluation; moreover, the second operand is not evaluated if the first operand evaluates to true.

2 The result is a bool. All side effects of the first expression except for destruction of temporaries (12.2)
happen before the second expression is evaluated.

[expr.cond] 5.16 Conditional operator

conditional-expression:
logical-or-expression
logical-or-expression ? expression : assignment-expression

1 Conditional expressions group right-to-left. The first expression is implicitly converted to bool (clause 4).
It is evaluated and if it is true, the result of the conditional expression is the value of the second expres-
sion, otherwise that of the third expression. All side effects of the first expression except for destruction of
temporaries (12.2) happen before the second or third expression is evaluated. Only one of the second and
third expressions is evaluated.

2 If either the second or the third operand has type (possibly cv-qualified) void, then the lvalue-to-rvalue
(4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second
and third operands, and one of the following shall hold:

— The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type of
the other and is an rvalue.

— Both the second and the third operands have type void; the result is of type void and is an rvalue.
[Note: this includes the case where both operands are throw-expressions.]

3 Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class
type, an attempt is made to convert each of those operands to the type of the other. The process for deter-
mining whether an operand expression E1 of type T1 can be converted to match an operand expression E2
of type T2 is defined as follows:

— If E2 is an lvalue: E1 can be converted to match E2 if E1 can be implicitly converted (clause 4) to the
type “reference to T2”, subject to the constraint that in the conversion the reference must bind directly
(8.5.3) to E1.

— If E2 is an rvalue, or if the conversion above cannot be done:

— if E1 and E2 have class type, and the underlying class types are the same or one is a base class of
the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base class of,
the class of T1, and the cv-qualification of T2 is the same cv-qualification as, or a greater cv-
qualification than, the cv-qualification of T1. If the conversion is applied, E1 is changed to an
rvalue of type T2 that still refers to the original source class object (or the appropriate subobject
thereof). [Note: that is, no copy is made.]

— Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying
classes are not either the same or one a base class of the other): E1 can be converted to match E2 if
E1 can be implicitly converted to the type that expression E2 would have if E2 were converted to an
rvalue (or the type it has, if E2 is an rvalue).

Using this process, it is determined whether the second operand can be converted to match the third
operand, and whether the third operand can be converted to match the second operand. If both can be con-
verted, or one can be converted but the conversion is ambiguous, the program is ill-formed. If neither can

90

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.16 Conditional operator

be converted, the operands are left unchanged and further checking is performed as described below. If
exactly one conversion is possible, that conversion is applied to the chosen operand and the converted
operand is used in place of the original operand for the remainder of this section.

4 If the second and third operands are lvalues and have the same type, the result is of that type and is an
lvalue.

5 Otherwise, the result is an rvalue. If the second and third operand do not have the same type, and either has
(possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be
applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Other-
wise, the conversions thus determined are applied, and the converted operands are used in place of the orig-
inal operands for the remainder of this section.

6 Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are per-
formed on the second and third operands. After those conversions, one of the following shall hold:

— The second and third operands have the same type; the result is of that type.

— The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions
are performed to bring them to a common type, and the result is of that type.

— The second and third operands have pointer type, or one has pointer type and the other is a null pointer
constant; pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to
their composite pointer type (5.9). The result is of the composite pointer type.

— The second and third operands have pointer to member type, or one has pointer to member type and the
other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions
(4.4) are performed to bring them to a common type, whose cv-qualification shall match the cv-
qualification of either the second or the third operand. The result is of the common type.

[expr.ass] 5.17 Assignment operators

1 There are several assignment operators, all of which group right-to-left. All require a modifiable lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The result of the
assignment operation is the value stored in the left operand after the assignment has taken place; the result
is an lvalue.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ˆ= |=

2 In simple assignment (=), the value of the expression replaces that of the object referred to by the left
operand.

3 If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified
type of the left operand.

4 If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined
by the copy assignment operator (12.8, 13.5.3).

5 [Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8).]

6 When the left operand of an assignment operator denotes a reference to T, the operation assigns to the
object of type T denoted by the reference.

7 The behavior of an expression of the form E1 op= E2 is equivalent to E1 = E1 op E2 except that E1 is
evaluated only once. In += and -=, E1 shall either have arithmetic type or be a pointer to a possibly cv-
qualified completely defined object type. In all other cases, E1 shall have arithmetic type.

91

ISO/IEC 14882:2003(E)  ISO/IEC

5.17 Assignment operators 5 Expressions

8 If the value being stored in an object is accessed from another object that overlaps in any way the storage of
the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the
behavior is undefined.

[expr.comma] 5.18 Comma operator

1 The comma operator groups left-to-right.

expression:
assignment-expression
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is
discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conver-
sions are not applied to the left expression. All side effects (1.9) of the left expression, except for the
destruction of temporaries (12.2), are performed before the evaluation of the right expression. The type and
value of the result are the type and value of the right operand; the result is an lvalue if its right operand is.

2 In contexts where comma is given a special meaning, [Example: in lists of arguments to functions (5.2.2)
and lists of initializers (8.5)] the comma operator as described in clause 5 can appear only in parentheses.
[Example:

f(a, (t=3, t+2), c);

has three arguments, the second of which has the value 5.]

[expr.const] 5.19 Constant expressions

1 In several places, C + + requires expressions that evaluate to an integral or enumeration constant: as array
bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6), as enumerator initializers (7.2),
as static member initializers (9.4.2), and as integral or enumeration non-type template arguments (14.3).

constant-expression:
conditional-expression

An integral constant-expression can involve only literals (2.13), enumerators, const variables or static
data members of integral or enumeration types initialized with constant expressions (8.5), non-type tem-
plate parameters of integral or enumeration types, and sizeof expressions. Floating literals (2.13.3) can
appear only if they are cast to integral or enumeration types. Only type conversions to integral or enumera-
tion types can be used. In particular, except in sizeof expressions, functions, class objects, pointers, or
references shall not be used, and assignment, increment, decrement, function-call, or comma operators shall
not be used.

2 Other expressions are considered constant-expressions only for the purpose of non-local static object
initialization (3.6.2). Such constant expressions shall evaluate to one of the following:

— a null pointer value (4.10),

— a null member pointer value (4.11),

— an arithmetic constant expression,

— an address constant expression,

— a reference constant expression,

— an address constant expression for a complete object type, plus or minus an integral constant expression,
or

— a pointer to member constant expression.

3 An arithmetic constant expression shall satisfy the requirements for an integral constant expression, except
that

— floating literals need not be cast to integral or enumeration type, and

92

 ISO/IEC ISO/IEC 14882:2003(E)

5 Expressions 5.19 Constant expressions

— conversions to floating point types are permitted.

4 An address constant expression is a pointer to an lvalue designating an object of static storage duration, a
string literal (2.13.4), or a function. The pointer shall be created explicitly, using the unary & operator, or
implicitly using a non-type template parameter of pointer type, or using an expression of array (4.2) or
function (4.3) type. The subscripting operator [] and the class member access . and -> operators, the &
and * unary operators, and pointer casts (except dynamic_casts, 5.2.7) can be used in the creation of an
address constant expression, but the value of an object shall not be accessed by the use of these operators.
If the subscripting operator is used, one of its operands shall be an integral constant expression. An expres-
sion that designates the address of a subobject of a non-POD class object (clause 9) is not an address con-
stant expression (12.7). Function calls shall not be used in an address constant expression, even if the func-
tion is inline and has a reference return type.

5 A reference constant expression is an lvalue designating an object of static storage duration, a non-type
template parameter of reference type, or a function. The subscripting operator [], the class member access
. and -> operators, the & and * unary operators, and reference casts (except those invoking user-defined
conversion functions (12.3.2) and except dynamic_casts (5.2.7)) can be used in the creation of a refer-
ence constant expression, but the value of an object shall not be accessed by the use of these operators. If
the subscripting operator is used, one of its operands shall be an integral constant expression. An lvalue
expression that designates a member or base class of a non-POD class object (clause 9) is not a reference
constant expression (12.7). Function calls shall not be used in a reference constant expression, even if the
function is inline and has a reference return type.

6 A pointer to member constant expression shall be created using the unary & operator applied to a qualified-
id operand (5.3.1), optionally preceded by a pointer to member cast (5.2.9).

93

ISO/IEC 14882:2003(E)  ISO/IEC

94

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

6 Statements 6 Statements

6 Statements [stmt.stmt]

1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

[stmt.label] 6.1 Labeled statement

1 A statement can be labeled.

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as the target of a goto. The
scope of a label is the function in which it appears. Labels shall not be redeclared within a function. A
label can be used in a goto statement before its definition. Labels have their own name space and do not
interfere with other identifiers.

2 Case labels and default labels shall occur only in switch statements.

[stmt.expr] 6.2 Expression statement

1 Expression statements have the form

expression-statement:
expressionopt ;

The expression is evaluated and its value is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from
an expression statement are completed before the next statement is executed. An expression statement with
the expression missing is called a null statement. [Note: Most statements are expression statements—
usually assignments or function calls. A null statement is useful to carry a label just before the } of a com-
pound statement and to supply a null body to an iteration statement such as a while statement (6.5.1).]

[stmt.block] 6.3 Compound statement or block

1 So that several statements can be used where one is expected, the compound statement (also, and equiva-
lently, called “block”) is provided.

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3.3). [Note: a declaration is a statement (6.7).]

95

ISO/IEC 14882:2003(E)  ISO/IEC

6.4 Selection statements 6 Statements

[stmt.select] 6.4 Selection statements

1 Selection statements choose one of several flows of control.

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator = assignment-expression

In clause 6, the term substatement refers to the contained statement or statements that appear in the syntax
notation. The substatement in a selection-statement (each substatement, in the else form of the if state-
ment) implicitly defines a local scope (3.3). If the substatement in a selection-statement is a single state-
ment and not a compound-statement, it is as if it was rewritten to be a compound-statement containing the
original substatement. [Example:

if (x)
int i;

can be equivalently rewritten as

if (x) {
int i;

}

Thus after the if statement, i is no longer in scope.]

2 The rules for conditions apply both to selection-statements and to the for and while statements (6.5).
The declarator shall not specify a function or an array. The type-specifier-seq shall not contain typedef
and shall not declare a new class or enumeration.

3 A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the
declarator of the condition) is in scope from its point of declaration until the end of the substatements con-
trolled by the condition. If the name is re-declared in the outermost block of a substatement controlled by
the condition, the declaration that re-declares the name is ill-formed. [Example:

if (int x = f()) {
int x; // ill-formed, redeclaration of x

}
else {

int x; // ill-formed, redeclaration of x
}

—end example]

4 The value of a condition that is an initialized declaration in a statement other than a switch statement is
the value of the declared variable implicitly converted to type bool. If that conversion is ill-formed, the
program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is
the value of the declared variable if it has integral or enumeration type, or of that variable implicitly con-
verted to integral or enumeration type otherwise. The value of a condition that is an expression is the value
of the expression, implicitly converted to bool for statements other than switch; if that conversion is
ill-formed, the program is ill-formed. The value of the condition will be referred to as simply “the condi-
tion” where the usage is unambiguous.

5 If a condition can be syntactically resolved as either an expression or the declaration of a local name, it is
interpreted as a declaration.

96

 ISO/IEC ISO/IEC 14882:2003(E)

6 Statements 6.4.1 The if statement

[stmt.if] 6.4.1 The if statement

1 If the condition (6.4) yields true the first substatement is executed. If the else part of the selection
statement is present and the condition yields false, the second substatement is executed. In the second
form of if statement (the one including else), if the first substatement is also an if statement then that
inner if statement shall contain an else part.76)

[stmt.switch] 6.4.2 The switch statement

1 The switch statement causes control to be transferred to one of several statements depending on the value
of a condition.

2 The condition shall be of integral type, enumeration type, or of a class type for which a single conversion
function to integral or enumeration type exists (12.3). If the condition is of class type, the condition is con-
verted by calling that conversion function, and the result of the conversion is used in place of the original
condition for the remainder of this section. Integral promotions are performed. Any statement within the
switch statement can be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression shall be an integral constant-expression. The integral constant-expression
(5.19) is implicitly converted to the promoted type of the switch condition. No two of the case constants in
the same switch shall have the same value after conversion to the promoted type of the switch condition.

3 There shall be at most one label of the form

default :

within a switch statement.

4 Switch statements can be nested; a case or default label is associated with the smallest switch enclos-
ing it.

5 When the switch statement is executed, its condition is evaluated and compared with each case constant.
If one of the case constants is equal to the value of the condition, control is passed to the statement follow-
ing the matched case label. If no case constant matches the condition, and if there is a default label,
control passes to the statement labeled by the default label. If no case matches and if there is no default
then none of the statements in the switch is executed.

6 case and default labels in themselves do not alter the flow of control, which continues unimpeded
across such labels. To exit from a switch, see break, 6.6.1. [Note: usually, the substatement that is the
subject of a switch is compound and case and default labels appear on the top-level statements con-
tained within the (compound) substatement, but this is not required. Declarations can appear in the sub-
statement of a switch-statement.]

[stmt.iter] 6.5 Iteration statements

1 Iteration statements specify looping.

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
simple-declaration

[Note: a for-init-statement ends with a semicolon.]

76) In other words, the else is associated with the nearest un-elsed if.

97

ISO/IEC 14882:2003(E)  ISO/IEC

6.5 Iteration statements 6 Statements

2 The substatement in an iteration-statement implicitly defines a local scope (3.3) which is entered and exited
each time through the loop.

3 If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if it
was rewritten to be a compound-statement containing the original statement. [Example:

while (--x >= 0)
int i;

can be equivalently rewritten as

while (--x >= 0) {
int i;

}

Thus after the while statement, i is no longer in scope.]

4 [Note: The requirements on conditions in iteration statements are described in 6.4. —end note]

[stmt.while] 6.5.1 The while statement

1 In the while statement the substatement is executed repeatedly until the value of the condition (6.4)
becomes false. The test takes place before each execution of the substatement.

2 When the condition of a while statement is a declaration, the scope of the variable that is declared extends
from its point of declaration (3.3.1) to the end of the while statement. A while statement of the form

while (T t = x) statement

is equivalent to

label:
{ // start of condition scope

T t = x;
if (t) {

statement
goto label;

}
} // end of condition scope

The object created in a condition is destroyed and created with each iteration of the loop. [Example:

struct A {
int val;
A(int i) : val(i) { }
˜A() { }
operator bool() { return val != 0; }

};
int i = 1;
while (A a = i) {

//...
i = 0;

}

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds
and once for the condition that fails.]

[stmt.do] 6.5.2 The do statement

1 The expression is implicitly converted to bool; if that is not possible, the program is ill-formed.

2 In the do statement the substatement is executed repeatedly until the value of the expression becomes
false. The test takes place after each execution of the statement.

98

 ISO/IEC ISO/IEC 14882:2003(E)

6 Statements 6.5.3 The for statement

[stmt.for] 6.5.3 The for statement

1 The for statement

for (for-init-statement conditionopt ; expressionopt) statement

is equivalent to

{
for-init-statement
while (condition) {

statement
expression ;

}
}

except that names declared in the for-init-statement are in the same declarative-region as those declared in
the condition, and except that a continue in statement (not enclosed in another iteration statement) will
execute expression before re-evaluating condition. [Note: Thus the first statement specifies initialization
for the loop; the condition (6.4) specifies a test, made before each iteration, such that the loop is exited
when the condition becomes false; the expression often specifies incrementing that is done after each
iteration.]

2 Either or both of the condition and the expression can be omitted. A missing condition makes the implied
while clause equivalent to while(true).

3 If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-
statement. [Example:

int i = 42;
int a[10];

for (int i = 0; i < 10; i++)
a[i] = i;

int j = i; // j = 42

—end example]

[stmt.jump] 6.6 Jump statements

1 Jump statements unconditionally transfer control.

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with
automatic storage duration (3.7.2) (named objects or temporaries) that are declared in that scope, in the
reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable
with automatic storage duration involves the destruction of variables with automatic storage duration that
are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into
blocks). [Note: However, the program can be terminated (by calling exit() or abort()(18.3), for
example) without destroying class objects with automatic storage duration.]

[stmt.break] 6.6.1 The break statement

1 The break statement shall occur only in an iteration-statement or a switch statement and causes termi-
nation of the smallest enclosing iteration-statement or switch statement; control passes to the statement
following the terminated statement, if any.

99

ISO/IEC 14882:2003(E)  ISO/IEC

6.6.2 The continue statement 6 Statements

[stmt.cont] 6.6.2 The continue statement

1 The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-
continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More pre-
cisely, in each of the statements

while (foo) { do { for (;;) {
{ { {
// ... // ... // ...
} } }
contin: ; contin: ; contin: ;
} } while (foo); }

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

[stmt.return] 6.6.3 The return statement

1 A function returns to its caller by the return statement.

2 A return statement without an expression can be used only in functions that do not return a value, that is, a
function with the return type void, a constructor (12.1), or a destructor (12.4). A return statement with an
expression of non-void type can be used only in functions returning a value; the value of the expression is
returned to the caller of the function. The expression is implicitly converted to the return type of the func-
tion in which it appears. A return statement can involve the construction and copy of a temporary object
(12.2). Flowing off the end of a function is equivalent to a return with no value; this results in undefined
behavior in a value-returning function.

3 A return statement with an expression of type “cv void” can be used only in functions with a return type
of cv void; the expression is evaluated just before the function returns to its caller.

[stmt.goto] 6.6.4 The goto statement

1 The goto statement unconditionally transfers control to the statement labeled by the identifier. The identi-
fier shall be a label (6.1) located in the current function.

[stmt.dcl] 6.7 Declaration statement

1 A declaration statement introduces one or more new identifiers into a block; it has the form

declaration-statement:
block-declaration

If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration
is hidden for the remainder of the block, after which it resumes its force.

2 Variables with automatic storage duration (3.7.2) are initialized each time their declaration-statement is
executed. Variables with automatic storage duration declared in the block are destroyed on exit from the
block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A pro-
gram that jumps77) from a point where a local variable with automatic storage duration is not in scope to a
point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an
initializer (8.5).

77) The transfer from the condition of a switch statement to a case label is considered a jump in this respect.

100

 ISO/IEC ISO/IEC 14882:2003(E)

6 Statements 6.7 Declaration statement

[Example:

void f()
{

// ...
goto lx; // ill-formed: jump into scope of a
// ...

ly:
X a = 1;
// ...

lx:
goto ly; // OK, jump implies destructor

// call for a followed by construction
// again immediately following label ly

}

—end example]

4 The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any
other initialization takes place. A local object of POD type (3.9) with static storage duration initialized with
constant-expressions is initialized before its block is first entered. An implementation is permitted to per-
form early initialization of other local objects with static storage duration under the same conditions that an
implementation is permitted to statically initialize an object with static storage duration in namespace scope
(3.6.2). Otherwise such an object is initialized the first time control passes through its declaration; such an
object is considered initialized upon the completion of its initialization. If the initialization exits by throw-
ing an exception, the initialization is not complete, so it will be tried again the next time control enters the
declaration. If control re-enters the declaration (recursively) while the object is being initialized, the behav-
ior is undefined. [Example:

int foo(int i)
{

static int s = foo(2*i); // recursive call – undefined
return i+1;

}

—end example]

5 The destructor for a local object with static storage duration will be executed if and only if the variable was
constructed. [Note: 3.6.3 describes the order in which local objects with static storage duration are
destroyed.]

[stmt.ambig] 6.8 Ambiguity resolution

1 There is an ambiguity in the grammar involving expression-statements and declarations: An expression-
statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indis-
tinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a
declaration. [Note: To disambiguate, the whole statement might have to be examined to determine if it is
an expression-statement or a declaration. This disambiguates many examples. [Example: assuming T is a
simple-type-specifier (7.1.5),

T(a)->m = 7; // expression-statement
T(a)++; // expression-statement
T(a,5)<<c; // expression-statement

T(*d)(int); // declaration
T(e)[5]; // declaration
T(f) = { 1, 2 }; // declaration
T(*g)(double(3)); // declaration

In the last example above, g, which is a pointer to T, is initialized to double(3). This is of course ill-
formed for semantic reasons, but that does not affect the syntactic analysis. —end example]

101

ISO/IEC 14882:2003(E)  ISO/IEC

6.8 Ambiguity resolution 6 Statements

2 The remaining cases are declarations. [Example:

class T {
// ...

public:
T();
T(int);
T(int, int);

};
T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g)(h,2); // declaration

—end example] —end note]

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement,
beyond whether they are type-names or not, is not generally used in or changed by the disambiguation.
Class templates are instantiated as necessary to determine if a qualified name is a type-name. Disambigua-
tion precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If,
during parsing, a name in a template parameter is bound differently than it would be bound during a trial
parse, the program is ill-formed. No diagnostic is required. [Note: This can occur only when the name is
declared earlier in the declaration.] [Example:

struct T1 {
T1 operator()(int x) { return T1(x); }
int operator=(int x) { return x; }
T1(int) { }

};
struct T2 { T2(int){ } };
int a, (*(*b)(T2))(int), c, d;

void f() {
// disambiguation requires this to be parsed
// as a declaration
T1(a) = 3,
T2(4), // T2 will be declared as
(*(*b)(T2(c)))(int(d)); // a variable of type T1

// but this will not allow
// the last part of the
// declaration to parse
// properly since it depends
// on T2 being a type-name

}

—end example]

102

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations [dcl.dcl]

1 Declarations specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

[Note: asm-definitions are described in 7.4, and linkage-specifications are described in 7.5. Function-
definitions are described in 8.4 and template-declarations are described in clause 14. Namespace-
definitions are described in 7.3.1, using-declarations are described in 7.3.3 and using-directives are
described in 7.3.4.] The simple-declaration

decl-specifier-seqopt init-declarator-listopt ;

is divided into two parts: decl-specifiers, the components of a decl-specifier-seq, are described in 7.1 and
declarators, the components of an init-declarator-list, are described in clause 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a
function or defines a class, namespace, template, or function also has one or more scopes nested within it.
These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances
in clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to
those components of the declaration that are not nested within scopes nested within the declaration.

3 In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (clause
9) or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-
type-specifier with a class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or
enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names
being declared by the declaration (as class-names, enum-names, or enumerators, depending on the syntax).
In such cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall intro-
duce one or more names into the program, or shall redeclare a name introduced by a previous declaration.
[Example:

enum { }; // ill-formed
typedef class { }; // ill-formed

—end example]

103

ISO/IEC 14882:2003(E)  ISO/IEC

7 Declarations 7 Declarations

4 Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name
declared by that init-declarator and hence one of the names declared by the declaration. The type-specifiers
(7.1.5) in the decl-specifier-seq and the recursive declarator structure of the init-declarator describe a type
(8.3), which is then associated with the name being declared by the init-declarator.

5 If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and
the name of each init-declarator is declared to be a typedef-name, synonymous with its associated type
(7.1.3). If the decl-specifier-seq contains no typedef specifier, the declaration is called a function
declaration if the type associated with the name is a function type (8.3.5) and an object declaration other-
wise.

6 Syntactic components beyond those found in the general form of declaration are added to a function decla-
ration to make a function-definition. An object declaration, however, is also a definition unless it contains
the extern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to
be reserved and any appropriate initialization (8.5) to be done.

7 Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq
be omitted.78)

[dcl.spec] 7.1 Specifiers

1 The specifiers that can be used in a declaration are

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

2 The longest sequence of decl-specifiers that could possibly be a type name is taken as the decl-specifier-seq
of a declaration. The sequence shall be self-consistent as described below. [Example:

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of
type Pc. To get a variable called Pc, a type-specifier (other than const or volatile) has to be present
to indicate that the typedef-name Pc is the name being (re)declared, rather than being part of the decl-
specifier sequence. For another example,

void f(const Pc); // void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)

—end example]

3 [Note: since signed, unsigned, long, and short by default imply int, a type-name appearing after
one of those specifiers is treated as the name being (re)declared. [Example:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

—end example] —end note]

78) The “implicit int” rule of C is no longer supported.

104

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.1 Specifiers

[dcl.stc] 7.1.1 Storage class specifiers

1 The storage class specifiers are

storage-class-specifier:
auto
register
static
extern
mutable

At most one storage-class-specifier shall appear in a given decl-specifier-seq. If a storage-class-specifier
appears in a decl-specifier-seq, there can be no typedef specifier in the same decl-specifier-seq and the
init-declarator-list of the declaration shall not be empty (except for global anonymous unions, which shall
be declared static (9.5)). The storage-class-specifier applies to the name declared by each init-
declarator in the list and not to any names declared by other specifiers. A storage-class-specifier shall not
be specified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

2 The auto or register specifiers can be applied only to names of objects declared in a block (6.3) or to
function parameters (8.4). They specify that the named object has automatic storage duration (3.7.2). An
object declared without a storage-class-specifier at block scope or declared as a function parameter has
automatic storage duration by default. [Note: hence, the auto specifier is almost always redundant and not
often used; one use of auto is to distinguish a declaration-statement from an expression-statement (6.8)
explicitly. —end note]

3 A register specifier has the same semantics as an auto specifier together with a hint to the implemen-
tation that the object so declared will be heavily used. [Note: the hint can be ignored and in most imple-
mentations it will be ignored if the address of the object is taken. —end note]

4 The static specifier can be applied only to names of objects and functions and to anonymous unions
(9.5). There can be no static function declarations within a block, nor any static function parame-
ters. A static specifier used in the declaration of an object declares the object to have static storage
duration (3.7.1). A static specifier can be used in declarations of class members; 9.4 describes its effect.
For the linkage of a name declared with a static specifier, see 3.5.

5 The extern specifier can be applied only to the names of objects and functions. The extern specifier
cannot be used in the declaration of class members or function parameters. For the linkage of a name
declared with an extern specifier, see 3.5.

6 A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has
internal linkage because of a previous declaration and provided it is not declared const. Objects declared
const and not explicitly declared extern have internal linkage.

7 The linkages implied by successive declarations for a given entity shall agree. That is, within a given
scope, each declaration declaring the same object name or the same overloading of a function name shall
imply the same linkage. Each function in a given set of overloaded functions can have a different linkage,
however. [Example:

static char* f(); // f() has internal linkage
char* f() // f() still has internal linkage

{ /* ... */ }

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage

{ /* ... */ }

void h();
inline void h(); // external linkage

inline void l();
void l(); // external linkage

105

ISO/IEC 14882:2003(E)  ISO/IEC

7.1.1 Storage class specifiers 7 Declarations

inline void m();
extern void m(); // external linkage

static void n();
inline void n(); // internal linkage

static int a; // a has internal linkage
int a; // error: two definitions

static int b; // b has internal linkage
extern int b; // b still has internal linkage

int c; // c has external linkage
static int c; // error: inconsistent linkage

extern int d; // d has external linkage
static int d; // error: inconsistent linkage

—end example]

8 The name of a declared but undefined class can be used in an extern declaration. Such a declaration can
only be used in ways that do not require a complete class type. [Example:

struct S;
extern S a;
extern S f();
extern void g(S);

void h()
{

g(a); // error: S is incomplete
f(); // error: S is incomplete

}

—end example] The mutable specifier can be applied only to names of class data members (9.2) and
cannot be applied to names declared const or static, and cannot be applied to reference members.
[Example:

class X {
mutable const int* p; // OK
mutable int* const q; // ill-formed

};

—end example]

9 The mutable specifier on a class data member nullifies a const specifier applied to the containing class
object and permits modification of the mutable class member even though the rest of the object is const
(7.1.5.1).

[dcl.fct.spec] 7.1.2 Function specifiers

1 Function-specifiers can be used only in function declarations.

function-specifier:
inline
virtual
explicit

2 A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline
specifier indicates to the implementation that inline substitution of the function body at the point of call is
to be preferred to the usual function call mechanism. An implementation is not required to perform this
inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules for

106

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.1.2 Function specifiers

inline functions defined by 7.1.2 shall still be respected.

3 A function defined within a class definition is an inline function. The inline specifier shall not appear
on a block scope function declaration.79)

4 An inline function shall be defined in every translation unit in which it is used and shall have exactly the
same definition in every case (3.2). [Note: a call to the inline function may be encountered before its defi-
nition appears in the translation unit.] If a function with external linkage is declared inline in one transla-
tion unit, it shall be declared inline in all translation units in which it appears; no diagnostic is required. An
inline function with external linkage shall have the same address in all translation units. A static
local variable in an extern inline function always refers to the same object. A string literal in an
extern inline function is the same object in different translation units.

5 The virtual specifier shall only be used in declarations of nonstatic class member functions that appear
within a member-specification of a class declaration; see 10.3.

6 The explicit specifier shall be used only in declarations of constructors within a class declaration; see
12.3.1.

[dcl.typedef] 7.1.3 The typedef specifier

1 Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming
fundamental (3.9.1) or compound (3.9.2) types. The typedef specifier shall not be used in a function-
definition (8.4), and it shall not be combined in a decl-specifier-seq with any other kind of specifier except
a type-specifier.

typedef-name:
identifier

A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration,
a typedef-name is syntactically equivalent to a keyword and names the type associated with the identifier in
the way described in clause 8. A typedef-name is thus a synonym for another type. A typedef-name does
not introduce a new type the way a class declaration (9.1) or enum declaration does. [Example: after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all correct declarations; the type of distance is int; that of metricp is “pointer to int.”]

2 In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in
that scope to refer to the type to which it already refers. [Example:

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

—end example]

3 In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that
scope to refer to a different type. [Example:

class complex { /* ... */ };
typedef int complex; // error: redefinition

—end example] Similarly, in a given scope, a class or enumeration shall not be declared with the same
name as a typedef-name that is declared in that scope and refers to a type other than the class or enumera-
tion itself. [Example:

79) The inline keyword has no effect on the linkage of a function.

107

ISO/IEC 14882:2003(E)  ISO/IEC

7.1.3 The typedef specifier 7 Declarations

typedef int complex;
class complex { /* ... */ }; // error: redefinition

—end example]

4 A typedef-name that names a class is a class-name (9.1). If a typedef-name is used following the class-key
in an elaborated-type-specifier (7.1.5.3) or in the class-head of a class declaration (9), or is used as the
identifier in the declarator for a constructor or destructor declaration (12.1, 12.4), the program is ill-formed.
[Example:

struct S {
S();
˜S();

};

typedef struct S T;

S a = T(); // OK
struct T * p; // error

—end example]

5 If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the decla-
ration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage pur-
poses only (3.5). [Example:

typedef struct { } *ps, S; // S is the class name for linkage purposes

—end example] [Note: if the typedef-name is used where a class-name (or enum-name) is required, the
program is ill-formed. For example,

typedef struct {
S(); // error: requires a return type because S is

// an ordinary member function, not a constructor
} S;

—end note]

[dcl.friend] 7.1.4 The friend specifier

1 The friend specifier is used to specify access to class members; see 11.4.

[dcl.type] 7.1.5 Type specifiers

1 The type-specifiers are

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration.
The only exceptions to this rule are the following:

— const or volatile can be combined with any other type-specifier. However, redundant cv-
qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type
arguments (14.3), in which case the redundant cv-qualifiers are ignored.

— signed or unsigned can be combined with char, long, short, or int.

— short or long can be combined with int.

— long can be combined with double.

108

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.1.5 Type specifiers

2 At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a construc-
tor, destructor or conversion function.80)

3 [Note: class-specifiers and enum-specifiers are discussed in clause 9 and 7.2, respectively. The remaining
type-specifiers are discussed in the rest of this section.]

[dcl.type.cv] 7.1.5.1 The cv-qualifiers

1 There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the
init-declarator-list of the declaration shall not be empty. [Note: 3.9.3 describes how cv-qualifiers affect
object and function types.]

2 An object declared in namespace scope with a const-qualified type has internal linkage unless it is explic-
itly declared extern or unless it was previously declared to have external linkage. A variable of non-
volatile const-qualified integral or enumeration type initialized by an integral constant expression can be
used in integral constant expressions (5.19). [Note: as described in 8.5, the definition of an object or subob-
ject of const-qualified type must specify an initializer or be subject to default-initialization.]

3 A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is
treated as if it does; a const-qualified access path cannot be used to modify an object even if the object ref-
erenced is a non-const object and can be modified through some other access path. [Note: cv-qualifiers are
supported by the type system so that they cannot be subverted without casting (5.2.11).]

4 Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const
object during its lifetime (3.8) results in undefined behavior.

5 [Example:

const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // ill-formed: attempt to modify const

int i = 2; // not cv-qualified
const int* cip; // pointer to const int
cip = &i; // OK: cv-qualified access path to unqualified
*cip = 4; // ill-formed: attempt to modify through ptr to const

int* ip;
ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
*ip = 4; // defined: *ip points to i, a non-const object

const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
*iq = 4; // undefined: modifies a const object

6 For another example

class X {
public:

mutable int i;
int j;

};
class Y {

public:
X x;
Y();

};

80) There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies cv-
qualifiers. The “implicit int” rule of C is no longer supported.

109

ISO/IEC 14882:2003(E)  ISO/IEC

7.1.5.1 The cv-qualifiers 7 Declarations

const Y y;
y.x.i++; // well-formed: mutable member can be modified
y.x.j++; // ill-formed: const-qualified member modified
Y* p = const_cast<Y*>(&y); // cast away const-ness of y
p->x.i = 99; // well-formed: mutable member can be modified
p->x.j = 99; // undefined: modifies a const member

—end example]

7 If an attempt is made to refer to an object defined with a volatile-qualified type through the use of an lvalue
with a non-volatile-qualified type, the program behaviour is undefined.

8 [Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object
because the value of the object might be changed by means undetectable by an implementation. See 1.9 for
detailed semantics. In general, the semantics of volatile are intended to be the same in C + + as they are
in C.]

[dcl.type.simple] 7.1.5.2 Simple type specifiers

1 The simple type specifiers are

simple-type-specifier:
::opt nested-name-specifieropt type-name
::opt nested-name-specifier template template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

The simple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental
types (3.9.1). Table 7 summarizes the valid combinations of simple-type-specifiers and the types they spec-
ify.

110

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.1.5.2 Simple type specifiers

Table 7—simple-type-specifiers and the types they specify
_ __
Specifier(s) Type_ ___ __
type-name the type named
char “char”
unsigned char “unsigned char”
signed char “signed char”
bool “bool”
unsigned “unsigned int”
unsigned int “unsigned int”
signed “int”
signed int “int”
int “int”
unsigned short int “unsigned short int”
unsigned short “unsigned short int”
unsigned long int “unsigned long int”
unsigned long “unsigned long int”
signed long int “long int”
signed long “long int”
long int “long int”
long “long int”
signed short int “short int”
signed short “short int”
short int “short int”
short “short int”
wchar_t “wchar_t”
float “float”
double “double”
long double “long double”
void “void”_ __ 









































































































When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers
in any order. It is implementation-defined whether bit-fields and objects of char type are represented as
signed or unsigned quantities. The signed specifier forces char objects and bit-fields to be signed; it is
redundant with other integral types.

[dcl.type.elab] 7.1.5.3 Elaborated type specifiers

elaborated-type-specifier:
class-key ::opt nested-name-specifieropt identifier
class-key ::opt nested-name-specifieropt templateopt template-id
enum ::opt nested-name-specifieropt identifier
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier templateopt template-id

1 If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed unless it
is an explicit specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the following forms:

class-key identifier ;
friend class-key ::opt identifier ;
friend class-key ::opt template-id ;
friend class-key ::opt nested-name-specifier identifier ;
friend class-key ::opt nested-name-specifier templateopt template-id ;

111

ISO/IEC 14882:2003(E)  ISO/IEC

7.1.5.3 Elaborated type specifiers 7 Declarations

2 3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier. If the
identifier resolves to a class-name or enum-name, the elaborated-type-specifier introduces it into the decla-
ration the same way a simple-type-specifier introduces its type-name. If the identifier resolves to a typedef-
name or a template type-parameter, the elaborated-type-specifier is ill-formed. [Note: this implies that,
within a class template with a template type-parameter T, the declaration

friend class T;

is ill-formed.] If name lookup does not find a declaration for the name, the elaborated-type-specifier is
ill-formed unless it is of the simple form class-key identifier in which case the identifier is declared as
described in 3.3.1.

3 The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the decla-
ration to which the name in the elaborated-type-specifier refers. This rule also applies to the form of
elaborated-type-specifier that declares a class-name or friend class since it can be construed as referring
to the definition of the class. Thus, in any elaborated-type-specifier, the enum keyword shall be used to
refer to an enumeration (7.2), the union class-key shall be used to refer to a union (clause 9), and either
the class or struct class-key shall be used to refer to a class (clause 9) declared using the class or
struct class-key.

[dcl.enum] 7.2 Enumeration declarations

1 An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within
its scope.

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

The identifiers in an enumerator-list are declared as constants, and can appear wherever constants are
required. An enumerator-definition with = gives the associated enumerator the value indicated by the
constant-expression. The constant-expression shall be of integral or enumeration type. If the first
enumerator has no initializer, the value of the corresponding constant is zero. An enumerator-definition
without an initializer gives the enumerator the value obtained by increasing the value of the previous
enumerator by one.

2 [Example:

enum { a, b, c=0 };
enum { d, e, f=e+2 };

defines a, c, and d to be zero, b and e to be 1, and f to be 3.]

3 The point of declaration for an enumerator is immediately after its enumerator-definition. [Example:

const int x = 12;
{ enum { x = x }; }

Here, the enumerator x is initialized with the value of the constant x, namely 12.]

112

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.2 Enumeration declarations

4 Each enumeration defines a type that is different from all other types. Following the closing brace of an
enum-specifier, each enumerator has the type of its enumeration. Prior to the closing brace, the type of
each enumerator is the type of its initializing value. If an initializer is specified for an enumerator, the ini-
tializing value has the same type as the expression. If no initializer is specified for the first enumerator, the
type is an unspecified integral type. Otherwise the type is the same as the type of the initializing value of
the preceding enumerator unless the incremented value is not representable in that type, in which case the
type is an unspecified integral type sufficient to contain the incremented value.

5 The underlying type of an enumeration is an integral type that can represent all the enumerator values
defined in the enumeration. It is implementation-defined which integral type is used as the underlying type
for an enumeration except that the underlying type shall not be larger than int unless the value of an enu-
merator cannot fit in an int or unsigned int. If the enumerator-list is empty, the underlying type is
as if the enumeration had a single enumerator with value 0. The value of sizeof() applied to an enu-
meration type, an object of enumeration type, or an enumerator, is the value of sizeof() applied to the
underlying type.

6 For an enumeration where emin is the smallest enumerator and emax is the largest, the values of the enumer-
ation are the values of the underlying type in the range b min to b max, where b min and b max are, respectively,
the smallest and largest values of the smallest bit-field that can store emin and emax.81) It is possible to
define an enumeration that has values not defined by any of its enumerators.

7 Two enumeration types are layout-compatible if they have the same underlying type.

8 The value of an enumerator or an object of an enumeration type is converted to an integer by integral pro-
motion (4.5). [Example:

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makes color a type describing various colors, and then declares col as an object of that type, and cp as a
pointer to an object of that type. The possible values of an object of type color are red, yellow,
green, blue; these values can be converted to the integral values 0, 1, 20, and 21. Since enumerations
are distinct types, objects of type color can be assigned only values of type color.

color c = 1; // error: type mismatch,
// no conversion from int to color

int i = yellow; // OK: yellow converted to integral value 1
// integral promotion

—end example]

9 An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The
value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the result-
ing enumeration value is unspecified.

10 The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immedi-
ately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and
(3.4). An enumerator declared in class scope can be referred to using the class member access operators
(::, . (dot) and -> (arrow)), see 5.2.5. [Example:

81) On a two’s-complement machine, bmax is the smallest value greater than or equal to max (abs(emin) −1 ,abs(emax)) of the form
2M −1; bmin is zero if emin is non-negative and − (bmax +1) otherwise.

113

ISO/IEC 14882:2003(E)  ISO/IEC

7.2 Enumeration declarations 7 Declarations

class X {
public:

enum direction { left=’l’, right=’r’ };
int f(int i)

{ return i==left ? 0 : i==right ? 1 : 2; }
};

void g(X* p)
{

direction d; // error: direction not in scope
int i;
i = p->f(left); // error: left not in scope
i = p->f(X::right); // OK
i = p->f(p->left); // OK
// ...

}

—end example]

[basic.namespace] 7.3 Namespaces

1 A namespace is an optionally-named declarative region. The name of a namespace can be used to access
entities declared in that namespace; that is, the members of the namespace. Unlike other declarative
regions, the definition of a namespace can be split over several parts of one or more translation units.

2 The outermost declarative region of a translation unit is a namespace; see 3.3.5.

[namespace.def] 7.3.1 Namespace definition

1 The grammar for a namespace-definition is

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body }

extension-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

namespace-body:
declaration-seqopt

2 The identifier in an original-namespace-definition shall not have been previously defined in the declarative
region in which the original-namespace-definition appears. The identifier in an original-namespace-
definition is the name of the namespace. Subsequently in that declarative region, it is treated as an
original-namespace-name.

114

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.3.1 Namespace definition

3 The original-namespace-name in an extension-namespace-definition shall have previously been defined in
an original-namespace-definition in the same declarative region.

4 Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.5).

5 Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is
itself a declaration, it follows that namespace-definitions can be nested. [Example:

namespace Outer {
int i;
namespace Inner {

void f() { i++; } // Outer::i
int i;
void g() { i++; } // Inner::i

}
}

—end example]

[namespace.unnamed] 7.3.1.1 Unnamed namespaces

1 An unnamed-namespace-definition behaves as if it were replaced by

namespace unique { /* empty body */ }
using namespace unique;
namespace unique { namespace-body }

where all occurrences of unique in a translation unit are replaced by the same identifier and this identifier
differs from all other identifiers in the entire program.82) [Example:

namespace { int i; } // unique::i
void f() { i++; } // unique::i++

namespace A {
namespace {

int i; // A::unique::i
int j; // A::unique::j

}
void g() { i++; } // A::unique::i++

}

using namespace A;
void h() {

i++; // error: unique::i or A::unique::i
A::i++; // A::unique::i
j++; // A::unique::j

}

—end example]

2 The use of the static keyword is deprecated when declaring objects in a namespace scope (see annex D);
the unnamed-namespace provides a superior alternative.

[namespace.memdef] 7.3.1.2 Namespace member definitions

1 Members of a namespace can be defined within that namespace. [Example:

namespace X {
void f() { /* ... */ }

}

82) Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their
translation unit and therefore can never be seen from any other translation unit.

115

ISO/IEC 14882:2003(E)  ISO/IEC

7.3.1.2 Namespace member definitions 7 Declarations

—end example]

2 Members of a named namespace can also be defined outside that namespace by explicit qualification
(3.4.3.2) of the name being defined, provided that the entity being defined was already declared in the
namespace and the definition appears after the point of declaration in a namespace that encloses the
declaration’s namespace. [Example:

namespace Q {
namespace V {

void f();
}
void V::f() { /* ... */ } // OK
void V::g() { /* ... */ } // error: g() is not yet a member of V
namespace V {

void g();
}

}

namespace R {
void Q::V::g() { /* ... */ } // error: R doesn’t enclose Q

}

—end example]

3 Every name first declared in a namespace is a member of that namespace. If a friend declaration in a
non-local class first declares a class or function83) the friend class or function is a member of the innermost
enclosing namespace. The name of the friend is not found by simple name lookup until a matching declara-
tion is provided in that namespace scope (either before or after the class declaration granting friendship). If
a friend function is called, its name may be found by the name lookup that considers functions from name-
spaces and classes associated with the types of the function arguments (3.4.2). When looking for a prior
declaration of a class or a function declared as a friend, and when the name of the friend class or
function is neither a qualified name nor a template-id, scopes outside the innermost enclosing namespace
scope are not considered. [Example:

// Assume f and g have not yet been defined.
void h(int);
template <class T> void f2(T);
namespace A {

class X {
friend void f(X); // A::f(X) is a friend
class Y {

friend void g(); // A::g is a friend
friend void h(int); // A::h is a friend

// ::h not considered
friend void f2<>(int); // ::f2<>(int) is a friend

};
};

// A::f, A::g and A::h are not visible here
X x;
void g() { f(x); } // definition of A::g
void f(X) { /* ... */} // definition of A::f
void h(int) { /* ... */ } // definition of A::h
// A::f, A::g and A::h are visible here and known to be friends

}

83) this implies that the name of the class or function is unqualified.

116

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.3.1.2 Namespace member definitions

using A::x;

void h()
{

A::f(x);
A::X::f(x); // error: f is not a member of A::X
A::X::Y::g(); // error: g is not a member of A::X::Y

}

—end example]

[namespace.alias] 7.3.2 Namespace alias

1 A namespace-alias-definition declares an alternate name for a namespace according to the following gram-
mar:

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
::opt nested-name-specifieropt namespace-name

2 The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the
qualified-namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-
name in a namespace-alias-definition, only namespace names are considered, see 3.4.6.]

3 In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in
that declarative region to refer only to the namespace to which it already refers. [Example: the following
declarations are well-formed:

namespace Company_with_very_long_name { /* ... */ }
namespace CWVLN = Company_with_very_long_name;
namespace CWVLN = Company_with_very_long_name; // OK: duplicate
namespace CWVLN = CWVLN;

—end example]

4 A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same
declarative region. A namespace-name defined at global scope shall not be declared as the name of any
other entity in any global scope of the program. No diagnostic is required for a violation of this rule by
declarations in different translation units.

[namespace.udecl] 7.3.3 The using declaration

1 A using-declaration introduces a name into the declarative region in which the using-declaration appears.
That name is a synonym for the name of some entity declared elsewhere.

using-declaration:
using typenameopt ::opt nested-name-specifier unqualified-id ;
using :: unqualified-id ;

2 The member name specified in a using-declaration is declared in the declarative region in which the using-
declaration appears. [Note: only the specified name is so declared; specifying an enumeration name in a
using-declaration does not declare its enumerators in the using-declaration’s declarative region.]

3 Every using-declaration is a declaration and a member-declaration and so can be used in a class definition.
[Example:

117

ISO/IEC 14882:2003(E)  ISO/IEC

7.3.3 The using declaration 7 Declarations

struct B {
void f(char);
void g(char);
enum E { e };
union { int x; };

};

struct D : B {
using B::f;
void f(int) { f(’c’); } // calls B::f(char)
void g(int) { g(’c’); } // recursively calls D::g(int)

};

—end example]

4 A using-declaration used as a member-declaration shall refer to a member of a base class of the class being
defined, shall refer to a member of an anonymous union that is a member of a base class of the class being
defined, or shall refer to an enumerator for an enumeration type that is a member of a base class of the class
being defined. [Example:

class C {
int g();

};

class D2 : public B {
using B::f; // OK: B is a base of D2
using B::e; // OK: e is an enumerator of base B
using B::x; // OK: x is a union member of base B
using C::g; // error: C isn’t a base of D2

};

—end example] [Note: since constructors and destructors do not have names, a using-declaration cannot
refer to a constructor or a destructor for a base class. Since specializations of member templates for conver-
sion functions are not found by name lookup, they are not considered when a using-declaration specifies a
conversion function (14.5.2).] If an assignment operator brought from a base class into a derived class
scope has the signature of a copy-assignment operator for the derived class (12.8), the using-declaration
does not by itself suppress the implicit declaration of the derived class copy-assignment operator; the
copy-assignment operator from the base class is hidden or overridden by the implicitly-declared copy-
assignment operator of the derived class, as described below.

5 A using-declaration shall not name a template-id. [Example:

class A {
public:

template <class T> void f(T);
template <class T> struct X { };

};
class B : public A {
public:

using A::f<double>; // ill-formed
using A::X<int>; // ill-formed

};

—end example]

6 A using-declaration for a class member shall be a member-declaration. [Example:

struct X {
int i;
static int s;

};

118

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.3.3 The using declaration

void f()
{

using X::i; // error: X::i is a class member
// and this is not a member declaration.

using X::s; // error: X::s is a class member
// and this is not a member declaration.

}

—end example]

7 Members declared by a using-declaration can be referred to by explicit qualification just like other member
names (3.4.3.2). In a using-declaration, a prefix :: refers to the global namespace. [Example:

void f();

namespace A {
void g();

}

namespace X {
using ::f; // global f
using A::g; // A’s g

}

void h()
{

X::f(); // calls ::f
X::g(); // calls A::g

}

—end example]

8 A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple
declarations are allowed. [Example:

namespace A {
int i;

}

namespace A1 {
using A::i;
using A::i; // OK: double declaration

}

void f()
{

using A::i;
using A::i; // error: double declaration

}

class B {
public:

int i;
};

class X : public B {
using B::i;
using B::i; // error: double member declaration

};

—end example]

119

ISO/IEC 14882:2003(E)  ISO/IEC

7.3.3 The using declaration 7 Declarations

9 The entity declared by a using-declaration shall be known in the context using it according to its definition
at the point of the using-declaration. Definitions added to the namespace after the using-declaration are
not considered when a use of the name is made. [Example:

namespace A {
void f(int);

}

using A::f; // f is a synonym for A::f;
// that is, for A::f(int).

namespace A {
void f(char);

}

void foo()
{

f(’a’); // calls f(int),
} // even though f(char) exists.

void bar()
{

using A::f; // f is a synonym for A::f;
// that is, for A::f(int) and A::f(char).

f(’a’); // calls f(char)
}

—end example] [Note: partial specializations of class templates are found by looking up the primary class
template and then considering all partial specializations of that template. If a using-declaration names a
class template, partial specializations introduced after the using-declaration are effectively visible because
the primary template is visible (14.5.4).]

10 Since a using-declaration is a declaration, the restrictions on declarations of the same name in the same
declarative region (3.3) also apply to using-declarations. [Example:

namespace A {
int x;

}

namespace B {
int i;
struct g { };
struct x { };
void f(int);
void f(double);
void g(char); // OK: hides struct g

}

120

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.3.3 The using declaration

void func()
{

int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // OK: each f is a function
f(3.5); // calls B::f(double)
using B::g;
g(’a’); // calls B::g(char)
struct g g1; // g1 has class type B::g
using B::x;
using A::x; // OK: hides struct B::x
x = 99; // assigns to A::x
struct x x1; // x1 has class type B::x

}

—end example]

11 If a function declaration in namespace scope or block scope has the same name and the same parameter
types as a function introduced by a using-declaration, and the declarations do not declare the same func-
tion, the program is ill-formed. [Note: two using-declarations may introduce functions with the same name
and the same parameter types. If, for a call to an unqualified function name, function overload resolution
selects the functions introduced by such using-declarations, the function call is ill-formed.
[Example:

namespace B {
void f(int);
void f(double);

}
namespace C {

void f(int);
void f(double);
void f(char);

}

void h()
{

using B::f; // B::f(int) and B::f(double)
using C::f; // C::f(int), C::f(double), and C::f(char)
f(’h’); // calls C::f(char)
f(1); // error: ambiguous: B::f(int) or C::f(int) ?
void f(int); // error:

// f(int) conflicts with C::f(int) and B::f(int)
}

—end example]]

12 When a using-declaration brings names from a base class into a derived class scope, member functions in
the derived class override and/or hide member functions with the same name and parameter types in a base
class (rather than conflicting). [Example:

struct B {
virtual void f(int);
virtual void f(char);
void g(int);
void h(int);

};

121

ISO/IEC 14882:2003(E)  ISO/IEC

7.3.3 The using declaration 7 Declarations

struct D : B {
using B::f;
void f(int); // OK: D::f(int) overrides B::f(int);

using B::g;
void g(char); // OK

using B::h;
void h(int); // OK: D::h(int) hides B::h(int)

};

void k(D* p)
{

p->f(1); // calls D::f(int)
p->f(’a’); // calls B::f(char)
p->g(1); // calls B::g(int)
p->g(’a’); // calls D::g(char)

}

—end example] [Note: two using-declarations may introduce functions with the same name and the same
parameter types. If, for a call to an unqualified function name, function overload resolution selects the
functions introduced by such using-declarations, the function call is ill-formed.]

13 For the purpose of overload resolution, the functions which are introduced by a using-declaration into a
derived class will be treated as though they were members of the derived class. In particular, the implicit
this parameter shall be treated as if it were a pointer to the derived class rather than to the base class.
This has no effect on the type of the function, and in all other respects the function remains a member of the
base class.

14 All instances of the name mentioned in a using-declaration shall be accessible. In particular, if a derived
class uses a using-declaration to access a member of a base class, the member name shall be accessible. If
the name is that of an overloaded member function, then all functions named shall be accessible. The base
class members mentioned by a using-declaration shall be visible in the scope of at least one of the direct
base classes of the class where the using-declaration is specified. [Note: because a using-declaration des-
ignates a base class member (and not a member subobject or a member function of a base class subobject),
a using-declaration cannot be used to resolve inherited member ambiguities. For example,

struct A { int x(); };
struct B : A { };
struct C : A {

using A::x;
int x(int);

};

struct D : B, C {
using C::x;
int x(double);

};
int f(D* d) {

return d->x(); // ambiguous: B::x or C::x
}

]

15 The alias created by the using-declaration has the usual accessibility for a member-declaration. [Example:

122

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.3.3 The using declaration

class A {
private:

void f(char);
public:

void f(int);
protected:

void g();
};

class B : public A {
using A::f; // error: A::f(char) is inaccessible

public:
using A::g; // B::g is a public synonym for A::g

};

—end example]

16 [Note: use of access-declarations (11.3) is deprecated; member using-declarations provide a better alterna-
tive.]

[namespace.udir] 7.3.4 Using directive

using-directive:
using namespace ::opt nested-name-specifieropt namespace-name ;

A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope.
[Note: when looking up a namespace-name in a using-directive, only namespace names are considered, see
3.4.6.]

1 A using-directive specifies that the names in the nominated namespace can be used in the scope in which
the using-directive appears after the using-directive. During unqualified name lookup (3.4.1), the names
appear as if they were declared in the nearest enclosing namespace which contains both the using-directive
and the nominated namespace. [Note: in this context, “contains” means “contains directly or indirectly”.]

123

ISO/IEC 14882:2003(E)  ISO/IEC

7.3.4 Using directive 7 Declarations

A using-directive does not add any members to the declarative region in which it appears. [Example:

namespace A {
int i;
namespace B {

namespace C {
int i;

}
using namespace A::B::C;
void f1() {

i = 5; // OK, C::i visible in B and hides A::i
}

}
namespace D {

using namespace B;
using namespace C;
void f2() {

i = 5; // ambiguous, B::C::i or A::i?
}

}
void f3() {

i = 5; // uses A::i
}

}
void f4() {

i = 5; // ill-formed; neither i is visible
}

]

2 The using-directive is transitive: if a scope contains a using-directive that nominates a second namespace
that itself contains using-directives, the effect is as if the using-directives from the second namespace also
appeared in the first. [Example:

namespace M {
int i;

}

namespace N {
int i;
using namespace M;

}

void f()
{

using namespace N;
i = 7; // error: both M::i and N::i are visible

}

124

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.3.4 Using directive

For another example,

namespace A {
int i;

}
namespace B {

int i;
int j;
namespace C {

namespace D {
using namespace A;
int j;
int k;
int a = i; // B::i hides A::i

}
using namespace D;
int k = 89; // no problem yet
int l = k; // ambiguous: C::k or D::k
int m = i; // B::i hides A::i
int n = j; // D::j hides B::j

}
}

—end example]

3 If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace
is given, the additional members of the extended namespace and the members of namespaces nominated by
using-directives in the extension-namespace-definition can be used after the extension-namespace-
definition.

4 If name lookup finds a declaration for a name in two different namespaces, and the declarations do not
declare the same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular,
the name of an object, function or enumerator does not hide the name of a class or enumeration declared in
a different namespace. For example,

namespace A {
class X { };
extern "C" int g();
extern "C++" int h();

}
namespace B {

void X(int);
extern "C" int g();
extern "C++" int h();

}
using namespace A;
using namespace B;

void f() {
X(1); // error: name X found in two namespaces
g(); // okay: name g refers to the same entity
h(); // error: name h found in two namespaces

}

—end note]

5 During overload resolution, all functions from the transitive search are considered for argument matching.
The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which
namespaces were considered and the relationships among the namespaces implied by the using-directives
do not cause preference to be given to any of the declarations found by the search.] An ambiguity exists if
the best match finds two functions with the same signature, even if one is in a namespace reachable through
using-directives in the namespace of the other.84)

84) During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides the other
along some paths (10.2). There is no such disambiguation when considering the set of names found as a result of following using-

125

ISO/IEC 14882:2003(E)  ISO/IEC

7.3.4 Using directive 7 Declarations

[Example:

namespace D {
int d1;
void f(char);

}
using namespace D;

int d1; // OK: no conflict with D::d1

namespace E {
int e;
void f(int);

}

namespace D { // namespace extension
int d2;
using namespace E;
void f(int);

}

void f()
{

d1++; // error: ambiguous ::d1 or D::d1?
::d1++; // OK
D::d1++; // OK
d2++; // OK: D::d2
e++; // OK: E::e
f(1); // error: ambiguous: D::f(int) or E::f(int)?
f(’a’); // OK: D::f(char)

}

—end example]

[dcl.asm] 7.4 The asm declaration

1 An asm declaration has the form

asm-definition:
asm (string-literal) ;

The meaning of an asm declaration is implementation-defined. [Note: Typically it is used to pass informa-
tion through the implementation to an assembler.]

[dcl.link] 7.5 Linkage specifications

1 All function types, function names, and variable names have a language linkage. [Note: Some of the prop-
erties associated with an entity with language linkage are specific to each implementation and are not
described here. For example, a particular language linkage may be associated with a particular form of rep-
resenting names of objects and functions with external linkage, or with a particular calling convention, etc.
] The default language linkage of all function types, function names, and variable names is C + + language
linkage. Two function types with different language linkages are distinct types even if they are otherwise
identical.

2 Linkage (3.5) between C + + and non-C + + code fragments can be achieved using a linkage-specification:

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

directives.

126

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.5 Linkage specifications

The string-literal indicates the required language linkage. The meaning of the string-literal is
implementation-defined. A linkage-specification with a string that is unknown to the implementation is
ill-formed. When the string-literal in a linkage-specification names a programming language, the spelling
of the programming language’s name is implementation-defined. [Note: it is recommended that the spel-
ling be taken from the document defining that language, for example Ada (not ADA) and Fortran or
FORTRAN (depending on the vintage). The semantics of a language linkage other than C + + or C are
implementation-defined.]

3 Every implementation shall provide for linkage to functions written in the C programming language, "C",
and linkage to C + + functions, "C++". [Example:

complex sqrt(complex); // C + + linkage by default
extern "C" {

double sqrt(double); // C linkage
}

—end example]

4 Linkage specifications nest. When linkage specifications nest, the innermost one determines the language
linkage. A linkage specification does not establish a scope. A linkage-specification shall occur only in
namespace scope (3.3). In a linkage-specification, the specified language linkage applies to the function
types of all function declarators, function names, and variable names introduced by the declaration(s).
[Example:

extern "C" void f1(void(*pf)(int));
// the name f1 and its function type have C language
// linkage; pf is a pointer to a C function

extern "C" typedef void FUNC();
FUNC f2; // the name f2 has C + + language linkage and the

// function’s type has C language linkage
extern "C" FUNC f3; // the name of function f3 and the function’s type

// have C language linkage
void (*pf2)(FUNC*); // the name of the variable pf2 has C + + linkage and

// the type of pf2 is pointer to C + + function that
// takes one parameter of type pointer to C function

—end example] A C language linkage is ignored for the names of class members and the member function
type of class member functions. [Example:

extern "C" typedef void FUNC_c();
class C {

void mf1(FUNC_c*); // the name of the function mf1 and the member
// function’s type have C + + language linkage; the
// parameter has type pointer to C function

FUNC_c mf2; // the name of the function mf2 and the member
// function’s type have C + + language linkage

static FUNC_c* q; // the name of the data member q has C + + language
// linkage and the data member’s type is pointer to
// C function

};

extern "C" {
class X {

void mf(); // the name of the function mf and the member
// function’s type have C + + language linkage

void mf2(void(*)()); // the name of the function mf2 has C + + language
// linkage; the parameter has type pointer to
// C function

};
}

—end example]

127

ISO/IEC 14882:2003(E)  ISO/IEC

7.5 Linkage specifications 7 Declarations

5 If two declarations of the same function or object specify different linkage-specifications (that is, the
linkage-specifications of these declarations specify different string-literals), the program is ill-formed if the
declarations appear in the same translation unit, and the one definition rule (3.2) applies if the declarations
appear in different translation units. Except for functions with C + + linkage, a function declaration without a
linkage specification shall not precede the first linkage specification for that function. A function can be
declared without a linkage specification after an explicit linkage specification has been seen; the linkage
explicitly specified in the earlier declaration is not affected by such a function declaration.

6 At most one function with a particular name can have C language linkage. Two declarations for a function
with C language linkage with the same function name (ignoring the namespace names that qualify it) that
appear in different namespace scopes refer to the same function. Two declarations for an object with C lan-
guage linkage with the same name (ignoring the namespace names that qualify it) that appear in different
namespace scopes refer to the same object. [Note: because of the one definition rule (3.2), only one defini-
tion for a function or object with C linkage may appear in the program; that is, such a function or object
must not be defined in more than one namespace scope. For example,

namespace A {
extern "C" int f();
extern "C" int g() { return 1; }
extern "C" int h();

}

namespace B {
extern "C" int f(); // A::f and B::f refer

// to the same function
extern "C" int g() { return 1; } // ill-formed, the function g

// with C language linkage
// has two definitions

}

int A::f() { return 98; } // definition for the function f
// with C language linkage

extern "C" int h() { return 97; }
// definition for the function h
// with C language linkage
// A::h and ::h refer to the same function

—end note]

7 Except for functions with internal linkage, a function first declared in a linkage-specification behaves as a
function with external linkage. [Example:

extern "C" double f();
static double f(); // error

is ill-formed (7.1.1).] The form of linkage-specification that contains a brace-enclosed declaration-seq
does not affect whether the contained declarations are definitions or not (3.1); the form of linkage-
specification directly containing a single declaration is treated as an extern specifier (7.1.1) for the pur-
pose of determining whether the contained declaration is a definition. [Example:

extern "C" int i; // declaration
extern "C" {

int i; // definition
}

—end example] A linkage-specification directly containing a single declaration shall not specify a storage
class. [Example:

extern "C" static void f(); // error

—end example]

128

 ISO/IEC ISO/IEC 14882:2003(E)

7 Declarations 7.5 Linkage specifications

8 [Note: because the language linkage is part of a function type, when a pointer to C function (for example) is
dereferenced, the function to which it refers is considered a C function.]

9 Linkage from C + + to objects defined in other languages and to objects defined in C + + from other languages
is implementation-defined and language-dependent. Only where the object layout strategies of two lan-
guage implementations are similar enough can such linkage be achieved.

129

ISO/IEC 14882:2003(E)  ISO/IEC

130

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8 Declarators

8 Declarators [dcl.decl]

1 A declarator declares a single object, function, or type, within a declaration. The init-declarator-list
appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initial-
izer.

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

2 The two components of a declaration are the specifiers (decl-specifier-seq; 7.1) and the declarators (init-
declarator-list). The specifiers indicate the type, storage class or other properties of the objects, functions
or typedefs being declared. The declarators specify the names of these objects, functions or typedefs, and
(optionally) modify the type of the specifiers with operators such as * (pointer to) and () (function return-
ing). Initial values can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.

3 Each init-declarator in a declaration is analyzed separately as if it was in a declaration by itself.85)

4 Declarators have the syntax

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

&
::opt nested-name-specifier * cv-qualifier-seqopt

85) A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single
declarator. That is

T D1, D2, ... Dn;

is usually equvalent to

T D1; T D2; ... T Dn;

where T is a decl-specifier-seq and each Di is a init-declarator. The exception occurs when a name introduced by one of the
declarators hides a type name used by the dcl-specifiers, so that when the same dcl-specifiers are used in a subsequent declaration,
they do not have the same meaning, as in

struct S { ... };
S S, T; // declare two instances of struct S

which is not equivalent to

struct S { ... };
S S;
S T; // error

131

ISO/IEC 14882:2003(E)  ISO/IEC

8 Declarators 8 Declarators

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
::opt nested-name-specifieropt type-name

A class-name has special meaning in a declaration of the class of that name and when qualified by that
name using the scope resolution operator :: (5.1, 12.1, 12.4).

[dcl.name] 8.1 Type names

1 To specify type conversions explicitly, and as an argument of sizeof, new, or typeid, the name of a
type shall be specified. This can be done with a type-id, which is syntactically a declaration for an object or
function of that type that omits the name of the object or function.

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt

(parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear
if the construction were a declarator in a declaration. The named type is then the same as the type of the
hypothetical identifier. [Example:

int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)

name respectively the types “int,” “pointer to int,” “array of 3 pointers to int,” “pointer to array of 3
int,” “function of (no parameters) returning pointer to int,” and “pointer to a function of (double)
returning int.’’]

2 A type can also be named (often more easily) by using a typedef (7.1.3).

[dcl.ambig.res] 8.2 Ambiguity resolution

1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8
can also occur in the context of a declaration. In that context, the choice is between a function declaration
with a redundant set of parentheses around a parameter name and an object declaration with a function-style
cast as the initializer. Just as for the ambiguities mentioned in 6.8, the resolution is to consider any con-
struct that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disam-
biguated by a nonfunction-style cast, by a = to indicate initialization or by removing the redundant

132

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.2 Ambiguity resolution

parentheses around the parameter name.] [Example:

struct S {
S(int);

};

void foo(double a)
{

S w(int(a)); // function declaration
S x(int()); // function declaration
S y((int)a); // object declaration
S z = int(a); // object declaration

}

—end example]

2 The ambiguity arising from the similarity between a function-style cast and a type-id can occur in different
contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a
type. The resolution is that any construct that could possibly be a type-id in its syntactic context shall be
considered a type-id.

3 [Example:

#include <cstddef>
char *p;
void *operator new(size_t, int);
void foo() {

const int x = 63;
new (int(*p)) int; // new-placement expression
new (int(*[x])); // new type-id

}

4 For another example,

template <class T>
struct S {

T *p;
};
S<int()> x; // type-id
S<int(1)> y; // expression (ill-formed)

5 For another example,

void foo()
{

sizeof(int(1)); // expression
sizeof(int()); // type-id (ill-formed)

}

6 For another example,

void foo()
{

(int(1)); // expression
(int())1; // type-id (ill-formed)

}

—end example]

7 Another ambiguity arises in a parameter-declaration-clause of a function declaration, or in a type-id that is
the operand of a sizeof or typeid operator, when a type-name is nested in parentheses. In this case, the
choice is between the declaration of a parameter of type pointer to function and the declaration of a parame-
ter with redundant parentheses around the declarator-id. The resolution is to consider the type-name as a
simple-type-specifier rather than a declarator-id. [Example:

133

ISO/IEC 14882:2003(E)  ISO/IEC

8.2 Ambiguity resolution 8 Declarators

class C { };
void f(int(C)) { } // void f(int (*fp)(C c)) { }

// not: void f(int C);

int g(C);

void foo() {
f(1); // error: cannot convert 1 to function pointer
f(g); // OK

}

For another example,

class C { };
void h(int *(C[10])); // void h(int *(*_fp)(C _parm[10]));

// not: void h(int *C[10]);

—end example]

[dcl.meaning] 8.3 Meaning of declarators

1 A list of declarators appears after an optional (clause 7) decl-specifier-seq (7.1). Each declarator contains
exactly one declarator-id; it names the identifier that is declared. An unqualified-id occurring in a
declarator-id shall be a simple identifier except for the declaration of some special functions (12.3, 12.4,
13.5) and for the declaration of template specializations or partial specializations (14.7). A declarator-id
shall not be qualified except for the definition of a member function (9.3) or static data member (9.4) out-
side of its class, the definition or explicit instantiation of a function or variable member of a namespace out-
side of its namespace, or the definition of a previously declared explicit specialization outside of its name-
space, or the declaration of a friend function that is a member of another class or namespace (11.4). When
the declarator-id is qualified, the declaration shall refer to a previously declared member of the class or
namespace to which the qualifier refers, and the member shall not have been introduced by a using-
declaration in the scope of the class or namespace nominated by the nested-name-specifier of the
declarator-id. [Note: if the qualifier is the global :: scope resolution operator, the declarator-id refers to a
name declared in the global namespace scope.]

2 An auto, static, extern, register, mutable, friend, inline, virtual, or typedef spec-
ifier applies directly to each declarator-id in a init-declarator-list; the type specified for each declarator-id
depends on both the decl-specifier-seq and its declarator.

3 Thus, a declaration of a particular identifier has the form

T D

where T is a decl-specifier-seq and D is a declarator. Following is a recursive procedure for determining the
type specified for the contained declarator-id by such a declaration.

4 First, the decl-specifier-seq determines a type. In a declaration

T D

the decl-specifier-seq T determines the type “T.” [Example: in the declaration

int unsigned i;

the type specifiers int unsigned determine the type “unsigned int” (7.1.5.2).]

5 In a declaration T D where D is an unadorned identifier the type of this identifier is “T.”

6 In a declaration T D where D has the form

(D1)

the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration

134

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.3 Meaning of declarators

T D1

Parentheses do not alter the type of the embedded declarator-id, but they can alter the binding of complex
declarators.

[dcl.ptr] 8.3.1 Pointers

1 In a declaration T D where D has the form

* cv-qualifier-seqopt D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list cv-qualifier-seq pointer to T.” The cv-qualifiers apply to the
pointer and not to the object pointed to.

2 [Example: the declarations

const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant
integer, ppc, a pointer to a pointer to a constant integer; i, an integer; p, a pointer to integer; and cp, a
constant pointer to integer. The value of ci, cpc, and cp cannot be changed after initialization. The value
of pc can be changed, and so can the object pointed to by cp. Examples of some correct operations are

i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;

Examples of ill-formed operations are

ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error

Each is unacceptable because it would either change the value of an object declared const or allow it to be
changed through a cv-unqualified pointer later, for example:

*ppc = &ci; // OK, but would make p point to ci ...
// ... because of previous error

*p = 5; // clobber ci

—end example]

3 See also 5.17 and 8.5.

4 [Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken, a
pointer can never point to a bit-field.]

[dcl.ref] 8.3.2 References

1 In a declaration T D where D has the form

& D1

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is “derived-declarator-type-list reference to T.” Cv-qualified references are ill-formed except
when the cv-qualifiers are introduced through the use of a typedef (7.1.3) or of a template type argument
(14.3), in which case the cv-qualifiers are ignored. [Example: in

135

ISO/IEC 14882:2003(E)  ISO/IEC

8.3.2 References 8 Declarators

typedef int& A;
const A aref = 3; // ill-formed;

// non-const reference initialized with rvalue

the type of aref is “reference to int”, not “const reference to int”.] [Note: a reference can be
thought of as a name of an object.] A declarator that specifies the type “reference to cv void” is ill-formed.

2 [Example:

void f(double& a) { a += 3.14; }
// ...
double d = 0;
f(d);

declares a to be a reference parameter of f so the call f(d) will add 3.14 to d.

int v[20];
// ...
int& g(int i) { return v[i]; }
// ...
g(3) = 7;

declares the function g() to return a reference to an integer so g(3)=7 will assign 7 to the fourth element
of the array v. For another example,

struct link {
link* next;

};

link* first;

void h(link*& p) // p is a reference to pointer
{

p->next = first;
first = p;
p = 0;

}

void k()
{

link* q = new link;
h(q);

}

declares p to be a reference to a pointer to link so h(q) will leave q with the value zero. See also 8.5.3.
]

3 It is unspecified whether or not a reference requires storage (3.7).

4 There shall be no references to references, no arrays of references, and no pointers to references. The decla-
ration of a reference shall contain an initializer (8.5.3) except when the declaration contains an explicit
extern specifier (7.1.1), is a class member (9.2) declaration within a class declaration, or is the declara-
tion of a parameter or a return type (8.3.5); see 3.1. A reference shall be initialized to refer to a valid object
or function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only
way to create such a reference would be to bind it to the “object” obtained by dereferencing a null pointer,
which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field.]

[dcl.mptr] 8.3.3 Pointers to members

1 In a declaration T D where D has the form

::opt nested-name-specifier * cv-qualifier-seqopt D1

and the nested-name-specifier names a class, and the type of the identifier in the declaration T D1 is

136

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.3.3 Pointers to members

“derived-declarator-type-list T,” then the type of the identifier of D is “derived-declarator-type-list cv-
qualifier-seq pointer to member of class nested-name-specifier of type T.”

2 [Example:

class X {
public:

void f(int);
int a;

};
class Y;

int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;

declares pmi, pmf, pmd and pmc to be a pointer to a member of X of type int, a pointer to a member of X
of type void(int), a pointer to a member of X of type double and a pointer to a member of Y of type
char respectively. The declaration of pmd is well-formed even though X has no members of type
double. Similarly, the declaration of pmc is well-formed even though Y is an incomplete type. pmi and
pmf can be used like this:

X obj;
//...
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj.*pmf)(7); // call a function member of obj

// with the argument 7

—end example]

3 A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or
“cv void.” [Note: see also 5.3 and 5.5. The type “pointer to member” is distinct from the type “pointer”,
that is, a pointer to member is declared only by the pointer to member declarator syntax, and never by the
pointer declarator syntax. There is no “reference-to-member” type in C + +.]

[dcl.array] 8.3.4 Arrays

1 In a declaration T D where D has the form

D1 [constant-expressionopt]

and the type of the identifier in the declaration T D1 is “derived-declarator-type-list T,” then the type of the
identifier of D is an array type. T is called the array element type; this type shall not be a reference type, the
(possibly cv-qualified) type void, a function type or an abstract class type. If the constant-expression
(5.19) is present, it shall be an integral constant expression and its value shall be greater than zero. The
constant expression specifies the bound of (number of elements in) the array. If the value of the constant
expression is N, the array has N elements numbered 0 to N-1, and the type of the identifier of D is
“derived-declarator-type-list array of N T.” An object of array type contains a contiguously allocated non-
empty set of N sub-objects of type T. If the constant expression is omitted, the type of the identifier of D is
“derived-declarator-type-list array of unknown bound of T,” an incomplete object type. The type
“derived-declarator-type-list array of N T” is a different type from the type “derived-declarator-type-list
array of unknown bound of T,” see 3.9. Any type of the form “cv-qualifier-seq array of N T” is adjusted to
“array of N cv-qualifier-seq T,” and similarly for “array of unknown bound of T.” [Example:

typedef int A[5], AA[2][3];
typedef const A CA; // type is ‘‘array of 5 const int’’
typedef const AA CAA; // type is ‘‘array of 2 array of 3 const int’’

—end example] [Note: an “array of N cv-qualifier-seq T” has cv-qualified type; such an array has internal
linkage unless explicitly declared extern (7.1.5.1) and must be initialized as specified in 8.5.]

137

ISO/IEC 14882:2003(E)  ISO/IEC

8.3.4 Arrays 8 Declarators

2 An array can be constructed from one of the fundamental types (except void), from a pointer, from a
pointer to member, from a class, from an enumeration type, or from another array.

3 When several “array of” specifications are adjacent, a multidimensional array is created; the constant
expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence.
[Note: this elision is useful for function parameters of array types, and when the array is external and the
definition, which allocates storage, is given elsewhere.] The first constant-expression can also be omitted
when the declarator is followed by an initializer (8.5). In this case the bound is calculated from the number
of initial elements (say, N) supplied (8.5.1), and the type of the identifier of D is “array of N T.”

4 [Example:

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. For another example,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail, x3d is an array
of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers.
Any of the expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] can reasonably appear in an
expression.]

5 [Note: conversions affecting lvalues of array type are described in 4.2. Objects of array types cannot be
modified, see 3.10.]

6 Except where it has been declared for a class (13.5.5), the subscript operator [] is interpreted in such a way
that E1[E2] is identical to *((E1)+(E2)). Because of the conversion rules that apply to +, if E1 is an
array and E2 an integer, then E1[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

7 A consistent rule is followed for multidimensional arrays. If E is an n-dimensional array of rank
i× j× . . . ×k, then E appearing in an expression is converted to a pointer to an (n −1)-dimensional array
with rank j× . . . ×k. If the * operator, either explicitly or implicitly as a result of subscripting, is applied to
this pointer, the result is the pointed-to (n −1)-dimensional array, which itself is immediately converted
into a pointer.

8 [Example: consider

int x[3][5];

Here x is a 3×5 array of integers. When x appears in an expression, it is converted to a pointer to (the first
of three) five-membered arrays of integers. In the expression x[i], which is equivalent to *(x+i), x is
first converted to a pointer as described; then x+i is converted to the type of x, which involves multiplying
i by the length of the object to which the pointer points, namely five integer objects. The results are added
and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first
of the integers. If there is another subscript the same argument applies again; this time the result is an inte-
ger.]

9 [Note: it follows from all this that arrays in C + + are stored row-wise (last subscript varies fastest) and that
the first subscript in the declaration helps determine the amount of storage consumed by an array but plays
no other part in subscript calculations.]

[dcl.fct] 8.3.5 Functions

1 In a declaration T D where D has the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

and the type of the contained declarator-id in the declaration T D1 is “derived-declarator-type-list T,” the
type of the declarator-id in D is “derived-declarator-type-list function of (parameter-declaration-clause)
cv-qualifier-seqopt returning T”; a type of this form is a function type86).

86) As indicated by the syntax, cv-qualifiers are a significant component in function return types.

138

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.3.5 Functions

parameter-declaration-clause:
parameter-declaration-listopt ...opt

parameter-declaration-list , ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator = assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

2 The parameter-declaration-clause determines the arguments that can be specified, and their processing,
when the function is called. [Note: the parameter-declaration-clause is used to convert the arguments
specified on the function call; see 5.2.2.] If the parameter-declaration-clause is empty, the function takes
no arguments. The parameter list (void) is equivalent to the empty parameter list. Except for this spe-
cial case, void shall not be a parameter type (though types derived from void, such as void*, can). If
the parameter-declaration-clause terminates with an ellipsis, the number of arguments shall be equal to or
greater than the number of parameters specified. Where syntactically correct, “, ...” is synonymous
with “...”. [Example: the declaration

int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.

printf("hello world");
printf("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char*.] [Note: the stan-
dard header <cstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see
5.2.2 and 18.7).]

3 A single name can be used for several different functions in a single scope; this is function overloading
(clause 13). All declarations for a function with a given parameter list shall agree exactly both in the type
of the value returned and in the number and type of parameters; the presence or absence of the ellipsis is
considered part of the function type. The type of a function is determined using the following rules. The
type of each parameter is determined from its own decl-specifier-seq and declarator. After determining the
type of each parameter, any parameter of type “array of T” or “function returning T” is adjusted to be
“pointer to T” or “pointer to function returning T,” respectively. After producing the list of parameter
types, several transformations take place upon these types to determine the function type. Any cv-qualifier
modifying a parameter type is deleted. [Example: the type void(*)(const int) becomes
void(*)(int) —end example] Such cv-qualifiers affect only the definition of the parameter within the
body of the function; they do not affect the function type. If a storage-class-specifier modifies a parameter
type, the specifier is deleted. [Example: register char* becomes char* —end example] Such
storage-class-specifiers affect only the definition of the parameter within the body of the function; they do
not affect the function type. The resulting list of transformed parameter types is the function’s parameter
type list.

4 A cv-qualifier-seq shall only be part of the function type for a nonstatic member function, the function type
to which a pointer to member refers, or the top-level function type of a function typedef declaration. The
effect of a cv-qualifier-seq in a function declarator is not the same as adding cv-qualification on top of the
function type, i.e., it does not create a cv-qualified function type. In fact, if at any time in the determination
of a type a cv-qualified function type is formed, the program is ill-formed. [Example:

139

ISO/IEC 14882:2003(E)  ISO/IEC

8.3.5 Functions 8 Declarators

typedef void F();
struct S {

const F f; // ill-formed:
// not equivalent to: void f() const;

};

—end example] The return type, the parameter type list and the cv-qualifier-seq, but not the default argu-
ments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function types are
checked during the assignments and initializations of pointer-to-functions, reference-to-functions, and
pointer-to-member-functions.]

5 [Example: the declaration

int fseek(FILE*, long, int);

declares a function taking three arguments of the specified types, and returning int (7.1.5).]

6 If the type of a parameter includes a type of the form “pointer to array of unknown bound of T” or “refer-
ence to array of unknown bound of T,” the program is ill-formed.87) Functions shall not have a return type
of type array or function, although they may have a return type of type pointer or reference to such things.
There shall be no arrays of functions, although there can be arrays of pointers to functions. Types shall not
be defined in return or parameter types. The type of a parameter or the return type for a function definition
shall not be an incomplete class type (possibly cv-qualified) unless the function definition is nested within
the member-specification for that class (including definitions in nested classes defined within the class).

7 A typedef of function type may be used to declare a function but shall not be used to define a function (8.4).
[Example:

typedef void F();
F fv; // OK: equivalent to void fv();
F fv { } // ill-formed
void fv() { } // OK: definition of fv

—end example] A typedef of a function type whose declarator includes a cv-qualifier-seq shall be used
only to declare the function type for a nonstatic member function, to declare the function type to which a
pointer to member refers, or to declare the top-level function type of another function typedef declaration.
[Example:

typedef int FIC(int) const;
FIC f; // ill-formed: does not declare a member function
struct S {

FIC f; // OK
};
FIC S::*pm = &S::f; // OK

—end example]

8 An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it
names a parameter (sometimes called “formal argument”). [Note: in particular, parameter names are also
optional in function definitions and names used for a parameter in different declarations and the definition
of a function need not be the same. If a parameter name is present in a function declaration that is not a
definition, it cannot be used outside of the parameter-declaration-clause since it goes out of scope at the
end of the function declarator (3.3).]

9 [Example: the declaration

87) This excludes parameters of type “ptr-arr-seq T2” where T2 is “pointer to array of unknown bound of T” and where ptr-arr-seq
means any sequence of “pointer to” and “array of” derived declarator types. This exclusion applies to the parameters of the function,
and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

140

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.3.5 Functions

int i,
*pi,
f(),
*fpi(int),
(*pif)(const char*, const char*),
(*fpif(int))(int);

declares an integer i, a pointer pi to an integer, a function f taking no arguments and returning an integer,
a function fpi taking an integer argument and returning a pointer to an integer, a pointer pif to a function
which takes two pointers to constant characters and returns an integer, a function fpif taking an integer
argument and returning a pointer to a function that takes an integer argument and returns an integer. It is
especially useful to compare fpi and pif. The binding of *fpi(int) is *(fpi(int)), so the decla-
ration suggests, and the same construction in an expression requires, the calling of a function fpi, and then
using indirection through the (pointer) result to yield an integer. In the declarator (*pif)(const
char*, const char*), the extra parentheses are necessary to indicate that indirection through a pointer
to a function yields a function, which is then called.] [Note: typedefs are sometimes convenient when the
return type of a function is complex. For example, the function fpif above could have been declared

typedef int IFUNC(int);
IFUNC* fpif(int);

—end note]

[dcl.fct.default] 8.3.6 Default arguments

1 If an expression is specified in a parameter declaration this expression is used as a default argument.
Default arguments will be used in calls where trailing arguments are missing.

2 [Example: the declaration

void point(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any
of these ways:

point(1,2); point(1); point();

The last two calls are equivalent to point(1,4) and point(3,4), respectively.]

3 A default argument expression shall be specified only in the parameter-declaration-clause of a function
declaration or in a template-parameter (14.1). If it is specified in a parameter-declaration-clause, it shall
not occur within a declarator or abstract-declarator of a parameter-declaration.88)

4 For non-template functions, default arguments can be added in later declarations of a function in the same
scope. Declarations in different scopes have completely distinct sets of default arguments. That is, declara-
tions in inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In
a given function declaration, all parameters subsequent to a parameter with a default argument shall have
default arguments supplied in this or previous declarations. A default argument shall not be redefined by a
later declaration (not even to the same value). [Example:

void f(int, int);
void f(int, int = 7);
void h()
{

f(3); // OK, calls f(3, 7)
void f(int = 1, int); // error: does not use default

// from surrounding scope
}

88) This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or
typedef declarations.

141

ISO/IEC 14882:2003(E)  ISO/IEC

8.3.6 Default arguments 8 Declarators

void m()
{

void f(int, int); // has no defaults
f(4); // error: wrong number of arguments
void f(int, int = 5); // OK
f(4); // OK, calls f(4, 5);
void f(int, int = 5); // error: cannot redefine, even to

// same value
}
void n()
{

f(6); // OK, calls f(6, 7)
}

—end example] For a given inline function defined in different translation units, the accumulated sets of
default arguments at the end of the translation units shall be the same; see 3.2.

5 A default argument expression is implicitly converted (clause 4) to the parameter type. The default argu-
ment expression has the same semantic constraints as the initializer expression in a declaration of a variable
of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound,
and the semantic constraints are checked, at the point where the default argument expression appears.
Name lookup and checking of semantic constraints for default arguments in function templates and in
member functions of class templates are performed as described in 14.7.1. [Example: in the following
code, g will be called with the value f(2):

int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)

void h() {
a = 2;
{

int a = 3;
g(); // g(f(::a))

}
}

—end example] [Note: in member function declarations, names in default argument expressions are looked
up as described in 3.4.1. Access checking applies to names in default argument expressions as described in
clause 11.]

6 Except for member functions of class templates, the default arguments in a member function definition that
appears outside of the class definition are added to the set of default arguments provided by the member
function declaration in the class definition. Default arguments for a member function of a class template
shall be specified on the initial declaration of the member function within the class template. [Example:

class C {
void f(int i = 3);
void g(int i, int j = 99);

};

void C::f(int i = 3) // error: default argument already
{ } // specified in class scope
void C::g(int i = 88, int j) // in this translation unit,
{ } // C::g can be called with no argument

—end example]

7 Local variables shall not be used in default argument expressions. [Example:

142

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.3.6 Default arguments

void f()
{

int i;
extern void g(int x = i); // error
// ...

}

—end example]

8 The keyword this shall not be used in a default argument of a member function. [Example:

class A {
void f(A* p = this) { } // error

};

—end example]

9 Default arguments are evaluated each time the function is called. The order of evaluation of function argu-
ments is unspecified. Consequently, parameters of a function shall not be used in default argument expres-
sions, even if they are not evaluated. Parameters of a function declared before a default argument expres-
sion are in scope and can hide namespace and class member names. [Example:

int a;
int f(int a, int b = a); // error: parameter a

// used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter I found
int h(int a, int b = sizeof(a)); // error, parameter a used

// in default argument

—end example] Similarly, a nonstatic member shall not be used in a default argument expression, even if it
is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless
it is used to form a pointer to member (5.3.1). [Example: the declaration of X::mem1() in the following
example is ill-formed because no object is supplied for the nonstatic member X::a used as an initializer.

int b;
class X {

int a;
int mem1(int i = a); // error: nonstatic member a

// used as default argument
int mem2(int i = b); // OK; use X::b
static int b;

};

The declaration of X::mem2() is meaningful, however, since no object is needed to access the static
member X::b. Classes, objects, and members are described in clause 9.] A default argument is not part
of the type of a function. [Example:

int f(int = 0);

void h()
{

int j = f(1);
int k = f(); // OK, means f(0)

}

int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch

—end example] When a declaration of a function is introduced by way of a using-declaration (7.3.3), any
default argument information associated with the declaration is made known as well. If the function is
redeclared thereafter in the namespace with additional default arguments, the additional arguments are also
known at any point following the redeclaration where the using-declaration is in scope.

143

ISO/IEC 14882:2003(E)  ISO/IEC

8.3.6 Default arguments 8 Declarators

10 A virtual function call (10.3) uses the default arguments in the declaration of the virtual function deter-
mined by the static type of the pointer or reference denoting the object. An overriding function in a derived
class does not acquire default arguments from the function it overrides. [Example:

struct A {
virtual void f(int a = 7);

};
struct B : public A {

void f(int a);
};
void m()
{

B* pb = new B;
A* pa = pb;
pa->f(); // OK, calls pa->B::f(7)
pb->f(); // error: wrong number of arguments for B::f()

}

—end example]

[dcl.fct.def] 8.4 Function definitions

1 Function definitions have the form

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block

function-body:
compound-statement

The declarator in a function-definition shall have the form

D1 (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

as described in 8.3.5. A function shall be defined only in namespace or class scope.

2 [Example: a simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a > b) ? a : b;
return (m > c) ? m : c;

}

Here int is the decl-specifier-seq; max(int a, int b, int c) is the declarator; { /* ... */ } is
the function-body.]

3 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.

4 A cv-qualifier-seq can be part of a non-static member function declaration, non-static member function def-
inition, or pointer to member function only; see 9.3.2. It is part of the function type.

5 [Note: unused parameters need not be named. For example,

void print(int a, int)
{

printf("a = %d\n",a);
}

—end note]

144

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.5 Initializers

[dcl.init] 8.5 Initializers

1 A declarator can specify an initial value for the identifier being declared. The identifier designates an
object or reference being initialized. The process of initialization described in the remainder of 8.5 applies
also to initializations specified by other syntactic contexts, such as the initialization of function parameters
with argument expressions (5.2.2) or the initialization of return values (6.6.3).

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list ,opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

2 Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expres-
sions involving literals and previously declared variables and functions. [Example:

int f(int);
int a = 2;
int b = f(a);
int c(b);

—end example]

3 [Note: default argument expressions are more restricted; see 8.3.6.

4 The order of initialization of static objects is described in 3.6 and 6.7.]

5 To zero-initialize an object of type T means:

— if T is a scalar type (3.9), the object is set to the value of 0 (zero) converted to T;

— if T is a non-union class type, each nonstatic data member and each base-class subobject is zero-
initialized;

— if T is a union type, the object’s first named data member89) is zero-initialized;

— if T is an array type, each element is zero-initialized;

— if T is a reference type, no initialization is performed.

To default-initialize an object of type T means:

— if T is a non-POD class type (clause 9), the default constructor for T is called (and the initialization is
ill-formed if T has no accessible default constructor);

— if T is an array type, each element is default-initialized;

— otherwise, the object is zero-initialized.

To value-initialize an object of type T means:

— if T is a class type (clause 9) with a user-declared constructor (12.1), then the default constructor for T is
called (and the initialization is ill-formed if T has no accessible default constructor);

— if T is a non-union class type without a user-declared constructor, then every non-static data member
and base-class component of T is value-initialized;

89) This member must not be static, by virtue of the requirements in 9.5.

145

ISO/IEC 14882:2003(E)  ISO/IEC

8.5 Initializers 8 Declarators

— if T is an array type, then each element is value-initialized;

— otherwise, the object is zero-initialized

A program that calls for default-initialization or value-initialization of an entity of reference type is ill-
formed. If T is a cv-qualified type, the cv-unqualified version of T is used for these definitions of zero-
initialization, default-initialization, and value-initialization.

6 Every object of static storage duration shall be zero-initialized at program startup before any other initial-
ization takes place. [Note: in some cases, additional initialization is done later.]

7 An object whose initializer is an empty set of parentheses, i.e., (), shall be value-initialized.

8 [Note: since () is not permitted by the syntax for initializer,

X a();

is not the declaration of an object of class X, but the declaration of a function taking no argument and
returning an X. The form () is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2).]

9 If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or
array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying
class type shall have a user-declared default constructor. Otherwise, if no initializer is specified for a non-
static object, the object and its subobjects, if any, have an indeterminate initial value90); if the object or any
of its subobjects are of const-qualified type, the program is ill-formed.

10 An initializer for a static member is in the scope of the member’s class. [Example:

int a;

struct X {
static int a;
static int b;

};

int X::a = 1;
int X::b = a; // X::b = X::a

—end example]

11 The form of initialization (using parentheses or =) is generally insignificant, but does matter when the
entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions
only when the entity being initialized has a class type.

12 The initialization that occurs in argument passing, function return, throwing an exception (15.1), handling
an exception (15.3), and brace-enclosed initializer lists (8.5.1) is called copy-initialization and is equivalent
to the form

T x = a;

The initialization that occurs in new expressions (5.3.4), static_cast expressions (5.2.9), functional
notation type conversions (5.2.3), and base and member initializers (12.6.2) is called direct-initialization
and is equivalent to the form

T x(a);

13 If T is a scalar type, then a declaration of the form

T x = { a };

is equivalent to

90) This does not apply to aggregate objects with automatic storage duration initialized with an incomplete brace-enclosed initializer-
list; see 8.5.1.

146

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.5 Initializers

T x = a;

14 The semantics of initializers are as follows. The destination type is the type of the object or reference being
initialized and the source type is the type of the initializer expression. The source type is not defined when
the initializer is brace-enclosed or when it is a parenthesized list of expressions.

— If the destination type is a reference type, see 8.5.3.

— If the destination type is an array of characters or an array of wchar_t, and the initializer is a string lit-
eral, see 8.5.2.

— Otherwise, if the destination type is an array, see 8.5.1.

— If the destination type is a (possibly cv-qualified) class type:

— If the class is an aggregate (8.5.1), and the initializer is a brace-enclosed list, see 8.5.1.

— If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified ver-
sion of the source type is the same class as, or a derived class of, the class of the destination, con-
structors are considered. The applicable constructors are enumerated (13.3.1.3), and the best one is
chosen through overload resolution (13.3). The constructor so selected is called to initialize the
object, with the initializer expression(s) as its argument(s). If no constructor applies, or the overload
resolution is ambiguous, the initialization is ill-formed.

— Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences that
can convert from the source type to the destination type or (when a conversion function is used) to a
derived class thereof are enumerated as described in 13.3.1.4, and the best one is chosen through
overload resolution (13.3). If the conversion cannot be done or is ambiguous, the initialization is
ill-formed. The function selected is called with the initializer expression as its argument; if the func-
tion is a constructor, the call initializes a temporary of the destination type. The result of the call
(which is the temporary for the constructor case) is then used to direct-initialize, according to the
rules above, the object that is the destination of the copy-initialization. In certain cases, an imple-
mentation is permitted to eliminate the copying inherent in this direct-initialization by constructing
the intermediate result directly into the object being initialized; see 12.2, 12.8.

— Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered.
The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen through over-
load resolution (13.3). The user-defined conversion so selected is called to convert the initializer
expression into the object being initialized. If the conversion cannot be done or is ambiguous, the
initialization is ill-formed.

— Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initial-
izer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer
expression to the cv-unqualified version of the destination type; no user-defined conversions are consid-
ered. If the conversion cannot be done, the initialization is ill-formed. [Note: an expression of type
“cv1 T” can initialize an object of type “cv2 T” independently of the cv-qualifiers cv1 and cv2.

int a;
const int b = a;
int c = b;

—end note]

[dcl.init.aggr] 8.5.1 Aggregates

1 An aggregate is an array or a class (clause 9) with no user-declared constructors (12.1), no private or pro-
tected non-static data members (clause 11), no base classes (clause 10), and no virtual functions (10.3).

2 When an aggregate is initialized the initializer can contain an initializer-clause consisting of a brace-
enclosed, comma-separated list of initializer-clauses for the members of the aggregate, written in increasing
subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to the

147

ISO/IEC 14882:2003(E)  ISO/IEC

8.5.1 Aggregates 8 Declarators

members of the subaggregate. [Example:

struct A {
int x;
struct B {

int i;
int j;

} b;
} a = { 1, { 2, 3 } };

initializes a.x with 1, a.b.i with 2, a.b.j with 3.]

3 An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as
described in 8.5.

4 An array of unknown size initialized with a brace-enclosed initializer-list containing n initializers, where n
shall be greater than zero, is defined as having n elements (8.3.4). [Example:

int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three elements since no size was specified and
there are three initializers.] An empty initializer list {} shall not be used as the initializer for an array of
unknown bound.91)

5 Static data members are not considered members of the class for purposes of aggregate initialization.
[Example:

struct A {
int i;
static int s;
int j;

} a = { 1, 2 };

Here, the second initializer 2 initializes a.j and not the static data member A::s.]

6 An initializer-list is ill-formed if the number of initializers exceeds the number of members or elements to
initialize. [Example:

char cv[4] = { ’a’, ’s’, ’d’, ’f’, 0 }; // error

is ill-formed.]

7 If there are fewer initializers in the list than there are members in the aggregate, then each member not
explicitly initialized shall be value-initialized (8.5). [Example:

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializes ss.a with 1, ss.b with "asdf", and ss.c with the value of an expression of the form
int(), that is, 0.]

8 An initializer for an aggregate member that is an empty class shall have the form of an empty initializer-list
{}. [Example:

struct S { };
struct A {

S s;
int i;

} a = { { } , 3 };

—end example] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an
empty class, then each member of the aggregate shall be initialized with a value of the form T() (5.2.3),
where T represents the type of the uninitialized member.

91) The syntax provides for empty initializer-lists, but nonetheless C + + does not have zero length arrays.

148

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.5.1 Aggregates

9 If an incomplete or empty initializer-list leaves a member of reference type uninitialized, the program is
ill-formed.

10 When initializing a multi-dimensional array, the initializers initialize the elements with the last (rightmost)
index of the array varying the fastest (8.3.4). [Example:

int x[2][2] = { 3, 1, 4, 2 };

initializes x[0][0] to 3, x[0][1] to 1, x[1][0] to 4, and x[1][1] to 2. On the other hand,

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest zero.]

11 Braces can be elided in an initializer-list as follows. If the initializer-list begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of a subaggregate; it is erroneous
for there to be more initializers than members. If, however, the initializer-list for a subaggregate does not
begin with a left brace, then only enough initializers from the list are taken to initialize the members of the
subaggregate; any remaining initializers are left to initialize the next member of the aggregate of which the
current subaggregate is a member. [Example:

float y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a completely-braced initialization: 1, 3, and 5 initialize the first row of the array y[0], namely
y[0][0], y[0][1], and y[0][2]. Likewise the next two lines initialize y[1] and y[2]. The initial-
izer ends early and therefore y[3]’s elements are initialized as if explicitly initialized with an expression
of the form float(), that is, are initialized with 0.0. In the following example, braces in the initializer-
list are elided; however the initializer-list has the same effect as the completely-braced initializer-list of the
above example,

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y begins with a left brace, but the one for y[0] does not, therefore three elements from
the list are used. Likewise the next three are taken successively for y[1] and y[2]. —end example]

12 All implicit type conversions (clause 4) are considered when initializing the aggregate member with an ini-
tializer from an initializer-list. If the initializer can initialize a member, the member is initialized. Other-
wise, if the member is itself a non-empty subaggregate, brace elision is assumed and the initializer is con-
sidered for the initialization of the first member of the subaggregate.
[Example:

struct A {
int i;
operator int();

};
struct B {

A a1, a2;
int z;

};
A a;
B b = { 4, a, a };

Braces are elided around the initializer for b.a1.i. b.a1.i is initialized with 4, b.a2 is initialized with
a, b.z is initialized with whatever a.operator int() returns.]

149

ISO/IEC 14882:2003(E)  ISO/IEC

8.5.1 Aggregates 8 Declarators

13 [Note: An aggregate array or an aggregate class may contain members of a class type with a user-declared
constructor (12.1). Initialization of these aggregate objects is described in 12.6.1.]

14 When an aggregate with static storage duration is initialized with a brace-enclosed initializer-list, if all the
member initializer expressions are constant expressions, and the aggregate is a POD type, the initialization
shall be done during the static phase of initialization (3.6.2); otherwise, it is unspecified whether the initial-
ization of members with constant expressions takes place during the static phase or during the dynamic
phase of initialization.

15 When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer for
the first member of the union. [Example:

union u { int a; char* b; };

u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error

—end example] [Note: as described above, the braces around the initializer for a union member can be
omitted if the union is a member of another aggregate.]

[dcl.init.string] 8.5.2 Character arrays

1 A char array (whether plain char, signed char, or unsigned char) can be initialized by a string-
literal (optionally enclosed in braces); a wchar_t array can be initialized by a wide string-literal (option-
ally enclosed in braces); successive characters of the string-literal initialize the members of the array.
[Example:

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string-literal. Note that because ’\n’ is a
single character and because a trailing ’\0’ is appended, sizeof(msg) is 25.]

2 There shall not be more initializers than there are array elements. [Example:

char cv[4] = "asdf"; // error

is ill-formed since there is no space for the implied trailing ’\0’.]

[dcl.init.ref] 8.5.3 References

1 A variable declared to be a T&, that is “reference to type T” (8.3.2), shall be initialized by an object, or
function, of type T or by an object that can be converted into a T. [Example:

int g(int);
void f()
{

int i;
int& r = i; // r refers to i
r = 1; // the value of i becomes 1
int* p = &r; // p points to i
int& rr = r; // rr refers to what r refers to, that is, to i
int (&rg)(int) = g; // rg refers to the function g
rg(i); // calls function g
int a[3];
int (&ra)[3] = a; // ra refers to the array a
ra[1] = i; // modifies a[1]

}

—end example]

150

 ISO/IEC ISO/IEC 14882:2003(E)

8 Declarators 8.5.3 References

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a ref-
erence is treated very differently from assignment to it. Argument passing (5.2.2) and function value return
(6.6.3) are initializations.

3 The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a
function return type, in the declaration of a class member within its class declaration (9.2), and where the
extern specifier is explicitly used. [Example:

int& r1; // error: initializer missing
extern int& r2; // OK

—end example]

4 Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is reference-related to “cv2 T2” if T1 is the same type as
T2, or T1 is a base class of T2. “cv1 T1” is reference-compatible with “cv2 T2” if T1 is reference-related
to T2 and cv1 is the same cv-qualification as, or greater cv-qualification than, cv2. For purposes of over-
load resolution, cases for which cv1 is greater cv-qualification than cv2 are identified as reference-
compatible with added qualification (see 13.3.3.2). In all cases where the reference-related or reference-
compatible relationship of two types is used to establish the validity of a reference binding, and T1 is a base
class of T2, a program that necessitates such a binding is ill-formed if T1 is an inaccessible (clause 11) or
ambiguous (10.2) base class of T2.

5 A reference to type “cv1 T1” is initialized by an expression of type “cv2 T2” as follows:

— If the initializer expression

— is an lvalue (but is not a bit-field), and “cv1 T1” is reference-compatible with “cv2 T2,” or

— has a class type (i.e., T2 is a class type) and can be implicitly converted to an lvalue of type
“cv3 T3,” where “cv1 T1” is reference-compatible with “cv3 T3” 92) (this conversion is selected by
enumerating the applicable conversion functions (13.3.1.6) and choosing the best one through over-
load resolution (13.3)),

then the reference is bound directly to the initializer expression lvalue in the first case, and the reference
is bound to the lvalue result of the conversion in the second case. In these cases the reference is said to
bind directly to the initializer expression. [Note: the usual lvalue-to-rvalue (4.1), array-to-pointer (4.2),
and function-to-pointer (4.3) standard conversions are not needed, and therefore are suppressed, when
such direct bindings to lvalues are done.]
[Example:

double d = 2.0;
double& rd = d; // rd refers to d
const double& rcd = d; // rcd refers to d

struct A { };
struct B : public A { } b;
A& ra = b; // ra refers to A sub-object in b
const A& rca = b; // rca refers to A sub-object in b

—end example]

— Otherwise, the reference shall be to a non-volatile const type (i.e., cv1 shall be const). [Example:

double& rd2 = 2.0; // error: not an lvalue and reference not const
int i = 2;
double& rd3 = i; // error: type mismatch and reference not const

—end example]

— If the initializer expression is an rvalue, with T2 a class type, and “cv1 T1” is reference-compatible
with “cv2 T2,” the reference is bound in one of the following ways (the choice is implementation-

92) This requires a conversion function (12.3.2) returning a reference type.

151

ISO/IEC 14882:2003(E)  ISO/IEC

8.5.3 References 8 Declarators

defined):

— The reference is bound to the object represented by the rvalue (see 3.10) or to a sub-object within
that object.

— A temporary of type “cv1 T2” [sic] is created, and a constructor is called to copy the entire
rvalue object into the temporary. The reference is bound to the temporary or to a sub-object
within the temporary.93)

The constructor that would be used to make the copy shall be callable whether or not the copy is
actually done. [Example:

struct A { };
struct B : public A { } b;
extern B f();
const A& rca = f(); // Either bound to the A sub-object of the B rvalue,

// or the entire B object is copied and the reference
// is bound to the A sub-object of the copy

—end example]

— Otherwise, a temporary of type “cv1 T1” is created and initialized from the initializer expression
using the rules for a non-reference copy initialization (8.5). The reference is then bound to the tem-
porary. If T1 is reference-related to T2, cv1 must be the same cv-qualification as, or greater cv-
qualification than, cv2; otherwise, the program is ill-formed. [Example:

const double& rcd2 = 2; // rcd2 refers to temporary with value 2.0
const volatile int cvi = 1;
const int& r = cvi; // error: type qualifiers dropped

—end example]

6 [Note: 12.2 describes the lifetime of temporaries bound to references.]

93) Clearly, if the reference initialization being processed is one for the first argument of a copy constructor call, an implementation
must eventually choose the first alternative (binding without copying) to avoid infinite recursion.

152

 ISO/IEC ISO/IEC 14882:2003(E)

9 Classes [class]

1 A class is a type. Its name becomes a class-name (9.1) within its scope.

class-name:
identifier
template-id

Class-specifiers and elaborated-type-specifiers (7.1.5.3) are used to make class-names. An object of a class
consists of a (possibly empty) sequence of members and base class objects.

class-specifier:
class-head { member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key nested-name-specifieropt template-id base-clauseopt

class-key:
class
struct
union

2 A class-name is inserted into the scope in which it is declared immediately after the class-name is seen.
The class-name is also inserted into the scope of the class itself; this is known as the injected-class-name.
For purposes of access checking, the injected-class-name is treated as if it were a public member name. A
class-specifier is commonly referred to as a class definition. A class is considered defined after the closing
brace of its class-specifier has been seen even though its member functions are in general not yet defined.

3 Complete objects and member subobjects of class type shall have nonzero size.94) [Note: class objects can
be assigned, passed as arguments to functions, and returned by functions (except objects of classes for
which copying has been restricted; see 12.8). Other plausible operators, such as equality comparison, can
be defined by the user; see 13.5.]

4 A structure is a class defined with the class-key struct; its members and base classes (clause 10) are pub-
lic by default (clause 11). A union is a class defined with the class-key union; its members are public by
default and it holds only one data member at a time (9.5). [Note: aggregates of class type are described in
8.5.1.] A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct,
non-POD-union (or array of such types) or reference, and has no user-defined copy assignment operator
and no user-defined destructor. Similarly, a POD-union is an aggregate union that has no non-static data
members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-
defined copy assignment operator and no user-defined destructor. A POD class is a class that is either a
POD-struct or a POD-union.

[class.name] 9.1 Class names

1 A class definition introduces a new type. [Example:

94) Base class subobjects are not so constrained.

153

ISO/IEC 14882:2003(E)  ISO/IEC

9.1 Class names 9 Classes

struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;

declares three variables of three different types. This implies that

a1 = a2; // error: Y assigned to X
a1 = a3; // error: int assigned to X

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (clause 13) function f() and not simply a single function f() twice. For the same
reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is ill-formed because it defines S twice.]

2 A class definition introduces the class name into the scope where it is defined and hides any class, object,
function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a
scope where an object, function, or enumerator of the same name is also declared, then when both declara-
tions are in scope, the class can be referred to only using an elaborated-type-specifier (3.4.4). [Example:

struct stat {
// ...

};

stat gstat; // use plain stat to
// define variable

int stat(struct stat*); // redeclare stat as function

void f()
{

struct stat* ps; // struct prefix needed
// to name struct stat
// ...

stat(ps); // call stat()
// ...

}

—end example] A declaration consisting solely of class-key identifier ; is either a redeclaration of the
name in the current scope or a forward declaration of the identifier as a class name. It introduces the class
name into the current scope. [Example:

struct s { int a; };

void g()
{

struct s; // hide global struct s
// with a local declaration

s* p; // refer to local struct s
struct s { char* p; }; // define local struct s
struct s; // redeclaration, has no effect

}

—end example] [Note: Such declarations allow definition of classes that refer to each other. [Example:

154

 ISO/IEC ISO/IEC 14882:2003(E)

9 Classes 9.1 Class names

class Vector;

class Matrix {
// ...
friend Vector operator*(Matrix&, Vector&);

};

class Vector {
// ...
friend Vector operator*(Matrix&, Vector&);

};

Declaration of friends is described in 11.4, operator functions in 13.5.]]

3 An elaborated-type-specifier (7.1.5.3) can also be used as a type-specifier as part of a declaration. It differs
from a class declaration in that if a class of the elaborated name is in scope the elaborated name will refer to
it. [Example:

struct s { int a; };

void g(int s)
{

struct s* p = new struct s; // global s
p->a = s; // local s

}

—end example]

4 [Note: The declaration of a class name takes effect immediately after the identifier is seen in the class defi-
nition or elaborated-type-specifier. For example,

class A * A;

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that
class. This means that the elaborated form class A must be used to refer to the class. Such artistry with
names can be confusing and is best avoided.]

5 A typedef-name (7.1.3) that names a class is a class-name, but shall not be used in an elaborated-type-
specifier; see also 7.1.3.

[class.mem] 9.2 Class members

member-specification:
member-declaration member-specificationopt

access-specifier : member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ;opt

::opt nested-name-specifier templateopt unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

155

ISO/IEC 14882:2003(E)  ISO/IEC

9.2 Class members 9 Classes

pure-specifier:
= 0

constant-initializer:
= constant-expression

1 The member-specification in a class definition declares the full set of members of the class; no member can
be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and enu-
merators. Data members and member functions are static or nonstatic; see 9.4. Nested types are classes
(9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use of a
typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are members of
the class. Except when used to declare friends (11.4) or to introduce the name of a member of a base class
into a derived class (7.3.3,11.3), member-declarations declare members of the class, and each such
member-declaration shall declare at least one member name of the class. A member shall not be declared
twice in the member-specification, except that a nested class or member class template can be declared and
then later defined.

2 A class is considered a completely-defined object type (3.9) (or complete type) at the closing } of the
class-specifier. Within the class member-specification, the class is regarded as complete within function
bodies, default arguments and constructor ctor-initializers (including such things in nested classes). Other-
wise it is regarded as incomplete within its own class member-specification.

3 [Note: a single name can denote several function members provided their types are sufficiently different
(clause 13).]

4 A member-declarator can contain a constant-initializer only if it declares a static member (9.4) of
const integral or const enumeration type, see 9.4.2.

5 A member can be initialized using a constructor; see 12.1. [Note: see clause 12 for a description of con-
structors and other special member functions.]

6 A member shall not be auto, extern, or register.

7 The decl-specifier-seq is omitted in constructor, destructor, and conversion function declarations only. The
member-declarator-list can be omitted only after a class-specifier, an enum-specifier, or a decl-specifier-
seq of the form friend elaborated-type-specifier. A pure-specifier shall be used only in the declaration
of a virtual function (10.3).

8 Non-static (9.4) members that are class objects shall be objects of previously defined classes. In partic-
ular, a class cl shall not contain an object of class cl, but it can contain a pointer or reference to an object
of class cl. When an array is used as the type of a nonstatic member all dimensions shall be specified.

9 Except when used to form a pointer to member (5.3.1), when used in the body of a nonstatic member func-
tion of its class or of a class derived from its class (9.3.1), or when used in a mem-initializer for a construc-
tor for its class or for a class derived from its class (12.6.2), a nonstatic data or function member of a class
shall only be referred to with the class member access syntax (5.2.5).

10 [Note: the type of a nonstatic member function is an ordinary function type, and the type of a nonstatic data
member is an ordinary object type. There are no special member function types or data member types.]

11 [Example: A simple example of a class definition is

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;

};

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this
definition has been given, the declaration

156

 ISO/IEC ISO/IEC 14882:2003(E)

9 Classes 9.2 Class members

tnode s, *sp;

declares s to be a tnode and sp to be a pointer to a tnode. With these declarations, sp->count refers
to the count member of the structure to which sp points; s.left refers to the left subtree pointer of
the structure s; and s.right->tword[0] refers to the initial character of the tword member of the
right subtree of s.]

12 Nonstatic data members of a (non-union) class declared without an intervening access-specifier are allo-
cated so that later members have higher addresses within a class object. The order of allocation of nonstatic
data members separated by an access-specifier is unspecified (11.1). Implementation alignment require-
ments might cause two adjacent members not to be allocated immediately after each other; so might
requirements for space for managing virtual functions (10.3) and virtual base classes (10.1).

13 If T is the name of a class, then each of the following shall have a name different from T:

— every static data member of class T;

— every member function of class T [Note: this restriction does not apply to constructors, which do not
have names (12.1)] ;

— every member of class T that is itself a type;

— every enumerator of every member of class T that is an enumerated type; and

— every member of every anonymous union that is a member of class T.

13a In addition, if class T has a user-declared constructor (12.1), every nonstatic data member of class T shall
have a name different from T.

14 Two POD-struct (clause 9) types are layout-compatible if they have the same number of nonstatic data
members, and corresponding nonstatic data members (in order) have layout-compatible types (3.9).

15 Two POD-union (clause 9) types are layout-compatible if they have the same number of nonstatic data
members, and corresponding nonstatic data members (in any order) have layout-compatible types (3.9).

16 If a POD-union contains two or more POD-structs that share a common initial sequence, and if the POD-
union object currently contains one of these POD-structs, it is permitted to inspect the common initial part
of any of them. Two POD-structs share a common initial sequence if corresponding members have layout-
compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

17 A pointer to a POD-struct object, suitably converted using a reinterpret_cast, points to its initial
member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [Note: There
might therefore be unnamed padding within a POD-struct object, but not at its beginning, as necessary to
achieve appropriate alignment.]

[class.mfct] 9.3 Member functions

1 Functions declared in the definition of a class, excluding those declared with a friend specifier (11.4),
are called member functions of that class. A member function may be declared static in which case it is
a static member function of its class (9.4); otherwise it is a nonstatic member function of its class (9.3.1,
9.3.2).

2 A member function may be defined (8.4) in its class definition, in which case it is an inline member func-
tion (7.1.2), or it may be defined outside of its class definition if it has already been declared but not
defined in its class definition. A member function definition that appears outside of the class definition
shall appear in a namespace scope enclosing the class definition. Except for member function definitions
that appear outside of a class definition, and except for explicit specializations of member functions of class
templates and member function templates (14.7) appearing outside of the class definition, a member func-
tion shall not be redeclared.

3 An inline member function (whether static or nonstatic) may also be defined outside of its class defini-
tion provided either its declaration in the class definition or its definition outside of the class definition

157

ISO/IEC 14882:2003(E)  ISO/IEC

9.3 Member functions 9 Classes

declares the function as inline. [Note: member functions of a class in namespace scope have external
linkage. Member functions of a local class (9.8) have no linkage. See 3.5.]

4 There shall be at most one definition of a non-inline member function in a program; no diagnostic is
required. There may be more than one inline member function definition in a program. See 3.2 and
7.1.2.

5 If the definition of a member function is lexically outside its class definition, the member function name
shall be qualified by its class name using the :: operator. [Note: a name used in a member function defini-
tion (that is, in the parameter-declaration-clause including the default arguments (8.3.6), or in the member
function body, or, for a constructor function (12.1), in a mem-initializer expression (12.6.2)) is
looked up as described in 3.4.] [Example:

struct X {
typedef int T;
static T count;
void f(T);

};
void X::f(T t = count) { }

The member function f of class X is defined in global scope; the notation X::f specifies that the function
f is a member of class X and in the scope of class X. In the function definition, the parameter type T refers
to the typedef member T declared in class X and the default argument count refers to the static data mem-
ber count declared in class X.]

6 A static local variable in a member function always refers to the same object, whether or not the mem-
ber function is inline.

7 Member functions may be mentioned in friend declarations after their class has been defined.

8 Member functions of a local class shall be defined inline in their class definition, if they are defined at all.

9 [Note: a member function can be declared (but not defined) using a typedef for a function type. The result-
ing member function has exactly the same type as it would have if the function declarator were provided
explicitly, see 8.3.5. For example,

typedef void fv(void);
typedef void fvc(void) const;
struct S {

fv memfunc1; // equivalent to: void memfunc1(void);
void memfunc2();
fvc memfunc3; // equivalent to: void memfunc3(void) const;

};
fv S::* pmfv1 = &S::memfunc1;
fv S::* pmfv2 = &S::memfunc2;
fvc S::* pmfv3 = &S::memfunc3;

Also see 14.3.]

[class.mfct.nonstatic] 9.3.1 Nonstatic member functions

1 A nonstatic member function may be called for an object of its class type, or for an object of a class derived
(clause 10) from its class type, using the class member access syntax (5.2.5, 13.3.1.1). A nonstatic member
function may also be called directly using the function call syntax (5.2.2, 13.3.1.1)

— from within the body of a member function of its class or of a class derived from its class, or

— from a mem-initializer (12.6.2) for a constructor for its class or for a class derived from its class.

If a nonstatic member function of a class X is called for an object that is not of type X, or of a type derived
from X, the behavior is undefined.

2 When an id-expression (5.1) that is not part of a class member access syntax (5.2.5) and not used to form a
pointer to member (5.3.1) is used in the body of a nonstatic member function of class X or used in the

158

 ISO/IEC ISO/IEC 14882:2003(E)

9 Classes 9.3.1 Nonstatic member functions

mem-initializer for a constructor of class X, if name lookup (3.4.1) resolves the name in the id-expression to
a nonstatic nontype member of class X or of a base class of X, the id-expression is transformed into a class
member access expression (5.2.5) using (*this) (9.3.2) as the postfix-expression to the left of the .
operator. The member name then refers to the member of the object for which the function is called. Simi-
larly during name lookup, when an unqualified-id (5.1) used in the definition of a member function for
class X resolves to a static member, an enumerator or a nested type of class X or of a base class of X, the
unqualified-id is transformed into a qualified-id (5.1) in which the nested-name-specifier names the class of
the member function. [Example:

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* l, tnode* r);

};

void tnode::set(char* w, tnode* l, tnode* r)
{

count = strlen(w)+1;
if (sizeof(tword)<=count)

perror("tnode string too long");
strcpy(tword,w);
left = l;
right = r;

}

void f(tnode n1, tnode n2)
{

n1.set("abc",&n2,0);
n2.set("def",0,0);

}

In the body of the member function tnode::set, the member names tword, count, left, and
right refer to members of the object for which the function is called. Thus, in the call
n1.set("abc",&n2,0), tword refers to n1.tword, and in the call n2.set("def",0,0), it
refers to n2.tword. The functions strlen, perror, and strcpy are not members of the class
tnode and should be declared elsewhere.95)]

3 A nonstatic member function may be declared const, volatile, or const volatile. These cv-
qualifiers affect the type of the this pointer (9.3.2). They also affect the function type (8.3.5) of the
member function; a member function declared const is a const member function, a member function
declared volatile is a volatile member function and a member function declared const volatile is
a const volatile member function. [Example:

struct X {
void g() const;
void h() const volatile;

};

X::g is a const member function and X::h is a const volatile member function.]

4 A nonstatic member function may be declared virtual (10.3) or pure virtual (10.4).

95) See, for example, <cstring> (21.4).

159

ISO/IEC 14882:2003(E)  ISO/IEC

9.3.2 The this pointer 9 Classes

[class.this] 9.3.2 The this pointer

1 In the body of a nonstatic (9.3) member function, the keyword this is a non-lvalue expression whose
value is the address of the object for which the function is called. The type of this in a member function
of a class X is X*. If the member function is declared const, the type of this is const X*, if the mem-
ber function is declared volatile, the type of this is volatile X*, and if the member function is
declared const volatile, the type of this is const volatile X*.

2 In a const member function, the object for which the function is called is accessed through a const
access path; therefore, a const member function shall not modify the object and its non-static data mem-
bers. [Example:

struct s {
int a;
int f() const;
int g() { return a++; }
int h() const { return a++; } // error

};

int s::f() const { return a; }

The a++ in the body of s::h is ill-formed because it tries to modify (a part of) the object for which
s::h() is called. This is not allowed in a const member function because this is a pointer to const;
that is, *this has const type.]

3 Similarly, volatile semantics (7.1.5.1) apply in volatile member functions when accessing the
object and its non-static data members.

4 A cv-qualified member function can be called on an object-expression (5.2.5) only if the object-expression
is as cv-qualified or less-cv-qualified than the member function. [Example:

void k(s& x, const s& y)
{

x.f();
x.g();
y.f();
y.g(); // error

}

The call y.g() is ill-formed because y is const and s::g() is a non-const member function, that is,
s::g() is less-qualified than the object-expression y.]

5 Constructors (12.1) and destructors (12.4) shall not be declared const, volatile or const
volatile. [Note: However, these functions can be invoked to create and destroy objects with cv-
qualified types, see (12.1) and (12.4).]

[class.static] 9.4 Static members

1 A data or function member of a class may be declared static in a class definition, in which case it is a
static member of the class.

2 A static member s of class X may be referred to using the qualified-id expression X::s; it is not neces-
sary to use the class member access syntax (5.2.5) to refer to a static member. A static member may
be referred to using the class member access syntax, in which case the object-expression is evaluated.
[Example:

class process {
public:

static void reschedule();
};
process& g();

160

 ISO/IEC ISO/IEC 14882:2003(E)

9 Classes 9.4 Static members

void f()
{

process::reschedule(); // OK: no object necessary
g().reschedule(); // g() is called

}

—end example] A static member may be referred to directly in the scope of its class or in the scope of a
class derived (clause 10) from its class; in this case, the static member is referred to as if a qualified-id
expression was used, with the nested-name-specifier of the qualified-id naming the class scope from which
the static member is referenced. [Example:

int g();
struct X {

static int g();
};
struct Y : X {

static int i;
};
int Y::i = g(); // equivalent to Y::g();

—end example]

3 If an unqualified-id (5.1) is used in the definition of a static member following the member’s
declarator-id, and name lookup (3.4.1) finds that the unqualified-id refers to a static member, enumera-
tor, or nested type of the member’s class (or of a base class of the member’s class), the unqualified-id is
transformed into a qualified-id expression in which the nested-name-specifier names the class scope from
which the member is referenced. The definition of a static member shall not use directly the names of
the nonstatic members of its class or of a base class of its class (including as operands of the sizeof oper-
ator). The definition of a static member may only refer to these members to form pointer to members
(5.3.1) or with the class member access syntax (5.2.5).

4 Static members obey the usual class member access rules (clause 11). When used in the declaration of a
class member, the static specifier shall only be used in the member declarations that appear within the
member-specification of the class declaration. [Note: it cannot be specified in member declarations that
appear in namespace scope.]

[class.static.mfct] 9.4.1 Static member functions

1 [Note: the rules described in 9.3 apply to static member functions.]

2 [Note: a static member function does not have a this pointer (9.3.2).] A static member function
shall not be virtual. There shall not be a static and a nonstatic member function with the same name
and the same parameter types (13.1). A static member function shall not be declared const,
volatile, or const volatile.

[class.static.data] 9.4.2 Static data members

1 A static data member is not part of the subobjects of a class. There is only one copy of a static data
member shared by all the objects of the class.

2 The declaration of a static data member in its class definition is not a definition and may be of an
incomplete type other than cv-qualified void. The definition for a static data member shall appear in a
namespace scope enclosing the member’s class definition. In the definition at namespace scope, the name
of the static data member shall be qualified by its class name using the :: operator. The initializer
expression in the definition of a static data member is in the scope of its class (3.3.6). [Example:

class process {
static process* run_chain;
static process* running;

};

161

ISO/IEC 14882:2003(E)  ISO/IEC

9.4.2 Static data members 9 Classes

process* process::running = get_main();
process* process::run_chain = running;

The static data member run_chain of class process is defined in global scope; the notation
process::run_chain specifies that the member run_chain is a member of class process and in
the scope of class process. In the static data member definition, the initializer expression refers to
the static data member running of class process.]

3 [Note: once the static data member has been defined, it exists even if no objects of its class have been
created. [Example: in the example above, run_chain and running exist even if no objects of class
process are created by the program.]]

4 If a static data member is of const integral or const enumeration type, its declaration in the class
definition can specify a constant-initializer which shall be an integral constant expression (5.19). In that
case, the member can appear in integral constant expressions. The member shall still be defined in a name-
space scope if it is used in the program and the namespace scope definition shall not contain an initializer.

5 There shall be exactly one definition of a static data member that is used in a program; no diagnostic is
required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes
shall not contain static data members. [Note: this is because there is no mechanism to provide the defi-
nitions for such static data members.]

6 Static data members of a class in namespace scope have external linkage (3.5). A local class shall not
have static data members.

7 Static data members are initialized and destroyed exactly like non-local objects (3.6.2, 3.6.3).

8 A static data member shall not be mutable (7.1.1).

[class.union] 9.5 Unions

1 In a union, at most one of the data members can be active at any time, that is, the value of at most one of
the data members can be stored in a union at any time. [Note: one special guarantee is made in order to
simplify the use of unions: If a POD-union contains several POD-structs that share a common initial
sequence (9.2), and if an object of this POD-union type contains one of the POD-structs, it is permitted to
inspect the common initial sequence of any of POD-struct members; see 9.2.] The size of a union is suffi-
cient to contain the largest of its data members. Each data member is allocated as if it were the sole mem-
ber of a struct. A union can have member functions (including constructors and destructors), but not virtual
(10.3) functions. A union shall not have base classes. A union shall not be used as a base class. An object
of a class with a non-trivial constructor (12.1), a non-trivial copy constructor (12.8), a non-trivial destructor
(12.4), or a non-trivial copy assignment operator (13.5.3, 12.8) cannot be a member of a union, nor can an
array of such objects. If a union contains a static data member, or a member of reference type, the pro-
gram is ill-formed.

2 A union of the form

union { member-specification } ;

is called an anonymous union; it defines an unnamed object of unnamed type. The member-specification of
an anonymous union shall only define non-static data members. [Note: nested types and functions cannot
be declared within an anonymous union.] The names of the members of an anonymous union shall be dis-
tinct from the names of any other entity in the scope in which the anonymous union is declared. For the
purpose of name lookup, after the anonymous union definition, the members of the anonymous union are
considered to have been defined in the scope in which the anonymous union is declared. [Example:

162

 ISO/IEC ISO/IEC 14882:2003(E)

9 Classes 9.5 Unions

void f()
{

union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...

}

Here a and p are used like ordinary (nonmember) variables, but since they are union members they have
the same address.]

3 Anonymous unions declared in a named namespace or in the global namespace shall be declared static.
Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-
scope variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous
union in a class scope. An anonymous union shall not have private or protected members (clause
11). An anonymous union shall not have function members.

4 A union for which objects or pointers are declared is not an anonymous union. [Example:

union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK

The assignment to plain aa is ill formed since the member name is not visible outside the union, and even
if it were visible, it is not associated with any particular object.] [Note: Initialization of unions with no
user-declared constructors is described in (8.5.1).]

[class.bit] 9.6 Bit-fields

1 A member-declarator of the form

identifieropt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. The bit-field attribute is not part
of the type of the class member. The constant-expression shall be an integral constant-expression with a
value greater than or equal to zero. The constant-expression may be larger than the number of bits in the
object representation (3.9) of the bit-field’s type; in such cases the extra bits are used as padding bits and do
not participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object
is implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into
some addressable allocation unit. [Note: bit-fields straddle allocation units on some machines and not on
others. Bit-fields are assigned right-to-left on some machines, left-to-right on others.]

2 A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields are
not members and cannot be initialized. [Note: an unnamed bit-field is useful for padding to conform to
externally-imposed layouts.] As a special case, an unnamed bit-field with a width of zero specifies align-
ment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed bit-field may
the constant-expression be a value equal to zero.

3 A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is
implementation-defined whether a plain (neither explicitly signed nor unsigned) char, short, int or
long bit-field is signed or unsigned. A bool value can successfully be stored in a bit-field of any nonzero
size. The address-of operator & shall not be applied to a bit-field, so there are no pointers to bit-fields. A
non-const reference shall not be bound to a bit-field (8.5.3). [Note: if the initializer for a reference of type
const T& is an lvalue that refers to a bit-field, the reference is bound to a temporary initialized to hold the
value of the bit-field; the reference is not bound to the bit-field directly. See 8.5.3.]

4 If the value true or false is stored into a bit-field of type bool of any size (including a one bit bit-
field), the original bool value and the value of the bit-field shall compare equal. If the value of an enu-
merator is stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large
enough to hold all the values of that enumeration type, the original enumerator value and the value of the

163

ISO/IEC 14882:2003(E)  ISO/IEC

9.6 Bit-fields 9 Classes

bit-field shall compare equal. [Example:

enum BOOL { f=0, t=1 };
struct A {

BOOL b:1;
};
A a;
void f() {

a.b = t;
if (a.b == t) // shall yield true
{ /* ... */ }

}

—end example]

[class.nest] 9.7 Nested class declarations

1 A class can be defined within another class. A class defined within another is called a nested class. The
name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class.
Except by using explicit pointers, references, and object names, declarations in a nested class can use only
type names, static members, and enumerators from the enclosing class. [Example:

int x;
int y;

class enclose {
public:

int x;
static int s;

class inner {

void f(int i)
{

int a = sizeof(x); // error: refers to enclose::x
x = i; // error: assign to enclose::x
s = i; // OK: assign to enclose::s
::x = i; // OK: assign to global x
y = i; // OK: assign to global y

}

void g(enclose* p, int i)
{

p->x = i; // OK: assign to enclose::x
}

};
};

inner* p = 0; // error: inner not in scope

—end example]

2 Member functions and static data members of a nested class can be defined in a namespace scope enclosing
the definition of their class. [Example:

164

 ISO/IEC ISO/IEC 14882:2003(E)

9 Classes 9.7 Nested class declarations

class enclose {
public:

class inner {
static int x;
void f(int i);

};
};

int enclose::inner::x = 1;

void enclose::inner::f(int i) { /* ... */ }

—end example]

3 If class X is defined in a namespace scope, a nested class Y may be declared in class X and later defined in
the definition of class X or be later defined in a namespace scope enclosing the definition of class X.
[Example:

class E {
class I1; // forward declaration of nested class
class I2;
class I1 {}; // definition of nested class

};
class E::I2 {}; // definition of nested class

—end example]

4 Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that
class; it obeys the same rules for name binding as a static member function of that class (9.4) and has no
special access rights to members of an enclosing class.

[class.local] 9.8 Local class declarations

1 A class can be defined within a function definition; such a class is called a local class. The name of a local
class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the same
access to names outside the function as does the enclosing function. Declarations in a local class can use
only type names, static variables, extern variables and functions, and enumerators from the enclosing
scope. [Example:

int x;
void f()
{

static int s ;
int x;
extern int g();

struct local {
int g() { return x; } // error: x is auto
int h() { return s; } // OK
int k() { return ::x; } // OK
int l() { return g(); } // OK

};
// ...

}

local* p = 0; // error: local not in scope

—end example]

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules
(clause 11). Member functions of a local class shall be defined within their class definition, if they are
defined at all.

165

ISO/IEC 14882:2003(E)  ISO/IEC

9.8 Local class declarations 9 Classes

3 If class X is a local class a nested class Y may be declared in class X and later defined in the definition of
class X or be later defined in the same scope as the definition of class X. A class nested within a local class
is a local class.

4 A local class shall not have static data members.

[class.nested.type] 9.9 Nested type names

1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a
class definition cannot be used outside their class without qualification. [Example:

class X {
public:

typedef int I;
class Y { /* ... */ };
I a;

};

I b; // error
Y c; // error
X::Y d; // OK
X::I e; // OK

—end example]

166

 ISO/IEC ISO/IEC 14882:2003(E)

10 Derived classes [class.derived]

1 A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list , base-specifier

base-specifier:
::opt nested-name-specifieropt class-name
virtual access-specifieropt ::opt nested-name-specifieropt class-name
access-specifier virtualopt ::opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

The class-name in a base-specifier shall not be an incompletely defined class (clause 9); this class is called
a direct base class for the class being declared. During the lookup for a base class name, non-type names
are ignored (3.3.7). If the name found is not a class-name, the program is ill-formed. A class B is a base
class of a class D if it is a direct base class of D or a direct base class of one of D’s base classes. A class is
an indirect base class of another if it is a base class but not a direct base class. A class is said to be (directly
or indirectly) derived from its (direct or indirect) base classes. [Note: See clause 11 for the meaning of
access-specifier.] Unless redefined in the derived class, members of a base class are also considered to be
members of the derived class. The base class members are said to be inherited by the derived class. Inher-
ited members can be referred to in expressions in the same manner as other members of the derived class,
unless their names are hidden or ambiguous (10.2). [Note: the scope resolution operator :: (5.1) can be
used to refer to a direct or indirect base member explicitly. This allows access to a name that has been
redefined in the derived class. A derived class can itself serve as a base class subject to access control; see
11.2. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous
base class (4.10). An lvalue of a derived class type can be bound to a reference to an accessible unambigu-
ous base class (8.5.3).]

2 The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived
class type. [Example:

class Base {
public:

int a, b, c;
};

class Derived : public Base {
public:

int b;
};

class Derived2 : public Derived {
public:

int c;
};

Here, an object of class Derived2 will have a sub-object of class Derived which in turn will have a
sub-object of class Base.]

167

ISO/IEC 14882:2003(E)  ISO/IEC

10 Derived classes 10 Derived classes

3 The order in which the base class subobjects are allocated in the most derived object (1.8) is unspecified.
[Note: a derived class and its base class sub-objects can be represented by a directed acyclic graph (DAG)
where an arrow means “directly derived from.” A DAG of sub-objects is often referred to as a “sub-object
lattice.”

Base

Derived

Derived2

The arrows need not have a physical representation in memory.]

4 [Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2.]

5 [Note: A base class subobject might have a layout (3.7) different from the layout of a most derived object of
the same type. A base class subobject might have a polymorphic behavior (12.7) different from the poly-
morphic behavior of a most derived object of the same type. A base class subobject may be of zero size
(clause 9); however, two subobjects that have the same class type and that belong to the same most derived
object must not be allocated at the same address (5.10).]

[class.mi] 10.1 Multiple base classes

1 A class can be derived from any number of base classes. [Note: the use of more than one direct base class
is often called multiple inheritance.] [Example:

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /* ... */ };

—end example]

2 [Note: the order of derivation is not significant except as specified by the semantics of initialization by con-
structor (12.6.2), cleanup (12.4), and storage layout (9.2, 11.1).]

3 A class shall not be specified as a direct base class of a derived class more than once. [Note: a class can be
an indirect base class more than once and can be a direct and an indirect base class. There are limited
things that can be done with such a class. The non-static data members and member functions of the direct
base class cannot be referred to in the scope of the derived class. However, the static members, enumera-
tions and types can be unambiguously referred to.] [Example:

class X { /* ... */ };
class Y : public X, public X { /* ... */ }; // ill-formed

class L { public: int next; /* ... */ };
class A : public L { /* ... */ };
class B : public L { /* ... */ };
class C : public A, public B { void f(); /* ... */ }; // well-formed
class D : public A, public L { void f(); /* ... */ }; // well-formed

—end example]

4 A base class specifier that does not contain the keyword virtual, specifies a nonvirtual base class. A
base class specifier that contains the keyword virtual, specifies a virtual base class. For each distinct
occurrence of a nonvirtual base class in the class lattice of the most derived class, the most derived object
(1.8) shall contain a corresponding distinct base class subobject of that type. For each distinct base class
that is specified virtual, the most derived object shall contain a single base class subobject of that type.
[Example: for an object of class type C, each distinct occurrence of a (non-virtual) base class L in the class
lattice of C corresponds one-to-one with a distinct L subobject within the object of type C. Given the class
C defined above, an object of class C will have two sub-objects of class L as shown below.

168

 ISO/IEC ISO/IEC 14882:2003(E)

10 Derived classes 10.1 Multiple base classes

L L

A B

C

In such lattices, explicit qualification can be used to specify which subobject is meant. The body of func-
tion C::f could refer to the member next of each L subobject:

void C::f() { A::next = B::next; } // well-formed

Without the A:: or B:: qualifiers, the definition of C::f above would be ill-formed because of ambiguity
(10.2).

5 For another example,

class V { /* ... */ };
class A : virtual public V { /* ... */ };
class B : virtual public V { /* ... */ };
class C : public A, public B { /* ... */ };

for an object c of class type C, a single subobject of type V is shared by every base subobject of c that is
declared to have a virtual base class of type V. Given the class C defined above, an object of class C
will have one subobject of class V, as shown below.

V

A B

C

6 A class can have both virtual and nonvirtual base classes of a given type.

class B { /* ... */ };
class X : virtual public B { /* ... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /* ... */ };
class AA : public X, public Y, public Z { /* ... */ };

For an object of class AA, all virtual occurrences of base class B in the class lattice of AA correspond to
a single B subobject within the object of type AA, and every other occurrence of a (non-virtual) base class B
in the class lattice of AA corresponds one-to-one with a distinct B subobject within the object of type AA.
Given the class AA defined above, class AA has two sub-objects of class B: Z’s B and the virtual B shared
by X and Y, as shown below.

B B

X Y Z

AA

—end example]

[class.member.lookup] 10.2 Member name lookup

1 Member name lookup determines the meaning of a name (id-expression) in a class scope (3.3.6). Name
lookup can result in an ambiguity, in which case the program is ill-formed. For an id-expression, name
lookup begins in the class scope of this; for a qualified-id, name lookup begins in the scope of the
nested-name-specifier. Name lookup takes place before access control (3.4, clause 11).

169

ISO/IEC 14882:2003(E)  ISO/IEC

10.2 Member name lookup 10 Derived classes

2 The following steps define the result of name lookup in a class scope, C. First, every declaration for the
name in the class and in each of its base class sub-objects is considered. A member name f in one sub-
object B hides a member name f in a sub-object A if A is a base class sub-object of B. Any declarations
that are so hidden are eliminated from consideration. Each of these declarations that was introduced by a
using-declaration is considered to be from each sub-object of C that is of the type containing the declara-
tion designated by the using-declaration.96) If the resulting set of declarations are not all from sub-objects
of the same type, or the set has a nonstatic member and includes members from distinct sub-objects, there is
an ambiguity and the program is ill-formed. Otherwise that set is the result of the lookup.

3 [Example:

class A {
public:

int a;
int (*b)();
int f();
int f(int);
int g();

};

class B {
int a;
int b();

public:
int f();
int g;
int h();
int h(int);

};

class C : public A, public B {};

void g(C* pc)
{

pc->a = 1; // error: ambiguous: A::a or B::a
pc->b(); // error: ambiguous: A::b or B::b
pc->f(); // error: ambiguous: A::f or B::f
pc->f(1); // error: ambiguous: A::f or B::f
pc->g(); // error: ambiguous: A::g or B::g
pc->g = 1; // error: ambiguous: A::g or B::g
pc->h(); // OK
pc->h(1); // OK

}

—end example] [Example:

struct U { static int i; };
struct V : U { };
struct W : U { using U::i; };
struct X : V, W { void foo(); };
void X::foo() {

i; // finds U::i in two ways: as W::i and U::i in V
// no ambiguity because U::i is static

}

—end example]

4 If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes
place before access control. Ambiguities can often be resolved by qualifying a name with its class name.

96) Note that using-declarations cannot be used to resolve inherited member ambiguities; see 7.3.3.

170

 ISO/IEC ISO/IEC 14882:2003(E)

10 Derived classes 10.2 Member name lookup

[Example:

class A {
public:

int f();
};

class B {
public:

int f();
};

class C : public A, public B {
int f() { return A::f() + B::f(); }

};

—end example]

5 A static member, a nested type or an enumerator defined in a base class T can unambiguously be found
even if an object has more than one base class subobject of type T. Two base class subobjects share the
nonstatic member subobjects of their common virtual base classes. [Example:

class V { public: int v; };
class A {
public:

int a;
static int s;
enum { e };

};
class B : public A, public virtual V {};
class C : public A, public virtual V {};

class D : public B, public C { };

void f(D* pd)
{

pd->v++; // OK: only one v (virtual)
pd->s++; // OK: only one s (static)
int i = pd->e; // OK: only one e (enumerator)
pd->a++; // error, ambiguous: two as in D

}

—end example]

6 When virtual base classes are used, a hidden declaration can be reached along a path through the sub-object
lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with
nonvirtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all
the others. [Example:

class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:

int f(); int x;
int g(); int y;

};
class C : public virtual V, public W { };

class D : public B, public C { void glorp(); };

171

ISO/IEC 14882:2003(E)  ISO/IEC

10.2 Member name lookup 10 Derived classes

V W W

B C

D

The names defined in V and the left hand instance of W are hidden by those in B, but the names defined in
the right hand instance of W are not hidden at all.

void D::glorp()
{

x++; // OK: B::x hides V::x
f(); // OK: B::f() hides V::f()
y++; // error: B::y and C’s W::y
g(); // error: B::g() and C’s W::g()

}

—end example]

7 An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference
to one of its base classes shall unambiguously refer to a unique object representing the base class. [Exam-
ple:

class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };

void g()
{

D d;
B* pb = &d;
A* pa = &d; // error, ambiguous: C’s A or B’s A?
V* pv = &d; // OK: only one V sub-object

}

—end example]

[class.virtual] 10.3 Virtual functions

1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or
inherits a virtual function is called a polymorphic class.

2 If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or
indirectly from Base, a member function vf with the same name and same parameter list as Base::vf is
declared, then Derived::vf is also virtual (whether or not it is so declared) and it overrides97)

Base::vf. For convenience we say that any virtual function overrides itself. Then in any well-formed
class, for each virtual function declared in that class or any of its direct or indirect base classes there is a
unique final overrider that overrides that function and every other overrider of that function. The rules for
member lookup (10.2) are used to determine the final overrider for a virtual function in the scope of a
derived class but ignoring names introduced by using-declarations. [Example:

97) A function with the same name but a different parameter list (clause 13) as a virtual function is not necessarily virtual and does not
override. The use of the virtual specifier in the declaration of an overriding function is legal but redundant (has empty semantics).
Access control (clause 11) is not considered in determining overriding.

172

 ISO/IEC ISO/IEC 14882:2003(E)

10 Derived classes 10.3 Virtual functions

struct A {
virtual void f();

};
struct B : virtual A {

virtual void f();
};

struct C : B , virtual A {
using A::f;

};
void foo() {

C c;
c.f(); // calls B::f, the final overrider
c.C::f(); // calls A::f because of the using-declaration

}

—end example]

3 [Note: a virtual member function does not have to be visible to be overridden, for example,

struct B {
virtual void f();

};
struct D : B {

void f(int);
};
struct D2 : D {

void f();
};

the function f(int) in class D hides the virtual function f() in its base class B; D::f(int) is not a vir-
tual function. However, f() declared in class D2 has the same name and the same parameter list as
B::f(), and therefore is a virtual function that overrides the function B::f() even though B::f() is
not visible in class D2.]

4 Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor
declared virtual; see 12.4 and 12.5.

5 The return type of an overriding function shall be either identical to the return type of the overridden func-
tion or covariant with the classes of the functions. If a function D::f overrides a function B::f, the
return types of the functions are covariant if they satisfy the following criteria:

— both are pointers to classes or references to classes98)

— the class in the return type of B::f is the same class as the class in the return type of D::f, or is an
unambiguous and accessible direct or indirect base class of the class in the return type of D::f

— both pointers or references have the same cv-qualification and the class type in the return type of D::f
has the same cv-qualification as or less cv-qualification than the class type in the return type of B::f.

If the return type of D::f differs from the return type of B::f, the class type in the return type of D::f
shall be complete at the point of declaration of D::f or shall be the class type D. When the overriding
function is called as the final overrider of the overridden function, its result is converted to the type returned
by the (statically chosen) overridden function (5.2.2). [Example:

98) Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.

173

ISO/IEC 14882:2003(E)  ISO/IEC

10.3 Virtual functions 10 Derived classes

class B {};
class D : private B { friend class Derived; };
struct Base {

virtual void vf1();
virtual void vf2();
virtual void vf3();
virtual B* vf4();
virtual B* vf5();
void f();

};

struct No_good : public Base {
D* vf4(); // error: B (base class of D) inaccessible

};

class A;
struct Derived : public Base {

void vf1(); // virtual and overrides Base::vf1()
void vf2(int); // not virtual, hides Base::vf2()
char vf3(); // error: invalid difference in return type only
D* vf4(); // OK: returns pointer to derived class
A* vf5(); // error: returns pointer to incomplete class
void f();

};

void g()
{

Derived d;
Base* bp = &d; // standard conversion:

// Derived* to Base*
bp->vf1(); // calls Derived::vf1()
bp->vf2(); // calls Base::vf2()
bp->f(); // calls Base::f() (not virtual)
B* p = bp->vf4(); // calls Derived::pf() and converts the

// result to B*
Derived* dp = &d;
D* q = dp->vf4(); // calls Derived::pf() and does not

// convert the result to B*
dp->vf2(); // ill-formed: argument mismatch

}

—end example]

6 [Note: the interpretation of the call of a virtual function depends on the type of the object for which it is
called (the dynamic type), whereas the interpretation of a call of a nonvirtual member function depends
only on the type of the pointer or reference denoting that object (the static type) (5.2.2).]

7 [Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2)
function. Nor can a virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in one class can be declared a
friend in another class.]

8 A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no
diagnostic is required (3.2).

9 [Example: here are some uses of virtual functions with multiple base classes:

struct A {
virtual void f();

};

174

 ISO/IEC ISO/IEC 14882:2003(E)

10 Derived classes 10.3 Virtual functions

struct B1 : A { // note non-virtual derivation
void f();

};

struct B2 : A {
void f();

};

struct D : B1, B2 { // D has two separate A sub-objects
};

void foo()
{

D d;
// A* ap = &d; // would be ill-formed: ambiguous

B1* b1p = &d;
A* ap = b1p;
D* dp = &d;
ap->f(); // calls D::B1::f
dp->f(); // ill-formed: ambiguous

}

In class D above there are two occurrences of class A and hence two occurrences of the virtual member
function A::f. The final overrider of B1::A::f is B1::f and the final overrider of B2::A::f is
B2::f.

10 The following example shows a function that does not have a unique final overrider:

struct A {
virtual void f();

};

struct VB1 : virtual A { // note virtual derivation
void f();

};

struct VB2 : virtual A {
void f();

};

struct Error : VB1, VB2 { // ill-formed
};

struct Okay : VB1, VB2 {
void f();

};

Both VB1::f and VB2::f override A::f but there is no overrider of both of them in class Error. This
example is therefore ill-formed. Class Okay is well formed, however, because Okay::f is a final over-
rider.

11 The following example uses the well-formed classes from above.

struct VB1a : virtual A { // does not declare f
};

struct Da : VB1a, VB2 {
};

175

ISO/IEC 14882:2003(E)  ISO/IEC

10.3 Virtual functions 10 Derived classes

void foe()
{

VB1a* vb1ap = new Da;
vb1ap->f(); // calls VB2::f

}

—end example]

12 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:

class B { public: virtual void f(); };
class D : public B { public: void f(); };

void D::f() { /* ... */ B::f(); }

Here, the function call in D::f really does call B::f and not D::f.]

[class.abstract] 10.4 Abstract classes

1 The abstract class mechanism supports the notion of a general concept, such as a shape, of which only
more concrete variants, such as circle and square, can actually be used. An abstract class can also be
used to define an interface for which derived classes provide a variety of implementations.

2 An abstract class is a class that can be used only as a base class of some other class; no objects of an
abstract class can be created except as sub-objects of a class derived from it. A class is abstract if it has at
least one pure virtual function. [Note: such a function might be inherited: see below.] A virtual function is
specified pure by using a pure-specifier (9.2) in the function declaration in the class declaration. A pure
virtual function need be defined only if explicitly called with the qualified-id syntax (5.1). [Example:

class point { /* ... */ };
class shape { // abstract class

point center;
// ...

public:
point where() { return center; }
void move(point p) { center=p; draw(); }
virtual void rotate(int) = 0; // pure virtual
virtual void draw() = 0; // pure virtual
// ...

};

—end example] [Note: a function declaration cannot provide both a pure-specifier and a definition
—end note] [Example:

struct C {
virtual void f() = 0 { }; // ill-formed

};

—end example]

3 An abstract class shall not be used as a parameter type, as a function return type, or as the type of an
explicit conversion. Pointers and references to an abstract class can be declared. [Example:

shape x; // error: object of abstract class
shape* p; // OK
shape f(); // error
void g(shape); // error
shape& h(shape&); // OK

—end example]

4 A class is abstract if it contains or inherits at least one pure virtual function for which the final overrider is
pure virtual. [Example:

176

 ISO/IEC ISO/IEC 14882:2003(E)

10 Derived classes 10.4 Abstract classes

class ab_circle : public shape {
int radius;

public:
void rotate(int) {}
// ab_circle::draw() is a pure virtual

};

Since shape::draw() is a pure virtual function ab_circle::draw() is a pure virtual by default.
The alternative declaration,

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // a definition is required somewhere

};

would make class circle nonabstract and a definition of circle::draw() must be provided.]

5 [Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may
override a virtual function which is not pure.]

6 Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making
a virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or
destroyed) from such a constructor (or destructor) is undefined.

177

ISO/IEC 14882:2003(E)  ISO/IEC

178

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

11 Member access control 11 Member access control

11 Member access control [class.access]

1 A member of a class can be

— private; that is, its name can be used only by members and friends of the class in which it is
declared.

— protected; that is, its name can be used only by members and friends of the class in which it is
declared, and by members and friends of classes derived from this class (see 11.5).

— public; that is, its name can be used anywhere without access restriction.

2 Members of a class defined with the keyword class are private by default. Members of a class
defined with the keywords struct or union are public by default. [Example:

class X {
int a; // X::a is private by default

};

struct S {
int a; // S::a is public by default

};

—end example]

3 Access control is applied uniformly to all names, whether the names are referred to from declarations or
expressions. [Note: access control applies to names nominated by friend declarations (11.4) and using-
declarations (7.3.3).] In the case of overloaded function names, access control is applied to the function
selected by overload resolution. [Note: because access control applies to names, if access control is applied
to a typedef name, only the accessibility of the typedef name itself is considered. The accessibility of the
entity referred to by the typedef is not considered. For example,

class A
{

class B { };
public:

typedef B BB;
};

void f()
{

A::BB x; // OK, typedef name A::BB is public
A::B y; // access error, A::B is private

}

—end note]

4 It should be noted that it is access to members and base classes that is controlled, not their visibility.
Names of members are still visible, and implicit conversions to base classes are still considered, when those
members and base classes are inaccessible. The interpretation of a given construct is established without
regard to access control. If the interpretation established makes use of inaccessible member names or base
classes, the construct is ill-formed.

5 All access controls in clause 11 affect the ability to access a class member name from a particular scope.
The access control for names used in the definition of a class member that appears outside of the member’s
class definition is done as if the entire member definition appeared in the scope of the member’s class. In
particular, access controls apply as usual to member names accessed as part of a function return type, even
though it is not possible to determine the access privileges of that use without first parsing the rest of the
function declarator. Similarly, access control for implicit calls to the constructors, the conversion

179

ISO/IEC 14882:2003(E)  ISO/IEC

11 Member access control 11 Member access control

functions, or the destructor called to create and destroy a static data member is performed as if these calls
appeared in the scope of the member’s class. [Example:

class A {
typedef int I; // private member
I f();
friend I g(I);
static I x;

};

A::I A::f() { return 0; }
A::I g(A::I p = A::x);
A::I g(A::I p) { return 0; }
A::I A::x = 0;

Here, all the uses of A::I are well-formed because A::f and A::x are members of class A and g is a
friend of class A. This implies, for example, that access checking on the first use of A::I must be deferred
until it is determined that this use of A::I is as the return type of a member of class A.]

6 In the definition of a member of a nested class that appears outside of its class definition, the name of the
member may be qualified by the names of enclosing classes of the member’s class even if these names are
private members of their enclosing classes. [Example:

class D {
class E {

static int m;
};

};
int D::E::m = 1; // OK, no access error on private E

—end example]

7 The names in a default argument expression (8.3.6) are bound at the point of declaration, and access is
checked at that point rather than at any points of use of the default argument expression. Access checking
for default arguments in function templates and in member functions of class templates are performed as
described in 14.7.1.

[class.access.spec] 11.1 Access specifiers

1 Member declarations can be labeled by an access-specifier (clause 10):

access-specifier : member-specificationopt

An access-specifier specifies the access rules for members following it until the end of the class or until
another access-specifier is encountered. [Example:

class X {
int a; // X::a is private by default: class used

public:
int b; // X::b is public
int c; // X::c is public

};

—end example] Any number of access specifiers is allowed and no particular order is required. [Example:

struct S {
int a; // S::a is public by default: struct used

protected:
int b; // S::b is protected

private:
int c; // S::c is private

public:
int d; // S::d is public

};

180

 ISO/IEC ISO/IEC 14882:2003(E)

11 Member access control 11.1 Access specifiers

—end example]

2 The order of allocation of data members with separate access-specifier labels is unspecified (9.2).

3 When a member is redeclared within its class definition, the access specified at its redeclaration shall be the
same as at its initial declaration. [Example:

struct S {
class A;

private:
class A { }; // error: cannot change access

};

—end example]

[class.access.base] 11.2 Accessibility of base classes and base class members

1 If a class is declared to be a base class (clause 10) for another class using the public access specifier, the
public members of the base class are accessible as public members of the derived class and
protected members of the base class are accessible as protected members of the derived class. If a
class is declared to be a base class for another class using the protected access specifier, the public
and protected members of the base class are accessible as protected members of the derived class.
If a class is declared to be a base class for another class using the private access specifier, the public
and protected members of the base class are accessible as private members of the derived class99).

2 In the absence of an access-specifier for a base class, public is assumed when the derived class is
declared struct and private is assumed when the class is declared class. [Example:

class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /* ... */ };
class D3 : B { /* ... */ }; // B private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /* ... */ };
struct D6 : B { /* ... */ }; // B public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7
and D8. —end example]

3 [Note: A member of a private base class might be inaccessible as an inherited member name, but accessible
directly. Because of the rules on pointer conversions (4.10) and explicit casts (5.4), a conversion from a
pointer to a derived class to a pointer to an inaccessible base class might be ill-formed if an implicit conver-
sion is used, but well-formed if an explicit cast is used. For example,

class B {
public:

int mi; // nonstatic member
static int si; // static member

};
class D : private B {
};
class DD : public D {

void f();
};

99) As specified previously in clause 11, private members of a base class remain inaccessible even to derived classes unless friend
declarations within the base class declaration are used to grant access explicitly.

181

ISO/IEC 14882:2003(E)  ISO/IEC

11.2 Accessibility of base classes and base class members 11 Member access control

void DD::f() {
mi = 3; // error: mi is private in D
si = 3; // error: si is private in D
::B b;
b.mi = 3; // OK (b.mi is different from this->mi)
b.si = 3; // OK (b.si is different from this->si)
::B::si = 3; // OK
::B* bp1 = this; // error: B is a private base class
::B* bp2 = (::B*)this; // OK with cast
bp2->mi = 3; // OK: access through a pointer to B.

}

—end note]

4 A base class is said to be accessible if an invented public member of the base class is accessible. If a base
class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class
(4.10, 4.11). [Note: it follows that members and friends of a class X can implicitly convert an X* to a
pointer to a private or protected immediate base class of X.] The access to a member is affected by the
class in which the member is named. This naming class is the class in which the member name was looked
up and found. [Note: this class can be explicit, e.g., when a qualified-id is used, or implicit, e.g., when a
class member access operator (5.2.5) is used (including cases where an implicit “this->” is added). If
both a class member access operator and a qualified-id are used to name the member (as in p->T::m), the
class naming the member is the class named by the nested-name-specifier of the qualified-id (that is, T).]
A member m is accessible when named in class N if

— m as a member of N is public, or

— m as a member of N is private, and the reference occurs in a member or friend of class N, or

— m as a member of N is protected, and the reference occurs in a member or friend of class N, or in a
member or friend of a class P derived from N, where m as a member of P is private or protected, or

— there exists a base class B of N that is accessible at the point of reference, and m is accessible when
named in class B. [Example:

class B;
class A {
private:

int i;
friend void f(B*);

};
class B : public A { };
void f(B* p) {

p->i = 1; // OK: B* can be implicitly cast to A*,
// and f has access to i in A

}

—end example]

5 If a class member access operator, including an implicit “this->,” is used to access a nonstatic data mem-
ber or nonstatic member function, the reference is ill-formed if the left operand (considered as a pointer in
the “.” operator case) cannot be implicitly converted to a pointer to the naming class of the right operand.
[Note: this requirement is in addition to the requirement that the member be accessible as named.]

[class.access.dcl] 11.3 Access declarations

1 The access of a member of a base class can be changed in the derived class by mentioning its qualified-id in
the derived class declaration. Such mention is called an access declaration. The effect of an access decla-
ration qualified-id ; is defined to be equivalent to the declaration using qualified-id ;.100)

100) Access declarations are deprecated; member using-declarations (7.3.3) provide a better means of doing the same things. In earlier
versions of the C + + language, access declarations were more limited; they were generalized and made equivalent to using-declarations

182

 ISO/IEC ISO/IEC 14882:2003(E)

11 Member access control 11.3 Access declarations

2 [Example:

class A {
public:

int z;
int z1;

};

class B : public A {
int a;

public:
int b, c;
int bf();

protected:
int x;
int y;

};

class D : private B {
int d;

public:
B::c; // adjust access to B::c
B::z; // adjust access to A::z
A::z1; // adjust access to A::z1
int e;
int df();

protected:
B::x; // adjust access to B::x
int g;

};

class X : public D {
int xf();

};

int ef(D&);
int ff(X&);

The external function ef can use only the names c, z, z1, e, and df. Being a member of D, the function
df can use the names b, c, z, z1, bf, x, y, d, e, df, and g, but not a. Being a member of B, the function
bf can use the members a, b, c, z, z1, bf, x, and y. The function xf can use the public and protected
names from D, that is, c, z, z1, e, and df (public), and x, and g (protected). Thus the external function
ff has access only to c, z, z1, e, and df. If D were a protected or private base class of X, xf would have
the same privileges as before, but ff would have no access at all.]

[class.friend] 11.4 Friends

1 A friend of a class is a function or class that is not a member of the class but is permitted to use the private
and protected member names from the class. The name of a friend is not in the scope of the class, and the
friend is not called with the member access operators (5.2.5) unless it is a member of another class. [Exam-
ple: the following example illustrates the differences between members and friends:

in the interest of simplicity. Programmers are encouraged to use using-declarations, rather than the new capabilities of access declara-
tions, in new code.

183

ISO/IEC 14882:2003(E)  ISO/IEC

11.4 Friends 11 Member access control

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set(int);

};

void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }

void f()
{

X obj;
friend_set(&obj,10);
obj.member_set(10);

}

—end example]

2 Declaring a class to be a friend implies that the names of private and protected members from the class
granting friendship can be accessed in declarations of members of the befriended class. [Note: this means
that access to private and protected names is also granted to member functions of the friend class (as if the
functions were each friends) and to the static data member definitions of the friend class. This also means
that private and protected type names from the class granting friendship can be used in the base-clause of a
nested class of the friend class. However, the declarations of members of classes nested within the friend
class cannot access the names of private and protected members from the class granting friendship. Also,
because the base-clause of the friend class is not part of its member declarations, the base-clause of the
friend class cannot access the names of the private and protected members from the class granting friend-
ship. For example,

class A {
class B { };
friend class X;

};
class X : A::B { // ill-formed: A::B cannot be accessed

// in the base-clause for X
A::B mx; // OK: A::B used to declare member of X
class Y : A::B { // OK: A::B used to declare member of X

A::B my; // ill-formed: A::B cannot be accessed
// to declare members of nested class of X

};
};

] An elaborated-type-specifier shall be used in a friend declaration for a class.101) A class shall not be
defined in a friend declaration. [Example:

class X {
enum { a=100 };
friend class Y;

};

class Y {
int v[X::a]; // OK, Y is a friend of X

};

101) The class-key of the elaborated-type-specifier is required.

184

 ISO/IEC ISO/IEC 14882:2003(E)

11 Member access control 11.4 Friends

class Z {
int v[X::a]; // error: X::a is private

};

—end example]

3 A function first declared in a friend declaration has external linkage (3.5). Otherwise, the function retains
its previous linkage (7.1.1).

4 When a friend declaration refers to an overloaded name or operator, only the function specified by the
parameter types becomes a friend. A member function of a class X can be a friend of a class Y. [Example:

class Y {
friend char* X::foo(int);
// ...

};

—end example]

5 A function can be defined in a friend declaration of a class if and only if the class is a non-local class (9.8),
the function name is unqualified, and the function has namespace scope. [Example:

class M {
friend void f() { } // definition of global f, a friend of M,

// not the definition of a member function
};

—end example] Such a function is implicitly inline. A friend function defined in a class is in the
(lexical) scope of the class in which it is defined. A friend function defined outside the class is not (3.4.1).

6 No storage-class-specifier shall appear in the decl-specifier-seq of a friend declaration.

7 A name nominated by a friend declaration shall be accessible in the scope of the class containing the friend
declaration. The meaning of the friend declaration is the same whether the friend declaration appears in the
private, protected or public (9.2) portion of the class member-specification.

8 Friendship is neither inherited nor transitive. [Example:

class A {
friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p)
{

p->a++; // error: C is not a friend of A
// despite being a friend of a friend

}
};

class D : public B {
void f(A* p)
{

p->a++; // error: D is not a friend of A
// despite being derived from a friend

}
};

—end example]

185

ISO/IEC 14882:2003(E)  ISO/IEC

11.4 Friends 11 Member access control

9 If a friend declaration appears in a local class (9.8) and the name specified is an unqualified name, a prior
declaration is looked up without considering scopes that are outside the innermost enclosing non-class
scope. For a friend function declaration, if there is no prior declaration, the program is ill-formed. For a
friend class declaration, if there is no prior declaration, the class that is specified belongs to the innermost
enclosing non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a
matching declaration is provided in the innermost enclosing nonclass scope. [Example:

class X;
void a();
void f() {

class Y;
extern void b();
class A {

friend class X; // OK, but X is a local class, not ::X
friend class Y; // OK
friend class Z; // OK, introduces local class Z
friend void a(); // error, ::a is not considered
friend void b(); // OK
friend void c(); // error

};
X *px; // OK, but ::X is found
Z *pz; // error, no Z is found

}

—end example]

[class.protected] 11.5 Protected member access

1 When a friend or a member function of a derived class references a protected nonstatic member function or
protected nonstatic data member of a base class, an access check applies in addition to those described ear-
lier in clause 11.102) Except when forming a pointer to member (5.3.1), the access must be through a
pointer to, reference to, or object of the derived class itself (or any class derived from that class) (5.2.5). If
the access is to form a pointer to member, the nested-name-specifier shall name the derived class (or any
class derived from that class). [Example:

class B {
protected:

int i;
static int j;

};

class D1 : public B {
};

class D2 : public B {
friend void fr(B*,D1*,D2*);
void mem(B*,D1*);

};

102) This additional check does not apply to other members, e.g. static data members or enumerator member constants.

186

 ISO/IEC ISO/IEC 14882:2003(E)

11 Member access control 11.5 Protected member access

void fr(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
p2->i = 3; // OK (access through a D2)
p2->B::i = 4; // OK (access through a D2, even though

// naming class is B)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK (type of &D2::i is int B::*)
B::j = 5; // OK (because refers to static member)
D2::j =6; // OK (because refers to static member)

}

void D2::mem(B* pb, D1* p1)
{

pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
i = 3; // OK (access through this)
B::i = 4; // OK (access through this, qualification ignored)
int B::* pmi_B = &B::i; // ill-formed
int B::* pmi_B2 = &D2::i; // OK
j = 5; // OK (because j refers to static member)
B::j = 6; // OK (because B::j refers to static member)

}

void g(B* pb, D1* p1, D2* p2)
{

pb->i = 1; // ill-formed
p1->i = 2; // ill-formed
p2->i = 3; // ill-formed

}

—end example]

[class.access.virt] 11.6 Access to virtual functions

1 The access rules (clause 11) for a virtual function are determined by its declaration and are not affected by
the rules for a function that later overrides it. [Example:

class B {
public:

virtual int f();
};

class D : public B {
private:

int f();
};

void f()
{

D d;
B* pb = &d;
D* pd = &d;

pb->f(); // OK: B::f() is public,
// D::f() is invoked

pd->f(); // error: D::f() is private
}

—end example] Access is checked at the call point using the type of the expression used to denote the
object for which the member function is called (B* in the example above). The access of the member

187

ISO/IEC 14882:2003(E)  ISO/IEC

11.6 Access to virtual functions 11 Member access control

function in the class in which it was defined (D in the example above) is in general not known.

[class.paths] 11.7 Multiple access

1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path
that gives most access. [Example:

class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {

void f() { W::f(); } // OK
};

Since W::f() is available to C::f() along the public path through B, access is allowed.]

[class.access.nest] 11.8 Nested classes

1 The members of a nested class have no special access to members of an enclosing class, nor to classes or
functions that have granted friendship to an enclosing class; the usual access rules (clause 11) shall be
obeyed. The members of an enclosing class have no special access to members of a nested class; the usual
access rules (clause 11) shall be obeyed. [Example:

class E {
int x;
class B { };

class I {
B b; // error: E::B is private
int y;
void f(E* p, int i)
{

p->x = i; // error: E::x is private
}

};

int g(I* p)
{

return p->y; // error: I::y is private
}

};

—end example]

2 [Note: because a base-clause for a nested class is part of the declaration of the nested class itself (and not
part of the declarations of the members of the nested class), the base-clause may refer to the private mem-
bers of the enclosing class. For example,

class C {
class A { };
A *p; // OK
class B : A // OK
{

A *q; // OK because of injection of name A in A
C::A *r; // error, C::A is inaccessible
B *s; // OK because of injection of name B in B
C::B *t; // error, C::B is inaccessible

};
};

—end note]

188

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions [special]

1 The default constructor (12.1), copy constructor and copy assignment operator (12.8), and destructor (12.4)
are special member functions. The implementation will implicitly declare these member functions for a
class type when the program does not explicitly declare them, except as noted in 12.1. The implementation
will implicitly define them if they are used, as specified in 12.1, 12.4 and 12.8. Programs shall not define
implicitly-declared special member functions. Programs may explicitly refer to implicitly declared special
member functions. [Example: a program may explicitly call, take the address of or form a pointer to mem-
ber to an implicitly declared special member function.

struct A { }; // implicitly-declared A::operator=
struct B : A {

B& operator=(const B &);
};
B& B::operator=(const B& s) {

this->A::operator=(s); // well-formed
return *this;

}

—end example] [Note: the special member functions affect the way objects of class type are created,
copied, and destroyed, and how values can be converted to values of other types. Often such special mem-
ber functions are called implicitly.]

2 Special member functions obey the usual access rules (clause 11). [Example: declaring a constructor
protected ensures that only derived classes and friends can create objects using it.]

[class.ctor] 12.1 Constructors

1 Constructors do not have names. A special declarator syntax using an optional sequence of function-
specifiers (7.1.2) followed by the constructor’s class name followed by a parameter list is used to declare or
define the constructor. In such a declaration, optional parentheses around the constructor class name are
ignored. [Example:

class C {
public:

C(); // declares the constructor
};

C::C() { } // defines the constructor

—end example]

2 A constructor is used to initialize objects of its class type. Because constructors do not have names, they
are never found during name lookup; however an explicit type conversion using the functional notation
(5.2.3) will cause a constructor to be called to initialize an object. [Note: for initialization of objects of
class type see 12.6.]

3 A typedef-name that names a class is a class-name (7.1.3); however, a typedef-name that names a class shall
not be used as the identifier in the declarator for a constructor declaration.

4 A constructor shall not be virtual (10.3) or static (9.4). A constructor can be invoked for a const,
volatile or const volatile object. A constructor shall not be declared const, volatile, or
const volatile (9.3.2). const and volatile semantics (7.1.5.1) are not applied on an object under
construction. Such semantics only come into effect once the constructor for the most derived object (1.8)
ends.

5 A default constructor for a class X is a constructor of class X that can be called without an argument. If
there is no user-declared constructor for class X, a default constructor is implicitly declared. An implicitly-

189

ISO/IEC 14882:2003(E)  ISO/IEC

12.1 Constructors 12 Special member functions

declared default constructor is an inline public member of its class. A constructor is trivial if it is an
implicitly-declared default constructor and if:

— its class has no virtual functions (10.3) and no virtual base classes (10.1), and

— all the direct base classes of its class have trivial constructors, and

— for all the nonstatic data members of its class that are of class type (or array thereof), each such class has
a trivial constructor.

6 Otherwise, the constructor is non-trivial.

7 An implicitly-declared default constructor for a class is implicitly defined when it is used to create an object
of its class type (1.8). The implicitly-defined default constructor performs the set of initializations of the
class that would be performed by a user-written default constructor for that class with an empty mem-
initializer-list (12.6.2) and an empty function body. If that user-written default constructor would be ill-
formed, the program is ill-formed. Before the implicitly-declared default constructor for a class is implic-
itly defined, all the implicitly-declared default constructors for its base classes and its nonstatic data mem-
bers shall have been implicitly defined. [Note: an implicitly-declared default constructor has an exception-
specification (15.4).]

8 Default constructors are called implicitly to create class objects of static or automatic storage duration
(3.7.1, 3.7.2) defined without an initializer (8.5), are called to create class objects of dynamic storage dura-
tion (3.7.3) created by a new-expression in which the new-initializer is omitted (5.3.4), or are called when
the explicit type conversion syntax (5.2.3) is used. A program is ill-formed if the default constructor for an
object is implicitly used and the constructor is not accessible (clause 11).

9 [Note: 12.6.2 describes the order in which constructors for base classes and non-static data members are
called and describes how arguments can be specified for the calls to these constructors.]

10 A copy constructor for a class X is a constructor with a first parameter of type X& or of type const X&.
[Note: see 12.8 for more information on copy constructors.]

11 A union member shall not be of a class type (or array thereof) that has a non-trivial constructor.

12 No return type (not even void) shall be specified for a constructor. A return statement in the body of a
constructor shall not specify a return value. The address of a constructor shall not be taken.

13 A functional notation type conversion (5.2.3) can be used to create new objects of its type. [Note: The syn-
tax looks like an explicit call of the constructor.] [Example:

complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));

—end example] An object created in this way is unnamed. [Note: 12.2 describes the lifetime of temporary
objects.] [Note: explicit constructor calls do not yield lvalues, see 3.10.]

14 [Note: some language constructs have special semantics when used during construction; see 12.6.2 and
12.7.]

15 During the construction of a const object, if the value of the object or any of its subobjects is accessed
through an lvalue that is not obtained, directly or indirectly, from the constructor’s this pointer, the value
of the object or subobject thus obtained is unspecified. [Example:

struct C;
void no_opt(C*);

struct C {
int c;
C() : c(0) { no_opt(this); }

};

190

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.1 Constructors

const C cobj;

void no_opt(C* cptr) {
int i = cobj.c * 100; // value of cobj.c is unspecified
cptr->c = 1;
cout << cobj.c * 100 // value of cobj.c is unspecified

<< ’\n’;
}

—end example]

[class.temporary] 12.2 Temporary objects

1 Temporaries of class type are created in various contexts: binding an rvalue to a reference (8.5.3), returning
an rvalue (6.6.3), a conversion that creates an rvalue (4.1, 5.2.9, 5.2.11, 5.4), throwing an exception (15.1),
entering a handler (15.3), and in some initializations (8.5). [Note: the lifetime of exception objects is
described in 15.1.] Even when the creation of the temporary object is avoided (12.8), all the semantic
restrictions must be respected as if the temporary object was created. [Example: even if the copy construc-
tor is not called, all the semantic restrictions, such as accessibility (clause 11), shall be satisfied.]

2 [Example:

class X {
// ...

public:
// ...
X(int);
X(const X&);
˜X();

};

X f(X);

void g()
{

X a(1);
X b = f(X(2));
a = f(a);

}

Here, an implementation might use a temporary in which to construct X(2) before passing it to f() using
X’s copy-constructor; alternatively, X(2) might be constructed in the space used to hold the argument.
Also, a temporary might be used to hold the result of f(X(2)) before copying it to b using X’s copy-
constructor; alternatively, f()’s result might be constructed in b. On the other hand, the expression
a=f(a) requires a temporary for either the argument a or the result of f(a) to avoid undesired aliasing of
a.]

3 When an implementation introduces a temporary object of a class that has a non-trivial constructor (12.1), it
shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for
a temporary with a non-trivial destructor (12.4). Temporary objects are destroyed as the last step in evalu-
ating the full-expression (1.9) that (lexically) contains the point where they were created. This is true even
if that evaluation ends in throwing an exception.

4 There are two contexts in which temporaries are destroyed at a different point than the end of the full-
expression. The first context is when an expression appears as an initializer for a declarator defining an
object. In that context, the temporary that holds the result of the expression shall persist until the object’s
initialization is complete. The object is initialized from a copy of the temporary; during this copying, an
implementation can call the copy constructor many times; the temporary is destroyed after it has been
copied, before or when the initialization completes. If many temporaries are created by the evaluation of
the initializer, the temporaries are destroyed in reverse order of the completion of their construction.

191

ISO/IEC 14882:2003(E)  ISO/IEC

12.2 Temporary objects 12 Special member functions

5 The second context is when a reference is bound to a temporary. The temporary to which the reference is
bound or the temporary that is the complete object to a subobject of which the temporary is bound persists
for the lifetime of the reference except as specified below. A temporary bound to a reference member in a
constructor’s ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a reference
parameter in a function call (5.2.2) persists until the completion of the full expression containing the call.
A temporary bound to the returned value in a function return statement (6.6.3) persists until the function
exits. In all these cases, the temporaries created during the evaluation of the expression initializing the ref-
erence, except the temporary to which the reference is bound, are destroyed at the end of the full-expression
in which they are created and in the reverse order of the completion of their construction. If the lifetime of
two or more temporaries to which references are bound ends at the same point, these temporaries are
destroyed at that point in the reverse order of the completion of their construction. In addition, the
destruction of temporaries bound to references shall take into account the ordering of destruction of objects
with static or automatic storage duration (3.7.1, 3.7.2); that is, if obj1 is an object with static or automatic
storage duration created before the temporary is created, the temporary shall be destroyed before obj1 is
destroyed; if obj2 is an object with static or automatic storage duration created after the temporary is cre-
ated, the temporary shall be destroyed after obj2 is destroyed. [Example:

class C {
// ...

public:
C();
C(int);
friend C operator+(const C&, const C&);
˜C();

};
C obj1;
const C& cr = C(16)+C(23);
C obj2;

the expression C(16)+C(23) creates three temporaries. A first temporary T1 to hold the result of the
expression C(16), a second temporary T2 to hold the result of the expression C(23), and a third tempo-
rary T3 to hold the result of the addition of these two expressions. The temporary T3 is then bound to the
reference cr. It is unspecified whether T1 or T2 is created first. On an implementation where T1 is cre-
ated before T2, it is guaranteed that T2 is destroyed before T1. The temporaries T1 and T2 are bound to
the reference parameters of operator+; these temporaries are destroyed at the end of the full expression
containing the call to operator+. The temporary T3 bound to the reference cr is destroyed at the end of
cr’s lifetime, that is, at the end of the program. In addition, the order in which T3 is destroyed takes into
account the destruction order of other objects with static storage duration. That is, because obj1 is con-
structed before T3, and T3 is constructed before obj2, it is guaranteed that obj2 is destroyed before T3,
and that T3 is destroyed before obj1.]

[class.conv] 12.3 Conversions

1 Type conversions of class objects can be specified by constructors and by conversion functions. These con-
versions are called user-defined conversions and are used for implicit type conversions (clause 4), for
initialization (8.5), and for explicit type conversions (5.4, 5.2.9).

2 User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey
the access control rules (clause 11). Access control is applied after ambiguity resolution (3.4).

3 [Note: See 13.3 for a discussion of the use of conversions in function calls as well as examples below.]

4 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single
value. [Example:

192

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.3 Conversions

class X {
// ...

public:
operator int();

};

class Y {
// ...

public:
operator X();

};

Y a;
int b = a; // error:

// a.operator X().operator int() not tried
int c = X(a); // OK: a.operator X().operator int()

—end example]

5 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a
derived class does not hide a conversion function in a base class unless the two functions convert to the
same type. Function overload resolution (13.3.3) selects the best conversion function to perform the con-
version. [Example:

class X {
public:

// ...
operator int();

};

class Y : public X {
public:

// ...
operator char();

};

void f(Y& a)
{

if (a) { // ill-formed:
// X::operator int() or Y::operator char()
// ...

}
}

—end example]

[class.conv.ctor] 12.3.1 Conversion by constructor

1 A constructor declared without the function-specifier explicit that can be called with a single parameter
specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is
called a converting constructor. [Example:

class X {
// ...

public:
X(int);
X(const char*, int =0);

};

193

ISO/IEC 14882:2003(E)  ISO/IEC

12.3.1 Conversion by constructor 12 Special member functions

void f(X arg)
{

X a = 1; // a = X(1)
X b = "Jessie"; // b = X("Jessie",0)
a = 2; // a = X(2)
f(3); // f(X(3))

}

—end example]

2 An explicit constructor constructs objects just like non-explicit constructors, but does so only where the
direct-initialization syntax (8.5) or where casts (5.2.9, 5.4) are explicitly used. A default constructor may
be an explicit constructor; such a constructor will be used to perform default-initialization or value-
initialization (8.5). [Example:

class Z {
public:

explicit Z();
explicit Z(int);
// ...

};

Z a; // OK: default-initialization performed
Z a1 = 1; // error: no implicit conversion
Z a3 = Z(1); // OK: direct initialization syntax used
Z a2(1); // OK: direct initialization syntax used
Z* p = new Z(1); // OK: direct initialization syntax used
Z a4 = (Z)1; // OK: explicit cast used
Z a5 = static_cast<Z>(1); // OK: explicit cast used

—end example]

3 A non-explicit copy-constructor (12.8) is a converting constructor. An implicitly-declared copy constructor
is not an explicit constructor; it may be called for implicit type conversions.

[class.conv.fct] 12.3.2 Conversion functions

1 A member function of a class X with a name of the form

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

specifies a conversion from X to the type specified by the conversion-type-id. Such member functions are
called conversion functions. Classes, enumerations, and typedef-names shall not be declared in the type-
specifier-seq. Neither parameter types nor return type can be specified. The type of a conversion function
(8.3.5) is “function taking no parameter returning conversion-type-id.” A conversion function is never used
to convert a (possibly cv-qualified) object to the (possibly cv-qualified) same object type (or a reference to
it), to a (possibly cv-qualified) base class of that type (or a reference to it), or to (possibly cv-qualified)
void.103)

103) Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be
reached through a call to a virtual conversion function in a base class

194

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.3.2 Conversion functions

2 [Example:

class X {
// ...

public:
operator int();

};

void f(X a)
{

int i = int(a);
i = (int)a;
i = a;

}

In all three cases the value assigned will be converted by X::operator int(). —end example]

3 User-defined conversions are not restricted to use in assignments and initializations. [Example:

void g(X a, X b)
{

int i = (a) ? 1+a : 0;
int j = (a&&b) ? a+b : i;
if (a) { // ...
}

}

—end example]

4 The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in a
conversion-function-id is the longest possible sequence of conversion-declarators. [Note: this prevents
ambiguities between the declarator operator * and its expression counterparts. [Example:

&ac.operator int*i; // syntax error:
// parsed as: &(ac.operator int *) i
// not as: &(ac.operator int)*i

The * is the pointer declarator and not the multiplication operator.]]

5 Conversion functions are inherited.

6 Conversion functions can be virtual.

[class.dtor] 12.4 Destructors

1 A special declarator syntax using an optional function-specifier (7.1.2) followed by ˜ followed by the
destructor’s class name followed by an empty parameter list is used to declare the destructor in a class defi-
nition. In such a declaration, the ˜ followed by the destructor’s class name can be enclosed in optional
parentheses; such parentheses are ignored. A typedef-name that names a class is a class-name (7.1.3); how-
ever, a typedef-name that names a class shall not be used as the identifier in the declarator for a destructor
declaration.

2 A destructor is used to destroy objects of its class type. A destructor takes no parameters, and no return
type can be specified for it (not even void). The address of a destructor shall not be taken. A destructor
shall not be static. A destructor can be invoked for a const, volatile or const volatile
object. A destructor shall not be declared const, volatile or const volatile (9.3.2). const and
volatile semantics (7.1.5.1) are not applied on an object under destruction. Such semantics stop being
into effect once the destructor for the most derived object (1.8) starts.

3 If a class has no user-declared destructor, a destructor is declared implicitly. An implicitly-declared
destructor is an inline public member of its class. A destructor is trivial if it is an implicitly-declared
destructor and if:

— all of the direct base classes of its class have trivial destructors and

195

ISO/IEC 14882:2003(E)  ISO/IEC

12.4 Destructors 12 Special member functions

— for all of the non-static data members of its class that are of class type (or array thereof), each such class
has a trivial destructor.

4 Otherwise, the destructor is non-trivial.

5 An implicitly-declared destructor is implicitly defined when it is used to destroy an object of its class type
(3.7). A program is ill-formed if the class for which a destructor is implicitly defined has:

— a non-static data member of class type (or array thereof) with an inaccessible destructor, or

— a base class with an inaccessible destructor.

Before the implicitly-declared destructor for a class is implicitly defined, all the implicitly-declared
destructors for its base classes and its nonstatic data members shall have been implicitly defined. [Note: an
implicitly-declared destructor has an exception-specification (15.4).]

6 After executing the body of the destructor and destroying any automatic objects allocated within the body, a
destructor for class X calls the destructors for X’s direct members, the destructors for X’s direct base classes
and, if X is the type of the most derived class (12.6.2), its destructor calls the destructors for X’s virtual base
classes. All destructors are called as if they were referenced with a qualified name, that is, ignoring any
possible virtual overriding destructors in more derived classes. Bases and members are destroyed in the
reverse order of the completion of their constructor (see 12.6.2). A return statement (6.6.3) in a
destructor might not directly return to the caller; before transferring control to the caller, the destructors for
the members and bases are called. Destructors for elements of an array are called in reverse order of their
construction (see 12.6).

7 A destructor can be declared virtual (10.3) or pure virtual (10.4); if any objects of that class or any
derived class are created in the program, the destructor shall be defined. If a class has a base class with a
virtual destructor, its destructor (whether user- or implicitly- declared) is virtual.

8 [Note: some language constructs have special semantics when used during destruction; see 12.7.]

9 A union member shall not be of a class type (or array thereof) that has a non-trivial destructor.

10 Destructors are invoked implicitly (1) for a constructed object with static storage duration (3.7.1) at pro-
gram termination (3.6.3), (2) for a constructed object with automatic storage duration (3.7.2) when the
block in which the object is created exits (6.7), (3) for a constructed temporary object when the lifetime of
the temporary object ends (12.2), (4) for a constructed object allocated by a new-expression (5.3.4), through
use of a delete-expression (5.3.5), (5) in several situations due to the handling of exceptions (15.3). A pro-
gram is ill-formed if an object of class type or array thereof is declared and the destructor for the class is not
accessible at the point of the declaration. Destructors can also be invoked explicitly.

11 At the point of definition of a virtual destructor (including an implicit definition (12.8)), non-placement
operator delete shall be looked up in the scope of the destructor’s class (3.4.1) and if found shall be accessi-
ble and unambiguous. [Note: this assures that an operator delete corresponding to the dynamic type of an
object is available for the delete-expression (12.5).]

12 In an explicit destructor call, the destructor name appears as a ˜ followed by a type-name that names the
destructor’s class type. The invocation of a destructor is subject to the usual rules for member functions
(9.3), that is, if the object is not of the destructor’s class type and not of a class derived from the
destructor’s class type, the program has undefined behavior (except that invoking delete on a null pointer
has no effect). [Example:

struct B {
virtual ˜B() { }

};
struct D : B {

˜D() { }
};

196

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.4 Destructors

D D_object;
typedef B B_alias;
B* B_ptr = &D_object;

void f() {
D_object.B::˜B(); // calls B’s destructor
B_ptr->˜B(); // calls D’s destructor
B_ptr->˜B_alias(); // calls D’s destructor
B_ptr->B_alias::˜B(); // calls B’s destructor
B_ptr->B_alias::˜B_alias(); // error, no B_alias in class B

}

—end example] [Note: an explicit destructor call must always be written using a member access operator
(5.2.5); in particular, the unary-expression ˜X() in a member function is not an explicit destructor call
(5.3.1).]

13 [Note: explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific
addresses using a new-expression with the placement option. Such use of explicit placement and
destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities. For example,

void* operator new(size_t, void* p) { return p; }
struct X {

// ...
X(int);
˜X();

};
void f(X* p);

void g() // rare, specialized use:
{

char* buf = new char[sizeof(X)];
X* p = new(buf) X(222); // use buf[] and initialize
f(p);
p->X::˜X(); // cleanup

}

—end note]

14 Once a destructor is invoked for an object, the object no longer exists; the behavior is undefined if the
destructor is invoked for an object whose lifetime has ended (3.8). [Example: if the destructor for an auto-
matic object is explicitly invoked, and the block is subsequently left in a manner that would ordinarily
invoke implicit destruction of the object, the behavior is undefined.]

15 [Note: the notation for explicit call of a destructor can be used for any scalar type name (5.2.4). Allowing
this makes it possible to write code without having to know if a destructor exists for a given type. For
example,

typedef int I;
I* p;
// ...
p->I::˜I();

—end note]

197

ISO/IEC 14882:2003(E)  ISO/IEC

12.4 Destructors 12 Special member functions

[class.free] 12.5 Free store

1 Any allocation function for a class T is a static member (even if not explicitly declared static).

2 [Example:

class Arena;
struct B {

void* operator new(size_t, Arena*);
};
struct D1 : B {
};

Arena* ap;
void foo(int i)
{

new (ap) D1; // calls B::operator new(size_t, Arena*)
new D1[i]; // calls ::operator new[](size_t)
new D1; // ill-formed: ::operator new(size_t) hidden

}

—end example]

3 When an object is deleted with a delete-expression (5.3.5), a deallocation function
(operator delete() for non-array objects or operator delete[]() for arrays) is (implicitly)
called to reclaim the storage occupied by the object (3.7.3.2).

4 If a delete-expression begins with a unary :: operator, the deallocation function’s name is looked up in
global scope. Otherwise, if the delete-expression is used to deallocate a class object whose static type has a
virtual destructor, the deallocation function is the one found by the lookup in the definition of the dynamic
type’s virtual destructor (12.4).104) Otherwise, if the delete-expression is used to deallocate an object of
class T or array thereof, the static and dynamic types of the object shall be identical and the deallocation
function’s name is looked up in the scope of T. If this lookup fails to find the name, the name is looked up
in the global scope. If the result of the lookup is ambiguous or inaccessible, or if the lookup selects a place-
ment deallocation function, the program is ill-formed.

5 When a delete-expression is executed, the selected deallocation function shall be called with the address of
the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of
the block as its second argument.105)

6 Any deallocation function for a class X is a static member (even if not explicitly declared static).
[Example:

class X {
// ...
void operator delete(void*);
void operator delete[](void*, size_t);

};

class Y {
// ...
void operator delete(void*, size_t);
void operator delete[](void*);

};

—end example]

104) A similar lookup is not needed for the array version of operator delete because 5.3.5 requires that in this situation, the static
type of the delete-expression’s operand be the same as its dynamic type.
105) If the static type in the delete-expression is different from the dynamic type and the destructor is not virtual the size might be
incorrect, but that case is already undefined; see 5.3.5.

198

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.5 Free store

7 Since member allocation and deallocation functions are static they cannot be virtual. [Note: however,
when the cast-expression of a delete-expression refers to an object of class type, because the deallocation
function actually called is looked up in the scope of the class that is the dynamic type of the object, if the
destructor is virtual, the effect is the same. For example,

struct B {
virtual ˜B();
void operator delete(void*, size_t);

};

struct D : B {
void operator delete(void*);

};

void f()
{

B* bp = new D;
delete bp; //1: uses D::operator delete(void*)

}

Here, storage for the non-array object of class D is deallocated by D::operator delete(), due to the
virtual destructor.] [Note: virtual destructors have no effect on the deallocation function actually called
when the cast-expression of a delete-expression refers to an array of objects of class type. For example,

struct B {
virtual ˜B();
void operator delete[](void*, size_t);

};

struct D : B {
void operator delete[](void*, size_t);

};

void f(int i)
{

D* dp = new D[i];
delete [] dp; // uses D::operator delete[](void*, size_t)
B* bp = new D[i];
delete[] bp; // undefined behavior

}

—end note]

8 Access to the deallocation function is checked statically. Hence, even though a different one might actually
be executed, the statically visible deallocation function is required to be accessible. [Example: for the call
on line //1 above, if B::operator delete() had been private, the delete expression would have
been ill-formed.]

[class.init] 12.6 Initialization

1 When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the
initializer has the form (), the object is initialized as specified in 8.5. The object is default-initialized if
there is no initializer, or value-initialized if the initializer is ().

2 An object of class type (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.

3 When an array of class objects is initialized (either explicitly or implicitly), the constructor shall be called
for each element of the array, following the subscript order; see 8.3.4. [Note: destructors for the array ele-
ments are called in reverse order of their construction.]

199

ISO/IEC 14882:2003(E)  ISO/IEC

12.6.1 Explicit initialization 12 Special member functions

[class.expl.init] 12.6.1 Explicit initialization

1 An object of class type can be initialized with a parenthesized expression-list, where the expression-list is
construed as an argument list for a constructor that is called to initialize the object. Alternatively, a single
assignment-expression can be specified as an initializer using the = form of initialization. Either direct-
initialization semantics or copy-initialization semantics apply; see 8.5. [Example:

class complex {
// ...

public:
complex();
complex(double);
complex(double,double);
// ...

};

complex sqrt(complex,complex);

complex a(1); // initialize by a call of
// complex(double)

complex b = a; // initialize by a copy of a
complex c = complex(1,2); // construct complex(1,2)

// using complex(double,double)
// copy it into c

complex d = sqrt(b,c); // call sqrt(complex,complex)
// and copy the result into d

complex e; // initialize by a call of
// complex()

complex f = 3; // construct complex(3) using
// complex(double)
// copy it into f

complex g = { 1, 2 }; // error; constructor is required

—end example] [Note: overloading of the assignment operator (13.5.3) has no effect on initialization.]

2 When an aggregate (whether class or array) contains members of class type and is initialized by a brace-
enclosed initializer-list (8.5.1), each such member is copy-initialized (see 8.5) by the corresponding
assignment-expression. If there are fewer initializers in the initializer-list than members of the aggregate,
each member not explicitly initialized shall be value-initialized (8.5). [Note: 8.5.1 describes how
assignment-expressions in an initializer-list are paired with the aggregate members they initialize.] [Exam-
ple:

complex v[6] = { 1,complex(1,2),complex(),2 };

Here, complex::complex(double) is called for the initialization of v[0] and v[3],
complex::complex(double,double) is called for the initialization of v[1],
complex::complex() is called for the initialization v[2], v[4], and v[5]. For another example,

class X {
public:

int i;
float f;
complex c;

} x = { 99, 88.8, 77.7 };

Here, x.i is initialized with 99, x.f is initialized with 88.8, and complex::complex(double) is
called for the initialization of x.c.] [Note: braces can be elided in the initializer-list for any aggregate,
even if the aggregate has members of a class type with user-defined type conversions; see 8.5.1.]

3 [Note: if T is a class type with no default constructor, any declaration of an object of type T (or array
thereof) is ill-formed if no initializer is explicitly specified (see 12.6 and 8.5).]

200

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.6.1 Explicit initialization

4 [Note: the order in which objects with static storage duration are initialized is described in 3.6.2 and 6.7.]

[class.base.init] 12.6.2 Initializing bases and members

1 In the definition of a constructor for a class, initializers for direct and virtual base subobjects and nonstatic
data members can be specified by a ctor-initializer, which has the form

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-listopt)

mem-initializer-id:
::opt nested-name-specifieropt class-name
identifier

2 Names in a mem-initializer-id are looked up in the scope of the constructor’s class and, if not found in that
scope, are looked up in the scope containing the constructor’s definition. [Note: if the constructor’s class
contains a member with the same name as a direct or virtual base class of the class, a mem-initializer-id
naming the member or base class and composed of a single identifier refers to the class member. A mem-
initializer-id for the hidden base class may be specified using a qualified name.] Unless the mem-
initializer-id names a nonstatic data member of the constructor’s class or a direct or virtual base of that
class, the mem-initializer is ill-formed. A mem-initializer-list can initialize a base class using any name that
denotes that base class type. [Example:

struct A { A(); };
typedef A global_A;
struct B { };
struct C: public A, public B { C(); };
C::C(): global_A() { } // mem-initializer for base A

—end example] If a mem-initializer-id is ambiguous because it designates both a direct non-virtual base
class and an inherited virtual base class, the mem-initializer is ill-formed. [Example:

struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };
C::C(): A() { } // ill-formed: which A?

—end example] A ctor-initializer may initialize the member of an anonymous union that is a member of
the constructor’s class. If a ctor-initializer specifies more than one mem-initializer for the same member,
for the same base class or for multiple members of the same union (including members of anonymous
unions), the ctor-initializer is ill-formed.

3 The expression-list in a mem-initializer is used to initialize the base class or nonstatic data member subob-
ject denoted by the mem-initializer-id. The semantics of a mem-initializer are as follows:

— if the expression-list of the mem-initializer is omitted, the base class or member subobject is value-
initialized (see 8.5);

— otherwise, the subobject indicated by mem-initializer-id is direct-initialized using expression-list as the
initializer (see 8.5).

201

ISO/IEC 14882:2003(E)  ISO/IEC

12.6.2 Initializing bases and members 12 Special member functions

[Example:

struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };
struct D : B1, B2 {

D(int);
B1 b;
const int c;

};

D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }
D d(10);

—end example] There is a sequence point (1.9) after the initialization of each base and member. The
expression-list of a mem-initializer is evaluated as part of the initialization of the corresponding base or
member.

4 If a given nonstatic data member or base class is not named by a mem-initializer-id (including the case
where there is no mem-initializer-list because the constructor has no ctor-initializer), then

— If the entity is a nonstatic data member of (possibly cv-qualified) class type (or array thereof) or a base
class, and the entity class is a non-POD class, the entity is default-initialized (8.5). If the entity is a non-
static data member of a const-qualified type, the entity class shall have a user-declared default construc-
tor.

— Otherwise, the entity is not initialized. If the entity is of const-qualified type or reference type, or of a
(possibly cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of
a const-qualified type, the program is ill-formed.

After the call to a constructor for class X has completed, if a member of X is neither specified in the
constructor’s mem-initializers, nor default-initialized, nor value-initialized, nor given a value during execu-
tion of the body of the constructor, the member has indeterminate value.

5 Initialization shall proceed in the following order:

— First, and only for the constructor of the most derived class as described below, virtual base classes shall
be initialized in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph
of base classes, where “left-to-right” is the order of appearance of the base class names in the derived
class base-specifier-list.

— Then, direct base classes shall be initialized in declaration order as they appear in the base-specifier-list
(regardless of the order of the mem-initializers).

— Then, nonstatic data members shall be initialized in the order they were declared in the class definition
(again regardless of the order of the mem-initializers).

— Finally, the body of the constructor is executed.

[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the
reverse order of initialization.]

6 All sub-objects representing virtual base classes are initialized by the constructor of the most derived class
(1.8). If the constructor of the most derived class does not specify a mem-initializer for a virtual base class
V, then V’s default constructor is called to initialize the virtual base class subobject. If V does not have an
accessible default constructor, the initialization is ill-formed. A mem-initializer naming a virtual base class
shall be ignored during execution of the constructor of any class that is not the most derived class. [Exam-
ple:

202

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.6.2 Initializing bases and members

class V {
public:

V();
V(int);
// ...

};

class A : public virtual V {
public:

A();
A(int);
// ...

};

class B : public virtual V {
public:

B();
B(int);
// ...

};

class C : public A, public B, private virtual V {
public:

C();
C(int);
// ...

};

A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* ... */ }
C::C(int i) { /* ... */ }

V v(1); // use V(int)
A a(2); // use V(int)
B b(3); // use V()
C c(4); // use V()

—end example]

7 Names in the expression-list of a mem-initializer are evaluated in the scope of the constructor for which the
mem-initializer is specified. [Example:

class X {
int a;
int b;
int i;
int j;

public:
const int& r;
X(int i): r(a), b(i), i(i), j(this->i) {}

};

initializes X::r to refer to X::a, initializes X::b with the value of the constructor parameter i, initializes
X::i with the value of the constructor parameter i, and initializes X::j with the value of X::i; this
takes place each time an object of class X is created.] [Note: because the mem-initializer are evaluated in
the scope of the constructor, the this pointer can be used in the expression-list of a mem-initializer to
refer to the object being initialized.]

8 Member functions (including virtual member functions, 10.3) can be called for an object under construc-
tion. Similarly, an object under construction can be the operand of the typeid operator (5.2.8) or of a
dynamic_cast (5.2.7). However, if these operations are performed in a ctor-initializer (or in a function

203

ISO/IEC 14882:2003(E)  ISO/IEC

12.6.2 Initializing bases and members 12 Special member functions

called directly or indirectly from a ctor-initializer) before all the mem-initializers for base classes have
completed, the result of the operation is undefined. [Example:

class A {
public:

A(int);
};

class B : public A {
int j;

public:
int f();
B() : A(f()), // undefined: calls member function

// but base A not yet initialized
j(f()) { } // well-defined: bases are all initialized

};

class C {
public:

C(int);
};

class D : public B, C {
int i;

public:
D() : C(f()), // undefined: calls member function

// but base C not yet initialized
i(f()) {} // well-defined: bases are all initialized

};

—end example]

9 [Note: 12.7 describes the result of virtual function calls, typeid and dynamic_casts during construc-
tion for the well-defined cases; that is, describes the polymorphic behavior of an object under construction.
]

[class.cdtor] 12.7 Construction and destruction

1 For an object of non-POD class type (clause 9), before the constructor begins execution and after the
destructor finishes execution, referring to any nonstatic member or base class of the object results in unde-
fined behavior. [Example:

struct X { int i; };
struct Y : X { };
struct A { int a; };
struct B : public A { int j; Y y; };

extern B bobj;
B* pb = &bobj; // OK
int* p1 = &bobj.a; // undefined, refers to base class member
int* p2 = &bobj.y.i; // undefined, refers to member’s member

A* pa = &bobj; // undefined, upcast to a base class type
B bobj; // definition of bobj

extern X xobj;
int* p3 = &xobj.i; // OK, X is a POD class
X xobj;

204

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.7 Construction and destruction

For another example,

struct W { int j; };
struct X : public virtual W { };
struct Y {

int *p;
X x;
Y() : p(&x.j) // undefined, x is not yet constructed
{ }

};

—end example]

2 To explicitly or implicitly convert a pointer (an lvalue) referring to an object of class X to a pointer (refer-
ence) to a direct or indirect base class B of X, the construction of X and the construction of all of its direct or
indirect bases that directly or indirectly derive from B shall have started and the destruction of these classes
shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer to (or
access the value of) a direct nonstatic member of an object obj, the construction of obj shall have started
and its destruction shall not have completed, otherwise the computation of the pointer value (or accessing
the member value) results in undefined behavior. [Example:

struct A { };
struct B : virtual A { };
struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };

struct E : C, D, X {
E() : D(this), // undefined: upcast from E* to A*

// might use path E* → D* → A*
// but D is not constructed
// D((C*)this), // defined:
// E* → C* defined because E() has started
// and C* → A* defined because
// C fully constructed

X(this) // defined: upon construction of X,
// C/B/D/A sublattice is fully constructed

{ }
};

—end example]

3 Member functions, including virtual functions (10.3), can be called during construction or destruction
(12.6.2). When a virtual function is called directly or indirectly from a constructor (including from the
mem-initializer for a data member) or from a destructor, and the object to which the call applies is the
object under construction or destruction, the function called is the one defined in the constructor or
destructor’s own class or in one of its bases, but not a function overriding it in a class derived from the con-
structor or destructor’s class, or overriding it in one of the other base classes of the most derived object
(1.8). If the virtual function call uses an explicit class member access (5.2.5) and the object-expression
refers to the object under construction or destruction but its type is neither the constructor or destructor’s
own class or one of its bases, the result of the call is undefined. [Example:

class V {
public:

virtual void f();
virtual void g();

};

205

ISO/IEC 14882:2003(E)  ISO/IEC

12.7 Construction and destruction 12 Special member functions

class A : public virtual V {
public:

virtual void f();
};

class B : public virtual V {
public:

virtual void g();
B(V*, A*);

};

class D : public A, B {
public:

virtual void f();
virtual void g();
D() : B((A*)this, this) { }

};

B::B(V* v, A* a) {
f(); // calls V::f, not A::f
g(); // calls B::g, not D::g
v->g(); // v is base of B, the call is well-defined, calls B::g
a->f(); // undefined behavior, a’s type not a base of B

}

—end example]

4 The typeid operator (5.2.8) can be used during construction or destruction (12.6.2). When typeid is
used in a constructor (including from the mem-initializer for a data member) or in a destructor, or used in a
function called (directly or indirectly) from a constructor or destructor, if the operand of typeid refers to
the object under construction or destruction, typeid yields the type_info representing the constructor
or destructor’s class. If the operand of typeid refers to the object under construction or destruction and
the static type of the operand is neither the constructor or destructor’s class nor one of its bases, the result of
typeid is undefined.

5 Dynamic_casts (5.2.7) can be used during construction or destruction (12.6.2). When a
dynamic_cast is used in a constructor (including from the mem-initializer for a data member) or in a
destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the
operand of the dynamic_cast refers to the object under construction or destruction, this object is consid-
ered to be a most derived object that has the type of the constructor or destructor’s class. If the operand of
the dynamic_cast refers to the object under construction or destruction and the static type of the
operand is not a pointer to or object of the constructor or destructor’s own class or one of its bases, the
dynamic_cast results in undefined behavior.

6 [Example:

class V {
public:

virtual void f();
};

class A : public virtual V { };

class B : public virtual V {
public:

B(V*, A*);
};

206

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.7 Construction and destruction

class D : public A, B {
public:

D() : B((A*)this, this) { }
};

B::B(V* v, A* a) {
typeid(*this); // type_info for B
typeid(*v); // well-defined: *v has type V, a base of B

// yields type_info for B
typeid(*a); // undefined behavior: type A not a base of B
dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B

// results in B*
dynamic_cast<B*>(a); // undefined behavior,

// a has type A*, A not a base of B
}

—end example]

[class.copy] 12.8 Copying class objects

1 A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument
passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, these two
operations are implemented by a copy constructor (12.1) and copy assignment operator (13.5.3).

2 A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&,
volatile X& or const volatile X&, and either there are no other parameters or else all other
parameters have default arguments (8.3.6).106) [Example: X::X(const X&) and X::X(X&, int=1)
are copy constructors.

class X {
// ...

public:
X(int);
X(const X&, int = 1);

};
X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

—end example] [Note: all forms of copy constructor may be declared for a class. [Example:

class X {
// ...

public:
X(const X&);
X(X&); // OK

};

—end example] —end note] [Note: if a class X only has a copy constructor with a parameter of type X&,
an initializer of type const X or volatile X cannot initialize an object of type (possibly cv-qualified) X.
[Example:

106) Because a template constructor is never a copy constructor, the presence of such a template does not suppress the implicit declara-
tion of a copy constructor. Template constructors participate in overload resolution with other constructors, including copy construc-
tors, and a template constructor may be used to copy an object if it provides a better match than other constructors.

207

ISO/IEC 14882:2003(E)  ISO/IEC

12.8 Copying class objects 12 Special member functions

struct X {
X(); // default constructor
X(X&); // copy constructor with a nonconst parameter

};
const X cx;
X x = cx; // error – X::X(X&) cannot copy cx into x

—end example] —end note]

3 A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-
qualified) X and either there are no other parameters or else all other parameters have default arguments. A
member function template is never instantiated to perform the copy of a class object to an object of its class
type. [Example:

struct S {
template<typename T> S(T);

};

S f();

void g() {
S a(f()); // does not instantiate member template

}

—end example]

4 If the class definition does not explicitly declare a copy constructor, one is declared implicitly. Thus, for
the class definition

struct X {
X(const X&, int);

};

a copy constructor is implicitly-declared. If the user-declared constructor is later defined as

X::X(const X& x, int i =0) { /* ... */ }

then any use of X’s copy constructor is ill-formed because of the ambiguity; no diagnostic is required.

5 The implicitly-declared copy constructor for a class X will have the form

X::X(const X&)

if

— each direct or virtual base class B of X has a copy constructor whose first parameter is of type const
B& or const volatile B&, and

— for all the nonstatic data members of X that are of a class type M (or array thereof), each such class type
has a copy constructor whose first parameter is of type const M& or const volatile M&.107)

Otherwise, the implicitly declared copy constructor will have the form

X::X(X&)

An implicitly-declared copy constructor is an inline public member of its class.

6 A copy constructor for class X is trivial if it is implicitly declared and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1), and

— each direct base class of X has a trivial copy constructor, and

— for all the nonstatic data members of X that are of class type (or array thereof), each such class type has

107) This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a volatile lvalue; see
C.1.8.

208

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.8 Copying class objects

a trivial copy constructor;

otherwise the copy constructor is non-trivial.

7 An implicitly-declared copy constructor is implicitly defined if it is used to initialize an object of its class
type from a copy of an object of its class type or of a class type derived from its class type108). [Note: the
copy constructor is implicitly defined even if the implementation elided its use (12.2).] A program is ill-
formed if the class for which a copy constructor is implicitly defined has:

— a nonstatic data member of class type (or array thereof) with an inaccessible or ambiguous copy con-
structor, or

— a base class with an inaccessible or ambiguous copy constructor.

Before the implicitly-declared copy constructor for a class is implicitly defined, all implicitly-declared copy
constructors for its direct and virtual base classes and its nonstatic data members shall have been implicitly
defined. [Note: an implicitly-declared copy constructor has an exception-specification (15.4).]

8 The implicitly-defined copy constructor for class X performs a memberwise copy of its subobjects. The
order of copying is the same as the order of initialization of bases and members in a user-defined construc-
tor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

— if the subobject is of class type, the copy constructor for the class is used;

— if the subobject is an array, each element is copied, in the manner appropriate to the element type;

— if the subobject is of scalar type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see
12.6.2).

9 A user-declared copy assignment operator X::operator= is a non-static non-template member function
of class X with exactly one parameter of type X, X&, const X&, volatile X& or const volatile
X&.109) [Note: an overloaded assignment operator must be declared to have only one parameter; see 13.5.3.
] [Note: more than one form of copy assignment operator may be declared for a class.] [Note: if a class X
only has a copy assignment operator with a parameter of type X&, an expression of type const X cannot be
assigned to an object of type X. [Example:

struct X {
X();
X& operator=(X&);

};
const X cx;
X x;
void f() {

x = cx; // error:
// X::operator=(X&) cannot assign cx into x

}

—end example] —end note]

10 If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly.
The implicitly-declared copy assignment operator for a class X will have the form

X& X::operator=(const X&)

if

108) See 8.5 for more details on direct and copy initialization.
109) Because a template assignment operator is never a copy assignment operator, the presence of such a template does not suppress
the implicit declaration of a copy assignment operator. Template assignment operators participate in overload resolution with other
assignment operators, including copy assignment operators, and a template assignment operator may be used to assign an object if it
provides a better match than other assignment operators.

209

ISO/IEC 14882:2003(E)  ISO/IEC

12.8 Copying class objects 12 Special member functions

— each direct base class B of X has a copy assignment operator whose parameter is of type const B&,
const volatile B& or B, and

— for all the nonstatic data members of X that are of a class type M (or array thereof), each such class type
has a copy assignment operator whose parameter is of type const M&, const volatile M& or
M.110)

Otherwise, the implicitly declared copy assignment operator will have the form

X& X::operator=(X&)

The implicitly-declared copy assignment operator for class X has the return type X&; it returns the object for
which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy
assignment operator is an inline public member of its class. Because a copy assignment operator is
implicitly declared for a class if not declared by the user, a base class copy assignment operator is always
hidden by the copy assignment operator of a derived class (13.5.3). A using-declaration (7.3.3) that brings
in from a base class an assignment operator with a parameter type that could be that of a copy-assignment
operator for the derived class is not considered an explicit declaration of a copy-assignment operator and
does not suppress the implicit declaration of the derived class copy-assignment operator; the operator intro-
duced by the using-declaration is hidden by the implicitly-declared copy-assignment operator in the
derived class.

11 A copy assignment operator for class X is trivial if it is implicitly declared and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1), and

— each direct base class of X has a trivial copy assignment operator, and

— for all the nonstatic data members of X that are of class type (or array thereof), each such class type has
a trivial copy assignment operator;

otherwise the copy assignment operator is non-trivial.

12 An implicitly-declared copy assignment operator is implicitly defined when an object of its class type is
assigned a value of its class type or a value of a class type derived from its class type. A program is ill-
formed if the class for which a copy assignment operator is implicitly defined has:

— a nonstatic data member of const type, or

— a nonstatic data member of reference type, or

— a nonstatic data member of class type (or array thereof) with an inaccessible copy assignment operator,
or

— a base class with an inaccessible copy assignment operator.

Before the implicitly-declared copy assignment operator for a class is implicitly defined, all implicitly-
declared copy assignment operators for its direct base classes and its nonstatic data members shall have
been implicitly defined. [Note: an implicitly-declared copy assignment operator has an exception-
specification (15.4).]

13 The implicitly-defined copy assignment operator for class X performs memberwise assignment of its subob-
jects. The direct base classes of X are assigned first, in the order of their declaration in the base-specifier-
list, and then the immediate nonstatic data members of X are assigned, in the order in which they were
declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

— if the subobject is of class type, the copy assignment operator for the class is used (as if by explicit qual-
ification; that is, ignoring any possible virtual overriding functions in more derived classes);

— if the subobject is an array, each element is assigned, in the manner appropriate to the element type;

110) This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a volatile lvalue;
see C.1.8.

210

 ISO/IEC ISO/IEC 14882:2003(E)

12 Special member functions 12.8 Copying class objects

— if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the
implicitly-defined copy assignment operator. [Example:

struct V { };
struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };

it is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy
assignment operator for C. —end example]

14 A program is ill-formed if the copy constructor or the copy assignment operator for an object is implicitly
used and the special member function is not accessible (clause 11). [Note: Copying one object into another
using the copy constructor or the copy assignment operator does not change the layout or size of either
object.]

15 When certain criteria are met, an implementation is allowed to omit the copy construction of a class object,
even if the copy constructor and/or destructor for the object have side effects. In such cases, the implemen-
tation treats the source and target of the omitted copy operation as simply two different ways of referring to
the same object, and the destruction of that object occurs at the later of the times when the two objects
would have been destroyed without the optimization.111) This elision of copy operations is permitted in the
following circumstances (which may be combined to eliminate multiple copies):

— in a return statement in a function with a class return type, when the expression is the name of a
non-volatile automatic object with the same cv-unqualified type as the function return type, the copy
operation can be omitted by constructing the automatic object directly into the function’s return value

— when a temporary class object that has not been bound to a reference (12.2) would be copied to a class
object with the same cv-unqualified type, the copy operation can be omitted by constructing the tempo-
rary object directly into the target of the omitted copy

[Example:

class Thing {
public:

Thing();
˜Thing();
Thing(const Thing&);

};

Thing f() {
Thing t;
return t;

}

Thing t2 = f();

Here the criteria for elision can be combined to eliminate two calls to the copy constructor of class Thing:
the copying of the local automatic object t into the temporary object for the return value of function f()
and the copying of that temporary object into object t2. Effectively, the construction of the local object t
can be viewed as directly initializing the global object t2, and that object’s destruction will occur at pro-
gram exit. —end example]

111) Because only one object is destroyed instead of two, and one copy constructor is not executed, there is still one object destroyed
for each one constructed.

211

ISO/IEC 14882:2003(E)  ISO/IEC

212

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13 Overloading

13 Overloading [over]

1 When two or more different declarations are specified for a single name in the same scope, that name is
said to be overloaded. By extension, two declarations in the same scope that declare the same name but
with different types are called overloaded declarations. Only function declarations can be overloaded;
object and type declarations cannot be overloaded.

2 When an overloaded function name is used in a call, which overloaded function declaration is being refer-
enced is determined by comparing the types of the arguments at the point of use with the types of the
parameters in the overloaded declarations that are visible at the point of use. This function selection pro-
cess is called overload resolution and is defined in 13.3. [Example:

double abs(double);
int abs(int);

abs(1); // call abs(int);
abs(1.0); // call abs(double);

—end example]

[over.load] 13.1 Overloadable declarations

1 Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A
program is ill-formed if it contains two such non-overloadable declarations in the same scope. [Note: this
restriction applies to explicit declarations in a scope, and between such declarations and declarations made
through a using-declaration (7.3.3). It does not apply to sets of functions fabricated as a result of name
lookup (e.g., because of using-directives) or overload resolution (e.g., for operator functions).]

2 Certain function declarations cannot be overloaded:

— Function declarations that differ only in the return type cannot be overloaded.

— Member function declarations with the same name and the same parameter types cannot be overloaded
if any of them is a static member function declaration (9.4). Likewise, member function template
declarations with the same name, the same parameter types, and the same template parameter lists can-
not be overloaded if any of them is a static member function template declaration. The types of the
implicit object parameters constructed for the member functions for the purpose of overload resolution
(13.3.1) are not considered when comparing parameter types for enforcement of this rule. In contrast, if
there is no static member function declaration among a set of member function declarations with the
same name and the same parameter types, then these member function declarations can be overloaded if
they differ in the type of their implicit object parameter. [Example: the following illustrates this distinc-
tion:

class X {
static void f();
void f(); // ill-formed
void f() const; // ill-formed
void f() const volatile; // ill-formed
void g();
void g() const; // OK: no static g
void g() const volatile; // OK: no static g

};

—end example]

3 [Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the
same function and therefore cannot be overloaded:

213

ISO/IEC 14882:2003(E)  ISO/IEC

13.1 Overloadable declarations 13 Overloading

— Parameter declarations that differ only in the use of equivalent typedef “types” are equivalent. A
typedef is not a separate type, but only a synonym for another type (7.1.3). [Example:

typedef int Int;

void f(int i);
void f(Int i); // OK: redeclaration of f(int)
void f(int i) { /* ... */ }
void f(Int i) { /* ... */ } // error: redefinition of f(int)

—end example]

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function
declarations. [Example:

enum E { a };

void f(int i) { /* ... */ }
void f(E i) { /* ... */ }

—end example]

— Parameter declarations that differ only in a pointer * versus an array [] are equivalent. That is, the
array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent
array dimensions are significant in parameter types (8.3.4). [Example:

int f(char*);
int f(char[]); // same as f(char*);
int f(char[7]); // same as f(char*);
int f(char[9]); // same as f(char*);

int g(char(*)[10]);
int g(char[5][10]); // same as g(char(*)[10]);
int g(char[7][10]); // same as g(char(*)[10]);
int g(char(*)[20]); // different from g(char(*)[10]);

—end example]

— Parameter declarations that differ only in that one is a function type and the other is a pointer to the
same function type are equivalent. That is, the function type is adjusted to become a pointer to function
type (8.3.5). [Example:

void h(int());
void h(int (*)()); // redeclaration of h(int())
void h(int x()) { } // definition of h(int())
void h(int (*x)()) { } // ill-formed: redefinition of h(int())

]

— Parameter declarations that differ only in the presence or absence of const and/or volatile are
equivalent. That is, the const and volatile type-specifiers for each parameter type are ignored
when determining which function is being declared, defined, or called. [Example:

typedef const int cInt;

int f (int);
int f (const int); // redeclaration of f(int)
int f (int) { ... } // definition of f(int)
int f (cInt) { ... } // error: redefinition of f(int)

—end example]

Only the const and volatile type-specifiers at the outermost level of the parameter type specifica-
tion are ignored in this fashion; const and volatile type-specifiers buried within a parameter type
specification are significant and can be used to distinguish overloaded function declarations.112) In

112) When a parameter type includes a function type, such as in the case of a parameter type that is a pointer to function, the const
and volatile type-specifiers at the outermost level of the parameter type specifications for the inner function type are also ignored.
214

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.1 Overloadable declarations

particular, for any type T, “pointer to T,” “pointer to const T,” and “pointer to volatile T” are con-
sidered distinct parameter types, as are “reference to T,” “reference to const T,” and “reference to
volatile T.”

— Two parameter declarations that differ only in their default arguments are equivalent. [Example: con-
sider the following:

void f (int i, int j);
void f (int i, int j = 99); // OK: redeclaration of f(int, int)
void f (int i = 88, int j); // OK: redeclaration of f(int, int)
void f (); // OK: overloaded declaration of f

void prog ()
{

f (1, 2); // OK: call f(int, int)
f (1); // OK: call f(int, int)
f (); // Error: f(int, int) or f()?

}

—end example] —end note]

[over.dcl] 13.2 Declaration matching

1 Two function declarations of the same name refer to the same function if they are in the same scope and
have equivalent parameter declarations (13.1). A function member of a derived class is not in the same
scope as a function member of the same name in a base class. [Example:

class B {
public:

int f(int);
};

class D : public B {
public:

int f(char*);
};

Here D::f(char*) hides B::f(int) rather than overloading it.

void h(D* pd)
{

pd->f(1); // error:
// D::f(char*) hides B::f(int)

pd->B::f(1); // OK
pd->f("Ben"); // OK, calls D::f

}

—end example]

2 A locally declared function is not in the same scope as a function in a containing scope. [Example:

int f(char*);
void g()
{

extern f(int);
f("asdf"); // error: f(int) hides f(char*)

// so there is no f(char*) in this scope
}

215

ISO/IEC 14882:2003(E)  ISO/IEC

13.2 Declaration matching 13 Overloading

void caller ()
{

extern void callee(int, int);
{

extern void callee(int); // hides callee(int, int)
callee(88, 99); // error: only callee(int) in scope

}
}

—end example]

3 Different versions of an overloaded member function can be given different access rules. [Example:

class buffer {
private:

char* p;
int size;

protected:
buffer(int s, char* store) { size = s; p = store; }
// ...

public:
buffer(int s) { p = new char[size = s]; }
// ...

};

—end example]

[over.match] 13.3 Overload resolution

1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are
to be the arguments of the call and a set of candidate functions that can be called based on the context of the
call. The selection criteria for the best function are the number of arguments, how well the arguments
match the types of the parameters of the candidate function, how well (for nonstatic member functions) the
object matches the implied object parameter, and certain other properties of the candidate function. [Note:
the function selected by overload resolution is not guaranteed to be appropriate for the context. Other
restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed.]

2 Overload resolution selects the function to call in seven distinct contexts within the language:

— invocation of a function named in the function call syntax (13.3.1.1.1);

— invocation of a function call operator, a pointer-to-function conversion function, a reference-to-pointer-
to-function conversion function, or a reference-to-function conversion function on a class object named
in the function call syntax (13.3.1.1.2);

— invocation of the operator referenced in an expression (13.3.1.2);

— invocation of a constructor for direct-initialization (8.5) of a class object (13.3.1.3);

— invocation of a user-defined conversion for copy-initialization (8.5) of a class object (13.3.1.4);

— invocation of a conversion function for initialization of an object of a nonclass type from an expression
of class type (13.3.1.5); and

— invocation of a conversion function for conversion to an lvalue to which a reference (8.5.3) will be
directly bound (13.3.1.6).

3 Each of these contexts defines the set of candidate functions and the list of arguments in its own unique
way. But, once the candidate functions and argument lists have been identified, the selection of the best
function is the same in all cases:

— First, a subset of the candidate functions—those that have the proper number of arguments and meet

216

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.3 Overload resolution

certain other conditions—is selected to form a set of viable functions (13.3.2).

— Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed
to match each argument to the corresponding parameter of each viable function.

4 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result.
Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds,
and the best viable function is not accessible (clause 11) in the context in which it is used, the program is
ill-formed.

[over.match.funcs] 13.3.1 Candidate functions and argument lists

1 The subclauses of 13.3.1 describe the set of candidate functions and the argument list submitted to overload
resolution in each of the seven contexts in which overload resolution is used. The source transformations
and constructions defined in these subclauses are only for the purpose of describing the overload resolution
process. An implementation is not required to use such transformations and constructions.

2 The set of candidate functions can contain both member and non-member functions to be resolved against
the same argument list. So that argument and parameter lists are comparable within this heterogeneous set,
a member function is considered to have an extra parameter, called the implicit object parameter, which
represents the object for which the member function has been called. For the purposes of overload resolu-
tion, both static and non-static member functions have an implicit object parameter, but constructors do not.

3 Similarly, when appropriate, the context can construct an argument list that contains an implied object
argument to denote the object to be operated on. Since arguments and parameters are associated by posi-
tion within their respective lists, the convention is that the implicit object parameter, if present, is always
the first parameter and the implied object argument, if present, is always the first argument.

4 For non-static member functions, the type of the implicit object parameter is “reference to cv X” where X is
the class of which the function is a member and cv is the cv-qualification on the member function declara-
tion. [Example: for a const member function of class X, the extra parameter is assumed to have type “ref-
erence to const X”.] For conversion functions, the function is considered to be a member of the class of
the implicit object argument for the purpose of defining the type of the implicit object parameter. For non-
conversion functions introduced by a using-declaration into a derived class, the function is considered to be
a member of the derived class for the purpose of defining the type of the implicit object parameter. For
static member functions, the implicit object parameter is considered to match any object (since if the func-
tion is selected, the object is discarded). [Note: no actual type is established for the implicit object parame-
ter of a static member function, and no attempt will be made to determine a conversion sequence for that
parameter (13.3.3).]

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The
implicit object parameter, however, retains its identity since conversions on the corresponding argument
shall obey these additional rules:

— no temporary object can be introduced to hold the argument for the implicit object parameter;

— no user-defined conversions can be applied to achieve a type match with it; and

— even if the implicit object parameter is not const-qualified, an rvalue temporary can be bound to the
parameter as long as in all other respects the temporary can be converted to the type of the implicit
object parameter.

6 Because only one user-defined conversion is allowed in an implicit conversion sequence, special rules
apply when selecting the best user-defined conversion (13.3.3, 13.3.3.1). [Example:

class T {
public:

T();
// ...

};

217

ISO/IEC 14882:2003(E)  ISO/IEC

13.3.1 Candidate functions and argument lists 13 Overloading

class C : T {
public:

C(int);
// ...

};
T a = 1; // ill-formed: T(C(1)) not tried

—end example]

7 In each case where a candidate is a function template, candidate function template specializations are gener-
ated using template argument deduction (14.8.3, 14.8.2). Those candidates are then handled as candidate
functions in the usual way.113) A given name can refer to one or more function templates and also to a set
of overloaded non-template functions. In such a case, the candidate functions generated from each function
template are combined with the set of non-template candidate functions.

[over.match.call] 13.3.1.1 Function call syntax

1 Recall from 5.2.2, that a function call is a postfix-expression, possibly nested arbitrarily deep in parenthe-
ses, followed by an optional expression-list enclosed in parentheses:

(...(opt postfix-expression)...)opt (expression-listopt)

Overload resolution is required if the postfix-expression is the name of a function, a function template
(14.5.5), an object of class type, or a set of pointers-to-function.

2 13.3.1.1.1 describes how overload resolution is used in the first two of the above cases to determine the
function to call. 13.3.1.1.2 describes how overload resolution is used in the third of the above cases to
determine the function to call.

3 The fourth case arises from a postfix-expression of the form &F, where F names a set of overloaded func-
tions. In the context of a function call, the set of functions named by F shall contain only non-member
functions and static member functions114). And in this context using &F behaves the same as using the
name F by itself. Thus, (&F)(expression-listopt) is simply (F)(expression-listopt), which is discussed
in 13.3.1.1.1. (The resolution of &F in other contexts is described in 13.4.)

[over.call.func] 13.3.1.1.1 Call to named function

1 Of interest in 13.3.1.1.1 are only those function calls in which the postfix-expression ultimately contains a
name that denotes one or more functions that might be called. Such a postfix-expression, perhaps nested
arbitrarily deep in parentheses, has one of the following forms:

postfix-expression:
postfix-expression . id-expression
postfix-expression -> id-expression
primary-expression

These represent two syntactic subcategories of function calls: qualified function calls and unqualified func-
tion calls.

2 In qualified function calls, the name to be resolved is an id-expression and is preceded by an -> or . oper-
ator. Since the construct A->B is generally equivalent to (*A).B, the rest of clause 13 assumes, without
loss of generality, that all member function calls have been normalized to the form that uses an object and
the . operator. Furthermore, clause 13 assumes that the postfix-expression that is the left operand of the .
operator has type “cv T” where T denotes a class115). Under this assumption, the id-expression in the call is
looked up as a member function of T following the rules for looking up names in classes (10.2). If a

113) The process of argument deduction fully determines the parameter types of the function template specializations, i.e., the parame-
ters of function template specializations contain no template parameter types. Therefore the function template specializations can be
treated as normal (non-template) functions for the remainder of overload resolution.
114) If F names a non-static member function, &F is a pointer-to-member, which cannot be used with the function call syntax.
115) Note that cv-qualifiers on the type of objects are significant in overload resolution for both lvalue and class rvalue objects.

218

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.3.1.1.1 Call to named function

member function is found, that function and its overloaded declarations constitute the set of candidate func-
tions. The argument list is the expression-list in the call augmented by the addition of the left operand of
the . operator in the normalized member function call as the implied object argument (13.3.1).

3 In unqualified function calls, the name is not qualified by an -> or . operator and has the more general
form of a primary-expression. The name is looked up in the context of the function call following the nor-
mal rules for name lookup in function calls (3.4.2). If the name resolves to a non-member function declara-
tion, that function and its overloaded declarations constitute the set of candidate functions116). The argu-
ment list is the same as the expression-list in the call. If the name resolves to a nonstatic member function,
then the function call is actually a member function call. If the keyword this (9.3.2) is in scope and refers
to the class of that member function, or a derived class thereof, then the function call is transformed into a
normalized qualified function call using (*this) as the postfix-expression to the left of the . operator.
The candidate functions and argument list are as described for qualified function calls above. If the key-
word this is not in scope or refers to another class, then name resolution found a static member of some
class T. In this case, all overloaded declarations of the function name in T become candidate functions and
a contrived object of type T becomes the implied object argument117). The call is ill-formed, however, if
overload resolution selects one of the non-static member functions of T in this case.

[over.call.object] 13.3.1.1.2 Call to object of class type

1 If the primary-expression E in the function call syntax evaluates to a class object of type “cv T”, then the set
of candidate functions includes at least the function call operators of T. The function call operators of T are
obtained by ordinary lookup of the name operator() in the context of (E).operator().

2 In addition, for each conversion function declared in T of the form

operator conversion-type-id () cv-qualifier;

where cv-qualifier is the same cv-qualification as, or a greater cv-qualification than, cv, and where
conversion-type-id denotes the type “pointer to function of (P1,...,Pn) returning R”, or the type “reference
to pointer to function of (P1,...,Pn) returning R”, or the type “reference to function of (P1,...,Pn) returning
R”, a surrogate call function with the unique name call-function and having the form

R call-function (conversion-type-id F, P1 a1,...,Pn an) { return F (a1,...,an); }

is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candi-
date functions for each conversion function declared in an accessible base class provided the function is not
hidden within T by another intervening declaration118).

3 If such a surrogate call function is selected by overload resolution, its body, as defined above, will be exe-
cuted to convert E to the appropriate function and then to invoke that function with the arguments of the
call.

4 The argument list submitted to overload resolution consists of the argument expressions present in the func-
tion call syntax preceded by the implied object argument (E). [Note: when comparing the call against the
function call operators, the implied object argument is compared against the implicit object parameter of
the function call operator. When comparing the call against a surrogate call function, the implied object
argument is compared against the first parameter of the surrogate call function. The conversion function
from which the surrogate call function was derived will be used in the conversion sequence for that parame-
ter since it converts the implied object argument to the appropriate function pointer or reference required by
that first parameter.] [Example:

116) Because of the usual name hiding rules, these will be introduced by declarations or by using-directives all found in the same block
or all found at namespace scope.
117) An implied object argument must be contrived to correspond to the implicit object parameter attributed to member functions dur-
ing overload resolution. It is not used in the call to the selected function. Since the member functions all have the same implicit object
parameter, the contrived object will not be the cause to select or reject a function.
118) Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolu-
tion because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution can-
not select a match to the call that is uniquely better than such undifferentiable functions.

219

ISO/IEC 14882:2003(E)  ISO/IEC

13.3.1.1.2 Call to object of class type 13 Overloading

int f1(int);
int f2(float);
typedef int (*fp1)(int);
typedef int (*fp2)(float);
struct A {

operator fp1() { return f1; }
operator fp2() { return f2; }

} a;
int i = a(1); // Calls f1 via pointer returned from

// conversion function

—end example]

[over.match.oper] 13.3.1.2 Operators in expressions

1 If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is
assumed to be a built-in operator and interpreted according to clause 5. [Note: because ., .*, and :: can-
not be overloaded, these operators are always built-in operators interpreted according to clause 5. ?: can-
not be overloaded, but the rules in this subclause are used to determine the conversions to be applied to the
second and third operands when they have class or enumeration type (5.16).] [Example:

class String {
public:

String (const String&);
String (char*);

operator char* ();
};
String operator + (const String&, const String&);

void f(void)
{

char* p= "one" + "two"; // ill-formed because neither
// operand has user defined type

int I = 1 + 1; // Always evaluates to 2 even if
// user defined types exist which
// would perform the operation.

}

—end example]

2 If either operand has a type that is a class or an enumeration, a user-defined operator function might be
declared that implements this operator or a user-defined conversion can be necessary to convert the operand
to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine
which operator function or built-in operator is to be invoked to implement the operator. Therefore, the
operator notation is first transformed to the equivalent function-call notation as summarized in Table 8
(where @ denotes one of the operators covered in the specified subclause).

Table 8—relationship between operator and function call notation
_ __
Subclause Expression As member function As non-member function_ ___ __
13.5.1 @a (a).operator@ () operator@ (a)
13.5.2 a@b (a).operator@ (b) operator@ (a, b)
13.5.3 a=b (a).operator= (b)
13.5.5 a[b] (a).operator[](b)
13.5.6 a-> (a).operator-> ()
13.5.7 a@ (a).operator@ (0) operator@ (a, 0)_ __ 


















































220

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.3.1.2 Operators in expressions

3 For a unary operator @ with an operand of a type whose cv-unqualified version is T1, and for a binary oper-
ator @ with a left operand of a type whose cv-unqualified version is T1 and a right operand of a type whose
cv-unqualified version is T2, three sets of candidate functions, designated member candidates, non-member
candidates and built-in candidates, are constructed as follows:

— If T1 is a class type, the set of member candidates is the result of the qualified lookup of
T1::operator@ (13.3.1.1.1); otherwise, the set of member candidates is empty.

— The set of non-member candidates is the result of the unqualified lookup of operator@ in the context
of the expression according to the usual rules for name lookup in unqualified function calls (3.4.2)
except that all member functions are ignored. However, if no operand has a class type, only those non-
member functions in the lookup set that have a first parameter of type T1 or “reference to (possibly cv-
qualified) T1”, when T1 is an enumeration type, or (if there is a right operand) a second parameter of
type T2 or “reference to (possibly cv-qualified) T2”, when T2 is an enumeration type, are candidate
functions.

— For the operator ,, the unary operator &, or the operator ->, the built-in candidates set is empty. For all
other operators, the built-in candidates include all of the candidate operator functions defined in 13.6
that, compared to the given operator,

— have the same operator name, and

— accept the same number of operands, and

— accept operand types to which the given operand or operands can be converted according to
13.3.3.1, and

— do not have the same parameter type list as any non-template non-member candidate.

4 For the built-in assignment operators, conversions of the left operand are restricted as follows:

— no temporaries are introduced to hold the left operand, and

— no user-defined conversions are applied to the left operand to achieve a type match with the left-most
parameter of a built-in candidate.

5 For all other operators, no such restrictions apply.

6 The set of candidate functions for overload resolution is the union of the member candidates, the non-
member candidates, and the built-in candidates. The argument list contains all of the operands of the opera-
tor. The best function from the set of candidate functions is selected according to 13.3.2 and 13.3.3.119)

[Example:

struct A {
operator int();

};
A operator+(const A&, const A&);
void m() {

A a, b;
a + b; // operator+(a,b) chosen over int(a) + int(b)

}

—end example]

7 If a built-in candidate is selected by overload resolution, the operands are converted to the types of the cor-
responding parameters of the selected operation function. Then the operator is treated as the corresponding
built-in operator and interpreted according to clause 5.

8 The second operand of operator -> is ignored in selecting an operator-> function, and is not an argu-
ment when the operator-> function is called. When operator-> returns, the operator -> is applied
to the value returned, with the original second operand.120)

119) If the set of candidate functions is empty, overload resolution is unsuccessful.
120) If the value returned by the operator-> function has class type, this may result in selecting and calling another operator->

221

ISO/IEC 14882:2003(E)  ISO/IEC

13.3.1.2 Operators in expressions 13 Overloading

9 If the operator is the operator ,, the unary operator &, or the operator ->, and there are no viable functions,
then the operator is assumed to be the built-in operator and interpreted according to clause 5.

10 [Note: the lookup rules for operators in expressions are different than the lookup rules for operator function
names in a function call, as shown in the following example:

struct A { };
void operator + (A, A);

struct B {
void operator + (B);
void f ();

};

A a;

void B::f() {
operator+ (a,a); // ERROR – global operator hidden by member
a + a; // OK – calls global operator+

}

—end note]

[over.match.ctor] 13.3.1.3 Initialization by constructor

1 When objects of class type are direct-initialized (8.5), or copy-initialized from an expression of the same or
a derived class type (8.5), overload resolution selects the constructor. For direct-initialization, the candidate
functions are all the constructors of the class of the object being initialized. For copy-initialization, the can-
didate functions are all the converting constructors (12.3.1) of that class. The argument list is the
expression-list within the parentheses of the initializer.

[over.match.copy] 13.3.1.4 Copy-initialization of class by user-defined conversion

1 Under the conditions specified in 8.5, as part of a copy-initialization of an object of class type, a user-
defined conversion can be invoked to convert an initializer expression to the type of the object being initial-
ized. Overload resolution is used to select the user-defined conversion to be invoked. Assuming that “cv1
T” is the type of the object being initialized, with T a class type, the candidate functions are selected as fol-
lows:

— The converting constructors (12.3.1) of T are candidate functions.

— When the type of the initializer expression is a class type “cv S”, the conversion functions of S and its
base classes are considered. Those that are not hidden within S and yield a type whose cv-unqualified
version is the same type as T or is a derived class thereof are candidate functions. Conversion functions
that return “reference to X” return lvalues of type X and are therefore considered to yield X for this pro-
cess of selecting candidate functions.

2 In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument
will be compared against the first parameter of the constructors and against the implicit object parameter of
the conversion functions.]

[over.match.conv] 13.3.1.5 Initialization by conversion function

1 Under the conditions specified in 8.5, as part of an initialization of an object of nonclass type, a conversion
function can be invoked to convert an initializer expression of class type to the type of the object being ini-
tialized. Overload resolution is used to select the conversion function to be invoked. Assuming that “cv1
T” is the type of the object being initialized, and “cv S” is the type of the initializer expression, with S a
class type, the candidate functions are selected as follows:

function. The process repeats until an operator-> function returns a value of non-class type.

222

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.3.1.5 Initialization by conversion function

— The conversion functions of S and its base classes are considered. Those that are not hidden within S
and yield type T or a type that can be converted to type T via a standard conversion sequence
(13.3.3.1.1) are candidate functions. Conversion functions that return a cv-qualified type are considered
to yield the cv-unqualified version of that type for this process of selecting candidate functions. Con-
version functions that return “reference to cv2 X” return lvalues of type “cv2 X” and are therefore con-
sidered to yield X for this process of selecting candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

[over.match.ref] 13.3.1.6 Initialization by conversion function for direct reference binding

1 Under the conditions specified in 8.5.3, a reference can be bound directly to an lvalue that is the result of
applying a conversion function to an initializer expression. Overload resolution is used to select the con-
version function to be invoked. Assuming that “cv1 T” is the underlying type of the reference being initial-
ized, and “cv S” is the type of the initializer expression, with S a class type, the candidate functions are
selected as follows:

— The conversion functions of S and its base classes are considered. Those that are not hidden within S
and yield type “reference to cv2 T2”, where “cv1 T” is reference-compatible (8.5.3) with “cv2 T2”, are
candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be com-
pared against the implicit object parameter of the conversion functions.]

[over.match.viable] 13.3.2 Viable functions

1 From the set of candidate functions constructed for a given context (13.3.1), a set of viable functions is cho-
sen, from which the best function will be selected by comparing argument conversion sequences for the
best fit (13.3.3). The selection of viable functions considers relationships between arguments and function
parameters other than the ranking of conversion sequences.

2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with the
arguments in the list.

— If there are m arguments in the list, all candidate functions having exactly m parameters are viable.

— A candidate function having fewer than m parameters is viable only if it has an ellipsis in its parameter
list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding
parameter is considered to ‘‘match the ellipsis’’ (13.3.3.1.3) .

— A candidate function having more than m parameters is viable only if the (m+1)–st parameter has a
default argument (8.3.6).121) For the purposes of overload resolution, the parameter list is truncated on
the right, so that there are exactly m parameters.

3 Second, for F to be a viable function, there shall exist for each argument an implicit conversion sequence
(13.3.3.1) that converts that argument to the corresponding parameter of F. If the parameter has reference
type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a
reference to non-const cannot be bound to an rvalue can affect the viability of the function (see
13.3.3.1.4).

[over.match.best] 13.3.3 Best Viable Function

1 Define ICSi(F) as follows:

— if F is a static member function, ICS1(F) is defined such that ICS1(F) is neither better nor worse than
ICS1(G) for any function G, and, symmetrically, ICS1(G) is neither better nor worse than ICS1(F)122);

121) According to 8.3.6, parameters following the (m+1)–st parameter must also have default arguments.
122) If a function is a static member function, this definition means that the first argument, the implied object parameter, has no effect
in the determination of whether the function is better or worse than any other function.

223

ISO/IEC 14882:2003(E)  ISO/IEC

13.3.3 Best Viable Function 13 Overloading

otherwise,

— let ICSi(F) denote the implicit conversion sequence that converts the i-th argument in the list to the type
of the i-th parameter of viable function F. 13.3.3.1 defines the implicit conversion sequences and
13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion sequence
or worse conversion sequence than another.

Given these definitions, a viable function F1 is defined to be a better function than another viable function
F2 if for all arguments i, ICSi(F1) is not a worse conversion sequence than ICSi(F2), and then

— for some argument j, ICSj(F1) is a better conversion sequence than ICSj(F2), or, if not that,

— F1 is a non-template function and F2 is a function template specialization, or, if not that,

— F1 and F2 are function template specializations, and the function template for F1 is more specialized
than the template for F2 according to the partial ordering rules described in 14.5.5.2, or, if not that,

— the context is an initialization by user-defined conversion (see 8.5, 13.3.1.5, and 13.3.1.6) and the stan-
dard conversion sequence from the return type of F1 to the destination type (i.e., the type of the entity
being initialized) is a better conversion sequence than the standard conversion sequence from the return
type of F2 to the destination type. [Example:

struct A {
A();
operator int();
operator double();

} a;
int i = a; // a.operator int() followed by no conversion

// is better than a.operator double() followed by
// a conversion to int

float x = a; // ambiguous: both possibilities require conversions,
// and neither is better than the other

—end example]

2 If there is exactly one viable function that is a better function than all other viable functions, then it is the
one selected by overload resolution; otherwise the call is ill-formed123).

123) The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a
function W that is not worse than any opponent it faced. Although another function F that W did not face might be at least as good as W,
F cannot be the best function because at some point in the tournament F encountered another function G such that F was not better than
G. Hence, W is either the best function or there is no best function. So, make a second pass over the viable functions to verify that W is
better than all other functions.

224

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.3.3 Best Viable Function

3 [Example:

void Fcn(const int*, short);
void Fcn(int*, int);

int i;
short s = 0;

void f() {
Fcn(&i, s); // is ambiguous because

// &i → int* is better than &i → const int*
// but s → short is also better than s → int

Fcn(&i, 1L); // calls Fcn(int*, int), because
// &i → int* is better than &i → const int*
// and 1L → short and 1L → int are indistinguishable

Fcn(&i,’c’); // calls Fcn(int*, int), because
// &i → int* is better than &i → const int*
// and c → int is better than c → short

}

—end example]

4 If the best viable function resolves to a function for which multiple declarations were found, and if at least
two of these declarations – or the declarations they refer to in the case of using-declarations – specify a
default argument that made the function viable, the program is ill-formed. [Example:

namespace A {
extern "C" void f(int = 5);

}
namespace B {

extern "C" void f(int = 5);
}

using A::f;
using B::f;

void use() {
f(3); // OK, default argument was not used for viability
f(); // Error: found default argument twice

}

—end example]

[over.best.ics] 13.3.3.1 Implicit conversion sequences

1 An implicit conversion sequence is a sequence of conversions used to convert an argument in a function
call to the type of the corresponding parameter of the function being called. The sequence of conversions is
an implicit conversion as defined in clause 4, which means it is governed by the rules for initialization of an
object or reference by a single expression (8.5, 8.5.3).

2 Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the
argument and how these are converted to match the corresponding properties of the parameter. Other prop-
erties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the
argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a given
argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the
final analysis.

3 A well-formed implicit conversion sequence is one of the following forms:

— a standard conversion sequence (13.3.3.1.1),

225

ISO/IEC 14882:2003(E)  ISO/IEC

13.3.3.1 Implicit conversion sequences 13 Overloading

— a user-defined conversion sequence (13.3.3.1.2), or

— an ellipsis conversion sequence (13.3.3.1.3).

4 However, when considering the argument of a user-defined conversion function that is a candidate by
13.3.1.3 when invoked for the copying of the temporary in the second step of a class copy-initialization, or
by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, only standard conversion sequences and ellipsis conversion
sequences are allowed.

5 For the case where the parameter type is a reference, see 13.3.3.1.4.

6 When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization
of the parameter from the argument expression. The implicit conversion sequence is the one required to
convert the argument expression to an rvalue of the type of the parameter. [Note: when the parameter has a
class type, this is a conceptual conversion defined for the purposes of clause 13; the actual initialization is
defined in terms of constructors and is not a conversion.] Any difference in top-level cv-qualification is
subsumed by the initialization itself and does not constitute a conversion. [Example: a parameter of type A
can be initialized from an argument of type const A. The implicit conversion sequence for that case is
the identity sequence; it contains no “conversion” from const A to A.] When the parameter has a class
type and the argument expression has the same type, the implicit conversion sequence is an identity conver-
sion. When the parameter has a class type and the argument expression has a derived class type, the
implicit conversion sequence is a derived-to-base Conversion from the derived class to the base class.
[Note: there is no such standard conversion; this derived-to-base Conversion exists only in the description
of implicit conversion sequences.] A derived-to-base Conversion has Conversion rank (13.3.3.1.1).

7 In all contexts, when converting to the implicit object parameter or when converting to the left operand of
an assignment operation only standard conversion sequences that create no temporary object for the result
are allowed.

8 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence
is the standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

9 If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is
otherwise ill-formed, an implicit conversion sequence cannot be formed.

10 If several different sequences of conversions exist that each convert the argument to the parameter type, the
implicit conversion sequence associated with the parameter is defined to be the unique conversion sequence
designated the ambiguous conversion sequence. For the purpose of ranking implicit conversion sequences
as described in 13.3.3.2, the ambiguous conversion sequence is treated as a user-defined sequence that is
indistinguishable from any other user-defined conversion sequence124). If a function that uses the ambigu-
ous conversion sequence is selected as the best viable function, the call will be ill-formed because the

124) The ambiguous conversion sequence is ranked with user-defined conversion sequences because multiple conversion sequences for
an argument can exist only if they involve different user-defined conversions. The ambiguous conversion sequence is indistinguishable
from any other user-defined conversion sequence because it represents at least two user-defined conversion sequences, each with a dif-
ferent user-defined conversion, and any other user-defined conversion sequence must be indistinguishable from at least one of them.

This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters. Con-
sider this example,

class B;
class A { A (B&); };
class B { operator A (); };
class C { C (B&); };
void f(A) { }
void f(C) { }
B b;
f(b); // ambiguous because b -> C via constructor and

// b → A via constructor or conversion function.

If it were not for this rule, f(A) would be eliminated as a viable function for the call f(b) causing overload resolution to select f(C)
as the function to call even though it is not clearly the best choice. On the other hand, if an f(B) were to be declared then f(b)
would resolve to that f(B) because the exact match with f(B) is better than any of the sequences required to match f(A).

226

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.3.3.1 Implicit conversion sequences

conversion of one of the arguments in the call is ambiguous.

11 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

[over.ics.scs] 13.3.3.1.1 Standard conversion sequences

1 Table 9 summarizes the conversions defined in clause 4 and partitions them into four disjoint categories:
Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. [Note: these categories are
orthogonal with respect to lvalue-ness, cv-qualification, and data representation: the Lvalue Transforma-
tions do not change the cv-qualification or data representation of the type; the Qualification Adjustments do
not change the lvalue-ness or data representation of the type; and the Promotions and Conversions do not
change the lvalue-ness or cv-qualification of the type.]

2 [Note: As described in clause 4, a standard conversion sequence is either the Identity conversion by itself
(that is, no conversion) or consists of one to three conversions from the other four categories. At most one
conversion from each category is allowed in a single standard conversion sequence. If there are two or
more conversions in the sequence, the conversions are applied in the canonical order: Lvalue
Transformation, Promotion or Conversion, Qualification Adjustment. —end note]

3 Each conversion in Table 9 also has an associated rank (Exact Match, Promotion, or Conversion). These
are used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is deter-
mined by considering the rank of each conversion in the sequence and the rank of any reference binding
(13.3.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of
those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

Table 9—conversions
_ ___
Conversion Category Rank Subclause_ __ __ ___
No conversions required Identity_ __ _ ___________
Lvalue-to-rvalue conversion 4.1_ ___________________________ _ ___________
Array-to-pointer conversion 4.2_ ___________________________ _ ___________
Function-to-pointer conversion

Lvalue Transformation

4.3_ __ _ ___________
Qualification conversions Qualification Adjustment

Exact Match

4.4_ ___
Integral promotions 4.5_ ___________________________ _ ___________
Floating point promotion

Promotion Promotion
4.6_ ___

Integral conversions 4.7_ ___________________________ _ ___________
Floating point conversions 4.8_ ___________________________ _ ___________
Floating-integral conversions 4.9_ ___________________________ _ ___________
Pointer conversions 4.10_ ___________________________ _ ___________
Pointer to member conversions 4.11_ ___________________________ _ ___________
Boolean conversions

Conversion Conversion

4.12_ ___ 








































































































[over.ics.user] 13.3.3.1.2 User-defined conversion sequences

1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a
user-defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined
conversion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the
source type to the type required by the argument of the constructor. If the user-defined conversion is speci-
fied by a conversion function (12.3.2), the initial standard conversion sequence converts the source type to
the implicit object parameter of the conversion function.

2 The second standard conversion sequence converts the result of the user-defined conversion to the target
type for the sequence. Since an implicit conversion sequence is an initialization, the special rules for
initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-

227

ISO/IEC 14882:2003(E)  ISO/IEC

13.3.3.1.2 User-defined conversion sequences 13 Overloading

defined conversion sequence (see 13.3.3 and 13.3.3.1).

3 If the user-defined conversion is specified by a template conversion function, the second standard conver-
sion sequence must have exact match rank.

4 A conversion of an expression of class type to the same class type is given Exact Match rank, and a conver-
sion of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact
that a copy constructor (i.e., a user-defined conversion function) is called for those cases.

[over.ics.ellipsis] 13.3.3.1.3 Ellipsis conversion sequences

1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis
parameter specification of the function called.

[over.ics.ref] 13.3.3.1.4 Reference binding

1 When a parameter of reference type binds directly (8.5.3) to an argument expression, the implicit conver-
sion sequence is the identity conversion, unless the argument expression has a type that is a derived class of
the parameter type, in which case the implicit conversion sequence is a derived-to-base Conversion
(13.3.3.1). [Example:

struct A {};
struct B : public A {} b;
int f(A&);
int f(B&);
int i = f(b); // Calls f(B&), an exact match, rather than

// f(A&), a conversion

—end example] If the parameter binds directly to the result of applying a conversion function to the argu-
ment expression, the implicit conversion sequence is a user-defined conversion sequence (13.3.3.1.2), with
the second standard conversion sequence either an identity conversion or, if the conversion function returns
an entity of a type that is a derived class of the parameter type, a derived-to-base Conversion.

2 When a parameter of reference type is not bound directly to an argument expression, the conversion
sequence is the one required to convert the argument expression to the underlying type of the reference
according to 13.3.3.1. Conceptually, this conversion sequence corresponds to copy-initializing a temporary
of the underlying type with the argument expression. Any difference in top-level cv-qualification is sub-
sumed by the initialization itself and does not constitute a conversion.

3 A standard conversion sequence cannot be formed if it requires binding a reference to non-const to an
rvalue (except when binding an implicit object parameter; see the special rules for that case in 13.3.1).
[Note: this means, for example, that a candidate function cannot be a viable function if it has a non-const
reference parameter (other than the implicit object parameter) and the corresponding argument is a tempo-
rary or would require one to be created to initialize the reference (see 8.5.3).]

4 Other restrictions on binding a reference to a particular argument do not affect the formation of a standard
conversion sequence, however. [Example: a function with a “reference to int” parameter can be a viable
candidate even if the corresponding argument is an int bit-field. The formation of implicit conversion
sequences treats the int bit-field as an int lvalue and finds an exact match with the parameter. If the
function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibi-
tion on binding a non-const reference to a bit-field (8.5.3).]

5 The binding of a reference to an expression that is reference-compatible with added qualification influences
the rank of a standard conversion; see 13.3.3.2 and 8.5.3.

[over.ics.rank] 13.3.3.2 Ranking implicit conversion sequences

1 13.3.3.2 defines a partial ordering of implicit conversion sequences based on the relationships better
conversion sequence and better conversion. If an implicit conversion sequence S1 is defined by these rules
to be a better conversion sequence than S2, then it is also the case that S2 is a worse conversion sequence
than S1. If conversion sequence S1 is neither better than nor worse than conversion sequence S2, S1 and

228

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.3.3.2 Ranking implicit conversion sequences

S2 are said to be indistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

— a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined conver-
sion sequence or an ellipsis conversion sequence, and

— a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conver-
sion sequence (13.3.3.1.3).

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one
of the following rules apply:

— Standard conversion sequence S1 is a better conversion sequence than standard conversion sequence
S2 if

— S1 is a proper subsequence of S2 (comparing the conversion sequences in the canonical form
defined by 13.3.3.1.1, excluding any Lvalue Transformation; the identity conversion sequence is
considered to be a subsequence of any non-identity conversion sequence) or, if not that,

— the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distinguish-
able by the rules in the paragraph below, or, if not that,

— S1 and S2 differ only in their qualification conversion and yield similar types T1 and T2 (4.4),
respectively, and the cv-qualification signature of type T1 is a proper subset of the cv-qualification
signature of type T2, and S1 is not the deprecated string literal array-to-pointer conversion (4.2).
[Example:

int f(const int *);
int f(int *);
int i;
int j = f(&i); // Calls f(int *)

—end example] or, if not that,

— S1 and S2 are reference bindings (8.5.3), and the types to which the references refer are the same
type except for top-level cv-qualifiers, and the type to which the reference initialized by S2 refers is
more cv-qualified than the type to which the reference initialized by S1 refers. [Example:

int f(const int &);
int f(int &);
int g(const int &);
int g(int);

int i;
int j = f(i); // Calls f(int &)
int k = g(i); // ambiguous

class X {
public:

void f() const;
void f();

};
void g(const X& a, X b)
{

a.f(); // Calls X::f() const
b.f(); // Calls X::f()

}

—end example]

— User-defined conversion sequence U1 is a better conversion sequence than another user-defined conver-
sion sequence U2 if they contain the same user-defined conversion function or constructor and if the
second standard conversion sequence of U1 is better than the second standard conversion sequence of

229

ISO/IEC 14882:2003(E)  ISO/IEC

13.3.3.2 Ranking implicit conversion sequences 13 Overloading

U2. [Example:

struct A {
operator short();

} a;
int f(int);
int f(float);
int i = f(a); // Calls f(int), because short → int is

// better than short → float.

—end example]

4 Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a Pro-
motion, which is a better conversion than a Conversion. Two conversion sequences with the same rank are
indistinguishable unless one of the following rules applies:

— A conversion that is not a conversion of a pointer, or pointer to member, to bool is better than another
conversion that is such a conversion.

— If class B is derived directly or indirectly from class A, conversion of B* to A* is better than conversion
of B* to void*, and conversion of A* to void* is better than conversion of B* to void*.

— If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from
B,

— conversion of C* to B* is better than conversion of C* to A*, [Example:

struct A {};
struct B : public A {};
struct C : public B {};
C *pc;
int f(A *);
int f(B *);
int i = f(pc); // Calls f(B *)

—end example]

— binding of an expression of type C to a reference of type B& is better than binding an expression of
type C to a reference of type A&,

— conversion of A::* to B::* is better than conversion of A::* to C::*,

— conversion of C to B is better than conversion of C to A,

— conversion of B* to A* is better than conversion of C* to A*,

— binding of an expression of type B to a reference of type A& is better than binding an expression of
type C to a reference of type A&,

— conversion of B::* to C::* is better than conversion of A::* to C::*, and

— conversion of B to A is better than conversion of C to A.
[Note: compared conversion sequences will have different source types only in the context of comparing
the second standard conversion sequence of an initialization by user-defined conversion (see 13.3.3); in all
other contexts, the source types will be the same and the target types will be different.]

[over.over] 13.4 Address of overloaded function

1 A use of an overloaded function name without arguments is resolved in certain contexts to a function, a
pointer to function or a pointer to member function for a specific function from the overload set. A func-
tion template name is considered to name a set of overloaded functions in such contexts. The function
selected is the one whose type matches the target type required in the context. The target can be

— an object or reference being initialized (8.5, 8.5.3),

— the left side of an assignment (5.17),

230

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.4 Address of overloaded function

— a parameter of a function (5.2.2),

— a parameter of a user-defined operator (13.5),

— the return value of a function, operator function, or conversion (6.6.3),

— an explicit type conversion (5.2.3, 5.2.9, 5.4), or

— a non-type template-parameter (14.3.2).

The overloaded function name can be preceded by the & operator. An overloaded function name shall not
be used without arguments in contexts other than those listed. [Note: any redundant set of parentheses sur-
rounding the overloaded function name is ignored (5.1).]

2 If the name is a function template, template argument deduction is done (14.8.2.2), and if the argument
deduction succeeds, the resulting template argument list is used to generate a single function template spe-
cialization, which is added to the set of overloaded functions considered.

3 Non-member functions and static member functions match targets of type “pointer-to-function” or
“reference-to-function.” Nonstatic member functions match targets of type “pointer-to-member-function;”
the function type of the pointer to member is used to select the member function from the set of overloaded
member functions. If a nonstatic member function is selected, the reference to the overloaded function
name is required to have the form of a pointer to member as described in 5.3.1.

4 If more than one function is selected, any function template specializations in the set are eliminated if the
set also contains a non-template function, and any given function template specialization F1 is eliminated if
the set contains a second function template specialization whose function template is more specialized than
the function template of F1 according to the partial ordering rules of 14.5.5.2. After such eliminations, if
any, there shall remain exactly one selected function.

5 [Example:

int f(double);
int f(int);
int (*pfd)(double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f(int)
int (*pfe)(...) = &f; // error: type mismatch
int (&rfi)(int) = f; // selects f(int)
int (&rfd)(double) = f; // selects f(double)
void g() {

(int (*)(int))&f; // cast expression as selector
}

The initialization of pfe is ill-formed because no f() with type int(...) has been defined, and not
because of any ambiguity. For another example,

struct X {
int f(int);
static int f(long);

};

int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for

// pointer to member
int (*p6)(long) = &(X::f); // OK

—end example]

6 [Note: if f() and g() are both overloaded functions, the cross product of possibilities must be considered
to resolve f(&g), or the equivalent expression f(g).]

231

ISO/IEC 14882:2003(E)  ISO/IEC

13.4 Address of overloaded function 13 Overloading

7 [Note: there are no standard conversions (clause 4) of one pointer-to-function type into another. In particu-
lar, even if B is a public base of D, we have

D* f();
B* (*p1)() = &f; // error

void g(D*);
void (*p2)(B*) = &g; // error

—end note]

[over.oper] 13.5 Overloaded operators

1 A function declaration having one of the following operator-function-ids as its name declares an operator
function. An operator function is said to implement the operator named in its operator-function-id.

operator-function-id:
operator operator
operator operator < template-argument-listopt >

operator: one of
new delete new[] delete[]
+ - * / % ˆ & | ˜
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[Note: the last two operators are function call (5.2.2) and subscripting (5.2.1). The operators new[],
delete[], (), and [] are formed from more than one token.]

2 Both the unary and binary forms of

+ - * &

can be overloaded.

3 The following operators cannot be overloaded:

. .* :: ?:

nor can the preprocessing symbols # and ## (clause 16).

4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they
implement (13.5.1 - 13.5.7). They can be explicitly called, however, using the operator-function-id as the
name of the function in the function call syntax (5.2.2). [Example:

complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

—end example]

5 The allocation and deallocation functions, operator new, operator new[], operator delete
and operator delete[], are described completely in 3.7.3. The attributes and restrictions found in the
rest of this subclause do not apply to them unless explicitly stated in 3.7.3.

6 An operator function shall either be a non-static member function or be a non-member function and have at
least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enu-
meration. It is not possible to change the precedence, grouping, or number of operands of operators. The
meaning of the operators =, (unary) &, and , (comma), predefined for each type, can be changed for spe-
cific class and enumeration types by defining operator functions that implement these operators. Operator
functions are inherited in the same manner as other base class functions.

7 The identities among certain predefined operators applied to basic types (for example, ++a ≡ a+=1) need
not hold for operator functions. Some predefined operators, such as +=, require an operand to be an lvalue

232

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.5 Overloaded operators

when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator
functions cannot have more or fewer parameters than the number required for the corresponding operator,
as described in the rest of this subclause.

9 Operators not mentioned explicitly in subclauses 13.5.3 through 13.5.7 act as ordinary unary and binary
operators obeying the rules of 13.5.1 or 13.5.2.

[over.unary] 13.5.1 Unary operators

1 A prefix unary operator shall be implemented by a non-static member function (9.3) with no parameters or
a non-member function with one parameter. Thus, for any prefix unary operator @, @x can be interpreted as
either x.operator@() or operator@(x). If both forms of the operator function have been declared,
the rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5.7 for an explanation of the
postfix unary operators ++ and --.

2 The unary and binary forms of the same operator are considered to have the same name. [Note: conse-
quently, a unary operator can hide a binary operator from an enclosing scope, and vice versa.]

[over.binary] 13.5.2 Binary operators

1 A binary operator shall be implemented either by a non-static member function (9.3) with one parameter or
by a non-member function with two parameters. Thus, for any binary operator @, x@y can be interpreted as
either x.operator@(y) or operator@(x,y). If both forms of the operator function have been
declared, the rules in 13.3.1.2 determines which, if any, interpretation is used.

[over.ass] 13.5.3 Assignment

1 An assignment operator shall be implemented by a non-static member function with exactly one parameter.
Because a copy assignment operator operator= is implicitly declared for a class if not declared by the
user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the
derived class.

2 Any assignment operator, even the copy assignment operator, can be virtual. [Note: for a derived class D
with a base class B for which a virtual copy assignment has been declared, the copy assignment operator in
D does not override B’s virtual copy assignment operator. [Example:

struct B {
virtual int operator= (int);
virtual B& operator= (const B&);

};
struct D : B {

virtual int operator= (int);
virtual D& operator= (const B&);

};

D dobj1;
D dobj2;
B* bptr = &dobj1;
void f() {

bptr->operator=(99); // calls D::operator=(int)
*bptr = 99; // ditto
bptr->operator=(dobj2); // calls D::operator=(const B&)
*bptr = dobj2; // ditto
dobj1 = dobj2; // calls implicitly-declared

// D::operator=(const D&)
}

—end example] —end note]

233

ISO/IEC 14882:2003(E)  ISO/IEC

13.5.4 Function call 13 Overloading

[over.call] 13.5.4 Function call

1 operator() shall be a non-static member function with an arbitrary number of parameters. It can have
default arguments. It implements the function call syntax

postfix-expression (expression-listopt)

where the postfix-expression evaluates to a class object and the possibly empty expression-list matches the
parameter list of an operator() member function of the class. Thus, a call x(arg1,...) is inter-
preted as x.operator()(arg1,...) for a class object x of type T if T::operator()(T1, T2,
T3) exists and if the operator is selected as the best match function by the overload resolution mechanism
(13.3.3).

[over.sub] 13.5.5 Subscripting

1 operator[] shall be a non-static member function with exactly one parameter. It implements the sub-
scripting syntax

postfix-expression [expression]

Thus, a subscripting expression x[y] is interpreted as x.operator[](y) for a class object x of type T
if T::operator[](T1) exists and if the operator is selected as the best match function by the overload
resolution mechanism (13.3.3).

[over.ref] 13.5.6 Class member access

1 operator-> shall be a non-static member function taking no parameters. It implements class member
access using ->

postfix-expression -> id-expression

An expression x->m is interpreted as (x.operator->())->m for a class object x of type T if
T::operator->() exists and if the operator is selected as the best match function by the overload reso-
lution mechanism (13.3).

[over.inc] 13.5.7 Increment and decrement

1 The user-defined function called operator++ implements the prefix and postfix ++ operator. If this
function is a member function with no parameters, or a non-member function with one parameter of class or
enumeration type, it defines the prefix increment operator ++ for objects of that type. If the function is a
member function with one parameter (which shall be of type int) or a non-member function with two
parameters (the second of which shall be of type int), it defines the postfix increment operator ++ for
objects of that type. When the postfix increment is called as a result of using the ++ operator, the int
argument will have value zero.125) [Example:

class X {
public:

X& operator++(); // prefix ++a
X operator++(int); // postfix a++

};

class Y { };
Y& operator++(Y&); // prefix ++b
Y operator++(Y&, int); // postfix b++

125) Calling operator++ explicitly, as in expressions like a.operator++(2), has no special properties: The argument to
operator++ is 2.

234

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.5.7 Increment and decrement

void f(X a, Y b) {
++a; // a.operator++();
a++; // a.operator++(0);
++b; // operator++(b);
b++; // operator++(b, 0);

a.operator++(); // explicit call: like ++a;
a.operator++(0); // explicit call: like a++;
operator++(b); // explicit call: like ++b;
operator++(b, 0); // explicit call: like b++;

}

—end example]

2 The prefix and postfix decrement operators -- are handled analogously.

[over.built] 13.6 Built-in operators

1 The candidate operator functions that represent the built-in operators defined in clause 5 are specified in
this subclause. These candidate functions participate in the operator overload resolution process as
described in 13.3.1.2 and are used for no other purpose. [Note: because built-in operators take only
operands with non-class type, and operator overload resolution occurs only when an operand expression
originally has class or enumeration type, operator overload resolution can resolve to a built-in operator only
when an operand has a class type that has a user-defined conversion to a non-class type appropriate for the
operator, or when an operand has an enumeration type that can be converted to a type appropriate for the
operator. Also note that some of the candidate operator functions given in this subclause are more permis-
sive than the built-in operators themselves. As described in 13.3.1.2, after a built-in operator is selected by
overload resolution the expression is subject to the requirements for the built-in operator given in clause 5,
and therefore to any additional semantic constraints given there. If there is a user-written candidate with
the same name and parameter types as a built-in candidate operator function, the built-in operator function
is hidden and is not included in the set of candidate functions.]

2 In this subclause, the term promoted integral type is used to refer to those integral types which are pre-
served by integral promotion (including e.g. int and long but excluding e.g. char). Similarly, the term
promoted arithmetic type refers to promoted integral types plus floating types. [Note: in all cases where a
promoted integral type or promoted arithmetic type is required, an operand of enumeration type will be
acceptable by way of the integral promotions.]

3 For every pair (T, VQ), where T is an arithmetic type, and VQ is either volatile or empty, there exist
candidate operator functions of the form

VQ T& operator++(VQ T&);
T operator++(VQ T&, int);

4 For every pair (T, VQ), where T is an arithmetic type other than bool, and VQ is either volatile or
empty, there exist candidate operator functions of the form

VQ T& operator--(VQ T&);
T operator--(VQ T&, int);

5 For every pair (T, VQ), where T is a cv-qualified or cv-unqualified object type, and VQ is either volatile
or empty, there exist candidate operator functions of the form

T*VQ& operator++(T*VQ&);
T*VQ& operator--(T*VQ&);
T* operator++(T*VQ&, int);
T* operator--(T*VQ&, int);

6 For every cv-qualified or cv-unqualified object type T, there exist candidate operator functions of the form

235

ISO/IEC 14882:2003(E)  ISO/IEC

13.6 Built-in operators 13 Overloading

T& operator*(T*);

7 For every function type T, there exist candidate operator functions of the form

T& operator*(T*);

8 For every type T, there exist candidate operator functions of the form

T* operator+(T*);

9 For every promoted arithmetic type T, there exist candidate operator functions of the form

T operator+(T);
T operator-(T);

10 For every promoted integral type T, there exist candidate operator functions of the form

T operator˜(T);

11 For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, C1 is the same type as C2 or is a
derived class of C2, T is an object type or a function type, and CV1 and CV2 are cv-qualifier-seqs, there
exist candidate operator functions of the form

CV12 T& operator->*(CV1 C1*, CV2 T C2::*);

where CV12 is the union of CV1 and CV2.

12 For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form

LR operator*(L, R);
LR operator/(L, R);
LR operator+(L, R);
LR operator-(L, R);
bool operator<(L, R);
bool operator>(L, R);
bool operator<=(L, R);
bool operator>=(L, R);
bool operator==(L, R);
bool operator!=(L, R);

where LR is the result of the usual arithmetic conversions between types L and R.

13 For every cv-qualified or cv-unqualified object type T there exist candidate operator functions of the form

T* operator+(T*, ptrdiff_t);
T& operator[](T*, ptrdiff_t);
T* operator-(T*, ptrdiff_t);
T* operator+(ptrdiff_t, T*);
T& operator[](ptrdiff_t, T*);

14 For every T, where T is a pointer to object type, there exist candidate operator functions of the form

ptrdiff_t operator-(T, T);

15 For every pointer or enumeration type T, there exist candidate operator functions of the form

bool operator<(T, T);
bool operator>(T, T);
bool operator<=(T, T);
bool operator>=(T, T);
bool operator==(T, T);
bool operator!=(T, T);

236

 ISO/IEC ISO/IEC 14882:2003(E)

13 Overloading 13.6 Built-in operators

16 For every pointer to member type T, there exist candidate operator functions of the form

bool operator==(T, T);
bool operator!=(T, T);

17 For every pair of promoted integral types L and R, there exist candidate operator functions of the form

LR operator%(L, R);
LR operator&(L, R);
LR operatorˆ(L, R);
LR operator|(L, R);
L operator<<(L, R);
L operator>>(L, R);

where LR is the result of the usual arithmetic conversions between types L and R.

18 For every triple (L, VQ, R), where L is an arithmetic type, VQ is either volatile or empty, and R is a
promoted arithmetic type, there exist candidate operator functions of the form

VQ L& operator=(VQ L&, R);
VQ L& operator*=(VQ L&, R);
VQ L& operator/=(VQ L&, R);
VQ L& operator+=(VQ L&, R);
VQ L& operator-=(VQ L&, R);

19 For every pair (T, VQ), where T is any type and VQ is either volatile or empty, there exist candidate
operator functions of the form

T*VQ& operator=(T*VQ&, T*);

20 For every pair (T, VQ), where T is an enumeration or pointer to member type and VQ is either volatile
or empty, there exist candidate operator functions of the form

VQ T& operator=(VQ T&, T);

21 For every pair (T, VQ), where T is a cv-qualified or cv-unqualified object type and VQ is either volatile
or empty, there exist candidate operator functions of the form

T*VQ& operator+=(T*VQ&, ptrdiff_t);
T*VQ& operator-=(T*VQ&, ptrdiff_t);

22 For every triple (L, VQ, R), where L is an integral type, VQ is either volatile or empty, and R is a pro-
moted integral type, there exist candidate operator functions of the form

VQ L& operator%=(VQ L&, R);
VQ L& operator<<=(VQ L&, R);
VQ L& operator>>=(VQ L&, R);
VQ L& operator&=(VQ L&, R);
VQ L& operatorˆ=(VQ L&, R);
VQ L& operator|=(VQ L&, R);

23 There also exist candidate operator functions of the form

bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);

24 For every pair of promoted arithmetic types L and R, there exist candidate operator functions of the form

LR operator?(bool, L, R);

where LR is the result of the usual arithmetic conversions between types L and R. [Note: as with all these
descriptions of candidate functions, this declaration serves only to describe the built-in operator for pur-
poses of overload resolution. The operator “?” cannot be overloaded.]

237

ISO/IEC 14882:2003(E)  ISO/IEC

13.6 Built-in operators 13 Overloading

25 For every type T, where T is a pointer or pointer-to-member type, there exist candidate operator functions
of the form

T operator?(bool, T, T);

238

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates [temp]

1 A template defines a family of classes or functions.

template-declaration:
exportopt template < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

The declaration in a template-declaration shall

— declare or define a function or a class, or

— define a member function, a member class or a static data member of a class template or of a class
nested within a class template, or

— define a member template of a class or class template.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration
defines a function, a class, or a static data member.

2 A template-declaration can appear only as a namespace scope or class scope declaration. In a function
template declaration, the declarator-id shall be a template-name (i.e., not a template-id). [Note: in a class
template declaration, if the class name is a template-id, the declaration declares a class template partial spe-
cialization (14.5.4).]

3 In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the dec-
laration shall contain at most one declarator. When such a declaration is used to declare a class template,
no declarator is permitted.

4 A template name has linkage (3.5). A non-member function template can have internal linkage; any other
template name shall have external linkage. Entities generated from a template with internal linkage are dis-
tinct from all entities generated in other translation units. A template, a template explicit specialization
(14.7.3), or a class template partial specialization shall not have C linkage. If the linkage of one of these is
something other than C or C + +, the behavior is implementation-defined. Template definitions shall obey
the one definition rule (3.2). [Note: default arguments for function templates and for member functions of
class templates are considered definitions for the purpose of template instantiation (14.5) and must also
obey the one definition rule.]

5 A class template shall not have the same name as any other template, class, function, object, enumeration,
enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.4). Except that a func-
tion template can be overloaded either by (non-template) functions with the same name or by other function
templates with the same name (14.8.3), a template name declared in namespace scope or in class scope
shall be unique in that scope.

6 A namespace-scope declaration or definition of a non-inline function template, a non-inline member func-
tion template, a non-inline member function of a class template or a static data member of a class template
may be preceded by the export keyword. If such a template is defined in the same translation unit in
which it is declared as exported, the definition is considered to be exported. The first declaration of the
template containing the export keyword must not follow the definition.

7 Declaring a class template exported is equivalent to declaring all of its non-inline function members, static
data members, member classes, member class templates and non-inline function member templates which
are defined in that translation unit exported.

239

ISO/IEC 14882:2003(E)  ISO/IEC

14 Templates 14 Templates

8 Templates defined in an unnamed namespace shall not be exported. A template shall be exported only once
in a program. An implementation is not required to diagnose a violation of this rule. A non-exported tem-
plate must be defined in every translation unit in which it is implicitly instantiated (14.7.1), unless the cor-
responding specialization is explicitly instantiated (14.7.2) in some translation unit; no diagnostic is
required. [Note: See also 14.7.2.] An exported template need only be declared (and not necessarily
defined) in a translation unit in which it is instantiated. A function template declared both exported and
inline is just inline and not exported.

9 [Note: an implementation may require that a translation unit containing the definition of an exported tem-
plate be compiled before any translation unit containing an instantiation of that template.]

[temp.param] 14.1 Template parameters

1 The syntax for template-parameters is:

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt

typename identifieropt = type-id
template < template-parameter-list > class identifieropt

template < template-parameter-list > class identifieropt = id-expression

2 There is no semantic difference between class and typename in a template-parameter. typename
followed by an unqualified-id names a template type parameter. typename followed by a qualified-id
denotes the type in a non-type 126) parameter-declaration. A storage class shall not be specified in a
template-parameter declaration. [Note: a template parameter may be a class template. For example,

template<class T> class myarray { /* ... */ };

template<class K, class V, template<class T> class C = myarray>
class Map {

C<K> key;
C<V> value;
// ...

};

—end note]

3 A type-parameter defines its identifier to be a type-name (if declared with class or typename) or
template-name (if declared with template) in the scope of the template declaration. [Note: because of
the name lookup rules, a template-parameter that could be interpreted as either a non-type template-
parameter or a type-parameter (because its identifier is the name of an already existing class) is taken as a
type-parameter. For example,

class T { /* ... */ };
int i;

template<class T, T i> void f(T t)
{

T t1 = i; // template-parameters T and i
::T t2 = ::i; // global namespace members T and i

}

126) Since template template-parameters and template template-arguments are treated as types for descriptive purposes, the terms
non-type parameter and non-type argument are used to refer to non-type, non-template parameters and arguments.

240

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.1 Template parameters

Here, the template f has a type-parameter called T, rather than an unnamed non-type template-parameter
of class T.]

4 A non-type template-parameter shall have one of the following (optionally cv-qualified) types:

— integral or enumeration type,

— pointer to object or pointer to function,

— reference to object or reference to function,

— pointer to member.

5 [Note: other types are disallowed either explicitly below or implicitly by the rules governing the form of
template-arguments (14.3).] The top-level cv-qualifiers on the template-parameter are ignored when
determining its type.

6 A non-type non-reference template-parameter is not an lvalue. It shall not be assigned to or in any other
way have its value changed. A non-type non-reference template-parameter cannot have its address taken.
When a non-type non-reference template-parameter is used as an initializer for a reference, a temporary is
always used. [Example:

template<const X& x, int i> void f()
{

i++; // error: change of template-parameter value

&x; // OK
&i; // error: address of non-reference template-parameter

int& ri = i; // error: non-const reference bound to temporary
const int& cri = i; // OK: const reference bound to temporary

}

—end example]

7 A non-type template-parameter shall not be declared to have floating point, class, or void type. [Example:

template<double d> class X; // error
template<double* pd> class Y; // OK
template<double& rd> class Z; // OK

—end example]

8 A non-type template-parameter of type “array of T” or “function returning T” is adjusted to be of type
“pointer to T” or “pointer to function returning T”, respectively. [Example:

template<int *a> struct R { /* ... */ };
template<int b[5]> struct S { /* ... */ };
int p;
R<&p> w; // OK
S<&p> x; // OK due to parameter adjustment
int v[5];
R<v> y; // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion

—end example]

9 A default template-argument is a template-argument (14.3) specified after = in a template-parameter. A
default template-argument may be specified for any kind of template-parameter (type, non-type, template).
A default template-argument may be specified in a class template declaration or a class template definition.
A default template-argument shall not be specified in a function template declaration or a function template
definition, nor in the template-parameter-list of the definition of a member of a class template. A default
template-argument shall not be specified in a friend template declaration.

241

ISO/IEC 14882:2003(E)  ISO/IEC

14.1 Template parameters 14 Templates

10 The set of default template-arguments available for use with a template declaration or definition is obtained
by merging the default arguments from the definition (if in scope) and all declarations in scope in the same
way default function arguments are (8.3.6). [Example:

template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;

is equivalent to

template<class T1 = int, class T2 = int> class A;

—end example]

11 If a template-parameter has a default template-argument, all subsequent template-parameters shall have a
default template-argument supplied. [Example:

template<class T1 = int, class T2> class B; // error

—end example]

12 A template-parameter shall not be given default arguments by two different declarations in the same scope.
[Example:

template<class T = int> class X;
template<class T = int> class X { /*... */ }; // error

—end example]

13 The scope of a template-parameter extends from its point of declaration until the end of its template. In par-
ticular, a template-parameter can be used in the declaration of subsequent template-parameters and their
default arguments. [Example:

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

—end example]

14 A template-parameter shall not be used in its own default argument.

15 When parsing a default template-argument for a non-type template-parameter, the first non-nested > is
taken as the end of the template-parameter-list rather than a greater-than operator. [Example:

template<int i = 3 > 4 > // syntax error
class X { /* ... */ };

template<int i = (3 > 4) > // OK
class Y { /* ... */ };

—end example]

[temp.names] 14.2 Names of template specializations

1 A template specialization (14.7) can be referred to by a template-id:

template-id:
template-name < template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument
template-argument-list , template-argument

242

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.2 Names of template specializations

template-argument:
assignment-expression
type-id
id-expression

[Note: the name lookup rules (3.4) are used to associate the use of a name with a template declaration; that
is, to identify a name as a template-name.]

2 For a template-name to be explicitly qualified by the template arguments, the name must be known to refer
to a template.

3 After name lookup (3.4) finds that a name is a template-name, if this name is followed by a <, the < is
always taken as the beginning of a template-argument-list and never as a name followed by the less-than
operator. When parsing a template-id, the first non-nested >127) is taken as the end of the template-
argument-list rather than a greater-than operator. [Example:

template<int i> class X { /* ... */ };

X< 1>2 > x1; // syntax error
X<(1>2)> x2; // OK

template<class T> class Y { /* ... */ };
Y< X<1> > x3; // OK
Y<X<6>> 1> > x4; // OK: Y< X< (6>>1) > >

—end example]

4 When the name of a member template specialization appears after . or -> in a postfix-expression, or after
nested-name-specifier in a qualified-id, and the postfix-expression or qualified-id explicitly depends on a
template-parameter (14.6.2), the member template name must be prefixed by the keyword template.
Otherwise the name is assumed to name a non-template. [Example:

class X {
public:

template<size_t> X* alloc();
template<size_t> static X* adjust();

};
template<class T> void f(T* p)
{

T* p1 = p->alloc<200>();
// ill-formed: < means less than

T* p2 = p->template alloc<200>();
// OK: < starts template argument list

T::adjust<100>();
// ill-formed: < means less than

T::template adjust<100>();
// OK: < starts template argument list

}

—end example]

5 If a name prefixed by the keyword template is not the name of a member template, the program is ill-
formed. [Note: the keyword template may not be applied to non-template members of class templates.
] Furthermore, names of member templates shall not be prefixed by the keyword template if the postfix-
expression or qualified-id does not appear in the scope of a template. [Note: just as is the case with the
typename prefix, the template prefix is allowed in cases where it is not strictly necessary; i.e., when

127) A > that encloses the type-id of a dynamic_cast, static_cast, reinterpret_cast or const_cast, or which
encloses the template-arguments of a subsequent template-id, is considered nested for the purpose of this description.

243

ISO/IEC 14882:2003(E)  ISO/IEC

14.2 Names of template specializations 14 Templates

the expression on the left of the -> or ., or the nested-name-specifier is not dependent on a template-
parameter.]

6 A template-id that names a class template specialization is a class-name (clause 9).

[temp.arg] 14.3 Template arguments

1 There are three forms of template-argument, corresponding to the three forms of template-parameter: type,
non-type and template. The type and form of each template-argument specified in a template-id shall
match the type and form specified for the corresponding parameter declared by the template in its
template-parameter-list. [Example:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

Array<int> v1(20);
typedef complex<double> dcomplex; // complex is a standard

// library template
Array<dcomplex> v2(30);
Array<dcomplex> v3(40);

void bar() {
v1[3] = 7;
v2[3] = v3.elem(4) = dcomplex(7,8);

}

—end example]

2 In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id, regard-
less of the form of the corresponding template-parameter.128) [Example:

template<class T> void f();
template<int I> void f();

void g()
{

f<int()>(); // int() is a type-id: call the first f()
}

—end example]

3 The name of a template-argument shall be accessible at the point where it is used as a template-argument.
[Note: if the name of the template-argument is accessible at the point where it is used as a template-
argument, there is no further access restriction in the resulting instantiation where the corresponding
template-parameter name is used.] [Example:

128) There is no such ambiguity in a default template-argument because the form of the template-parameter determines the allowable
forms of the template-argument.

244

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.3 Template arguments

template<class T> class X {
static T t;

};

class Y {
private:

struct S { /* ... */ };
X<S> x; // OK: S is accessible

// X<Y::S> has a static member of type Y::S
// OK: even though Y::S is private

};

X<Y::S> y; // error: S not accessible

—end example] For a template-argument of class type, the template definition has no special access rights
to the inaccessible members of the template argument type.

4 When default template-arguments are used, a template-argument list can be empty. In that case the empty
<> brackets shall still be used as the template-argument-list. [Example:

template<class T = char> class String;
String<>* p; // OK: String<char>
String* q; // syntax error

—end example]

5 An explicit destructor call (12.4) for an object that has a type that is a class template specialization may
explicitly specify the template-arguments. [Example:

template<class T> struct A {
˜A();

};
void f(A<int>* p, A<int>* q) {

p->A<int>::˜A(); // OK: destructor call
q->A<int>::˜A<int>(); // OK: destructor call

}

—end example]

6 If the use of a template-argument gives rise to an ill-formed construct in the instantiation of a template spe-
cialization, the program is ill-formed.

7 When the template in a template-id is an overloaded function template, both non-template functions in the
overload set and function templates in the overload set for which the template-arguments do not match the
template-parameters are ignored. If none of the function templates have matching template-parameters,
the program is ill-formed.

[temp.arg.type] 14.3.1 Template type arguments

1 A template-argument for a template-parameter which is a type shall be a type-id.

2 A local type, a type with no linkage, an unnamed type or a type compounded from any of these types shall
not be used as a template-argument for a template type-parameter. [Example:

template <class T> class X { /* ... */ };
void f()
{

struct S { /* ... */ };

X<S> x3; // error: local type used as template-argument
X<S*> x4; // error: pointer to local type used as template-argument

}

—end example] [Note: a template type argument may be an incomplete type (3.9).]

245

ISO/IEC 14882:2003(E)  ISO/IEC

14.3.1 Template type arguments 14 Templates

3 If a declaration acquires a function type through a type dependent on a template-parameter and this causes
a declaration that does not use the syntactic form of a function declarator to have function type, the program
is ill-formed. [Example:

template<class T> struct A {
static T t;

};
typedef int function();
A<function> a; // ill-formed: would declare A<function>::t

// as a static member function

—end example]

[temp.arg.nontype] 14.3.2 Template non-type arguments

1 A template-argument for a non-type, non-template template-parameter shall be one of:

— an integral constant-expression of integral or enumeration type; or

— the name of a non-type template-parameter; or

— the address of an object or function with external linkage, including function templates and function
template-ids but excluding non-static class members, expressed as & id-expression where the & is
optional if the name refers to a function or array, or if the corresponding template-parameter is a refer-
ence; or

— a pointer to member expressed as described in 5.3.1 .

2 [Note: A string literal (2.13.4) does not satisfy the requirements of any of these categories and thus is not an
acceptable template-argument. [Example:

template<class T, char* p> class X {
// ...
X();
X(const char* q) { /* ... */ }

};

X<int,"Studebaker"> x1; // error: string literal as template-argument

char p[] = "Vivisectionist";
X<int,p> x2; // OK

—end example] —end note]

3 [Note: Addresses of array elements and names or addresses of non-static class members are not acceptable
template-arguments. [Example:

template<int* p> class X { };

int a[10];
struct S { int m; static int s; } s;

X<&a[2]> x3; // error: address of array element
X<&s.m> x4; // error: address of non-static member
X<&s.s> x5; // error: &S::s must be used
X<&S::s> x6; // OK: address of static member

—end example] —end note]

4 [Note: Temporaries, unnamed lvalues, and named lvalues that do not have external linkage are not accept-
able template-arguments when the corresponding template-parameter has reference type. [Example:

246

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.3.2 Template non-type arguments

template<const int& CRI> struct B { /* ... */ };

B<1> b2; // error: temporary would be required for template argument

int c = 1;
B<c> b1; // OK

—end example] —end note]

5 The following conversions are performed on each expression used as a non-type template-argument. If a
non-type template-argument cannot be converted to the type of the corresponding template-parameter then
the program is ill-formed.

— for a non-type template-parameter of integral or enumeration type, integral promotions (4.5) and inte-
gral conversions (4.7) are applied.

— for a non-type template-parameter of type pointer to object, qualification conversions (4.4) and the
array-to-pointer conversion (4.2) are applied. [Note: In particular, neither the null pointer conversion
(4.10) nor the derived-to-base conversion (4.10) are applied. Although 0 is a valid template-argument
for a non-type template-parameter of integral type, it is not a valid template-argument for a non-type
template-parameter of pointer type.]

— For a non-type template-parameter of type reference to object, no conversions apply. The type referred
to by the reference may be more cv-qualified than the (otherwise identical) type of the template-
argument. The template-parameter is bound directly to the template-argument, which must be an
lvalue.

— For a non-type template-parameter of type pointer to function, only the function-to-pointer conversion
(4.3) is applied. If the template-argument represents a set of overloaded functions (or a pointer to such),
the matching function is selected from the set (13.4).

— For a non-type template-parameter of type reference to function, no conversions apply. If the
template-argument represents a set of overloaded functions, the matching function is selected from the
set (13.4).

— For a non-type template-parameter of type pointer to member function, no conversions apply. If the
template-argument represents a set of overloaded member functions, the matching member function is
selected from the set (13.4).

— For a non-type template-parameter of type pointer to data member, qualification conversions (4.4) are
applied.

[Example:

template<const int* pci> struct X { /* ... */ };
int ai[10];
X<ai> xi; // array to pointer and qualification conversions

struct Y { /* ... */ };
template<const Y& b> struct Z { /* ... */ };
Y y;
Z<y> z; // no conversion, but note extra cv-qualification

template<int (&pa)[5]> struct W { /* ... */ };
int b[5];
W w; // no conversion

247

ISO/IEC 14882:2003(E)  ISO/IEC

14.3.2 Template non-type arguments 14 Templates

void f(char);
void f(int);

template<void (*pf)(int)> struct A { /* ... */ };

A<&f> a; // selects f(int)

—end example]

[temp.arg.template] 14.3.3 Template template arguments

1 A template-argument for a template template-parameter shall be the name of a class template, expressed as
id-expression. Only primary class templates are considered when matching the template template argument
with the corresponding parameter; partial specializations are not considered even if their parameter lists
match that of the template template parameter.

2 Any partial specializations (14.5.4) associated with the primary class template are considered when a spe-
cialization based on the template template-parameter is instantiated. If a specialization is not visible at the
point of instantiation, and it would have been selected had it been visible, the program is ill-formed; no
diagnostic is required. [Example:

template<class T> class A { // primary template
int x;

};
template<class T> class A<T*> { // partial specialization

long x;
};
template<template<class U> class V> class C {

V<int> y;
V<int*> z;

};
C<A> c; // V<int> within C<A> uses the primary template,

// so c.y.x has type int
// V<int*> within C<A> uses the partial specialization,
// so c.z.x has type long

—end example]

[temp.type] 14.4 Type equivalence

1 Two template-ids refer to the same class or function if their template names are identical, they refer to the
same template, their type template-arguments are the same type, their non-type template-arguments of inte-
gral or enumeration type have identical values, their non-type template-arguments of pointer or reference
type refer to the same external object or function, and their template template-arguments refer to the same
template. [Example:

template<class E, int size> class buffer { /* ... */ };
buffer<char,2*512> x;
buffer<char,1024> y;

declares x and y to be of the same type, and

template<class T, void(*err_fct)()> class list { /* ... */ };
list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;

declares x2 and x3 to be of the same type. Their type differs from the types of x1 and x4.]

248

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.5 Template declarations

[temp.decls] 14.5 Template declarations

1 A template-id, that is, the template-name followed by a template-argument-list shall not be specified in the
declaration of a primary template declaration. [Example:

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error
template<class T1, int I> void sort<T1, I>(T1 data[I]); // error

—end example] [Note: however, this syntax is allowed in class template partial specializations (14.5.4).]

2 For purposes of name lookup and instantiation, default arguments of function templates and default argu-
ments of member functions of class templates are considered definitions; each default argument is a sepa-
rate definition which is unrelated to the function template definition or to any other default arguments.

[temp.class] 14.5.1 Class templates

1 A class template defines the layout and operations for an unbounded set of related types. [Example: a sin-
gle class template List might provide a common definition for list of int, list of float, and list of
pointers to Shapes.]

2 [Example: An array class template might be declared like this:

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

The prefix template <class T> specifies that a template is being declared and that a type-name T will
be used in the declaration. In other words, Array is a parameterized type with T as its parameter.]

3 When a member function, a member class, a static data member or a member template of a class template is
defined outside of the class template definition, the member definition is defined as a template definition in
which the template-parameters are those of the class template. The names of the template parameters used
in the definition of the member may be different from the template parameter names used in the class tem-
plate definition. The template argument list following the class template name in the member definition
shall name the parameters in the same order as the one used in the template parameter list of the member.
[Example:

template<class T1, class T2> struct A {
void f1();
void f2();

};

template<class T2, class T1> void A<T2,T1>::f1() { } // OK
template<class T2, class T1> void A<T1,T2>::f2() { } // error

—end example]

4 In a redeclaration, partial specialization, explicit specialization or explicit instantiation of a class template,
the class-key shall agree in kind with the original class template declaration (7.1.5.3).

[temp.mem.func] 14.5.1.1 Member functions of class templates

1 A member function of a class template may be defined outside of the class template definition in which it is
declared. [Example:

249

ISO/IEC 14882:2003(E)  ISO/IEC

14.5.1.1 Member functions of class templates 14 Templates

template<class T> class Array {
T* v;
int sz;

public:
explicit Array(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// ...

};

declares three function templates. The subscript function might be defined like this:

template<class T> T& Array<T>::operator[](int i)
{

if (i<0 || sz<=i) error("Array: range error");
return v[i];

}

—end example]

2 The template-arguments for a member function of a class template are determined by the template-
arguments of the type of the object for which the member function is called. [Example: the template-
argument for Array<T>::operator[]() will be determined by the Array to which the subscripting
operation is applied.

Array<int> v1(20);
Array<dcomplex> v2(30);

v1[3] = 7; // Array<int>::operator[]()
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[]()

—end example]

[temp.mem.class] 14.5.1.2 Member classes of class templates

1 A class member of a class template may be defined outside the class template definition in which it is
declared. [Note: the class member must be defined before its first use that requires an instantiation (14.7.1).
For example,

template<class T> struct A {
class B;

};
A<int>::B* b1; // OK: requires A to be defined but not A::B
template<class T> class A<T>::B { };
A<int>::B b2; // OK: requires A::B to be defined

—end note]

[temp.static] 14.5.1.3 Static data members of class templates

1 A definition for a static data member may be provided in a namespace scope enclosing the definition of the
static member’s class template. [Example:

template<class T> class X {
static T s;

};
template<class T> T X<T>::s = 0;

—end example]

250

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.5.2 Member templates

[temp.mem] 14.5.2 Member templates

1 A template can be declared within a class or class template; such a template is called a member template. A
member template can be defined within or outside its class definition or class template definition. A mem-
ber template of a class template that is defined outside of its class template definition shall be specified with
the template-parameters of the class template followed by the template-parameters of the member tem-
plate. [Example:

template<class T> class string {
public:

template<class T2> int compare(const T2&);
template<class T2> string(const string<T2>& s) { /* ... */ }
// ...

};

template<class T> template<class T2> int string<T>::compare(const T2& s)
{

// ...
}

—end example]

2 A local class shall not have member templates. Access control rules (clause 11) apply to member template
names. A destructor shall not be a member template. A normal (non-template) member function with a
given name and type and a member function template of the same name, which could be used to generate a
specialization of the same type, can both be declared in a class. When both exist, a use of that name and
type refers to the non-template member unless an explicit template argument list is supplied. [Example:

template <class T> struct A {
void f(int);
template <class T2> void f(T2);

};

template <> void A<int>::f(int) { } // non-template member
template <> template <> void A<int>::f<>(int) { } // template member

int main()
{

A<char> ac;
ac.f(1); // non-template
ac.f(’c’); // template
ac.f<>(1); // template

}

—end example]

3 A member function template shall not be virtual. [Example:

template <class T> struct AA {
template <class C> virtual void g(C); // error
virtual void f(); // OK

};

—end example]

4 A specialization of a member function template does not override a virtual function from a base class.
[Example:

class B {
virtual void f(int);

};

251

ISO/IEC 14882:2003(E)  ISO/IEC

14.5.2 Member templates 14 Templates

class D : public B {
template <class T> void f(T); // does not override B::f(int)
void f(int i) { f<>(i); } // overriding function that calls

// the template instantiation
};

—end example]

5 A specialization of a template conversion function is referenced in the same way as a non-template conver-
sion function that converts to the same type. [Example:

struct A {
template <class T> operator T*();

};
template <class T> A::operator T*(){ return 0; }
template <> A::operator char*(){ return 0; } // specialization
template A::operator void*(); // explicit instantiation

int main()
{

A a;
int* ip;

ip = a.operator int*(); // explicit call to template operator
// A::operator int*()

}

—end example] [Note: because the explicit template argument list follows the function template name, and
because conversion member function templates and constructor member function templates are called with-
out using a function name, there is no way to provide an explicit template argument list for these function
templates.]

6 A specialization of a template conversion function is not found by name lookup. Instead, any template con-
version functions visible in the context of the use are considered. For each such operator, if argument
deduction succeeds (14.8.2.3), the resulting specialization is used as if found by name lookup.

7 A using-declaration in a derived class cannot refer to a specialization of a template conversion function in a
base class.

8 Overload resolution (13.3.3.2) and partial ordering (14.5.5.2) are used to select the best conversion function
among multiple template conversion functions and/or non-template conversion functions.

[temp.friend] 14.5.3 Friends

1 A friend of a class or class template can be a function template or class template, a specialization of a func-
tion template or class template, or an ordinary (nontemplate) function or class. For a friend function decla-
ration that is not a template declaration:

— if the name of the friend is a qualified or unqualified template-id, the friend declaration refers to a spe-
cialization of a function template, otherwise

— if the name of the friend is a qualified-id and a matching nontemplate function is found in the specified
class or namespace, the friend declaration refers to that function, otherwise,

— if the name of the friend is a qualified-id and a matching specialization of a function template is found
in the specified class or namespace, the friend declaration refers to that function template specialization,
otherwise,

— the name shall be an unqualified-id that declares (or redeclares) an ordinary (nontemplate) function.

[Example:

252

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.5.3 Friends

template<class T> class task;
template<class T> task<T>* preempt(task<T>*);

template<class T> class task {
// ...
friend void next_time();
friend void process(task<T>*);
friend task<T>* preempt<T>(task<T>*);
template<class C> friend int func(C);

friend class task<int>;
template<class P> friend class frd;
// ...

};

Here, each specialization of the task class template has the function next_time as a friend; because
process does not have explicit template-arguments, each specialization of the task class template has
an appropriately typed function process as a friend, and this friend is not a function template specializa-
tion; because the friend preempt has an explicit template-argument <T>, each specialization of the task
class template has the appropriate specialization of the function template preempt as a friend; and each
specialization of the task class template has all specializations of the function template func as friends.
Similarly, each specialization of the task class template has the class template specialization task<int>
as a friend, and has all specializations of the class template frd as friends. —end example]

2 A friend function declaration that is not a template declaration and in which the name of the friend is an
unqualified template-id shall refer to a specialization of a function template declared in the nearest enclos-
ing namespace scope. [Example:

namespace N {
template <class T> void f(T);
void g(int);
namespace M {

template <class T> void h(T);
template <class T> void i(T);
struct A {

friend void f<>(int); // ill-formed – N::f
friend void h<>(int); // OK – M::h
friend void g(int); // OK – new decl of M::g
template <class T> void i(T);
friend void i<>(int); // ill-formed – A::i

};
}

}

—end example]

3 A friend template may be declared within a class or class template. A friend function template may be
defined within a class or class template, but a friend class template may not be defined in a class or class
template. In these cases, all specializations of the friend class or friend function template are friends of the
class or class template granting friendship. [Example:

class A {
template<class T> friend class B; // OK
template<class T> friend void f(T){ /* ... */ } // OK

};

—end example]

4 A template friend declaration specifies that all specializations of that template, whether they are implicitly
instantiated (14.7.1), partially specialized (14.5.4) or explicitly specialized (14.7.3), are friends of the class
containing the template friend declaration. [Example:

253

ISO/IEC 14882:2003(E)  ISO/IEC

14.5.3 Friends 14 Templates

class X {
template<class T> friend struct A;
class Y { };

};

template<class T> struct A { X::Y ab; }; // OK
template<class T> struct A<T*> { X::Y ab; }; // OK

—end example]

5 When a function is defined in a friend function declaration in a class template, the function is defined at
each instantiation of the class template. The function is defined even if it is never used. The same restric-
tions on multiple declarations and definitions which apply to non-template function declarations and defini-
tions also apply to these implicit definitions. [Note: if the function definition is ill-formed for a given spe-
cialization of the enclosing class template, the program is ill-formed even if the function is never used.]

6 A member of a class template may be declared to be a friend of a non-template class. In this case, the cor-
responding member of every specialization of the class template is a friend of the class granting friendship.
[Example:

template<class T> struct A {
struct B { };
void f();

};

class C {
template<class T> friend struct A<T>::B;
template<class T> friend void A<T>::f();

};

—end example]

7 [Note: a friend declaration may first declare a member of an enclosing namespace scope (14.6.5).]

8 A friend template shall not be declared in a local class.

9 Friend declarations shall not declare partial specializations. [Example:

template<class T> class A { };
class X {

template<class T> friend class A<T*>; // error
};

—end example]

10 When a friend declaration refers to a specialization of a function template, the function parameter declara-
tions shall not include default arguments, nor shall the inline specifier be used in such a declaration.

[temp.class.spec] 14.5.4 Class template partial specializations

1 A primary class template declaration is one in which the class template name is an identifier. A template
declaration in which the class template name is a template-id, is a partial specialization of the class tem-
plate named in the template-id. A partial specialization of a class template provides an alternative defini-
tion of the template that is used instead of the primary definition when the arguments in a specialization
match those given in the partial specialization (14.5.4.1). The primary template shall be declared before
any specializations of that template. If a template is partially specialized then that partial specialization
shall be declared before the first use of that partial specialization that would cause an implicit instantiation
to take place, in every translation unit in which such a use occurs; no diagnostic is required.

2 When a partial specialization is used within the instantiation of an exported template, and the unspecialized
template name is non-dependent in the exported template, a declaration of the partial specialization must be
declared before the definition of the exported template, in the translation unit containing that definition. A
similar restriction applies to explicit specialization; see 14.7.

254

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.5.4 Class template partial specializations

3 Each class template partial specialization is a distinct template and definitions shall be provided for the
members of a template partial specialization (14.5.4.3).

4 [Example:

template<class T1, class T2, int I> class A { }; // #1
template<class T, int I> class A<T, T*, I> { }; // #2
template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
template<class T> class A<int, T*, 5> { }; // #4
template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5

The first declaration declares the primary (unspecialized) class template. The second and subsequent decla-
rations declare partial specializations of the primary template.]

5 The template parameters are specified in the angle bracket enclosed list that immediately follows the key-
word template. For partial specializations, the template argument list is explicitly written immediately
following the class template name. For primary templates, this list is implicitly described by the template
parameter list. Specifically, the order of the template arguments is the sequence in which they appear in the
template parameter list. [Example: the template argument list for the primary template in the example
above is <T1, T2, I>.] [Note: the template argument list shall not be specified in the primary template
declaration. For example,

template<class T1, class T2, int I> class A<T1, T2, I> { }; // error

—end note]

6 A class template partial specialization may be declared or redeclared in any namespace scope in which its
definition may be defined (14.5.1 and 14.5.2). [Example:

template<class T> struct A {
class C {

template<class T2> struct B { };
};

};

// partial specialization of A<T>::C::B<T2>
template<class T> template<class T2>

struct A<T>::C::B<T2*> { };

A<short>::C::B<int*> absip; // uses partial specialization

—end example]

7 Partial specialization declarations themselves are not found by name lookup. Rather, when the primary
template name is used, any previously declared partial specializations of the primary template are also con-
sidered. One consequence is that a using-declaration which refers to a class template does not restrict the
set of partial specializations which may be found through the using-declaration. [Example:

namespace N {
template<class T1, class T2> class A { }; // primary template

}

using N::A; // refers to the primary template

namespace N {
template<class T> class A<T, T*> { }; // partial specialization

}

A<int,int*> a; // uses the partial specialization, which is found through
// the using declaration which refers to the primary template

—end example]

255

ISO/IEC 14882:2003(E)  ISO/IEC

14.5.4 Class template partial specializations 14 Templates

8 A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type argu-
ments are specialized.

9 Within the argument list of a class template partial specialization, the following restrictions apply:

— A partially specialized non-type argument expression shall not involve a template parameter of the par-
tial specialization except when the argument expression is a simple identifier. [Example:

template <int I, int J> struct A {};
template <int I> struct A<I+5, I*2> {}; // error

template <int I, int J> struct B {};
template <int I> struct B<I, I> {}; // OK

—end example]

— The type of a template parameter corresponding to a specialized non-type argument shall not be depen-
dent on a parameter of the specialization. [Example:

template <class T, T t> struct C {};
template <class T> struct C<T, 1>; // error

template< int X, int (*array_ptr)[X] > class A {};
int array[5];
template< int X > class A<X,&array> { }; // error

—end example]

— The argument list of the specialization shall not be identical to the implicit argument list of the primary
template.

10 The template parameter list of a specialization shall not contain default template argument values.129)

[temp.class.spec.match] 14.5.4.1 Matching of class template partial specializations

1 When a class template is used in a context that requires an instantiation of the class, it is necessary to deter-
mine whether the instantiation is to be generated using the primary template or one of the partial specializa-
tions. This is done by matching the template arguments of the class template specialization with the tem-
plate argument lists of the partial specializations.

— If exactly one matching specialization is found, the instantiation is generated from that specialization.

— If more than one matching specialization is found, the partial order rules (14.5.4.2) are used to deter-
mine whether one of the specializations is more specialized than the others. If none of the specializa-
tions is more specialized than all of the other matching specializations, then the use of the class template
is ambiguous and the program is ill-formed.

— If no matches are found, the instantiation is generated from the primary template.

2 A partial specialization matches a given actual template argument list if the template arguments of the par-
tial specialization can be deduced from the actual template argument list (14.8.2). [Example:

A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is char
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5

—end example]

3 A non-type template argument can also be deduced from the value of an actual template argument of a
non-type parameter of the primary template. [Example: the declaration of a2 above.]

129) There is no way in which they could be used.

256

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.5.4.1 Matching of class template partial specializations

4 In a type name that refers to a class template specialization, (e.g., A<int, int, 1>) the argument list
must match the template parameter list of the primary template. The template arguments of a specialization
are deduced from the arguments of the primary template.

[temp.class.order] 14.5.4.2 Partial ordering of class template specializations

1 For two class template partial specializations, the first is at least as specialized as the second if, given the
following rewrite to two function templates, the first function template is at least as specialized as the sec-
ond according to the ordering rules for function templates (14.5.5.2):

— the first function template has the same template parameters as the first partial specialization and has a
single function parameter whose type is a class template specialization with the template arguments of
the first partial specialization, and

— the second function template has the same template parameters as the second partial specialization and
has a single function parameter whose type is a class template specialization with the template argu-
ments of the second partial specialization.

2 [Example:

template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2

template<int I, int J> void f(X<I, J, int>); // #A
template<int I> void f(X<I, I, int>); // #B

The partial specialization #2 is more specialized than the partial specialization #1 because the function
template #B is more specialized than the function template #A according to the ordering rules for function
templates.]

[temp.class.spec.mfunc] 14.5.4.3 Members of class template specializations

1 The template parameter list of a member of a class template partial specialization shall match the template
parameter list of the class template partial specialization. The template argument list of a member of a class
template partial specialization shall match the template argument list of the class template partial special-
ization. A class template specialization is a distinct template. The members of the class template partial
specialization are unrelated to the members of the primary template. Class template partial specialization
members that are used in a way that requires a definition shall be defined; the definitions of members of the
primary template are never used as definitions for members of a class template partial specialization. An
explicit specialization of a member of a class template partial specialization is declared in the same way as
an explicit specialization of the primary template. [Example:

// primary template
template<class T, int I> struct A {

void f();
};

template<class T, int I> void A<T,I>::f() { }

// class template partial specialization
template<class T> struct A<T,2> {

void f();
void g();
void h();

};

// member of class template partial specialization
template<class T> void A<T,2>::g() { }

257

ISO/IEC 14882:2003(E)  ISO/IEC

14.5.4.3 Members of class template specializations 14 Templates

// explicit specialization
template<> void A<char,2>::h() { }

int main()
{

A<char,0> a0;
A<char,2> a2;
a0.f(); // OK, uses definition of primary template’s member
a2.g(); // OK, uses definition of

// partial specialization’s member
a2.h(); // OK, uses definition of

// explicit specialization’s member
a2.f(); // ill-formed, no definition of f for A<T,2>

// the primary template is not used here
}

—end example]

2 If a member template of a class template is partially specialized, the member template partial specializa-
tions are member templates of the enclosing class template; if the enclosing class template is instantiated
(14.7.1, 14.7.2), a declaration for every member template partial specialization is also instantiated as part of
creating the members of the class template specialization. If the primary member template is explicitly spe-
cialized for a given (implicit) specialization of the enclosing class template, the partial specializations of the
member template are ignored for this specialization of the enclosing class template. If a partial specializa-
tion of the member template is explicitly specialized for a given (implicit) specialization of the enclosing
class template, the primary member template and its other partial specializations are still considered for this
specialization of the enclosing class template. [Example:

template<class T> struct A {
template<class T2> struct B {}; // #1
template<class T2> struct B<T2*> {}; // #2

};

template<> template<class T2> struct A<short>::B {}; // #3

A<char>::B<int*> abcip; // uses #2
A<short>::B<int*> absip; // uses #3
A<char>::B<int> abci; // uses #1

—end example]

[temp.fct] 14.5.5 Function templates

1 A function template defines an unbounded set of related functions. [Example: a family of sort functions
might be declared like this:

template<class T> class Array { };
template<class T> void sort(Array<T>&);

—end example]

2 A function template can be overloaded with other function templates and with normal (non-template) func-
tions. A normal function is not related to a function template (i.e., it is never considered to be a specializa-
tion), even if it has the same name and type as a potentially generated function template specialization.130)

130) That is, declarations of non-template functions do not merely guide overload resolution of function template specializations with
the same name. If such a non-template function is used in a program, it must be defined; it will not be implicitly instantiated using the
function template definition.

258

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.5.5.1 Function template overloading

[temp.over.link] 14.5.5.1 Function template overloading

1 It is possible to overload function templates so that two different function template specializations have the
same type. [Example:

// file1.c // file2.c
template<class T> template<class T>

void f(T*); void f(T);
void g(int* p) { void h(int* p) {

f(p); // call f(p); // call
// f<int>(int*) // f<int*>(int*)

} }

—end example]

2 Such specializations are distinct functions and do not violate the one definition rule (3.2).

3 The signature of a function template specialization consists of the signature of the function template and of
the actual template arguments (whether explicitly specified or deduced).

4 The signature of a function template consists of its function signature, its return type and its template
parameter list. The names of the template parameters are significant only for establishing the relationship
between the template parameters and the rest of the signature. [Note: two distinct function templates may
have identical function return types and function parameter lists, even if overload resolution alone cannot
distinguish them.

template<class T> void f();
template<int I> void f(); // OK: overloads the first template

// distinguishable with an explicit template argument list

—end note]

5 When an expression that references a template parameter is used in the function parameter list or the return
type in the declaration of a function template, the expression that references the template parameter is part
of the signature of the function template. This is necessary to permit a declaration of a function template in
one translation unit to be linked with another declaration of the function template in another translation unit
and, conversely, to ensure that function templates that are intended to be distinct are not linked with one
another. [Example:

template <int I, int J> A<I+J> f(A<I>, A<J>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f(A<I>, A<J>); // different from #1

—end example] [Note: Most expressions that use template parameters use non-type template parameters,
but it is possible for an expression to reference a type parameter. For example, a template type parameter
can be used in the sizeof operator.]

6 Two expressions involving template parameters are considered equivalent if two function definitions con-
taining the expressions would satisfy the one definition rule (3.2), except that the tokens used to name the
template parameters may differ as long as a token used to name a template parameter in one expression is
replaced by another token that names the same template parameter in the other expression. [Example:

template <int I, int J> void f(A<I+J>); // #1
template <int K, int L> void f(A<K+L>); // same as #1

—end example] Two expressions involving template parameters that are not equivalent are functionally
equivalent if, for any given set of template arguments, the evaluation of the expression results in the same
value.

7 Two function templates are equivalent if they are declared in the same scope, have the same name, have
identical template parameter lists, and have return types and parameter lists that are equivalent using the
rules described above to compare expressions involving template parameters. Two function templates are
functionally equivalent if they are equivalent except that one or more expressions that involve template
parameters in the return types and parameter lists are functionally equivalent using the rules described

259

ISO/IEC 14882:2003(E)  ISO/IEC

14.5.5.1 Function template overloading 14 Templates

above to compare expressions involving template parameters. If a program contains declarations of func-
tion templates that are functionally equivalent but not equivalent, the program is ill-formed; no diagnostic is
required.

8 [Note: This rule guarantees that equivalent declarations will be linked with one another, while not requiring
implementations to use heroic efforts to guarantee that functionally equivalent declarations will be treated
as distinct. For example, the last two declarations are functionally equivalent and would cause a program to
be ill-formed:

// Guaranteed to be the same
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+10>);

// Guaranteed to be different
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+11>);

// Ill-formed, no diagnostic required
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+1+2+3+4>);

—end note]

[temp.func.order] 14.5.5.2 Partial ordering of function templates

1 If a function template is overloaded, the use of a function template specialization might be ambiguous
because template argument deduction (14.8.2) may associate the function template specialization with more
than one function template declaration. Partial ordering of overloaded function template declarations is
used in the following contexts to select the function template to which a function template specialization
refers:

— during overload resolution for a call to a function template specialization (13.3.3);

— when the address of a function template specialization is taken;

— when a placement operator delete that is a function template specialization is selected to match a place-
ment operator new (3.7.3.2, 5.3.4);

— when a friend function declaration (14.5.3), an explicit instantiation (14.7.2) or an explicit specialization
(14.7.3) refers to a function template specialization.

2 Given two overloaded function templates, whether one is more specialized than another can be determined
by transforming each template in turn and using argument deduction (14.8.2) to compare it to the other.

3 The transformation used is:

— For each type template parameter, synthesize a unique type and substitute that for each occurrence of
that parameter in the function parameter list, or for a template conversion function, in the return type.

— For each non-type template parameter, synthesize a unique value of the appropriate type and substitute
that for each occurrence of that parameter in the function parameter list, or for a template conversion
function, in the return type.

— For each template template parameter, synthesize a unique class template and substitute that for each
occurrence of that parameter in the function parameter list, or for a template conversion function, in the
return type.

4 Using the transformed function parameter list, perform argument deduction against the other function tem-
plate. The transformed template is at least as specialized as the other if, and only if, the deduction succeeds
and the deduced parameter types are an exact match (so the deduction does not rely on implicit conver-
sions).

260

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.5.5.2 Partial ordering of function templates

5 A template is more specialized than another if, and only if, it is at least as specialized as the other template
and that template is not at least as specialized as the first. [Example:

template<class T> struct A { A(); };

template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);

template<class T> void g(T);
template<class T> void g(T&);

template<class T> void h(const T&);
template<class T> void h(A<T>&);

void m() {
const int *p;
f(p); // f(const T*) is more specialized than f(T) or f(T*)
float x;
g(x); // Ambiguous: g(T) or g(T&)
A<int> z;
h(z); // overload resolution selects h(A<T>&)
const A<int> z2;
h(z2); // h(const T&) is called because h(A<T>&) is not callable

}

—end example]

6 The presence of unused ellipsis and default arguments has no effect on the partial ordering of function tem-
plates. [Example:

template<class T> void f(T); // #1
template<class T> void f(T*, int=1); // #2
template<class T> void g(T); // #3
template<class T> void g(T*, ...); // #4

int main() {
int* ip;
f(ip); // calls #2
g(ip); // calls #4

}

—end example]

[temp.res] 14.6 Name resolution

1 Three kinds of names can be used within a template definition:

— The name of the template itself, and names declared within the template itself.

— Names dependent on a template-parameter (14.6.2).

— Names from scopes which are visible within the template definition.

2 A name used in a template declaration or definition and that is dependent on a template-parameter is
assumed not to name a type unless the applicable name lookup finds a type name or the name is qualified
by the keyword typename. [Example:

261

ISO/IEC 14882:2003(E)  ISO/IEC

14.6 Name resolution 14 Templates

// no B declared here

class X;

template<class T> class Y {
class Z; // forward declaration of member class

void f() {
X* a1; // declare pointer to X
T* a2; // declare pointer to T
Y* a3; // declare pointer to Y<T>
Z* a4; // declare pointer to Z
typedef typename T::A TA;
TA* a5; // declare pointer to T’s A
typename T::A* a6; // declare pointer to T’s A
T::A* a7; // T::A is not a type name:

// multiply T::A by a7; ill-formed,
// no visible declaration of a7

B* a8; // B is not a type name:
// multiply B by a8; ill-formed,
// no visible declarations of B and a8

}
};

—end example]

3 A qualified-id that refers to a type and in which the nested-name-specifier depends on a template-parameter
(14.6.2) shall be prefixed by the keyword typename to indicate that the qualified-id denotes a type, form-
ing an elaborated-type-specifier (7.1.5.3).

elaborated-type-specifier:
. . .
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier templateopt template-id
. . .

4 If a specialization of a template is instantiated for a set of template-arguments such that the qualified-id pre-
fixed by typename does not denote a type, the specialization is ill-formed. The usual qualified name
lookup (3.4.3) is used to find the qualified-id even in the presence of typename. [Example:

struct A {
struct X { };
int X;

};
template<class T> void f(T t) {

typename T::X x; // ill-formed: finds the data member X
// not the member type X

}

—end example]

5 The keyword typename shall only be used in template declarations and definitions, including in the return
type of a function template or member function template, in the return type for the definition of a member
function of a class template or of a class nested within a class template, and in the type-specifier for the def-
inition of a static member of a class template or of a class nested within a class template. The keyword
typename shall be applied only to qualified names, but those names need not be dependent. The keyword
typename shall be used only in contexts in which dependent names can be used. This includes template
declarations and definitions but excludes explicit specialization declarations and explicit instantiation decla-
rations. The keyword typename is not permitted in a base-specifier or in a mem-initializer; in these con-
texts a qualified-id that depends on a template-parameter (14.6.2) is implicitly assumed to be a type name.

262

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.6 Name resolution

6 Within the definition of a class template or within the definition of a member of a class template, the key-
word typename is not required when referring to the unqualified name of a previously declared member
of the class template that declares a type. The keyword typename shall always be specified when the
member is referred to using a qualified name, even if the qualifier is simply the class template name.
[Example:

template<class T> struct A {
typedef int B;
A::B b; // ill-formed: typename required before A::B
void f(A<T>::B); // ill-formed: typename required before A<T>::B
typename A::B g(); // OK

};

The keyword typename is required whether the qualified name is A or A<T> because A or A<T> are syn-
onyms within a class template with the parameter list <T>.]

7 Knowing which names are type names allows the syntax of every template definition to be checked. No
diagnostic shall be issued for a template definition for which a valid specialization can be generated. If no
valid specialization can be generated for a template definition, and that template is not instantiated, the tem-
plate definition is ill-formed, no diagnostic required. If a type used in a non-dependent name is incomplete
at the point at which a template is defined but is complete at the point at which an instantiation is done, and
if the completeness of that type affects whether or not the program is well-formed or affects the semantics
of the program, the program is ill-formed; no diagnostic is required. [Note: if a template is instantiated,
errors will be diagnosed according to the other rules in this Standard. Exactly when these errors are diag-
nosed is a quality of implementation issue.] [Example:

int j;
template<class T> class X {

// ...
void f(T t, int i, char* p)
{

t = i; // diagnosed if X::f is instantiated
// and the assignment to t is an error

p = i; // may be diagnosed even if X::f is
// not instantiated

p = j; // may be diagnosed even if X::f is
// not instantiated

}
void g(T t) {

+; // may be diagnosed even if X::g is
// not instantiated

}
};

—end example]

8 When looking for the declaration of a name used in a template definition, the usual lookup rules (3.4.1,
3.4.2) are used for nondependent names. The lookup of names dependent on the template parameters is
postponed until the actual template argument is known (14.6.2). [Example:

263

ISO/IEC 14882:2003(E)  ISO/IEC

14.6 Name resolution 14 Templates

#include <iostream>
using namespace std;

template<class T> class Set {
T* p;
int cnt;

public:
Set();
Set<T>(const Set<T>&);
void printall()
{

for (int i = 0; i<cnt; i++)
cout << p[i] << ’\n’;

}
// ...

};

in the example, i is the local variable i declared in printall, cnt is the member cnt declared in Set,
and cout is the standard output stream declared in iostream. However, not every declaration can be
found this way; the resolution of some names must be postponed until the actual template-arguments are
known. For example, even though the name operator<< is known within the definition of
printall() and a declaration of it can be found in <iostream>, the actual declaration of
operator<< needed to print p[i] cannot be known until it is known what type T is (14.6.2).]

9 If a name does not depend on a template-parameter (as defined in 14.6.2), a declaration (or set of declara-
tions) for that name shall be in scope at the point where the name appears in the template definition; the
name is bound to the declaration (or declarations) found at that point and this binding is not affected by
declarations that are visible at the point of instantiation. [Example:

void f(char);

template<class T> void g(T t)
{

f(1); // f(char)
f(T(1)); // dependent
f(t); // dependent
dd++; // not dependent

// error: declaration for dd not found
}

void f(int);

double dd;
void h()
{

g(2); // will cause one call of f(char) followed
// by two calls of f(int)

g(’a’); // will cause three calls of f(char)
}

—end example]

10 [Note: for purposes of name lookup, default arguments of function templates and default arguments of
member functions of class templates are considered definitions (14.5). —end note]

[temp.local] 14.6.1 Locally declared names

1 Like normal (non-template) classes, class templates have an injected-class-name (clause 9). The injected-
class-name can be used with or without a template-argument-list. When it is used without a template-
argument-list, it is equivalent to the injected-class-name followed by the template-parameters of the class
template enclosed in <>. When it is used with a template-argument-list, it refers to the specified class

264

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.6.1 Locally declared names

template specialization, which could be the current specialization or another specialization.

2 Within the scope of a class template specialization or partial specialization, when the injected-class-name is
not followed by a <, it is equivalent to the injected-class-name followed by the template-arguments of the
class template specialization or partial specialization enclosed in <>. [Example:

template<class T> class Y;
template<> class Y<int> {

Y* p; // meaning Y<int>
Y<char>* q; // meaning Y<char>

};

—end example]

2a The injected-class-name of a class template or class template specialization can be used either with or with-
out a template-argument-list wherever it is in scope. [Example:

template <class T> struct Base {
Base* p;

};

template <class T> struct Derived: public Base<T> {
typename Derived::Base* p; // meaning Derived::Base<T>

};

—end example]

2b A lookup that finds an injected-class-name (10.2) can result in an ambiguity in certain cases (for example,
if it is found in more than one base class). If all of the injected-class-names that are found refer to special-
izations of the same class template, and if the name is followed by a template-argument-list, the reference
refers to the class template itself and not a specialization thereof, and is not ambiguous. [Example:

template <class T> struct Base { };
template <class T> struct Derived: Base<int>, Base<char> {

typename Derived::Base b; // error: ambiguous
typename Derived::Base<double> d; // OK

};

—end example]

2c When the normal name of the template (i.e., the name from the enclosing scope, not the injected-class-
name) is used without a template-argument-list, it refers to the class template itself and not a specialization
of the template. [Example:

template <class T> class X {
X* p; // meaning X<T>
X<T>* p2;
X<int>* p3;
::X* p4; // error: missing template argument list

// ::X does not refer to the injected-class-name
};

—end example]

2d Within the scope of a class template, when the unqualified name of a nested class of the class template is
referred to, it is equivalent to the name of the nested class qualified by the name of the enclosing class tem-
plate. [Example:

template <class T> struct A {
class B { }; // B is equivalent to A::B, which is equivalent to A<T>::B,

// which is dependent.
class C : B { };

};

—end example]

265

ISO/IEC 14882:2003(E)  ISO/IEC

14.6.1 Locally declared names 14 Templates

3 The scope of a template-parameter extends from its point of declaration until the end of its template. A
template-parameter hides any entity with the same name in the enclosing scope. [Note: this implies that a
template-parameter can be used in the declaration of subsequent template-parameters and their default
arguments but cannot be used in preceding template-parameters or their default arguments. For example,

template<class T, T* p, class U = T> class X { /* ... */ };
template<class T> void f(T* p = new T);

This also implies that a template-parameter can be used in the specification of base classes. For example,

template<class T> class X : public Array<T> { /* ... */ };
template<class T> class Y : public T { /* ... */ };

The use of a template-parameter as a base class implies that a class used as a template-argument must be
defined and not just declared when the class template is instantiated.]

4 A template-parameter shall not be redeclared within its scope (including nested scopes). A template-
parameter shall not have the same name as the template name. [Example:

template<class T, int i> class Y {
int T; // error: template-parameter redeclared
void f() {

char T; // error: template-parameter redeclared
}

};

template<class X> class X; // error: template-parameter redeclared

—end example]

5 In the definition of a member of a class template that appears outside of the class template definition, the
name of a member of this template hides the name of a template-parameter. [Example:

template<class T> struct A {
struct B { /* ... */ };
void f();

};

template<class B> void A::f() {
B b; // A’s B, not the template parameter

}

—end example]

6 In the definition of a member of a class template that appears outside of the namespace containing the class
template definition, the name of a template-parameter hides the name of a member of this namespace.
[Example:

namespace N {
class C { };
template<class T> class B {

void f(T);
};

}
template<class C> void N::B<C>::f(C) {

C b; // C is the template parameter, not N::C
}

—end example]

7 In the definition of a class template or in the definition of a member of such a template that appears outside
of the template definition, for each base class which does not depend on a template-parameter (14.6.2), if
the name of the base class or the name of a member of the base class is the same as the name of a template-
parameter, the base class name or member name hides the template-parameter name (3.3.7). [Example:

266

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.6.1 Locally declared names

struct A {
struct B { /* ... */ };
int a;
int Y;

};

template<class B, class a> struct X : A {
B b; // A’s B
a b; // error: A’s a isn’t a type name

};

—end example]

[temp.dep] 14.6.2 Dependent names

1 Inside a template, some constructs have semantics which may differ from one instantiation to another.
Such a construct depends on the template parameters. In particular, types and expressions may depend on
the type and/or value of template parameters (as determined by the template arguments) and this determines
the context for name lookup for certain names. Expressions may be type-dependent (on the type of a tem-
plate parameter) or value-dependent (on the value of a non-type template parameter). In an expression of
the form:

postfix-expression (expression-listopt)

where the postfix-expression is an identifier, the identifier denotes a dependent name if and only if any of
the expressions in the expression-list is a type-dependent expression (14.6.2.2). If an operand of an opera-
tor is a type-dependent expression, the operator also denotes a dependent name. Such names are unbound
and are looked up at the point of the template instantiation (14.6.4.1) in both the context of the template
definition and the context of the point of instantiation.

2 [Example:

template<class T> struct X : B<T> {
typename T::A* pa;
void f(B<T>* pb) {

static int i = B<T>::i;
pb->j++;

}
};

the base class name B<T>, the type name T::A, the names B<T>::i and pb->j explicitly depend on the
template-parameter. —end example]

3 In the definition of a class template or a member of a class template, if a base class of the class template
depends on a template-parameter, the base class scope is not examined during unqualified name lookup
either at the point of definition of the class template or member or during an instantiation of the class tem-
plate or member. [Example:

typedef double A;
template<class T> class B {

typedef int A;
};
template<class T> struct X : B<T> {

A a; // a has type double
};

The type name A in the definition of X<T> binds to the typedef name defined in the global namespace
scope, not to the typedef name defined in the base class B<T>.] [Example:

267

ISO/IEC 14882:2003(E)  ISO/IEC

14.6.2 Dependent names 14 Templates

struct A {
struct B { /* ... */ };
int a;
int Y;

};

int a;

template<class T> struct Y : T {
struct B { /* ... */ };
B b; // The B defined in Y
void f(int i) { a = i; } // ::a
Y* p; // Y<T>

};

Y<A> ya;

The members A::B, A::a, and A::Y of the template argument A do not affect the binding of names in
Y<A>.]

[temp.dep.type] 14.6.2.1 Dependent types

1 A type is dependent if it is

— a template parameter,

— a qualified-id with a nested-name-specifier which contains a class-name that names a dependent type or
whose unqualified-id names a dependent type,

— a cv-qualified type where the cv-unqualified type is dependent,

— a compound type constructed from any dependent type,

— an array type constructed from any dependent type or whose size is specified by a constant expression
that is value-dependent,

— a template-id in which either the template name is a template parameter or any of the template argu-
ments is a dependent type or an expression that is type-dependent or value-dependent.

[temp.dep.expr] 14.6.2.2 Type-dependent expressions

1 Except as described below, an expression is type-dependent if any subexpression is type-dependent.

2 this is type-dependent if the class type of the enclosing member function is dependent (14.6.2.1).

3 An id-expression is type-dependent if it contains:

— an identifier that was declared with a dependent type,

— a template-id that is dependent,

— a conversion-function-id that specifies a dependent type,

— a nested-name-specifier that contains a class-name that names a dependent type.

Expressions of the following forms are type-dependent only if the type specified by the type-id, simple-
type-specifier or new-type-id is dependent, even if any subexpression is type-dependent:

268

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.6.2.2 Type-dependent expressions

simple-type-specifier (expression-listopt)
::opt new new-placementopt new-type-id new-initializeropt
::opt new new-placementopt (type-id) new-initializeropt
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

4 Expressions of the following forms are never type-dependent (because the type of the expression cannot be
dependent):

literal
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
sizeof unary-expression
sizeof (type-id)
typeid (expression)
typeid (type-id)
::opt delete cast-expression
::opt delete [] cast-expression
throw assignment-expressionopt

[temp.dep.constexpr] 14.6.2.3 Value-dependent expressions

1 Except as described below, a constant expression is value-dependent if any subexpression is value-
dependent.

2 An identifier is value-dependent if it is:

— a name declared with a dependent type,

— the name of a non-type template parameter,

— a constant with integral or enumeration type and is initialized with an expression that is value-
dependent.

Expressions of the following form are value-dependent if the unary-expression is type-dependent or the
type-id is dependent (even if sizeof unary-expression and sizeof (type-id) are not type-dependent):

sizeof unary-expression
sizeof (type-id)

3 Expressions of the following form are value-dependent if either the type-id or simple-type-specifier is
dependent or the expression or cast-expression is value-dependent:

simple-type-specifier (expression-listopt)
static_cast < type-id > (expression)
const_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
(type-id) cast-expression

[temp.dep.temp] 14.6.2.4 Dependent template arguments

1 A type template-argument is dependent if the type it specifies is dependent.

2 An integral non-type template-argument is dependent if the constant expression it specifies is value-
dependent.

3 A non-integral non-type template-argument is dependent if its type is dependent or it has either of the fol-
lowing forms

269

ISO/IEC 14882:2003(E)  ISO/IEC

14.6.2.4 Dependent template arguments 14 Templates

qualified-id
& qualified-id

and contains a nested-name-specifier which specifies a class-name that names a dependent type.

4 A template template-argument is dependent if it names a template-parameter or is a qualified-id with a
nested-name-specifier which contains a class-name that names a dependent type.

[temp.nondep] 14.6.3 Non-dependent names

1 Non-dependent names used in a template definition are found using the usual name lookup and bound at the
point they are used. [Example:

void g(double);
void h();

template<class T> class Z {
public:

void f() {
g(1); // calls g(double)
h++; // ill-formed: cannot increment function;

// this could be diagnosed either here or
// at the point of instantiation

}
};

void g(int); // not in scope at the point of the template
// definition, not considered for the call g(1)

—end example]

[temp.dep.res] 14.6.4 Dependent name resolution

1 In resolving dependent names, names from the following sources are considered:

— Declarations that are visible at the point of definition of the template.

— Declarations from namespaces associated with the types of the function arguments both from the instan-
tiation context (14.6.4.1) and from the definition context.

[temp.point] 14.6.4.1 Point of instantiation

1 For a function template specialization, a member function template specialization, or a specialization for a
member function or static data member of a class template, if the specialization is implicitly instantiated
because it is referenced from within another template specialization and the context from which it is refer-
enced depends on a template parameter, the point of instantiation of the specialization is the point of instan-
tiation of the enclosing specialization. Otherwise, the point of instantiation for such a specialization imme-
diately follows the namespace scope declaration or definition that refers to the specialization.

2 If a function template or member function of a class template is called in a way which uses the definition of
a default argument of that function template or member function, the point of instantiation of the default
argument is the point of instantiation of the function template or member function specialization.

3 For a class template specialization, a class member template specialization, or a specialization for a class
member of a class template, if the specialization is implicitly instantiated because it is referenced from
within another template specialization, if the context from which the specialization is referenced depends
on a template parameter, and if the specialization is not instantiated previous to the instantiation of the
enclosing template, the point of instantiation is immediately before the point of instantiation of the enclos-
ing template. Otherwise, the point of instantiation for such a specialization immediately precedes the
namespace scope declaration or definition that refers to the specialization.

270

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.6.4.1 Point of instantiation

4 If a virtual function is implicitly instantiated, its point of instantiation is immediately following the point of
instantiation of its enclosing class template specialization.

5 An explicit instantiation directive is an instantiation point for the specialization or specializations specified
by the explicit instantiation directive.

6 The instantiation context of an expression that depends on the template arguments is the set of declarations
with external linkage declared prior to the point of instantiation of the template specialization in the same
translation unit.

7 A specialization for a function template, a member function template, or of a member function or static data
member of a class template may have multiple points of instantiations within a translation unit. A special-
ization for a class template has at most one point of instantiation within a translation unit. A specialization
for any template may have points of instantiation in multiple translation units. If two different points of
instantiation give a template specialization different meanings according to the one definition rule (3.2), the
program is ill-formed, no diagnostic required.

[temp.dep.candidate] 14.6.4.2 Candidate functions

1 For a function call that depends on a template parameter, if the function name is an unqualified-id but not a
template-id, the candidate functions are found using the usual lookup rules (3.4.1, 3.4.2) except that:

— For the part of the lookup using unqualified name lookup (3.4.1), only function declarations with exter-
nal linkage from the template definition context are found.

— For the part of the lookup using associated namespaces (3.4.2), only function declarations with external
linkage found in either the template definition context or the template instantiation context are found.

If the call would be ill-formed or would find a better match had the lookup within the associated name-
spaces considered all the function declarations with external linkage introduced in those namespaces in all
translation units, not just considering those declarations found in the template definition and template
instantiation contexts, then the program has undefined behavior.

[temp.inject] 14.6.5 Friend names declared within a class template

1 Friend classes or functions can be declared within a class template. When a template is instantiated, the
names of its friends are treated as if the specialization had been explicitly declared at its point of instantia-
tion.

2 As with non-template classes, the names of namespace-scope friend functions of a class template special-
ization are not visible during an ordinary lookup unless explicitly declared at namespace scope (11.4).
Such names may be found under the rules for associated classes (3.4.2).131) [Example:

template<typename T> class number {
public:

number(int);
//...
friend number gcd(number& x, number& y);
//...

};

131) Friend declarations do not introduce new names into any scope, either when the template is declared or when it is instantiated.

271

ISO/IEC 14882:2003(E)  ISO/IEC

14.6.5 Friend names declared within a class template 14 Templates

void g()
{

number<double> a(3), b(4);
//...
a = gcd(a,b); // finds gcd because number<double> is an

// associated class, making gcd visible
// in its namespace (global scope)

b = gcd(3,4); // ill-formed; gcd is not visible
}

—end example]

[temp.spec] 14.7 Template instantiation and specialization

1 The act of instantiating a function, a class, a member of a class template or a member template is referred to
as template instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from
a class template is called an instantiated class. A member function, a member class, or a static data member
of a class template instantiated from the member definition of the class template is called, respectively, an
instantiated member function, member class or static data member. A member function instantiated from a
member function template is called an instantiated member function. A member class instantiated from a
member class template is called an instantiated member class.

3 An explicit specialization may be declared for a function template, a class template, a member of a class
template or a member template. An explicit specialization declaration is introduced by template<>. In
an explicit specialization declaration for a class template, a member of a class template or a class member
template, the name of the class that is explicitly specialized shall be a template-id. In the explicit special-
ization declaration for a function template or a member function template, the name of the function or
member function explicitly specialized may be a template-id. [Example:

template<class T = int> struct A {
static int x;

};
template<class U> void g(U) { }

template<> struct A<double> { }; // specialize for T == double
template<> struct A<> { }; // specialize for T == int
template<> void g(char) { } // specialize for U == char

// U is deduced from the parameter type
template<> void g<int>(int) { } // specialize for U == int
template<> int A<char>::x = 0; // specialize for T == char

template<class T = int> struct B {
static int x;

};
template<> int B<>::x = 1; // specialize for T == int

—end example]

4 An instantiated template specialization can be either implicitly instantiated (14.7.1) for a given argument
list or be explicitly instantiated (14.7.2). A specialization is a class, function, or class member that is either
instantiated or explicitly specialized (14.7.3).

5 No program shall explicitly instantiate any template more than once, both explicitly instantiate and explic-
itly specialize a template, or specialize a template more than once for a given set of template-arguments.
An implementation is not required to diagnose a violation of this rule.

6 Each class template specialization instantiated from a template has its own copy of any static members.
[Example:

272

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.7 Template instantiation and specialization

template<class T> class X {
static T s;
// ...

};
template<class T> T X<T>::s = 0;
X<int> aa;
X<char*> bb;

X<int> has a static member s of type int and X<char*> has a static member s of type char*.]

[temp.inst] 14.7.1 Implicit instantiation

1 Unless a class template specialization has been explicitly instantiated (14.7.2) or explicitly specialized
(14.7.3), the class template specialization is implicitly instantiated when the specialization is referenced in a
context that requires a completely-defined object type or when the completeness of the class type affects the
semantics of the program. The implicit instantiation of a class template specialization causes the implicit
instantiation of the declarations, but not of the definitions or default arguments, of the class member func-
tions, member classes, static data members and member templates; and it causes the implicit instantiation
of the definitions of member anonymous unions. Unless a member of a class template or a member tem-
plate has been explicitly instantiated or explicitly specialized, the specialization of the member is implicitly
instantiated when the specialization is referenced in a context that requires the member definition to exist;
in particular, the initialization (and any associated side-effects) of a static data member does not occur
unless the static data member is itself used in a way that requires the definition of the static data member to
exist.

2 Unless a function template specialization has been explicitly instantiated or explicitly specialized, the func-
tion template specialization is implicitly instantiated when the specialization is referenced in a context that
requires a function definition to exist. Unless a call is to a function template explicit specialization or to a
member function of an explicitly specialized class template, a default argument for a function template or a
member function of a class template is implicitly instantiated when the function is called in a context that
requires the value of the default argument.

3 [Example:

template<class T> class Z {
public:

void f();
void g();

};

void h()
{

Z<int> a; // instantiation of class Z<int> required
Z<char>* p; // instantiation of class Z<char> not

// required
Z<double>* q; // instantiation of class Z<double>

// not required

a.f(); // instantiation of Z<int>::f() required
p->g(); // instantiation of class Z<char> required, and

// instantiation of Z<char>::g() required
}

Nothing in this example requires class Z<double>, Z<int>::g(), or Z<char>::f() to be
implicitly instantiated.]

4 A class template specialization is implicitly instantiated if the class type is used in a context that requires a
completely-defined object type or if the completeness of the class type affects the semantics of the program;
in particular, if an expression whose type is a class template specialization is involved in overload resolu-
tion, pointer conversion, pointer to member conversion, the class template specialization is implicitly

273

ISO/IEC 14882:2003(E)  ISO/IEC

14.7.1 Implicit instantiation 14 Templates

instantiated (3.2); in addition, a class template specialization is implicitly instantiated if the operand of a
delete expression is of class type or is of pointer to class type and the class type is a template specialization.
[Example:

template<class T> class B { /* ... */ };
template<class T> class D : public B<T> { /* ... */ };

void f(void*);
void f(B<int>*);

void g(D<int>* p, D<char>* pp, D<double> ppp)
{

f(p); // instantiation of D<int> required: call f(B<int>*)

B<char>* q = pp; // instantiation of D<char> required:
// convert D<char>* to B<char>*

delete ppp; // instantiation of D<double> required
}

—end example]

5 If the overload resolution process can determine the correct function to call without instantiating a class
template definition, it is unspecified whether that instantiation actually takes place. [Example:

template <class T> struct S {
operator int();

};

void f(int);
void f(S<int>&);
void f(S<float>);

void g(S<int>& sr) {
f(sr); // instantiation of S<int> allowed but not required

// instantiation of S<float> allowed but not required
};

—end example]

6 If an implicit instantiation of a class template specialization is required and the template is declared but not
defined, the program is ill-formed. [Example:

template<class T> class X;

X<char> ch; // error: definition of X required

—end example]

7 The implicit instantiation of a class template does not cause any static data members of that class to be
implicitly instantiated.

8 If a function template or a member function template specialization is used in a way that involves overload
resolution, a declaration of the specialization is implicitly instantiated (14.8.3).

9 An implementation shall not implicitly instantiate a function template, a member template, a non-virtual
member function, a member class or a static data member of a class template that does not require instantia-
tion. It is unspecified whether or not an implementation implicitly instantiates a virtual member function of
a class template if the virtual member function would not otherwise be instantiated. The use of a template
specialization in a default argument shall not cause the template to be implicitly instantiated except that a
class template may be instantiated where its complete type is needed to determine the correctness of the
default argument. The use of a default argument in a function call causes specializations in the default
argument to be implicitly instantiated.

274

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.7.1 Implicit instantiation

10 Implicitly instantiated class and function template specializations are placed in the namespace where the
template is defined. Implicitly instantiated specializations for members of a class template are placed in the
namespace where the enclosing class template is defined. Implicitly instantiated member templates are
placed in the namespace where the enclosing class or class template is defined. [Example:

namespace N {
template<class T> class List {
public:

T* get();
// ...
};

}

template<class K, class V> class Map {
N::List<V> lt;
V get(K);
// ...

};

void g(Map<char*,int>& m)
{

int i = m.get("Nicholas");
// ...

}

a call of lt.get() from Map<char*,int>::get() would place List<int>::get() in the
namespace N rather than in the global namespace.]

11 If a function template f is called in a way that requires a default argument expression to be used, the depen-
dent names are looked up, the semantics constraints are checked, and the instantiation of any template used
in the default argument expression is done as if the default argument expression had been an expression
used in a function template specialization with the same scope, the same template parameters and the same
access as that of the function template f used at that point. This analysis is called default argument
instantiation. The instantiated default argument is then used as the argument of f.

12 Each default argument is instantiated independently. [Example:

template<class T> void f(T x, T y = ydef(T()), T z = zdef(T()));

class A { };

A zdef(A);

void g(A a, A b, A c) {
f(a, b, c); // no default argument instantiation
f(a, b); // default argument z = zdef(T()) instantiated
f(a); // ill-formed; ydef is not declared

}

—end example]

13 [Note: 14.6.4.1 defines the point of instantiation of a template specialization.]

14 There is an implementation-defined quantity that specifies the limit on the total depth of recursive instantia-
tions, which could involve more than one template. The result of an infinite recursion in instantiation is
undefined. [Example:

275

ISO/IEC 14882:2003(E)  ISO/IEC

14.7.1 Implicit instantiation 14 Templates

template<class T> class X {
X<T>* p; // OK
X<T*> a; // implicit generation of X<T> requires

// the implicit instantiation of X<T*> which requires
// the implicit instantiation of X<T**> which ...

};

—end example]

[temp.explicit] 14.7.2 Explicit instantiation

1 A class, a function or member template specialization can be explicitly instantiated from its template. A
member function, member class or static data member of a class template can be explicitly instantiated
from the member definition associated with its class template.

2 The syntax for explicit instantiation is:

explicit-instantiation:
template declaration

If the explicit instantiation is for a class, a function or a member template specialization, the unqualified-id
in the declaration shall be either a template-id or, where all template arguments can be deduced, a
template-name. [Note: the declaration may declare a qualified-id, in which case the unqualified-id of the
qualified-id must be a template-id.] If the explicit instantiation is for a member function, a member class
or a static data member of a class template specialization, the name of the class template specialization in
the qualified-id for the member declarator shall be a template-id. [Example:

template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();

template<class T> void sort(Array<T>& v) { /* ... */ }
template void sort(Array<char>&); // argument is deduced here

namespace N {
template<class T> void f(T&) { }

}
template void N::f<int>(int&);

—end example]

3 A declaration of a function template shall be in scope at the point of the explicit instantiation of the function
template. A definition of the class or class template containing a member function template shall be in
scope at the point of the explicit instantiation of the member function template. A definition of a class tem-
plate or class member template shall be in scope at the point of the explicit instantiation of the class tem-
plate or class member template. A definition of a class template shall be in scope at the point of an explicit
instantiation of a member function or a static data member of the class template. A definition of a member
class of a class template shall be in scope at the point of an explicit instantiation of the member class. If the
declaration of the explicit instantiation names an implicitly-declared special member function (clause 12),
the program is ill-formed.

4 The definition of a non-exported function template, a non-exported member function template, or a non-
exported member function or static data member of a class template shall be present in every translation
unit in which it is explicitly instantiated.

5 An explicit instantiation of a class or function template specialization is placed in the namespace in which
the template is defined. An explicit instantiation for a member of a class template is placed in the name-
space where the enclosing class template is defined. An explicit instantiation for a member template is
placed in the namespace where the enclosing class or class template is defined. [Example:

276

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.7.2 Explicit instantiation

namespace N {
template<class T> class Y { void mf() { } };

}

template class Y<int>; // error: class template Y not visible
// in the global namespace

using N::Y;
template class Y<int>; // OK: explicit instantiation in namespace N

template class N::Y<char*>; // OK: explicit instantiation in namespace N
template void N::Y<double>::mf(); // OK: explicit instantiation

// in namespace N

—end example]

6 A trailing template-argument can be left unspecified in an explicit instantiation of a function template spe-
cialization or of a member function template specialization provided it can be deduced from the type of a
function parameter (14.8.2). [Example:

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v);

// instantiate sort(Array<int>&) – template-argument deduced
template void sort<>(Array<int>&);

—end example]

7 The explicit instantiation of a class template specialization implies the instantiation of all of its members
not previously explicitly specialized in the translation unit containing the explicit instantiation.

8 The usual access checking rules do not apply to names used to specify explicit instantiations. [Note: In par-
ticular, the template arguments and names used in the function declarator (including parameter types, return
types and exception specifications) may be private types or objects which would normally not be accessible
and the template may be a member template or member function which would not normally be accessible.
]

9 An explicit instantiation does not constitute a use of a default argument, so default argument instantiation is
not done. [Example:

char* p = 0;
template<class T> T g(T = &p);
template int g<int>(int); // OK even though &p isn’t an int.

—end example]

[temp.expl.spec] 14.7.3 Explicit specialization

1 An explicit specialization of any of the following:

— function template

— class template

— member function of a class template

— static data member of a class template

— member class of a class template

— member class template of a class template

— member function template of a class template

can be declared by a declaration introduced by template<>; that is:

277

ISO/IEC 14882:2003(E)  ISO/IEC

14.7.3 Explicit specialization 14 Templates

explicit-specialization:
template < > declaration

[Example:

template<class T> class stream;

template<> class stream<char> { /* ... */ };

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

template<> void sort<char*>(Array<char*>&) ;

Given these declarations, stream<char> will be used as the definition of streams of chars; other
streams will be handled by class template specializations instantiated from the class template. Similarly,
sort<char*> will be used as the sort function for arguments of type Array<char*>; other Array
types will be sorted by functions generated from the template.]

2 An explicit specialization shall be declared in the namespace of which the template is a member, or, for
member templates, in the namespace of which the enclosing class or enclosing class template is a member.
An explicit specialization of a member function, member class or static data member of a class template
shall be declared in the namespace of which the class template is a member. Such a declaration may also
be a definition. If the declaration is not a definition, the specialization may be defined later in the name-
space in which the explicit specialization was declared, or in a namespace that encloses the one in which
the explicit specialization was declared.

3 A declaration of a function template or class template being explicitly specialized shall be in scope at the
point of declaration of an explicit specialization. [Note: a declaration, but not a definition of the template is
required.] The definition of a class or class template shall be in scope at the point of declaration of an
explicit specialization for a member template of the class or class template. [Example:

template<> class X<int> { /* ... */ }; // error: X not a template

template<class T> class X;

template<> class X<char*> { /* ... */ }; // OK: X is a template

—end example]

4 A member function, a member class or a static data member of a class template may be explicitly special-
ized for a class specialization that is implicitly instantiated; in this case, the definition of the class template
shall be in scope at the point of declaration of the explicit specialization for the member of the class tem-
plate. If such an explicit specialization for the member of a class template names an implicitly-declared
special member function (clause 12), the program is ill-formed.

5 A member of an explicitly specialized class is not implicitly instantiated from the member declaration of
the class template; instead, the member of the class template specialization shall itself be explicitly defined.
In this case, the definition of the class template explicit specialization shall be in scope at the point of decla-
ration of the explicit specialization of the member. The definition of an explicitly specialized class is unre-
lated to the definition of a generated specialization. That is, its members need not have the same names,
types, etc. as the members of the a generated specialization. Definitions of members of an explicitly spe-
cialized class are defined in the same manner as members of normal classes, and not using the explicit spe-
cialization syntax. [Example:

278

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.7.3 Explicit specialization

template<class T> struct A {
void f(T) { /* ... */ }

};

template<> struct A<int> {
void f(int);

};

void h()
{

A<int> a;
a.f(16); // A<int>::f must be defined somewhere

}

// explicit specialization syntax not used for a member of
// explicitly specialized class template specialization
void A<int>::f() { /* ... */ }

—end example]

6 If a template, a member template or the member of a class template is explicitly specialized then that spe-
cialization shall be declared before the first use of that specialization that would cause an implicit instantia-
tion to take place, in every translation unit in which such a use occurs; no diagnostic is required. If the pro-
gram does not provide a definition for an explicit specialization and either the specialization is used in a
way that would cause an implicit instantiation to take place or the member is a virtual member function, the
program is ill-formed, no diagnostic required. An implicit instantiation is never generated for an explicit
specialization that is declared but not defined. [Example:

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v) { /* ... */ }

void f(Array<String>& v)
{

sort(v); // use primary template
// sort(Array<T>&), T is String

}

template<> void sort<String>(Array<String>& v); // error: specialization
// after use of primary template

template<> void sort<>(Array<char*>& v); // OK: sort<char*> not yet used

—end example]

7 The placement of explicit specialization declarations for function templates, class templates, member func-
tions of class templates, static data members of class templates, member classes of class templates, member
class templates of class templates, member function templates of class templates, member functions of
member templates of class templates, member functions of member templates of non-template classes,
member function templates of member classes of class templates, etc., and the placement of partial special-
ization declarations of class templates, member class templates of non-template classes, member class tem-
plates of class templates, etc., can affect whether a program is well-formed according to the relative posi-
tioning of the explicit specialization declarations and their points of instantiation in the translation unit as
specified above and below. When writing a specialization, be careful about its location; or to make it com-
pile will be such a trial as to kindle its self-immolation.

8 When a specialization for which an explicit specialization exists is used within the instantiation of an
exported template, and the unspecialized template name is non-dependent in the exported template, a decla-
ration of the explicit specialization shall be declared before the definition of the exported template, in the
translation unit containing that definition. [Example:

279

ISO/IEC 14882:2003(E)  ISO/IEC

14.7.3 Explicit specialization 14 Templates

// file #1
#include <vector>
// Primary class template vector
export template<class T> void f(t) {

std::vector<T>; vec; // should match the specialization
/* ... */

}

// file #2
#include <vector>
class B { };
// Explicit specialization of vector for vector
namespace std {

template<> class vector { /* ... */ };
}
template<class T> void f(T);
void g(B b) {

f(b); // ill-formed:
// f should refer to vector, but the
// specialization was not declared with the
// definition of f in file #1

}

—end example]

9 A template explicit specialization is in the scope of the namespace in which the template was defined.
[Example:

namespace N {
template<class T> class X { /* ... */ };
template<class T> class Y { /* ... */ };

template<> class X<int> { /* ... */ }; // OK: specialization
// in same namespace

template<> class Y<double>; // forward declare intent to
// specialize for double

}

template<> class N::Y<double> { /* ... */ }; // OK: specialization
// in same namespace

—end example]

10 A template-id that names a class template explicit specialization that has been declared but not defined can
be used exactly like the names of other incompletely-defined classes (3.9). [Example:

template<class T> class X; // X is a class template
template<> class X<int>;

X<int>* p; // OK: pointer to declared class X<int>
X<int> x; // error: object of incomplete class X<int>

—end example]

11 A trailing template-argument can be left unspecified in the template-id naming an explicit function tem-
plate specialization provided it can be deduced from the function argument type. [Example:

template<class T> class Array { /* ... */ };
template<class T> void sort(Array<T>& v);

// explicit specialization for sort(Array<int>&)
// with deduces template-argument of type int
template<> void sort(Array<int>&);

—end example]

280

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.7.3 Explicit specialization

12 [Note: This paragraph is intentionally empty.]

13 A function with the same name as a template and a type that exactly matches that of a template specializa-
tion is not an explicit specialization (14.5.5).

14 An explicit specialization of a function template is inline only if it is explicitly declared to be, and indepen-
dently of whether its function template is. [Example:

template<class T> void f(T) { /* ... */ }
template<class T> inline T g(T) { /* ... */ }

template<> inline void f<>(int) { /* ... */ } // OK: inline
template<> int g<>(int) { /* ... */ } // OK: not inline

—end example]

15 An explicit specialization of a static data member of a template is a definition if the declaration includes an
initializer; otherwise, it is a declaration. [Note: there is no syntax for the definition of a static data member
of a template that requires default initialization.

template<> X Q<int>::x;

This is a declaration regardless of whether X can be default initialized (8.5).]

16 A member or a member template of a class template may be explicitly specialized for a given implicit
instantiation of the class template, even if the member or member template is defined in the class template
definition. An explicit specialization of a member or member template is specified using the template spe-
cialization syntax. [Example:

template<class T> struct A {
void f(T);
template<class X1> void g1(T, X1);
template<class X2> void g2(T, X2);
void h(T) { }

};

// specialization
template<> void A<int>::f(int);

// out of class member template definition
template<class T> template<class X1> void A<T>::g1(T, X1) { }

// member template specialization
template<> template<class X1> void A<int>::g1(int, X1);

// member template specialization
template<> template<>

void A<int>::g1(int, char); // X1 deduced as char
template<> template<>

void A<int>::g2<char>(int, char); // X2 specified as char

// member specialization even if defined in class definition
template<> void A<int>::h(int) { }

—end example]

17 A member or a member template may be nested within many enclosing class templates. If the declaration
of an explicit specialization for such a member appears in namespace scope, the member declaration shall
be preceded by a template<> for each enclosing class template that is explicitly specialized. [Example:

281

ISO/IEC 14882:2003(E)  ISO/IEC

14.7.3 Explicit specialization 14 Templates

template<class T1> class A {
template<class T2> class B {

void mf();
};

};
template<> template<> class A<int>::B<double>;
template<> template<> void A<char>::B<char>::mf();

—end example]

18 In an explicit specialization declaration for a member of a class template or a member template that appears
in namespace scope, the member template and some of its enclosing class templates may remain unspecial-
ized, except that the declaration shall not explicitly specialize a class member template if its enclosing class
templates are not explicitly specialized as well. In such explicit specialization declaration, the keyword
template followed by a template-parameter-list shall be provided instead of the template<> preced-
ing the explicit specialization declaration of the member. The types of the template-parameters in the
template-parameter-list shall be the same as those specified in the primary template definition. [Example:

template<class T1> class A {
template<class T2> class B {

template<class T3> void mf1(T3);
void mf2();

};
};
template<> template<class X>

class A<int>::B { };
template<> template<> template<class T>

void A<int>::B<double>::mf1(T t) { }
template<class Y> template<>

void A<Y>::B<double>::mf2() { } // ill-formed; B<double> is specialized but
// its enclosing class template A is not

—end example]

19 A specialization of a member function template or member class template of a non-specialized class tem-
plate is itself a template.

20 An explicit specialization declaration shall not be a friend declaration.

21 Default function arguments shall not be specified in a declaration or a definition for one of the following
explicit specializations:

— the explicit specialization of a function template;

— the explicit specialization of a member function template;

— the explicit specialization of a member function of a class template where the class template specializa-
tion to which the member function specialization belongs is implicitly instantiated. [Note: default func-
tion arguments may be specified in the declaration or definition of a member function of a class tem-
plate specialization that is explicitly specialized.]

[temp.fct.spec] 14.8 Function template specializations

1 A function instantiated from a function template is called a function template specialization; so is an
explicit specialization of a function template. Template arguments can either be explicitly specified when
naming the function template specialization or be deduced (14.8.2) from the context, e.g. from the function
arguments in a call to the function template specialization.

2 Each function template specialization instantiated from a template has its own copy of any static variable.
[Example:

282

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.8 Function template specializations

template<class T> void f(T* p)
{

static T s;
// ...

};

void g(int a, char* b)
{

f(&a); // call f<int>(int*)
f(&b); // call f<char*>(char**)

}

Here f<int>(int*) has a static variable s of type int and f<char*>(char**) has a static variable
s of type char*.]

[temp.arg.explicit] 14.8.1 Explicit template argument specification

1 Template arguments can be specified when referring to a function template specialization by qualifying the
function template name with the list of template-arguments in the same way as template-arguments are
specified in uses of a class template specialization. [Example:

template<class T> void sort(Array<T>& v);
void f(Array<dcomplex>& cv, Array<int>& ci)
{

sort<dcomplex>(cv); // sort(Array<dcomplex>&)
sort<int>(ci); // sort(Array<int>&)

}

and

template<class U, class V> U convert(V v);

void g(double d)
{

int i = convert<int,double>(d); // int convert(double)
char c = convert<char,double>(d); // char convert(double)

}

—end example]

2 A template argument list may be specified when referring to a specialization of a function template

— when a function is called,

— when the address of a function is taken, when a function initializes a reference to function, or when a
pointer to member function is formed,

— in an explicit specialization,

— in an explicit instantiation, or

— in a friend declaration.

Trailing template arguments that can be deduced (14.8.2) may be omitted from the list of explicit template-
arguments. If all of the template arguments can be deduced, they may all be omitted; in this case, the
empty template argument list <> itself may also be omitted. [Example:

template<class X, class Y> X f(Y);
void g()
{

int i = f<int>(5.6); // Y is deduced to be double
int j = f(5.6); // ill-formed: X cannot be deduced

}

—end example] [Note: An empty template argument list can be used to indicate that a given use refers to a

283

ISO/IEC 14882:2003(E)  ISO/IEC

14.8.1 Explicit template argument specification 14 Templates

specialization of a function template even when a normal (i.e., nontemplate) function is visible that would
otherwise be used. For example:

template <class T> int f(T); // #1
int f(int); // #2
int k = f(1); // uses #2
int l = f<>(1); // uses #1

—end note]

3 Template arguments that are present shall be specified in the declaration order of their corresponding
template-parameters. The template argument list shall not specify more template-arguments than there are
corresponding template-parameters. [Example:

template<class X, class Y, class Z> X f(Y,Z);
void g()
{

f<int,char*,double>("aa",3.0);
f<int,char*>("aa",3.0); // Z is deduced to be double
f<int>("aa",3.0); // Y is deduced to be char*, and

// Z is deduced to be double
f("aa",3.0); // error: X cannot be deduced

}

—end example]

4 Implicit conversions (clause 4) will be performed on a function argument to convert it to the type of the
corresponding function parameter if the parameter type contains no template-parameters that participate in
template argument deduction. [Note: template parameters do not participate in template argument deduc-
tion if they are explicitly specified. For example,

template<class T> void f(T);

class Complex {
// ...
Complex(double);

};

void g()
{

f<Complex>(1); // OK, means f<Complex>(Complex(1))
}

—end note]

5 [Note: because the explicit template argument list follows the function template name, and because conver-
sion member function templates and constructor member function templates are called without using a
function name, there is no way to provide an explicit template argument list for these function templates.]

6 [Note: For simple function names, argument dependent lookup (3.4.2) applies even when the function name
is not visible within the scope of the call. This is because the call still has the syntactic form of a function
call (3.4.1). But when a function template with explicit template arguments is used, the call does not have
the correct syntactic form unless there is a function template with that name visible at the point of the call.
If no such name is visible, the call is not syntactically well-formed and argument-dependent lookup does
not apply. If some such name is visible, argument dependent lookup applies and additional function tem-
plates may be found in other namespaces. [Example:

284

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.8.1 Explicit template argument specification

namespace A {
struct B { };
template<int X> void f(B);

}
namespace C {

template<class T> void f(T t);
}
void g(A::B b) {

f<3>(b); // ill-formed: not a function call
A::f<3>(b); // well-formed
C::f<3>(b); // ill-formed; argument dependent lookup

// applies only to unqualified names
using C::f;
f<3>(b); // well-formed because C::f is visible; then

// A::f is found by argument dependent lookup
}

—end example] —end note]

[temp.deduct] 14.8.2 Template argument deduction

1 When a function template specialization is referenced, all of the template arguments must have values. The
values can be either explicitly specified or, in some cases, deduced from the use. [Example:

void f(Array<dcomplex>& cv, Array<int>& ci)
{

sort(cv); // call sort(Array<dcomplex>&)
sort(ci); // call sort(Array<int>&)

}

and

void g(double d)
{

int i = convert<int>(d); // call convert<int,double>(double)
int c = convert<char>(d); // call convert<char,double>(double)

}

—end example]

2 When an explicit template argument list is specified, the template arguments must be compatible with the
template parameter list and must result in a valid function type as described below; otherwise type deduc-
tion fails. Specifically, the following steps are performed when evaluating an explicitly specified template
argument list with respect to a given function template:

— The specified template arguments must match the template parameters in kind (i.e., type, nontype, tem-
plate), and there must not be more arguments than there are parameters; otherwise type deduction fails.

— Nontype arguments must match the types of the corresponding nontype template parameters, or must be
convertible to the types of the corresponding nontype parameters as specified in 14.3.2, otherwise type
deduction fails.

— All references in the function type of the function template to the corresponding template parameters are
replaced by the specified template argument values. If a substitution in a template parameter or in the
function type of the function template results in an invalid type, type deduction fails. [Note: The equiv-
alent substitution in exception specifications is done only when the function is instantiated, at which
point a program is ill-formed if the substitution results in an invalid type.] Type deduction may fail for
the following reasons:

— Attempting to create an array with an element type that is void, a function type, or a reference type,
or attempting to create an array with a size that is zero or negative. [Example:

285

ISO/IEC 14882:2003(E)  ISO/IEC

14.8.2 Template argument deduction 14 Templates

template <class T> int f(T[5]);
int I = f<int>(0);
int j = f<void>(0); // invalid array

]

— Attempting to use a type that is not a class type in a qualified name. [Example:

template <class T> int f(typename T::B*);
int i = f<int>(0);

]

— Attempting to use a type in the qualifier portion of a qualified name that names a type when that
type does not contain the specified member, or if the specified member is not a type where a type is
required. [Example:

template <class T> int f(typename T::B*);
struct A {};
struct C { int B; };
int i = f<A>(0);
int j = f<C>(0);

]

— Attempting to create a pointer to reference type.

— Attempting to create a reference to a reference type or a reference to void.

— Attempting to create "pointer to member of T" when T is not a class type. [Example:

template <class T> int f(int T::*);
int i = f<int>(0);

]

— Attempting to perform an invalid conversion in either a template argument expression, or an expres-
sion used in the function declaration. [Example:

template <class T, T*> int f(int);
int i2 = f<int,1>(0); // can’t conv 1 to int*

]

— Attempting to create a function type in which a parameter has a type of void.

— Attempting to create a cv-qualified function type.

3 After this substitution is performed, the function parameter type adjustments described in 8.3.5 are per-
formed. [Example: A parameter type of “void ()(const int, int[5])” becomes
“void(*)(int,int*)”.] [Note: A top-level qualifier in a function parameter declaration does not
affect the function type but still affects the type of the function parameter variable within the function.
—end note] [Example:

286

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.8.2 Template argument deduction

template <class T> void f(T t);
template <class X> void g(const X x);
template <class Z> void h(Z, Z*);

int main()
{

// #1: function type is f(int), t is nonconst
f<int>(1);

// #2: function type is f(int), t is const
f<const int>(1);

// #3: function type is g(int), x is const
g<int>(1);

// #4: function type is g(int), x is const
g<const int>(1);

// #5: function type is h(int, const int*)
h<const int>(1,0);

}

—end example] [Note: f<int>(1) and f<const int>(1) call distinct functions even though both
of the functions called have the same function type. —end note]

4 The resulting substituted and adjusted function type is used as the type of the function template for template
argument deduction. When all template arguments have been deduced, all uses of template parameters in
nondeduced contexts are replaced with the corresponding deduced argument values. If the substitution
results in an invalid type, as described above, type deduction fails.

5 Except as described above, the use of an invalid value shall not cause type deduction to fail. [Example: In
the following example 1000 is converted to signed char and results in an implementation-defined
value as specified in (4.7). In other words, both templates are considered even though 1000, when con-
verted to signed char, results in an implementation-defined value.

template <int> int f(int);
template <signed char> int f(int);
int i1 = f<1>(0); // ambiguous
int i2 = f<1000>(0); // ambiguous

—end example]

[temp.deduct.call] 14.8.2.1 Deducing template arguments from a function call

1 Template argument deduction is done by comparing each function template parameter type (call it P) with
the type of the corresponding argument of the call (call it A) as described below.

2 If P is not a reference type:

— If A is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is used
in place of A for type deduction; otherwise,

— If A is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3) is
used in place of A for type deduction; otherwise,

— If A is a cv-qualified type, the top level cv-qualifiers of A’s type are ignored for type deduction.

If P is a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction. If P is a
reference type, the type referred to by P is used for type deduction.

3 In general, the deduction process attempts to find template argument values that will make the deduced A
identical to A (after the type A is transformed as described above). However, there are three cases that
allow a difference:

287

ISO/IEC 14882:2003(E)  ISO/IEC

14.8.2.1 Deducing template arguments from a function call 14 Templates

— If the original P is a reference type, the deduced A (i.e., the type referred to by the reference) can be
more cv-qualified than A.

— A can be another pointer or pointer to member type that can be converted to the deduced A via a qualifi-
cation conversion (4.4).

— If P is a class, and P has the form template-id, then A can be a derived class of the deduced A. Like-
wise, if P is a pointer to a class of the form template-id, A can be a pointer to a derived class pointed to
by the deduced A.

These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deduced A, the type deduction fails. [Note: if a template-parameter is not used in any of the func-
tion parameters of a function template, or is used only in a non-deduced context, its corresponding
template-argument cannot be deduced from a function call and the template-argument must be explicitly
specified.]

[temp.deduct.funcaddr] 14.8.2.2 Deducing template arguments taking the address of a function
template

1 Template arguments can be deduced from the type specified when taking the address of an overloaded
function (13.4). The function template’s function type and the specified type are used as the types of P and
A, and the deduction is done as described in 14.8.2.4.

[temp.deduct.conv] 14.8.2.3 Deducing conversion function template arguments

1 Template argument deduction is done by comparing the return type of the template conversion function
(call it P) with the type that is required as the result of the conversion (call it A) as described in 14.8.2.4.

2 If A is not a reference type:

— If P is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is used
in place of P for type deduction; otherwise,

— If P is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3) is
used in place of P for type deduction; otherwise,

— If P is a cv-qualified type, the top level cv-qualifiers of P’s type are ignored for type deduction.

If A is a cv-qualified type, the top level cv-qualifiers of A’s type are ignored for type deduction. If A is a
reference type, the type referred to by A is used for type deduction.

3 In general, the deduction process attempts to find template argument values that will make the deduced A
identical to A. However, there are two cases that allow a difference:

— If the original A is a reference type, A can be more cv-qualified than the deduced A (i.e., the type
referred to by the reference)

— The deduced A can be another pointer or pointer to member type that can be converted to A via a quali-
fication conversion.

These alternatives are considered only if type deduction would otherwise fail. If they yield more than one
possible deduced A, the type deduction fails.

[temp.deduct.type] 14.8.2.4 Deducing template arguments from a type

1 Template arguments can be deduced in several different contexts, but in each case a type that is specified in
terms of template parameters (call it P) is compared with an actual type (call it A), and an attempt is made
to find template argument values (a type for a type parameter, a value for a non-type parameter, or a tem-
plate for a template parameter) that will make P, after substitution of the deduced values (call it the deduced
A), compatible with A.

288

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.8.2.4 Deducing template arguments from a type

2 In some cases, the deduction is done using a single set of types P and A, in other cases, there will be a set of
corresponding types P and A. Type deduction is done independently for each P/A pair, and the deduced
template argument values are then combined. If type deduction cannot be done for any P/A pair, or if for
any pair the deduction leads to more than one possible set of deduced values, or if different pairs yield dif-
ferent deduced values, or if any template argument remains neither deduced nor explicitly specified, tem-
plate argument deduction fails.

3 A given type P can be composed from a number of other types, templates, and non-type values:

— A function type includes the types of each of the function parameters and the return type.

— A pointer to member type includes the type of the class object pointed to and the type of the member
pointed to.

— A type that is a specialization of a class template (e.g., A<int>) includes the types, templates, and
non-type values referenced by the template argument list of the specialization.

— An array type includes the array element type and the value of the array bound.

In most cases, the types, templates, and non-type values that are used to compose P participate in template
argument deduction. That is, they may be used to determine the value of a template argument, and the
value so determined must be consistent with the values determined elsewhere. In certain contexts, how-
ever, the value does not participate in type deduction, but instead uses the values of template arguments that
were either deduced elsewhere or explicitly specified. If a template parameter is used only in nondeduced
contexts and is not explicitly specified, template argument deduction fails.

4 The nondeduced contexts are:

— The nested-name-specifier of a type that was specified using a qualified-id.

— A type that is a template-id in which one or more of the template-arguments is an expression that refer-
ences a template-parameter.

When a type name is specified in a way that includes a nondeduced context, all of the types that comprise
that type name are also nondeduced. However, a compound type can include both deduced and nonde-
duced types. [Example: If a type is specified as A<T>::B<T2>, both T and T2 are nondeduced. Like-
wise, if a type is specified as A<I+J>::X<T>, I, J, and T are nondeduced. If a type is specified as void
f(typename A<T>::B, A<T>), the T in A<T>::B is nondeduced but the T in A<T> is deduced.]

5 [Example: Here is an example in which different parameter/argument pairs produce inconsistent template
argument deductions:

template<class T> void f(T x, T y) { /* ... */ }
struct A { /* ... */ };
struct B : A { /* ... */ };
int g(A a, B b)
{

f(a,b); // error: T could be A or B
f(b,a); // error: T could be A or B
f(a,a); // OK: T is A
f(b,b); // OK: T is B

}

6 Here is an example where two template arguments are deduced from a single function parameter/argument
pair. This can lead to conflicts that cause type deduction to fail:

289

ISO/IEC 14882:2003(E)  ISO/IEC

14.8.2.4 Deducing template arguments from a type 14 Templates

template <class T, class U> void f(T (*)(T, U, U));

int g1(int, float, float);
char g2(int, float, float);
int g3(int, char, float);

void r()
{

f(g1); // OK: T is int and U is float
f(g2); // error: T could be char or int
f(g3); // error: U could be char or float

}

7 Here is an example where a qualification conversion applies between the argument type on the function call
and the deduced template argument type:

template<class T> void f(const T*) {}
int *p;
void s()
{

f(p); // f(const int *)
}

8 Here is an example where the template argument is used to instantiate a derived class type of the corre-
sponding function parameter type:

template <class T> struct B { };
template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};
template <class T> void f(B<T>&){}
void t()
{

D<int> d;
D2 d2;
f(d); // calls f(B<int>&)
f(d2); // calls f(B<int>&)

}

—end example]

9 A template type argument T, a template template argument TT or a template non-type argument i can be
deduced if P and A have one of the following forms:

290

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.8.2.4 Deducing template arguments from a type

T
cv-list T
T*
T&
T[integer-constant]
template-name<T> (where template-name refers to a class template)
type(*)(T)
T(*)()
T(*)(T)
T type::*
type T::*
T T::*
T (type::*)()
type (T::*)()
type (type::*)(T)
type (T::*)(T)
T (type::*)(T)
T (T::*)()
T (T::*)(T)
type[i]
template-name<i> (where template-name refers to a class template)
TT<T>
TT<i>
TT<>

where (T) represents argument lists where at least one argument type contains a T, and () represents
argument lists where no parameter contains a T. Similarly, <T> represents template argument lists where
at least one argument contains a T, <i> represents template argument lists where at least one argument
contains an i and <> represents template argument lists where no argument contains a T or an i.

10 These forms can be used in the same way as T is for further composition of types. [Example:

X<int> (*)(char[6])

is of the form

template-name<T> (*)(type[i])

which is a variant of

type (*)(T)

where type is X<int> and T is char[6].]

11 Template arguments cannot be deduced from function arguments involving constructs other than the ones
specified above.

12 A template type argument cannot be deduced from the type of a non-type template-argument. [Example:

template<class T, T i> void f(double a[10][i]);
int v[10][20];
f(v); // error: argument for template-parameter T cannot be deduced

—end example]

13 [Note: except for reference and pointer types, a major array bound is not part of a function parameter type
and cannot be deduced from an argument:

template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);
template<int i> void f3(int (&a)[i][20]);

291

ISO/IEC 14882:2003(E)  ISO/IEC

14.8.2.4 Deducing template arguments from a type 14 Templates

void g()
{

int v[10][20];
f1(v); // OK: i deduced to be 20
f1<20>(v); // OK
f2(v); // error: cannot deduce template-argument i
f2<10>(v); // OK
f3(v); // OK: i deduced to be 10

}

14 If, in the declaration of a function template with a non-type template-parameter, the non-type template-
parameter is used in an expression in the function parameter-list, the corresponding template-argument
must always be explicitly specified or deduced elsewhere because type deduction would otherwise always
fail for such a template-argument.

template<int i> class A { /* ... */ };
template<short s> void g(A<s+1>);
void k() {

A<1> a;
g(a); // error: deduction fails for expression s+1
g<0>(a); // OK

}

—end note] [Note: template parameters do not participate in template argument deduction if they are used
only in nondeduced contexts. For example,

template<int i, typename T>
T deduce(typename A<T>::X x, // T is not deduced here

T t, // but T is deduced here
typename B<i>::Y y); // i is not deduced here

A<int> a;
B<77> b;

int x = deduce<77>(a.xm, 62, y.ym);
// T is deduced to be int, a.xm must be convertible to
// A<int>::X
// i is explicitly specified to be 77, y.ym must be convertible
// to B<77>::Y

—end note]

15 If, in the declaration of a function template with a non-type template-parameter, the non-type template-
parameter is used in an expression in the function parameter-list and, if the corresponding template-
argument is deduced, the template-argument type shall match the type of the template-parameter exactly,
except that a template-argument deduced from an array bound may be of any integral type.132) [Example:

template<int i> class A { /* ... */ };
template<short s> void f(A<s>);
void k1() {

A<1> a;
f(a); // error: deduction fails for conversion from int to short
f<1>(a); // OK

}

132) Although the template-argument corresponding to a template-parameter of type bool may be deduced from an array bound, the
resulting value will always be true because the array bound will be non-zero.

292

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.8.2.4 Deducing template arguments from a type

template<const short cs> class B { };
template<short s> void h(B<s>);
void k2() {

B<1> b;
g(b); // OK: cv-qualifiers are ignored on template parameter types

}

—end example]

16 A template-argument can be deduced from a pointer to function or pointer to member function argument if
the set of overloaded functions does not contain function templates and at most one of a set of overloaded
functions provides a unique match. [Example:

template<class T> void f(void(*)(T,int));
template<class T> void foo(T,int);
void g(int,int);
void g(char,int);

void h(int,int,int);
void h(char,int);
int m()
{

f(&g); // error: ambiguous
f(&h); // OK: void h(char,int) is a unique match
f(&foo); // error: type deduction fails because foo is a template

}

—end example]

17 A template type-parameter cannot be deduced from the type of a function default argument. [Example:

template <class T> void f(T = 5, T = 7);
void g()
{

f(1); // OK: call f<int>(1,7)
f(); // error: cannot deduce T
f<int>(); // OK: call f<int>(5,7)

}

—end example]

18 The template-argument corresponding to a template template-parameter is deduced from the type of the
template-argument of a class template specialization used in the argument list of a function call. [Example:

template <template <class T> class X> struct A { };
template <template <class T> class X> void f(A<X>) { }
template<class T> struct B { };
A ab;
f(ab); // calls f(A)

—end example] [Note: a default template-argument cannot be specified in a function template declaration
or definition; therefore default template-arguments cannot be used to influence template argument deduc-
tion.]

[temp.over] 14.8.3 Overload resolution

1 A function template can be overloaded either by (non-template) functions of its name or by (other) function
templates of the same name. When a call to that name is written (explicitly, or implicitly using the operator
notation), template argument deduction (14.8.2) and checking of any explicit template arguments (14.3) are
performed for each function template to find the template argument values (if any) that can be used with
that function template to instantiate a function template specialization that can be invoked with the call
arguments. For each function template, if the argument deduction and checking succeeds, the template-
arguments (deduced and/or explicit) are used to instantiate a single function template specialization which

293

ISO/IEC 14882:2003(E)  ISO/IEC

14.8.3 Overload resolution 14 Templates

is added to the candidate functions set to be used in overload resolution. If, for a given function template,
argument deduction fails, no such function is added to the set of candidate functions for that template. The
complete set of candidate functions includes all the function templates instantiated in this way and all of the
non-template overloaded functions of the same name. The function template specializations are treated like
any other functions in the remainder of overload resolution, except as explicitly noted in 13.3.3.133)

2 [Example:

template<class T> T max(T a, T b) { return a>b?a:b; }

void f(int a, int b, char c, char d)
{

int m1 = max(a,b); // max(int a, int b)
char m2 = max(c,d); // max(char a, char b)
int m3 = max(a,c); // error: cannot generate max(int,char)

}

3 Adding the non-template function

int max(int,int);

to the example above would resolve the third call, by providing a function that could be called for
max(a,c) after using the standard conversion of char to int for c.

4 Here is an example involving conversions on a function argument involved in template-argument deduc-
tion:

template<class T> struct B { /* ... */ };
template<class T> struct D : public B<T> { /* ... */ };
template<class T> void f(B<T>&);

void g(B<int>& bi, D<int>& di)
{

f(bi); // f(bi)
f(di); // f((B<int>&)di)

}

5 Here is an example involving conversions on a function argument not involved in template-parameter
deduction:

template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2

void h(int* pi, int i, char c)
{

f(pi,i); // #1: f<int>(pi,i)
f(pi,c); // #2: f<int*>(pi,c)

f(i,c); // #2: f<int>(i,c);
f(i,i); // #2: f<int>(i,char(i))

}

—end example]

6 Only the signature of a function template specialization is needed to enter the specialization in a set of can-
didate functions. Therefore only the function template declaration is needed to resolve a call for which a

133) The parameters of function template specializations contain no template parameter types. The set of conversions allowed on
deduced arguments is limited, because the argument deduction process produces function templates with parameters that either match
the call arguments exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-deduced arguments
allow the full range of conversions. Note also that 13.3.3 specifies that a non-template function will be given preference over a tem-
plate specialization if the two functions are otherwise equally good candidates for an overload match.

294

 ISO/IEC ISO/IEC 14882:2003(E)

14 Templates 14.8.3 Overload resolution

template specialization is a candidate. [Example:

template<class T> void f(T); // declaration

void g()
{

f("Annemarie"); // call of f<const char*>
}

The call of f is well-formed even if the template f is only declared and not defined at the point of the call.
The program will be ill-formed unless a specialization for f<const char*>, either implicitly or explic-
itly generated, is present in some translation unit.]

295

ISO/IEC 14882:2003(E)  ISO/IEC

296

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

15 Exception handling 15 Exception handling

15 Exception handling [except]

1 Exception handling provides a way of transferring control and information from a point in the execution of
a program to an exception handler associated with a point previously passed by the execution. A handler
will be invoked only by a throw-expression invoked in code executed in the handler’s try block or in func-
tions called from the handler’s try block .

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt function-body handler-seq

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

A try-block is a statement (clause 6). A throw-expression is of type void. Code that executes a throw-
expression is said to “throw an exception;” code that subsequently gets control is called a “handler.” [Note:
within this clause “try block” is taken to mean both try-block and function-try-block.]

2 A goto or switch statement shall not be used to transfer control into a try block or into a handler.
[Example:

void f() {
goto l1; // Ill-formed
goto l2; // Ill-formed
try {

goto l1; // OK
goto l2; // Ill-formed
l1: ;

} catch (...) {
l2: ;
goto l1; // Ill-formed
goto l2; // OK

}
}

—end example] A goto, break, return, or continue statement can be used to transfer control out of
a try block or handler. When this happens, each variable declared in the try block will be destroyed in the
context that directly contains its declaration. [Example:

297

ISO/IEC 14882:2003(E)  ISO/IEC

15 Exception handling 15 Exception handling

lab: try {
T1 t1;
try {

T2 t2;
if (condition)

goto lab;
} catch(...) { /* handler 2 */ }

} catch(...) { /* handler 1 */ }

Here, executing goto lab; will destroy first t2, then t1, assuming the condition does not declare a
variable. Any exception raised while destroying t2 will result in executing handler 2; any exception raised
while destroying t1 will result in executing handler 1.]

3 A function-try-block associates a handler-seq with the ctor-initializer, if present, and the function-body. An
exception thrown during the execution of the initializer expressions in the ctor-initializer or during the exe-
cution of the function-body transfers control to a handler in a function-try-block in the same way as an
exception thrown during the execution of a try-block transfers control to other handlers. [Example:

int f(int);
class C {

int i;
double d;

public:
C(int, double);

};

C::C(int ii, double id)
try

: i(f(ii)), d(id)
{

// constructor function body
}
catch (...)
{

// handles exceptions thrown from the ctor-initializer
// and from the constructor function body

}

—end example]

[except.throw] 15.1 Throwing an exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object deter-
mines which handlers can catch it. [Example:

throw "Help!";

can be caught by a handler of const char* type:

try {
// ...

}
catch(const char* p) {

// handle character string exceptions here
}

and

class Overflow {
// ...

public:
Overflow(char,double,double);

};

298

 ISO/IEC ISO/IEC 14882:2003(E)

15 Exception handling 15.1 Throwing an exception

void f(double x)
{

// ...
throw Overflow(’+’,x,3.45e107);

}

can be caught by a handler for exceptions of type Overflow

try {
// ...
f(1.2);
// ...

}
catch(Overflow& oo) {

// handle exceptions of type Overflow here
}

—end example]

2 When an exception is thrown, control is transferred to the nearest handler with a matching type (15.3);
“nearest” means the handler for which the compound-statement, ctor-initializer, or function-body following
the try keyword was most recently entered by the thread of control and not yet exited.

3 A throw-expression initializes a temporary object, called the exception object, the type of which is deter-
mined by removing any top-level cv-qualifiers from the static type of the operand of throw and adjusting
the type from “array of T” or “function returning T” to “pointer to T” or “pointer to function returning T”,
respectively. [Note: the temporary object created for a throw-expression that is a string literal is never of
type char* or wchar_t*; that is, the special conversions for string literals from the types “array of
const char” and “array of const wchar_t” to the types “pointer to char” and “pointer to
wchar_t”, respectively (4.2), are never applied to a throw-expression.] The temporary is used to initial-
ize the variable named in the matching handler (15.3). The type of the throw-expression shall not be an
incomplete type, or a pointer or reference to an incomplete type, other than void*, const void*,
volatile void*, or const volatile void*. Except for these restrictions and the restrictions on
type matching mentioned in 15.3, the operand of throw is treated exactly as a function argument in a call
(5.2.2) or the operand of a return statement.

4 The memory for the temporary copy of the exception being thrown is allocated in an unspecified way,
except as noted in 3.7.3.1. The temporary persists as long as there is a handler being executed for that
exception. In particular, if a handler exits by executing a throw; statement, that passes control to another
handler for the same exception, so the temporary remains. When the last handler being executed for the
exception exits by any means other than throw; the temporary object is destroyed and the implementation
may deallocate the memory for the temporary object; any such deallocation is done in an unspecified way.
The destruction occurs immediately after the destruction of the object declared in the exception-declaration
in the handler.

5 If the use of the temporary object can be eliminated without changing the meaning of the program except
for the execution of constructors and destructors associated with the use of the temporary object (12.2), then
the exception in the handler can be initialized directly with the argument of the throw expression. When
the thrown object is a class object, and the copy constructor used to initialize the temporary copy is not
accessible, the program is ill-formed (even when the temporary object could otherwise be eliminated).
Similarly, if the destructor for that object is not accessible, the program is ill-formed (even when the tempo-
rary object could otherwise be eliminated).

6 A throw-expression with no operand rethrows the exception being handled. The exception is reactivated
with the existing temporary; no new temporary exception object is created. The exception is no longer con-
sidered to be caught; therefore, the value of uncaught_exception() will again be true. [Example:
code that must be executed because of an exception yet cannot completely handle the exception can be writ-
ten like this:

299

ISO/IEC 14882:2003(E)  ISO/IEC

15.1 Throwing an exception 15 Exception handling

try {
// ...

}
catch (...) { // catch all exceptions

// respond (partially) to exception

throw; // pass the exception to some
// other handler

}

—end example]

7 The exception thrown is the one most recently caught and not finished. An exception is considered caught
when initialization is complete for the formal parameter of the corresponding catch clause, or when
terminate() or unexpected() is entered due to a throw. An exception is considered finished when
the corresponding catch clause exits or when unexpected() exits after being entered due to a throw.

8 If no exception is presently being handled, executing a throw-expression with no operand calls
terminate() (15.5.1).

[except.ctor] 15.2 Constructors and destructors

1 As control passes from a throw-expression to a handler, destructors are invoked for all automatic objects
constructed since the try block was entered. The automatic objects are destroyed in the reverse order of the
completion of their construction.

2 An object that is partially constructed or partially destroyed will have destructors executed for all of its
fully constructed subobjects, that is, for subobjects for which the constructor has completed execution and
the destructor has not yet begun execution. Should a constructor for an element of an automatic array
throw an exception, only the constructed elements of that array will be destroyed. If the object or array was
allocated in a new-expression, the matching deallocation function (3.7.3.2, 5.3.4, 12.5), if any, is called to
free the storage occupied by the object.

3 The process of calling destructors for automatic objects constructed on the path from a try block to a
throw-expression is called “stack unwinding.” [Note: If a destructor called during stack unwinding exits
with an exception, terminate is called (15.5.1). So destructors should generally catch exceptions and
not let them propagate out of the destructor. —end note]

[except.handle] 15.3 Handling an exception

1 The exception-declaration in a handler describes the type(s) of exceptions that can cause that handler to be
entered. The exception-declaration shall not denote an incomplete type. The exception-declaration shall
not denote a pointer or reference to an incomplete type, other than void*, const void*, volatile
void*, or const volatile void*. Types shall not be defined in an exception-declaration.

2 A handler of type “array of T” or “function returning T” is adjusted to be of type “pointer to T” or “pointer
to function returning T”, respectively.

3 A handler is a match for an exception object of type E if

— The handler is of type cv T or cv T& and E and T are the same type (ignoring the top-level cv-
qualifiers), or

— the handler is of type cv T or cv T& and T is an unambiguous public base class of E, or

— the handler is of type cv1 T* cv2 and E is a pointer type that can be converted to the type of the handler
by either or both of

— a standard pointer conversion (4.10) not involving conversions to pointers to private or protected or
ambiguous classes

300

 ISO/IEC ISO/IEC 14882:2003(E)

15 Exception handling 15.3 Handling an exception

— a qualification conversion
[Note: a throw-expression which is an integral constant expression of integer type that evaluates to zero
does not match a handler of pointer type; that is, the null pointer constant conversions (4.10, 4.11) do not
apply.]

4 [Example:

class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /* ... */ };
class Zerodivide: public Matherr { /* ... */ };

void f()
{

try {
g();

}

catch (Overflow oo) {
// ...

}
catch (Matherr mm) {

// ...
}

}

Here, the Overflow handler will catch exceptions of type Overflow and the Matherr handler will
catch exceptions of type Matherr and of all types publicly derived from Matherr including exceptions
of type Underflow and Zerodivide.]

5 The handlers for a try block are tried in order of appearance. That makes it possible to write handlers that
can never be executed, for example by placing a handler for a derived class after a handler for a correspond-
ing base class.

6 A ... in a handler’s exception-declaration functions similarly to ... in a function parameter declara-
tion; it specifies a match for any exception. If present, a ... handler shall be the last handler for its try
block.

7 If no match is found among the handlers for a try block, the search for a matching handler continues in a
dynamically surrounding try block.

8 An exception is considered handled upon entry to a handler. [Note: the stack will have been unwound at
that point.]

9 If no matching handler is found in a program, the function terminate() is called; whether or not the
stack is unwound before this call to terminate() is implementation-defined (15.5.1).

10 Referring to any non-static member or base class of an object in the handler for a function-try-block of a
constructor or destructor for that object results in undefined behavior.

11 The fully constructed base classes and members of an object shall be destroyed before entering the handler
of a function-try-block of a constructor or destructor for that object.

12 The scope and lifetime of the parameters of a function or constructor extend into the handlers of a
function-try-block.

13 Exceptions thrown in destructors of objects with static storage duration or in constructors of namespace-
scope objects are not caught by a function-try-block on main().

14 If the handlers of a function-try-block contain a jump into the body of a constructor or destructor, the pro-
gram is ill-formed.

301

ISO/IEC 14882:2003(E)  ISO/IEC

15.3 Handling an exception 15 Exception handling

15 If a return statement appears in a handler of the function-try-block of a constructor, the program is ill-
formed.

16 The exception being handled is rethrown if control reaches the end of a handler of the function-try-block of
a constructor or destructor. Otherwise, a function returns when control reaches the end of a handler for the
function-try-block (6.6.3). Flowing off the end of a function-try-block is equivalent to a return with no
value; this results in undefined behavior in a value-returning function (6.6.3).

17 When the exception-declaration specifies a class type, a copy constructor is used to initialize either the
object declared in the exception-declaration or, if the exception-declaration does not specify a name, a tem-
porary object of that type. The object shall not have an abstract class type. The object is destroyed when
the handler exits, after the destruction of any automatic objects initialized within the handler. The copy
constructor and destructor shall be accessible in the context of the handler. If the copy constructor and
destructor are implicitly declared (12.8), such a use in the handler causes these functions to be implicitly
defined; otherwise, the program shall provide a definition for these functions.

18 If the use of a temporary object can be eliminated without changing the meaning of the program except for
execution of constructors and destructors associated with the use of the temporary object, then the optional
name can be bound directly to the temporary object specified in a throw-expression causing the handler to
be executed. The copy constructor and destructor associated with the object shall be accessible even when
the temporary object is eliminated.

19 When the handler declares a non-constant object, any changes to that object will not affect the temporary
object that was initialized by execution of the throw-expression. When the handler declares a reference to a
non-constant object, any changes to the referenced object are changes to the temporary object initialized
when the throw-expression was executed and will have effect should that object be rethrown.

[except.spec] 15.4 Exception specifications

1 A function declaration lists exceptions that its function might directly or indirectly throw by using an
exception-specification as a suffix of its declarator.

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

An exception-specification shall appear only on a function declarator in a function, pointer, reference or
pointer to member declaration or definition. An exception-specification shall not appear in a typedef decla-
ration. [Example:

void f() throw(int); // OK
void (*fp)() throw (int); // OK
void g(void pfa() throw(int)); // OK
typedef int (*pf)() throw(int); // ill-formed

—end example] A type denoted in an exception-specification shall not denote an incomplete type. A type
denoted in an exception-specification shall not denote a pointer or reference to an incomplete type, other
than void*, const void*, volatile void*, or const volatile void*.

2 If any declaration of a function has an exception-specification, all declarations, including the definition and
an explicit specialization, of that function shall have an exception-specification with the same set of type-
ids. If any declaration of a pointer to function, reference to function, or pointer to member function has an
exception-specification, all occurrences of that declaration shall have an exception-specification with the
same set of type-ids. In an explicit instantiation directive an exception-specification may be specified, but
is not required. If an exception-specification is specified in an explicit instantiation directive, it shall have
the same set of type-ids as other declarations of that function. A diagnostic is required only if the sets of
type-ids are different within a single translation unit.

302

 ISO/IEC ISO/IEC 14882:2003(E)

15 Exception handling 15.4 Exception specifications

3 If a virtual function has an exception-specification, all declarations, including the definition, of any function
that overrides that virtual function in any derived class shall only allow exceptions that are allowed by the
exception-specification of the base class virtual function. [Example:

struct B {
virtual void f() throw (int, double);
virtual void g();

};

struct D: B {
void f(); // ill-formed
void g() throw (int); // OK

};

The declaration of D::f is ill-formed because it allows all exceptions, whereas B::f allows only int and
double.] A similar restriction applies to assignment to and initialization of pointers to functions, pointers
to member functions, and references to functions: the target entity shall allow at least the exceptions
allowed by the source value in the assignment or initialization. [Example:

class A { /* ... */ };
void (*pf1)(); // no exception specification
void (*pf2)() throw(A);

void f()
{

pf1 = pf2; // OK: pf1 is less restrictive
pf2 = pf1; // error: pf2 is more restrictive

}

—end example]

4 In such an assignment or initialization, exception-specifications on return types and parameter types shall
match exactly. In other assignments or initializations, exception-specifications shall match exactly.

5 Types shall not be defined in exception-specifications.

6 An exception-specification can include the same type more than once and can include classes that are
related by inheritance, even though doing so is redundant. An exception-specification can also include the
class std::bad_exception (18.6.2.1).

7 A function is said to allow an exception of type E if its exception-specification contains a type T for which
a handler of type T would be a match (15.3) for an exception of type E.

8 Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a
function with an exception-specification, the function unexpected() is called (15.5.2) if the exception-
specification does not allow the exception. [Example:

class X { };
class Y { };
class Z: public X { };
class W { };

void f() throw (X, Y)
{

int n = 0;
if (n) throw X(); // OK
if (n) throw Z(); // also OK
throw W(); // will call unexpected()

}

—end example]

9 The function unexpected() may throw an exception that will satisfy the exception-specification for
which it was invoked, and in this case the search for another handler will continue at the call of the function

303

ISO/IEC 14882:2003(E)  ISO/IEC

15.4 Exception specifications 15 Exception handling

with this exception-specification (see 15.5.2), or it may call terminate().

10 An implementation shall not reject an expression merely because when executed it throws or might throw
an exception that the containing function does not allow. [Example:

extern void f() throw(X, Y);

void g() throw(X)
{

f(); // OK
}

the call to f is well-formed even though when called, f might throw exception Y that g does not allow.]

11 A function with no exception-specification allows all exceptions. A function with an empty exception-
specification, throw(), does not allow any exceptions.

12 An exception-specification is not considered part of a function’s type.

13 An implicitly declared special member function (clause 12) shall have an exception-specification. If f is an
implicitly declared default constructor, copy constructor, destructor, or copy assignment operator, its
implicit exception-specification specifies the type-id T if and only if T is allowed by the exception-
specification of a function directly invoked by f’s implicit definition; f shall allow all exceptions if any
function it directly invokes allows all exceptions, and f shall allow no exceptions if every function it
directly invokes allows no exceptions. [Example:

struct A {
A();
A(const A&) throw();
˜A() throw(X);

};
struct B {

B() throw();
B(const B&) throw();
˜B() throw(Y);

};
struct D : public A, public B {

// Implicit declaration of D::D();
// Implicit declaration of D::D(const D&) throw();
// Implicit declaration of D::˜D() throw (X,Y);

};

Furthermore, if A::˜A() or B::˜B() were virtual, D::˜D() would not be as restrictive as that of
A::˜A, and the program would be ill-formed since a function that overrides a virtual function from a base
class shall have an exception-specification at least as restrictive as that in the base class.]

[except.special] 15.5 Special functions

1 The exception handling mechanism relies on two functions, terminate() and unexpected(), for
coping with errors related to the exception handling mechanism itself (18.6).

[except.terminate] 15.5.1 The terminate() function

1 In the following situations exception handling must be abandoned for less subtle error handling techniques:

— when the exception handling mechanism, after completing evaluation of the expression to be thrown but
before the exception is caught (15.1), calls a user function that exits via an uncaught exception,134)

— when the exception handling mechanism cannot find a handler for a thrown exception (15.3), or

134) For example, if the object being thrown is of a class with a copy constructor, terminate() will be called if that copy construc-
tor exits with an exception during a throw.

304

 ISO/IEC ISO/IEC 14882:2003(E)

15 Exception handling 15.5.1 The terminate() function

— when the destruction of an object during stack unwinding (15.2) exits using an exception, or

— when construction or destruction of a non-local object with static storage duration exits using an excep-
tion (3.6.2), or

— when execution of a function registered with atexit exits using an exception (18.3), or

— when a throw-expression with no operand attempts to rethrow an exception and no exception is being
handled (15.1), or

— when unexpected throws an exception which is not allowed by the previously violated exception-
specification, and std::bad_exception is not included in that exception-specification (15.5.2), or

— when the implementation’s default unexpected_handler is called (18.6.2.2)

2 In such cases,

void terminate();

is called (18.6.3). In the situation where no matching handler is found, it is implementation-defined
whether or not the stack is unwound before terminate() is called. In all other situations, the stack shall
not be unwound before terminate() is called. An implementation is not permitted to finish stack
unwinding prematurely based on a determination that the unwind process will eventually cause a call to
terminate().

[except.unexpected] 15.5.2 The unexpected() function

1 If a function with an exception-specification throws an exception that is not listed in the exception-
specification, the function

void unexpected();

is called (18.6.2) immediately after completing the stack unwinding for the former function

2 The unexpected() function shall not return, but it can throw (or re-throw) an exception. If it throws a
new exception which is allowed by the exception specification which previously was violated, then the
search for another handler will continue at the call of the function whose exception specification was vio-
lated. If it throws or rethrows an exception that the exception-specification does not allow then the follow-
ing happens: If the exception-specification does not include the class std::bad_exception (18.6.2.1)
then the function terminate() is called, otherwise the thrown exception is replaced by an
implementation-defined object of the type std::bad_exception and the search for another handler
will continue at the call of the function whose exception-specification was violated.

3 Thus, an exception-specification guarantees that only the listed exceptions will be thrown. If the
exception-specification includes the type std::bad_exception then any exception not on the list may
be replaced by std::bad_exception within the function unexpected().

[except.uncaught] 15.5.3 The uncaught_exception() function

1 The function

bool uncaught_exception() throw()

returns true after completing evaluation of the object to be thrown until completing the initialization of
the exception-declaration in the matching handler (18.6.4). This includes stack unwinding. If the excep-
tion is rethrown (15.1), uncaught_exception() returns true from the point of rethrow until the
rethrown exception is caught again.

[except.access] 15.6 Exceptions and access

1 If the exception-declaration in a catch clause has class type, and the function in which the catch clause
occurs does not have access to the destructor of that class, the program is ill-formed.

305

ISO/IEC 14882:2003(E)  ISO/IEC

15.6 Exceptions and access 15 Exception handling

2 An object can be thrown if it can be copied and destroyed in the context of the function in which the
throw-expression occurs.

306

 ISO/IEC ISO/IEC 14882:2003(E)

16 Preprocessing directives [cpp]

1 A preprocessing directive consists of a sequence of preprocessing tokens. The first token in the sequence is
a # preprocessing token that is either the first character in the source file (optionally after white space con-
taining no new-line characters) or that follows white space containing at least one new-line character. The
last token in the sequence is the first new-line character that follows the first token in the sequence.135)

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

135) Thus, preprocessing directives are commonly called “lines.” These “lines” have no other syntactic significance, as all white space
is equivalent except in certain situations during preprocessing (see the # character string literal creation operator in 16.3.2, for exam-
ple).

307

ISO/IEC 14882:2003(E)  ISO/IEC

16 Preprocessing directives 16 Preprocessing directives

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

2 The only white-space characters that shall appear between preprocessing tokens within a preprocessing
directive (from just after the introducing # preprocessing token through just before the terminating new-line
character) are space and horizontal-tab (including spaces that have replaced comments or possibly other
white-space characters in translation phase 3).

3 The implementation can process and skip sections of source files conditionally, include other source files,
and replace macros. These capabilities are called preprocessing, because conceptually they occur before
translation of the resulting translation unit.

4 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless other-
wise stated.

[cpp.cond] 16.1 Conditional inclusion

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it
shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as
described below;136) and it may contain unary operator expressions of the form

defined identifier
or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it
has been the subject of a #define preprocessing directive without an intervening #undef directive with
the same subject identifier), zero if it is not.

2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical
form of a token (2.6).

3 Preprocessing directives of the forms

if constant-expression new-line groupopt

elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling
constant expression are replaced (except for those macro names modified by the defined unary operator),
just as in normal text. If the token defined is generated as a result of this replacement process or use of
the defined unary operator does not match one of the two specified forms prior to macro replacement,
the behavior is undefined. After all replacements due to macro expansion and the defined unary operator
have been performed, all remaining identifiers and keywords137), except for true and false, are
replaced with the pp-number 0, and then each preprocessing token is converted into a token. The resulting

136) Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro
names — there simply are no keywords, enumeration constants, and so on.
137) An alternative token (2.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore it is
not subject to this replacement.

308

 ISO/IEC ISO/IEC 14882:2003(E)

16 Preprocessing directives 16.1 Conditional inclusion

tokens comprise the controlling constant expression which is evaluated according to the rules of 5.19 using
arithmetic that has at least the ranges specified in 18.2, except that int and unsigned int act as if they
have the same representation as, respectively, long and unsigned long. This includes interpreting
character literals, which may involve converting escape sequences into execution character set members.
Whether the numeric value for these character literals matches the value obtained when an identical charac-
ter literal occurs in an expression (other than within a #if or #elif directive) is implementation-
defined.138) Also, whether a single-character character literal may have a negative value is
implementation-defined. Each subexpression with type bool is subjected to integral promotion before
processing continues.

5 Preprocessing directives of the forms

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent
to #if defined identifier and #if !defined identifier respectively.

6 Each directive’s condition is checked in order. If it evaluates to false (zero), the group that it controls is
skipped: directives are processed only through the name that determines the directive in order to keep track
of the level of nested conditionals; the rest of the directives’ preprocessing tokens are ignored, as are the
other preprocessing tokens in the group. Only the first group whose control condition evaluates to true
(nonzero) is processed. If none of the conditions evaluates to true, and there is a #else directive, the
group controlled by the #else is processed; lacking a #else directive, all the groups until the #endif
are skipped.139)

[cpp.include] 16.2 Source file inclusion

1 A #include directive shall identify a header or source file that can be processed by the implementation.

2 A preprocessing directive of the form

include <h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by the specified
sequence between the < and > delimiters, and causes the replacement of that directive by the entire contents
of the header. How the places are specified or the header identified is implementation-defined.

3 A preprocessing directive of the form

include "q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified by the specified
sequence between the " delimiters. The named source file is searched for in an implementation-defined
manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read

include <h-char-sequence> new-line

with the identical contained sequence (including > characters, if any) from the original directive.

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include

138) Thus, the constant expression in the following #if directive and if statement is not guaranteed to evaluate to the same value in
these two contexts.

#if ’z’ - ’a’ = = 25

if (’z’ - ’a’ = = 25)

139) As indicated by the syntax, a preprocessing token shall not follow a #else or #endif directive before the terminating new-line
character. However, comments may appear anywhere in a source file, including within a preprocessing directive.

309

ISO/IEC 14882:2003(E)  ISO/IEC

16.2 Source file inclusion 16 Preprocessing directives

in the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements
does not match one of the two previous forms, the behavior is undefined.140) The method by which a
sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters is
combined into a single header name preprocessing token is implementation-defined.

5 The mapping between the delimited sequence and the external source file name is implementation-defined.
The implementation provides unique mappings for sequences consisting of one or more nondigits (2.10)
followed by a period (.) and a single nondigit. The implementation may ignore the distinctions of alpha-
betical case.

6 A #include preprocessing directive may appear in a source file that has been read because of a
#include directive in another file, up to an implementation-defined nesting limit.

7 [Example: The most common uses of #include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

—end example]

8 [Example: Here is a macro-replaced #include directive:

#if VERSION = = 1
#define INCFILE "vers1.h"

#elif VERSION = = 2
#define INCFILE "vers2.h" /* and so on */

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

—end example]

[cpp.replace] 16.3 Macro replacement

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number,
ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as a macro without use of lparen (an object-like macro) may be redefined by
another #define preprocessing directive provided that the second definition is an object-like macro defi-
nition and the two replacement lists are identical, otherwise the program is ill-formed.

3 An identifier currently defined as a macro using lparen (a function-like macro) may be redefined by another
#define preprocessing directive provided that the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are identical, otherwise
the program is ill-formed.

4 The number of arguments in an invocation of a function-like macro shall agree with the number of parame-
ters in the macro definition, and there shall exist a) preprocessing token that terminates the invocation.

5 A parameter identifier in a function-like macro shall be uniquely declared within its scope.

6 The identifier immediately following the define is called the macro name. There is one name space for
macro names. Any white-space characters preceding or following the replacement list of preprocessing
tokens are not considered part of the replacement list for either form of macro.

7 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive could begin, the identifier is not subject to macro replacement.

140) Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expan-
sion that results in two string literals is an invalid directive.

310

 ISO/IEC ISO/IEC 14882:2003(E)

16 Preprocessing directives 16.3 Macro replacement

8 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name141) to be replaced by
the replacement list of preprocessing tokens that constitute the remainder of the directive.142) The replace-
ment list is then rescanned for more macro names as specified below.

9 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line

defines a function-like macro with parameters, similar syntactically to a function call. The parameters are
specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list
until the new-line character that terminates the #define preprocessing directive. Each subsequent
instance of the function-like macro name followed by a (as the next preprocessing token introduces the
sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of
the macro). The replaced sequence of preprocessing tokens is terminated by the matching) preprocessing
token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the
sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered
a normal white-space character.

10 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If (before argument substitution) any argument consists of no preprocessing tokens, the behav-
ior is undefined. If there are sequences of preprocessing tokens within the list of arguments that would oth-
erwise act as preprocessing directives, the behavior is undefined.

[cpp.subst] 16.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution
takes place. A parameter in the replacement list, unless preceded by a # or ## preprocessing token or fol-
lowed by a ## preprocessing token (see below), is replaced by the corresponding argument after all macros
contained therein have been expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the translation unit; no other preprocessing tokens
are available.

[cpp.stringize] 16.3.2 The # operator

1 Each # preprocessing token in the replacement list for a function-like macro shall be followed by a parame-
ter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a # preprocessing token, both are
replaced by a single character string literal preprocessing token that contains the spelling of the preprocess-
ing token sequence for the corresponding argument. Each occurrence of white space between the
argument’s preprocessing tokens becomes a single space character in the character string literal. White
space before the first preprocessing token and after the last preprocessing token comprising the argument is
deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the
character string literal, except for special handling for producing the spelling of string literals and character
literals: a \ character is inserted before each " and \ character of a character literal or string literal (includ-
ing the delimiting " characters). If the replacement that results is not a valid character string literal, the
behavior is undefined. The order of evaluation of # and ## operators is unspecified.

141) Since, by macro-replacement time, all character literals and string literals are preprocessing tokens, not sequences possibly con-
taining identifier-like subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.
142) An alternative token (2.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore it is
not possible to define a macro whose name is the same as that of an alternative token.

311

ISO/IEC 14882:2003(E)  ISO/IEC

16.3.3 The ## operator 16 Preprocessing directives

[cpp.concat] 16.3.3 The ## operator

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement list for either form
of macro definition.

2 If, in the replacement list, a parameter is immediately preceded or followed by a ## preprocessing token,
the parameter is replaced by the corresponding argument’s preprocessing token sequence.

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for
more macro names to replace, each instance of a ## preprocessing token in the replacement list (not from
an argument) is deleted and the preceding preprocessing token is concatenated with the following prepro-
cessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of ## operators is unspecified.

[cpp.rescan] 16.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted, the resulting preprocessing token
sequence is rescanned with all subsequent preprocessing tokens of the source file for more macro names to
replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the
rest of the source file’s preprocessing tokens), it is not replaced. Further, if any nested replacements
encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name prepro-
cessing tokens are no longer available for further replacement even if they are later (re)examined in con-
texts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing
directive even if it resembles one.

[cpp.scope] 16.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding #undef directive is
encountered or (if none is encountered) until the end of the translation unit.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identi-
fier is not currently defined as a macro name.

3 [Note: The simplest use of this facility is to define a “manifest constant,” as in

#define TABSIZE 100

int table[TABSIZE];

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the
advantages of working for any compatible types of the arguments and of generating in-line code without the
overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a sec-
ond time (including side effects) and generating more code than a function if invoked several times. It also
cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

5 To illustrate the rules for redefinition and reexamination, the sequence

312

 ISO/IEC ISO/IEC 14882:2003(E)

16 Preprocessing directives 16.3.5 Scope of macro definitions

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(̃
#define m(a) a(w)
#define w 0,1
#define t(a) a

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)ˆm(m);

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (̃ 5)) & f(2 * (0,1))ˆm(0,1);

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n /* from previous #include example */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */

= = 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) = = 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the # and ## tokens in the macro definition is optional.

7 And finally, to demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* other */
#define FTN_LIKE(a) (a)
#define FTN_LIKE(a)(/* note the white space */ \

a /* other stuff on this line
*/)

313

ISO/IEC 14882:2003(E)  ISO/IEC

16.3.5 Scope of macro definitions 16 Preprocessing directives

But the following redefinitions are invalid:

#define OBJ_LIKE (0) /* different token sequence */
#define OBJ_LIKE (1 - 1) /* different white space */
#define FTN_LIKE(b) (a) /* different parameter usage */
#define FTN_LIKE(b) (b) /* different parameter spelling */

—end note]

[cpp.line] 16.4 Line control

1 The string literal of a #line directive, if present, shall be a character string literal.

2 The line number of the current source line is one greater than the number of new-line characters read or
introduced in translation phase 1 (2.1) while processing the source file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line
that has a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit
sequence specifies zero or a number greater than 32767, the behavior is undefined.

4 A preprocessing directive of the form

line digit-sequence "s-char-sequenceopt" new-line

sets the line number similarly and changes the presumed name of the source file to be the contents of the
character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on
the directive are processed just as in normal text (each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements
does not match one of the two previous forms, the behavior is undefined; otherwise, the result is processed
as appropriate.

[cpp.error] 16.5 Error directive

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified sequence of prepro-
cessing tokens, and renders the program ill-formed.

[cpp.pragma] 16.6 Pragma directive

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

causes the implementation to behave in an implementation-defined manner. Any pragma that is not recog-
nized by the implementation is ignored.

[cpp.null] 16.7 Null directive

1 A preprocessing directive of the form

new-line

has no effect.

314

 ISO/IEC ISO/IEC 14882:2003(E)

16 Preprocessing directives 16.8 Predefined macro names

[cpp.predefined] 16.8 Predefined macro names

1 The following macro names shall be defined by the implementation:

_ _LINE_ _ The line number of the current source line (a decimal constant).

_ _FILE_ _ The presumed name of the source file (a character string literal).

_ _DATE_ _ The date of translation of the source file (a character string literal of the form
"Mmm dd yyyy", where the names of the months are the same as those generated by the asctime
function, and the first character of dd is a space character if the value is less than 10). If the date of
translation is not available, an implementation-defined valid date is supplied.

_ _TIME_ _ The time of translation of the source file (a character string literal of the form "hh:mm:ss"
as in the time generated by the asctime function). If the time of translation is not available, an
implementation-defined valid time is supplied.

_ _STDC_ _ Whether _ _STDC_ _ is predefined and if so, what its value is, are implementation-defined.

_ _cplusplus The name _ _cplusplus is defined to the value 199711L when compiling a C + +
translation unit.143)

2 The values of the predefined macros (except for _ _LINE_ _ and _ _FILE_ _) remain constant throughout
the translation unit.

3 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a
#define or a #undef preprocessing directive, the behavior is undefined.

143) It is intended that future versions of this standard will replace the value of this macro with a greater value. Non-conforming com-
pilers should use a value with at most five decimal digits.

315

ISO/IEC 14882:2003(E)  ISO/IEC

316

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17 Library introduction

17 Library introduction [lib.library]

1 This clause describes the contents of the C + + Standard Library, how a well-formed C + + program makes use
of the library, and how a conforming implementation may provide the entities in the library.

2 The C + + Standard Library provides an extensible framework, and contains components for: language sup-
port, diagnostics, general utilities, strings, locales, containers, iterators, algorithms, numerics, and
input/output. The language support components are required by certain parts of the C + + language, such as
memory allocation (5.3.4, 5.3.5) and exception processing (clause 15).

3 The general utilities include components used by other library elements, such as a predefined storage allo-
cator for dynamic storage management (3.7.3). The diagnostics components provide a consistent frame-
work for reporting errors in a C + + program, including predefined exception classes.

4 The strings components provide support for manipulating text represented as sequences of type char,
sequences of type wchar_t, or sequences of any other ‘‘character-like’’ type. The localization compo-
nents extend internationalization support for such text processing.

5 The containers, iterators, and algorithms provide a C + + program with access to a subset of the most widely
used algorithms and data structures.

6 Numeric algorithms and the complex number components extend support for numeric processing. The
valarray components provide support for n-at-a-time processing, potentially implemented as parallel
operations on platforms that support such processing.

7 The iostreams components are the primary mechanism for C + + program input/output. They can be used
with other elements of the library, particularly strings, locales, and iterators.

8 This library also makes available the facilities of the Standard C library, suitably adjusted to ensure static
type safety.

9 The following subclauses describe the definitions (17.1), and method of description (17.3) for the library.
Clause 17.4 and clauses 18 through 27 specify the contents of the library, and library requirements and con-
straints on both well-formed C + + programs and conforming implementations.

[lib.definitions] 17.1 Definitions

[defns.arbitrary.stream] 17.1.1 arbitrary-positional stream
a stream (described in clause 27) that can seek to any integral position within the length of the stream.
Every arbitrary-positional stream is also a repositional stream (17.1.16).

[defns.character] 17.1.2 character
in clauses 21, 22, and 27, means any object which, when treated sequentially, can represent text. The term
does not only mean char and wchar_t objects, but any value that can be represented by a type that pro-
vides the definitions specified in these clauses.

[defns.character.container] 17.1.3 character container type
a class or a type used to represent a character (17.1.2). It is used for one of the template parameters of the
string and iostream class templates. A character container class shall be a POD (3.9) type.

[defns.comparison] 17.1.4 comparison function
an operator function (13.5) for any of the equality (5.10) or relational (5.9) operators.

317

ISO/IEC 14882:2003(E)  ISO/IEC

17.1.5 component 17 Library introduction

[defns.component] 17.1.5 component
a group of library entities directly related as members, parameters, or return types. For example, the class
template basic_string and the non-member function templates that operate on strings are referred to as
the string component.

[defns.default.behavior] 17.1.6 default behavior
a description of replacement function and handler function semantics. Any specific behavior provided by
the implementation, within the scope of the required behavior.

[defns.handler] 17.1.7 handler function
a non-reserved function whose definition may be provided by a C + + program. A C + + program may desig-
nate a handler function at various points in its execution, by supplying a pointer to the function when call-
ing any of the library functions that install handler functions (clause 18).

[defns.iostream.templates] 17.1.8 iostream class templates
templates, defined in clause 27, that take two template arguments: charT and traits. The argument
charT is a character container class, and the argument traits is a structure which defines additional
characteristics and functions of the character type represented by charT necessary to implement the ios-
tream class templates.

[defns.modifier] 17.1.9 modifier function
a class member function (9.3), other than constructors, assignment, or destructor, that alters the state of an
object of the class.

[defns.obj.state] 17.1.10 object state
the current value of all nonstatic class members of an object (9.2). The state of an object can be obtained
by using one or more observer functions.

17.1.11 narrow-oriented iostream classes
the instantiations of the iostream class templates on the character container class char and the default
value of the traits parameter. The traditional iostream classes are regarded as the narrow-oriented ios-
tream classes (27.3.1).

[defns.ntcts] 17.1.12 NTCTS
a sequence of values that have character type, that precede the terminating null character type value
charT().

[defns.observer] 17.1.13 observer function
a class member function (9.3) that accesses the state of an object of the class, but does not alter that state.
Observer functions are specified as const member functions (9.3.2).

[defns.replacement] 17.1.14 replacement function
a non-reserved function whose definition is provided by a C + + program. Only one definition for such a
function is in effect for the duration of the program’s execution, as the result of creating the program (2.1)
and resolving the definitions of all translation units (3.5).

[defns.required.behavior] 17.1.15 required behavior
a description of replacement function and handler function semantics, applicable to both the behavior pro-
vided by the implementation and the behavior that shall be provided by any function definition in the pro-
gram. If a function defined in a C + + program fails to meet the required behavior when it executes, the
behavior is undefined.

318

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17.1.16 repositional stream

[defns.repositional.stream] 17.1.16 repositional stream
a stream (described in clause 27) that can seek only to a position that was previously encountered.

[defns.reserved.function] 17.1.17 reserved function
a function, specified as part of the C + + Standard Library, that must be defined by the implementation. If a
C + + program provides a definition for any reserved function, the results are undefined.

[defns.traits] 17.1.18 traits class
a class that encapsulates a set of types and functions necessary for class templates and function templates to
manipulate objects of types for which they are instantiated. Traits classes defined in clauses 21, 22 and 27
are chararacter traits, which provide the character handling support needed by the string and iostream
classes.

17.1.19 wide-oriented iostream classes
the instantiations of the iostream class templates on the character container class wchar_t and the default
value of the traits parameter (27.3.2).

[defns.additional] 17.2 Additional definitions

1 1.3 defines additional terms used elsewhere in this International Standard.

[lib.description] 17.3 Method of description (Informative)

1 17.3 describes the conventions used to describe the C + + Standard Library. It describes the structures of the
normative clauses 18 through 27 (17.3.1), and other editorial conventions (17.3.2).

[lib.structure] 17.3.1 Structure of each subclause

1 17.4.1 provides a summary of the C + + Standard library’s contents. Other Library clauses provide detailed
specifications for each of the components in the library, as shown in Table 10:

Table 10—Library Categories
_ _________________________
Clause Category_ __________________________ _________________________
18 Language support
19 Diagnostics
20 General utilities
21 Strings
22 Localization
23 Containers
24 Iterators
25 Algorithms
26 Numerics
27 Input/output_ _________________________ 




























2 Each Library clause contains the following elements, as applicable:144)

— Summary

— Requirements

— Detailed specifications

144) To save space, items that do not apply to a clause are omitted. For example, if a clause does not specify any requirements, there
will be no ‘‘Requirements’’ subclause.

319

ISO/IEC 14882:2003(E)  ISO/IEC

17.3.1 Structure of each subclause 17 Library introduction

— References to the Standard C library

[lib.structure.summary] 17.3.1.1 Summary

1 The Summary provides a synopsis of the category, and introduces the first-level subclauses. Each sub-
clause also provides a summary, listing the headers specified in the subclause and the library entities pro-
vided in each header.

2 Paragraphs labelled ‘‘Note(s):’’ or ‘‘Example(s):’’ are informative, other paragraphs are normative.

3 The summary and the detailed specifications are presented in the order:

— Macros

— Values

— Types

— Classes

— Functions

— Objects

[lib.structure.requirements] 17.3.1.2 Requirements

1 The library can be extended by a C + + program. Each clause, as applicable, describes the requirements that
such extensions must meet. Such extensions are generally one of the following:

— Template arguments

— Derived classes

— Containers, iterators, and/or algorithms that meet an interface convention

2 The string and iostreams components use an explicit representation of operations required of template argu-
ments. They use a class template char_traits to define these constraints.

3 Interface convention requirements are stated as generally as possible. Instead of stating ‘‘class X has to
define a member function operator++(),’’ the interface requires ‘‘for any object x of class X, ++x is
defined.’’ That is, whether the operator is a member is unspecified.

4 Requirements are stated in terms of well-defined expressions, which define valid terms of the types that sat-
isfy the requirements. For every set of requirements there is a table that specifies an initial set of the valid
expressions and their semantics (20.1.5, 23.1, 24.1). Any generic algorithm (clause 25) that uses the
requirements is described in terms of the valid expressions for its formal type parameters.

5 Template argument requirements are sometimes referenced by name. See 17.3.2.1.

6 In some cases the semantic requirements are presented as C + + code. Such code is intended as a specifica-
tion of equivalence of a construct to another construct, not necessarily as the way the construct must be
implemented.145)

[lib.structure.specifications] 17.3.1.3 Specifications

1 The detailed specifications each contain the following elements:146)

— Name and brief description

— Synopsis (class definition or function prototype, as appropriate)

— Restrictions on template arguments, if any

145) Although in some cases the code given is unambiguously the optimum implementation.
146) The form of these specifications was designed to follow the conventions established by existing C + + library vendors.

320

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17.3.1.3 Specifications

— Description of class invariants

— Description of function semantics

2 Descriptions of class member functions follow the order (as appropriate):147)

— Constructor(s) and destructor

— Copying & assignment functions

— Comparison functions

— Modifier functions

— Observer functions

— Operators and other non-member functions

3 Descriptions of function semantics contain the following elements (as appropriate):148)

— Requires: the preconditions for calling the function

— Effects: the actions performed by the function

— Postconditions: the observable results established by the function

— Returns: a description of the value(s) returned by the function

— Throws: any exceptions thrown by the function, and the conditions that would cause the exception

— Complexity: the time and/or space complexity of the function

4 For non-reserved replacement and handler functions, Clause 18 specifies two behaviors for the functions in
question: their required and default behavior. The default behavior describes a function definition provided
by the implementation. The required behavior describes the semantics of a function definition provided by
either the implementation or a C + + program. Where no distinction is explicitly made in the description, the
behavior described is the required behavior.

5 Complexity requirements specified in the library clauses are upper bounds, and implementations that pro-
vide better complexity guarantees satisfy the requirements.

[lib.structure.see.also] 17.3.1.4 C Library

1 Paragraphs labelled ‘‘SEE ALSO:’’ contain cross-references to the relevant portions of this Standard and the
ISO C standard, which is incorporated into this Standard by reference.

[lib.conventions] 17.3.2 Other conventions

1 This subclause describes several editorial conventions used to describe the contents of the C + + Standard
Library. These conventions are for describing implementation-defined types (17.3.2.1), and member func-
tions (17.3.2.2).

[lib.type.descriptions] 17.3.2.1 Type descriptions

1 The Requirements subclauses may describe names that are used to specify constraints on template argu-
ments.149) These names are used in clauses 20, 23, 25, and 26 to describe the types that may be supplied as
arguments by a C + + program when instantiating template components from the library.

147) To save space, items that do not apply to a class are omitted. For example, if a class does not specify any comparison functions,
there will be no ‘‘Comparison functions’’ subclause.
148) To save space, items that do not apply to a function are omitted. For example, if a function does not specify any further precondi-
tions, there will be no ‘‘Requires’’ paragraph.
149) Examples from 20.1 include: EqualityComparable, LessThanComparable, CopyConstructable, etc. Examples
from 24.1 include: InputIterator, ForwardIterator, Function, Predicate, etc.

321

ISO/IEC 14882:2003(E)  ISO/IEC

17.3.2.1 Type descriptions 17 Library introduction

2 Certain types defined in clause 27 are used to describe implementation-defined types. They are based on
other types, but with added constraints.

[lib.enumerated.types] 17.3.2.1.1 Enumerated types

1 Several types defined in clause 27 are enumerated types. Each enumerated type may be implemented as an
enumeration or as a synonym for an enumeration.150)

2 The enumerated type enumerated can be written:

enum enumerated { V0, V1, V2, V3,};

static const enumerated C0(V0);
static const enumerated C1(V1);
static const enumerated C2(V2);
static const enumerated C3(V3);
.....

3 Here, the names C0, C1, etc. represent enumerated elements for this particular enumerated type. All such
elements have distinct values.

[lib.bitmask.types] 17.3.2.1.2 Bitmask types

1 Several types defined in clause 27 are bitmask types. Each bitmask type can be implemented as an enumer-
ated type that overloads certain operators, as an integer type, or as a bitset (23.3.5).

2 The bitmask type bitmask can be written:

enum bitmask {
V0 = 1 << 0, V1 = 1 << 1, V2 = 1 << 2, V3 = 1 << 3,

};

static const bitmask C0(V0);
static const bitmask C1(V1);
static const bitmask C2(V2);
static const bitmask C3(V3);

.....

bitmask operator& (bitmask X, bitmask Y)
// For exposition only.
// int_type is an integral type capable of
// representing all values of bitmask
{ return static_cast<bitmask>(

static_cast<int_type>(X) &
static_cast<int_type>(Y)); }

bitmask operator| (bitmask X, bitmask Y)
{ return static_cast<bitmask>(

static_cast<int_type>(X) |
static_cast<int_type>(Y)); }

bitmask operatorˆ (bitmask X, bitmask Y)
{ return static_cast<bitmask>(

static_cast<int_type>(X) ˆ
static_cast<int_type>(Y)); }

bitmask operator˜ (bitmask X)
{ return static_cast<bitmask>(static_cast<int_type>(˜X)); }

150) Such as an integer type, with constant integer values (3.9.1).

322

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17.3.2.1.2 Bitmask types

bitmask& operator&=(bitmask& X, bitmask Y)
{ X = X & Y; return X; }

bitmask& operator|=(bitmask& X, bitmask Y)
{ X = X | Y; return X; }

bitmask& operatorˆ=(bitmask& X, bitmask Y)
{ X = X ˆ Y; return X; }

3 Here, the names C0, C1, etc. represent bitmask elements for this particular bitmask type. All such ele-
ments have distinct values such that, for any pair Ci and Cj, Ci & Ci is nonzero and Ci & Cj is zero.

4 The following terms apply to objects and values of bitmask types:

— To set a value Y in an object X is to evaluate the expression X  = Y.

— To clear a value Y in an object X is to evaluate the expression X &= ˜Y.

— The value Y is set in the object X if the expression X & Y is nonzero.

[lib.character.seq] 17.3.2.1.3 Character sequences

1 The Standard C library makes widespread use of characters and character sequences that follow a few uni-
form conventions:

— A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character set.151)

— The decimal-point character is the (single-byte) character used by functions that convert between a
(single-byte) character sequence and a value of one of the floating-point types. It is used in the charac-
ter sequence to denote the beginning of a fractional part. It is represented in clauses 18 through 27 by a
period, ’.’, which is also its value in the "C" locale, but may change during program execution by a
call to setlocale(int, const char*),152) or by a change to a locale object, as described in
clauses 22.1 and 27.

— A character sequence is an array object (8.3.4) A that can be declared as T A[N], where T is any of the
types char, unsigned char, or signed char (3.9.1), optionally qualified by any combination
of const or volatile. The initial elements of the array have defined contents up to and including
an element determined by some predicate. A character sequence can be designated by a pointer value S
that points to its first element.

[lib.byte.strings] 17.3.2.1.3.1 Byte strings

1 A null-terminated byte string, or NTBS, is a character sequence whose highest-addressed element with
defined content has the value zero (the terminating null character).153)

2 The length of an NTBS is the number of elements that precede the terminating null character. An empty NTBS

has a length of zero.

3 The value of an NTBS is the sequence of values of the elements up to and including the terminating null
character.

4 A static NTBS is an NTBS with static storage duration.154)

151) Note that this definition differs from the definition in ISO C subclause 7.1.1.
152) declared in <clocale> (22.3).
153) Many of the objects manipulated by function signatures declared in <cstring> (21.4) are character sequences or NTBSs. The
size of some of these character sequences is limited by a length value, maintained separately from the character sequence.
154) A string literal, such as "abc", is a static NTBS.

323

ISO/IEC 14882:2003(E)  ISO/IEC

17.3.2.1.3.2 Multibyte strings 17 Library introduction

[lib.multibyte.strings] 17.3.2.1.3.2 Multibyte strings

1 A null-terminated multibyte string, or NTMBS, is an NTBS that constitutes a sequence of valid multibyte char-
acters, beginning and ending in the initial shift state.155)

2 A static NTMBS is an NTMBS with static storage duration.

[lib.wide.characters] 17.3.2.1.3.3 Wide-character sequences

1 A wide-character sequence is an array object (8.3.4) A that can be declared as T A[N], where T is type
wchar_t (3.9.1), optionally qualified by any combination of const or volatile. The initial elements
of the array have defined contents up to and including an element determined by some predicate. A charac-
ter sequence can be designated by a pointer value S that designates its first element.

2 A null-terminated wide-character string, or NTWCS, is a wide-character sequence whose highest-addressed
element with defined content has the value zero.156)

3 The length of an NTWCS is the number of elements that precede the terminating null wide character. An
empty NTWCS has a length of zero.

4 The value of an NTWCS is the sequence of values of the elements up to and including the terminating null
character.

5 A static NTWCS is an NTWCS with static storage duration.157)

[lib.functions.within.classes] 17.3.2.2 Functions within classes

1 For the sake of exposition, clauses 18 through 27 do not describe copy constructors, assignment operators,
or (non-virtual) destructors with the same apparent semantics as those that can be generated by default
(12.1, 12.4, 12.8).

2 It is unspecified whether the implementation provides explicit definitions for such member function signa-
tures, or for virtual destructors that can be generated by default.

[lib.objects.within.classes] 17.3.2.3 Private members

1 Clauses 18 through 27 do not specify the representation of classes, and intentionally omit specification of
class members (9.2). An implementation may define static or non-static class members, or both, as needed
to implement the semantics of the member functions specified in clauses 18 through 27.

2 Objects of certain classes are sometimes required by the external specifications of their classes to store data,
apparently in member objects. For the sake of exposition, some subclauses provide representative declara-
tions, and semantic requirements, for private member objects of classes that meet the external specifications
of the classes. The declarations for such member objects and the definitions of related member types are
enclosed in a comment that ends with exposition only, as in:

// streambuf* sb; exposition only

3 Any alternate implementation that provides equivalent external behavior is equally acceptable.

[lib.requirements] 17.4 Library-wide requirements

1 This subclause specifies requirements that apply to the entire C + + Standard library. Clauses 18 through 27
specify the requirements of individual entities within the library.

155) An NTBS that contains characters only from the basic execution character set is also an NTMBS. Each multibyte character then con-
sists of a single byte.
156) Many of the objects manipulated by function signatures declared in <cwchar> are wide-character sequences or NTWCSs.
157) A wide string literal, such as L"abc", is a static NTWCS.

324

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17.4 Library-wide requirements

2 The following subclauses describe the library’s contents and organization (17.4.1), how well-formed C + +
programs gain access to library entities (17.4.2), constraints on such programs (17.4.3), and constraints on
conforming implementations (17.4.4).

[lib.organization] 17.4.1 Library contents and organization

1 This subclause provides a summary of the entities defined in the C + + Standard Library. In general, these
entites are defined in library headers, which subclause 17.4.1.2 lists alphabetically.

[lib.contents] 17.4.1.1 Library contents

1 The C + + Standard Library provides definitions for the following types of entities: Macros, Values, Types,
Templates, Classes, Functions, Objects.

2 All library entities except macros, operator new and operator delete are defined within the
namespace std or namespaces nested within namespace std.

[lib.headers] 17.4.1.2 Headers

1 The elements of the C + + Standard Library are declared or defined (as appropriate) in a header.158)

2 The C + + Standard Library provides 33 C + + headers, as shown in Table 11:

Table 11—C++ Library Headers
_ ___
<algorithm> <iomanip> <list> <queue> <streambuf>

<bitset> <ios> <locale> <set> <string>

<complex> <iosfwd> <map> <sstream> <typeinfo>

<deque> <iostream> <memory> <stack> <utility>

<exception> <istream> <new> <stdexcept> <valarray>

<fstream> <iterator> <numeric> <strstream> <vector>

<functional> <limits> <ostream>_ ___ 

















3 The facilities of the Standard C Library are provided in 18 additional headers, as shown in Table 12:

Table 12—C + + Headers for C Library Facilities
_ __
<cassert> <ciso646> <csetjmp> <cstdio> <ctime>

<cctype> <climits> <csignal> <cstdlib> <cwchar>

<cerrno> <clocale> <cstdarg> <cstring> <cwctype>

<cfloat> <cmath> <cstddef>_ __ 











4 Except as noted in clauses 18 through 27, the contents of each header cname shall be the same as that of the
corresponding header name.h, as specified in ISO/IEC 9899:1990 Programming Languages C (Clause 7),
or ISO/IEC:1990 Programming Languages—C AMENDMENT 1: C Integrity, (Clause 7), as appropriate,
as if by inclusion. In the C + + Standard Library, however, the declarations and definitions (except for names
which are defined as macros in C) are within namespace scope (3.3.5) of the namespace std.

5 Names which are defined as macros in C shall be defined as macros in the C + + Standard Library, even if C
grants license for implementation as functions. [Note: the names defined as macros in C include the fol-
lowing: assert, errno, offsetof, setjmp, va_arg, va_end, and va_start. —end note]

158) A header is not necessarily a source file, nor are the sequences delimited by < and > in header names necessarily valid source file
names (16.2).

325

ISO/IEC 14882:2003(E)  ISO/IEC

17.4.1.2 Headers 17 Library introduction

6 Names that are defined as functions in C shall be defined as functions in the C + + Standard Library.159)

7 D.5, Standard C library headers, describes the effects of using the name.h (C header) form in a C + + pro-
gram.160)

[lib.compliance] 17.4.1.3 Freestanding implementations

1 Two kinds of implementations are defined: hosted and freestanding (1.4). For a hosted implementation,
this International Standard describes the set of available headers.

2 A freestanding implementation has an implementation-defined set of headers. This set shall include at least
the following headers, as shown in Table 13:

Table 13—C + + Headers for Freestanding Implementations
_ ___

Subclause Header(s)_ __ ___
18.1 Types <cstddef>_ ___
18.2 Implementation properties <limits>_ ___
18.3 Start and termination <cstdlib>_ ___
18.4 Dynamic memory management <new>_ ___
18.5 Type identification <typeinfo>_ ___
18.6 Exception handling <exception>_ ___
18.7 Other runtime support <cstdarg>_ ___ 
























3 The supplied version of the header <cstdlib> shall declare at least the functions abort(),
atexit(), and exit() (18.3).

[lib.using] 17.4.2 Using the library

1 This subclause describes how a C + + program gains access to the facilities of the C + + Standard Library.
17.4.2.1 describes effects during translation phase 4, while 17.4.2.2 describes effects during phase 8 (2.1).

[lib.using.headers] 17.4.2.1 Headers

1 The entities in the C + + Standard Library are defined in headers, whose contents are made available to a
translation unit when it contains the appropriate #include preprocessing directive (16.2).

2 A translation unit may include library headers in any order (clause 2). Each may be included more than
once, with no effect different from being included exactly once, except that the effect of including either
<cassert> or <assert.h> depends each time on the lexically current definition of NDEBUG.161)

3 A translation unit shall include a header only outside of any external declaration or definition, and shall
include the header lexically before the first reference to any of the entities it declares or first defines in that
translation unit.

159) This disallows the practice, allowed in C, of providing a "masking macro" in addition to the function prototype. The only way to
achieve equivalent "inline" behavior in C + + is to provide a definition as an extern inline function.
160) The ".h" headers dump all their names into the global namespace, whereas the newer forms keep their names in namespace
std. Therefore, the newer forms are the preferred forms for all uses except for C + + programs which are intended to be strictly compat-
ible with C.
161) This is the same as the Standard C library.

326

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17.4.2.2 Linkage

[lib.using.linkage] 17.4.2.2 Linkage

1 Entities in the C + + Standard Library have external linkage (3.5). Unless otherwise specified, objects and
functions have the default extern "C++" linkage (7.5).

2 It is implementation-defined whether a name from the Standard C library declared with external linkage has
extern "C" or extern "C++" linkage.162) It is recommended that an implementation use extern
"C++" linkage for this purpose.

3 Objects and functions defined in the library and required by a C + + program are included in the program
prior to program startup.

SEE ALSO: replacement functions (17.4.3.4), run-time changes (17.4.3.5).

[lib.constraints] 17.4.3 Constraints on programs

1 This subclause describes restrictions on C + + programs that use the facilities of the C + + Standard Library.
The following subclauses specify constraints on the program’s namespace (17.4.3.1), its use of headers
(17.4.3.2), classes derived from standard library classes (17.4.3.3), definitions of replacement functions
(17.4.3.4), and installation of handler functions during execution (17.4.3.5).

[lib.reserved.names] 17.4.3.1 Reserved names

1 It is undefined for a C + + program to add declarations or definitions to namespace std or namespaces
within namespace std unless otherwise specified. A program may add template specializations for any
standard library template to namespace std. Such a specialization (complete or partial) of a standard
library template results in undefined behavior unless the declaration depends on a user-defined name of
external linkage and unless the specialization meets the standard library requirements for the original tem-
plate.163)

2 The C + + Standard Library reserves the following kinds of names:

— Macros

— Global names

— Names with external linkage

3 If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed
by this clause, the behavior is undefined.

[lib.macro.names] 17.4.3.1.1 Macro names

1 Each name defined as a macro in a header is reserved to the implementation for any use if the translation
unit includes the header.164)

2 A translation unit that includes a header shall not contain any macros that define names declared or defined
in that header. Nor shall such a translation unit define macros for names lexically identical to keywords.

[lib.global.names] 17.4.3.1.2 Global names

1 Certain sets of names and function signatures are always reserved to the implementation:

— Each name that contains a double underscore (_ _) or begins with an underscore followed by an upper-
case letter (2.11) is reserved to the implementation for any use.

162) The only reliable way to declare an object or function signature from the Standard C library is by including the header that
declares it, notwithstanding the latitude granted in subclause 7.1.7 of the C Standard.
163) Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied specializa-
tion that meets the minimum requirements of the Standard.
164) It is not permissible to remove a library macro definition by using the #undef directive.

327

ISO/IEC 14882:2003(E)  ISO/IEC

17.4.3.1.2 Global names 17 Library introduction

— Each name that begins with an underscore is reserved to the implementation for use as a name in the
global namespace.165)

[lib.extern.names] 17.4.3.1.3 External linkage

1 Each name declared as an object with external linkage in a header is reserved to the implementation to des-
ignate that library object with external linkage,166) both in namespace std and in the global namespace.

2 Each global function signature declared with external linkage in a header is reserved to the implementation
to designate that function signature with external linkage.167)

3 Each name having two consecutive underscores (2.11) is reserved to the implementation for use as a name
with both extern "C" and extern "C++" linkage.

4 Each name from the Standard C library declared with external linkage is reserved to the implementation for
use as a name with extern "C" linkage, both in namespace std and in the global namespace.

5 Each function signature from the Standard C library declared with external linkage is reserved to the imple-
mentation for use as a function signature with both extern "C" and extern "C++" linkage,168) or
as a name of namespace scope in the global namespace.

[lib.extern.types] 17.4.3.1.4 Types

1 For each type T from the Standard C library,169) the types ::T and std::T are reserved to the implemen-
tation and, when defined, ::T shall be identical to std::T.

[lib.alt.headers] 17.4.3.2 Headers

1 If a file with a name equivalent to the derived file name for one of the C + + Standard Library headers is not
provided as part of the implementation, and a file with that name is placed in any of the standard places for
a source file to be included (16.2), the behavior is undefined.

[lib.derived.classes] 17.4.3.3 Derived classes

1 Virtual member function signatures defined for a base class in the C + + Standard library may be overridden
in a derived class defined in the program (10.3).

[lib.replacement.functions] 17.4.3.4 Replacement functions

1 Clauses 18 through 27 describe the behavior of numerous functions defined by the C + + Standard Library.
Under some circumstances, however, certain of these function descriptions also apply to replacement func-
tions defined in the program (17.1).

2 A C + + program may provide the definition for any of eight dynamic memory allocation function signatures
declared in header <new> (3.7.3, clause 18):

— operator new(size_t)

— operator new(size_t, const std::nothrow_t&)

— operator new[](size_t)

— operator new[](size_t, const std::nothrow_t&)

165) Such names are also reserved in namespace ::std (17.4.3.1).
166) The list of such reserved names includes errno, declared or defined in <cerrno>.
167) The list of such reserved function signatures with external linkage includes setjmp(jmp_buf), declared or defined in
<csetjmp>, and va_end(va_list), declared or defined in <cstdarg>.
168) The function signatures declared in <cwchar> and <cwctype> are always reserved, notwithstanding the restrictions imposed
in subclause 4.5.1 of Amendment 1 to the C Standard for these headers.
169) These types are clock_t, div_t, FILE, fpos_t, lconv, ldiv_t, mbstate_t, ptrdiff_t, sig_atomic_t,
size_t, time_t, tm, va_list, wctrans_t, wctype_t, and wint_t.

328

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17.4.3.4 Replacement functions

— operator delete(void*)

— operator delete(void*, const std::nothrow_t&)

— operator delete[](void*)

— operator delete[](void*, const std::nothrow_t&)

3 The program’s definitions are used instead of the default versions supplied by the implementation (18.4).
Such replacement occurs prior to program startup (3.2, 3.6).

[lib.handler.functions] 17.4.3.5 Handler functions

1 The C + + Standard Library provides default versions of the following handler functions (clause 18):

— unexpected_handler

— terminate_handler

2 A C + + program may install different handler functions during execution, by supplying a pointer to a func-
tion defined in the program or the library as an argument to (respectively):

— set_new_handler

— set_unexpected

— set_terminate

SEE ALSO: subclauses 18.4.2, Storage allocation errors, and 18.6, Exception handling.

[lib.res.on.functions] 17.4.3.6 Other functions

1 In certain cases (replacement functions, handler functions, operations on types used to instantiate standard
library template components), the C + + Standard Library depends on components supplied by a C + + pro-
gram. If these components do not meet their requirements, the Standard places no requirements on the
implementation.

2 In particular, the effects are undefined in the following cases:

— for replacement functions (18.4.1), if the installed replacement function does not implement the seman-
tics of the applicable Required behavior paragraph.

— for handler functions (18.4.2.2, 18.6.3.1, 18.6.2.2), if the installed handler function does not implement
the semantics of the applicable Required behavior paragraph

— for types used as template arguments when instantiating a template component, if the operations on the
type do not implement the semantics of the applicable Requirements subclause (20.1.5, 23.1, 24.1,
26.1). Operations on such types can report a failure by throwing an exception unless otherwise speci-
fied.

— if any replacement function or handler function or destructor operation throws an exception, unless
specifically allowed in the applicable Required behavior paragraph.

— if an incomplete type (3.9) is used as a template argument when instantiating a template component.

329

ISO/IEC 14882:2003(E)  ISO/IEC

17.4.3.6 Other functions 17 Library introduction

[lib.res.on.arguments] 17.4.3.7 Function arguments

1 Each of the following statements applies to all arguments to functions defined in the C + + Standard Library,
unless explicitly stated otherwise.

— If an argument to a function has an invalid value (such as a value outside the domain of the function, or
a pointer invalid for its intended use), the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function shall
have a value such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid.

[lib.res.on.required] 17.4.3.8 Required paragraph

1 Violation of the preconditions specified in a function’s Required behavior paragraph results in undefined
behavior unless the function’s Throws paragraph specifies throwing an exception when the precondition is
violated.

[lib.conforming] 17.4.4 Conforming implementations

1 This subclause describes the constraints upon, and latitude of, implementations of the C + + Standard library.
The following subclauses describe an implementation’s use of headers (17.4.4.1), macros (17.4.4.2), global
functions (17.4.4.3), member functions (17.4.4.4), reentrancy (17.4.4.5), access specifiers (17.4.4.6), class
derivation (17.4.4.7), and exceptions (17.4.4.8).

[lib.res.on.headers] 17.4.4.1 Headers

1 A C + + header may include other C + + headers.170)

2 Certain types and macros are defined in more than one header. For such an entity, a second or subsequent
header that also defines it may be included after the header that provides its initial definition (3.2).

3 Header inclusion is limited as follows:

— The C headers (.h form, described in Annex D, D.5) shall include only their corresponding C + +
header, as described above (17.4.1.2).

[lib.res.on.macro.definitions] 17.4.4.2 Restrictions on macro definitions

1 The names or global function signatures described in 17.4.1.1 are reserved to the implementation.

2 All object-like macros defined by the Standard C library and described in this clause as expanding to inte-
gral constant expressions are also suitable for use in #if preprocessing directives, unless explicitly stated
otherwise.

[lib.global.functions] 17.4.4.3 Global or non-member functions

1 It is unspecified whether any global or non-member functions in the C + + Standard Library are defined as
inline (7.1.2).

2 A call to a global or non-member function signature described in Clauses 18 through 27 behaves the same
as if the implementation declares no additional global or non-member function signatures.171)

3 A global or non-member function cannot be declared by the implementation as taking additional default
arguments.

170) C + + headers must include a C + + header that contains any needed definition (3.2).
171) A valid C + + program always calls the expected library global or non-member function. An implementation may also define addi-
tional global or non-member functions that would otherwise not be called by a valid C + + program.

330

 ISO/IEC ISO/IEC 14882:2003(E)

17 Library introduction 17.4.4.4 Member functions

[lib.member.functions] 17.4.4.4 Member functions

1 It is unspecified whether any member functions in the C + + Standard Library are defined as inline (7.1.2).

2 An implementation can declare additional non-virtual member function signatures within a class:

— by adding arguments with default values to a member function signature;172) The same latitude does not
extend to the implementation of virtual or global or non-member functions, however.

— by replacing a member function signature with default values by two or more member function signa-
tures with equivalent behavior;

— by adding a member function signature for a member function name.

3 A call to a member function signature described in the C + + Standard library behaves the same as if the
implementation declares no additional member function signatures.173)

[lib.reentrancy] 17.4.4.5 Reentrancy

1 Which of the functions in the C + + Standard Library are not reentrant subroutines is implementation-
defined.

[lib.protection.within.classes] 17.4.4.6 Protection within classes

1 It is unspecified whether a function signature or class described in clauses 18 through 27 is a friend of
another class in the C + + Standard Library.

[lib.derivation] 17.4.4.7 Derived classes

1 It is unspecified whether a class in the C + + Standard Library is itself derived from other classes (with names
reserved to the implementation).

2 Certain classes defined in the C + + Standard Library are derived from other classes in the C + + Standard
Library:

— It is unspecified whether a class described in the C + + Standard Library as derived from another class is
derived from that class directly, or through other classes (with names reserved to the implementation)
that are derived from the specified base class.

3 In any case:

— A base class described as virtual is always virtual;

— A base class described as non-virtual is never virtual;

— Unless explicitly stated otherwise, types with distinct names are distinct types.174)

[lib.res.on.exception.handling] 17.4.4.8 Restrictions on exception handling

1 Any of the functions defined in the C + + Standard Library can report a failure by throwing an exception of
the type(s) described in their Throws: paragraph and/or their exception-specification (15.4). An implemen-
tation may strengthen the exception-specification for a non-virtual function by removing listed excep-
tions.175)

172) Hence, taking the address of a member function has an unspecified type.
173) A valid C + + program always calls the expected library member function, or one with equivalent behavior. An implementation
may also define additional member functions that would otherwise not be called by a valid C + + program.
174) An implicit exception to this rule are types described as synonyms for basic integral types, such as size_t (18.1) and
streamoff (27.4.1).
175) That is, an implementation of the function will have an explicit exception-specification that lists fewer exceptions than those spec-
ified in this International Standard. It may not, however, change the types of exceptions listed in the exception-specification from those
specified, nor add others.

331

ISO/IEC 14882:2003(E)  ISO/IEC

17.4.4.8 Restrictions on exception handling 17 Library introduction

2 None of the functions from the Standard C library shall report an error by throwing an exception,176) unless
it calls a program-supplied function that throws an exception.177)

3 No destructor operation defined in the C + + Standard Library will throw an exception. Any other functions
defined in the C + + Standard Library that do not have an exception-specification may throw
implementation-defined exceptions unless otherwise specified.178) An implementation may strengthen this
implicit exception-specification by adding an explicit one.179)

176) That is, the C library functions all have a throw() exception-specification. This allows implementations to make performance
optimizations based on the absence of exceptions at runtime.
177) The functions qsort() and bsearch() (25.4) meet this condition.
178) In particular, they can report a failure to allocate storage by throwing an exception of type bad_alloc, or a class derived from
bad_alloc (18.4.2.1). Library implementations are encouraged (but not required) to report errors by throwing exceptions from (or
derived from) the standard exception classes (18.4.2.1, 18.6, 19.1).
179) That is, an implementation may provide an explicit exception-specification that defines the subset of ‘‘any’’ exceptions thrown by
that function. This implies that the implementation may list implementation-defined types in such an exception-specification.

332

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library [lib.language.support]

1 This clause describes the function signatures that are called implicitly, and the types of objects generated
implicitly, during the execution of some C + + programs. It also describes the headers that declare these
function signatures and define any related types.

2 The following subclauses describe common type definitions used throughout the library, characteristics of
the predefined types, functions supporting start and termination of a C + + program, support for dynamic
memory management, support for dynamic type identification, support for exception processing, and other
runtime support, as summarized in Table 14:

Table 14—Language support library summary
_ ___

Subclause Header(s)_ __ ___
18.1 Types <cstddef>_ ___

<limits>
<climits>18.2 Implementation properties
<cfloat>_ ___

18.3 Start and termination <cstdlib>_ ___
18.4 Dynamic memory management <new>_ ___
18.5 Type identification <typeinfo>_ ___
18.6 Exception handling <exception>_ ___

<cstdarg>
<csetjmp>
<ctime>
<csignal>

18.7 Other runtime support

<cstdlib>_ ___ 





































[lib.support.types] 18.1 Types

1 Common definitions.

2 Header <cstddef> (Table 15):

Table 15—Header <cstddef> synopsis
_ ____________________________________

Kind Name(s)_ ____________________________________
Macros: NULL offsetof_ ____________________________________
Types: ptrdiff_t size_t_ ____________________________________ 










3 The contents are the same as the Standard C library header <stddef.h>, with the following changes:

4 The macro NULL is an implementation-defined C + + null pointer constant in this International Standard
(4.10).180)

5 The macro offsetof accepts a restricted set of type arguments in this International Standard. type
shall be a POD structure or a POD union (clause 9). The result of applying the offsetof macro to a field that

180) Possible definitions include 0 and 0L, but not (void*)0.

333

ISO/IEC 14882:2003(E)  ISO/IEC

18.1 Types 18 Language support library

is a static data member or a function member is undefined.

SEE ALSO: subclause 5.3.3, Sizeof, subclause 5.7, Additive operators, subclause 12.5, Free store, and ISO
C subclause 7.1.6.

[lib.support.limits] 18.2 Implementation properties

1 The headers <limits>, <climits>, and <cfloat> supply characteristics of implementation-
dependent fundamental types (3.9.1).

[lib.limits] 18.2.1 Numeric limits

1 The numeric_limits component provides a C + + program with information about various properties of
the implementation’s representation of the fundamental types.

2 Specializations shall be provided for each fundamental type, both floating point and integer, including
bool. The member is_specialized shall be true for all such specializations of
numeric_limits.

3 For all members declared static const in the numeric_limits template, specializations shall
define these values in such a way that they are usable as integral constant expressions.

4 Non-fundamental standard types, such as complex<T> (26.2.2), shall not have specializations.

Header <limits> synopsis

namespace std {
template<class T> class numeric_limits;
enum float_round_style;
enum float_denorm_style;

template<> class numeric_limits<bool>;

template<> class numeric_limits<char>;
template<> class numeric_limits<signed char>;
template<> class numeric_limits<unsigned char>;
template<> class numeric_limits<wchar_t>;

template<> class numeric_limits<short>;
template<> class numeric_limits<int>;
template<> class numeric_limits<long>;
template<> class numeric_limits<unsigned short>;
template<> class numeric_limits<unsigned int>;
template<> class numeric_limits<unsigned long>;

template<> class numeric_limits<float>;
template<> class numeric_limits<double>;
template<> class numeric_limits<long double>;

}

[lib.numeric.limits] 18.2.1.1 Class template numeric_limits

namespace std {
template<class T> class numeric_limits {
public:
static const bool is_specialized = false;
static T min() throw();
static T max() throw();

334

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.2.1.1 Class template numeric_limits

static const int digits = 0;
static const int digits10 = 0;
static const bool is_signed = false;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = 0;
static T epsilon() throw();
static T round_error() throw();

static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;

static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static T infinity() throw();
static T quiet_NaN() throw();
static T signaling_NaN() throw();
static T denorm_min() throw();

static const bool is_iec559 = false;
static const bool is_bounded = false;
static const bool is_modulo = false;

static const bool traps = false;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;

};
}

1 The member is_specialized makes it possible to distinguish between fundamental types, which have
specializations, and non-scalar types, which do not.

2 The default numeric_limits<T> template shall have all members, but with 0 or false values.

[lib.numeric.limits.members] 18.2.1.2 numeric_limits members

static T min() throw();

1 Minimum finite value.181)

2 For floating types with denormalization, returns the minimum positive normalized value.

3 Meaningful for all specializations in which is_bounded != false, or is_bounded == false
&& is_signed == false.

static T max() throw();

4 Maximum finite value.182)

5 Meaningful for all specializations in which is_bounded != false.

181) Equivalent to CHAR_MIN, SHRT_MIN, FLT_MIN, DBL_MIN, etc.
182) Equivalent to CHAR_MAX, SHRT_MAX, FLT_MAX, DBL_MAX, etc.

335

ISO/IEC 14882:2003(E)  ISO/IEC

18.2.1.2 numeric_limits members 18 Language support library

static const int digits;

6 Number of radix digits that can be represented without change.

7 For built-in integer types, the number of non-sign bits in the representation.

8 For floating point types, the number of radix digits in the mantissa.183)

static const int digits10;

9 Number of base 10 digits that can be represented without change.184)

10 Meaningful for all specializations in which is_bounded != false.

static const bool is_signed;

11 True if the type is signed.

12 Meaningful for all specializations.

static const bool is_integer;

13 True if the type is integer.

14 Meaningful for all specializations.

static const bool is_exact;

15 True if the type uses an exact representation. All integer types are exact, but not all exact types are integer.
For example, rational and fixed-exponent representations are exact but not integer.

16 Meaningful for all specializations.

static const int radix;

17 For floating types, specifies the base or radix of the exponent representation (often 2).185)

18 For integer types, specifies the base of the representation.186)

19 Meaningful for all specializations.

static T epsilon() throw();

20 Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.187)

21 Meaningful for all floating point types.

static T round_error() throw();

22 Measure of the maximum rounding error.188)

183) Equivalent to FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG.
184) Equivalent to FLT_DIG, DBL_DIG, LDBL_DIG.
185) Equivalent to FLT_RADIX.
186) Distinguishes types with bases other than 2 (e.g. BCD).
187) Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.
188) Rounding error is described in ISO/IEC 10967-1 Language independent arithmetic – Part 1 Section 5.2.8 and Annex A Rationale
Section A.5.2.8 – Rounding constants.

336

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.2.1.2 numeric_limits members

static const int min_exponent;

23 Minimum negative integer such that radix raised to the power of one less than that integer is a normal-
ized floating point number.189)

24 Meaningful for all floating point types.

static const int min_exponent10;

25 Minimum negative integer such that 10 raised to that power is in the range of normalized floating point
numbers.190)

26 Meaningful for all floating point types.

static const int max_exponent;

27 Maximum positive integer such that radix raised to the power one less than that integer is a representable
finite floating point number.191)

28 Meaningful for all floating point types.

static const int max_exponent10;

29 Maximum positive integer such that 10 raised to that power is in the range of representable finite floating
point numbers.192)

30 Meaningful for all floating point types.

static const bool has_infinity;

31 True if the type has a representation for positive infinity.

32 Meaningful for all floating point types.

33 Shall be true for all specializations in which is_iec559 != false.

static const bool has_quiet_NaN;

34 True if the type has a representation for a quiet (non-signaling) ‘‘Not a Number.’’193)

35 Meaningful for all floating point types.

36 Shall be true for all specializations in which is_iec559 != false.

static const bool has_signaling_NaN;

37 True if the type has a representation for a signaling ‘‘Not a Number.’’194)

38 Meaningful for all floating point types.

39 Shall be true for all specializations in which is_iec559 != false.

189) Equivalent to FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP.
190) Equivalent to FLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.
191) Equivalent to FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.
192) Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.
193) Required by LIA-1.
194) Required by LIA-1.

337

ISO/IEC 14882:2003(E)  ISO/IEC

18.2.1.2 numeric_limits members 18 Language support library

static const float_denorm_style has_denorm;

40 denorm_present if the type allows denormalized values (variable number of exponent bits)195),
denorm_absent if the type does not allow denormalized values, and denorm_indeterminate if it
is indeterminate at compile time whether the type allows denormalized values.

41 Meaningful for all floating point types.

static const bool has_denorm_loss;

42 True if loss of accuracy is detected as a denormalization loss, rather than as an inexact result.196)

static T infinity() throw();

43 Representation of positive infinity, if available.197)

44 Meaningful for all specializations for which has_infinity != false. Required in specializations
for which is_iec559 != false.

static T quiet_NaN() throw();

45 Representation of a quiet ‘‘Not a Number,’’ if available.198)

46 Meaningful for all specializations for which has_quiet_NaN != false. Required in specializations
for which is_iec559 != false.

static T signaling_NaN() throw();

47 Representation of a signaling ‘‘Not a Number,’’ if available.199)

48 Meaningful for all specializations for which has_signaling_NaN != false. Required in special-
izations for which is_iec559 != false.

static T denorm_min() throw();

49 Minimum positive denormalized value.200)

50 Meaningful for all floating point types.

51 In specializations for which has_denorm == false, returns the minimum positive normalized value.

static const bool is_iec559;

52 True if and only if the type adheres to IEC 559 standard.201)

53 Meaningful for all floating point types.

195) Required by LIA-1.
196) See IEC 559.
197) Required by LIA-1.
198) Required by LIA-1.
199) Required by LIA-1.
200) Required by LIA-1.
201) International Electrotechnical Commission standard 559 is the same as IEEE 754.

338

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.2.1.2 numeric_limits members

static const bool is_bounded;

54 True if the set of values representable by the type is finite.202) All built-in types are bounded, this member
would be false for arbitrary precision types.

55 Meaningful for all specializations.

static const bool is_modulo;

56 True if the type is modulo.203) A type is modulo if it is possible to add two positive numbers and have a
result that wraps around to a third number that is less.

57 Generally, this is false for floating types, true for unsigned integers, and true for signed integers on
most machines.

58 Meaningful for all specializations.

static const bool traps;

59 true if trapping is implemented for the type.204)

60 Meaningful for all specializations.

static const bool tinyness_before;

61 true if tinyness is detected before rounding.205)

62 Meaningful for all floating point types.

static const float_round_style round_style;

63 The rounding style for the type.206)

64 Meaningful for all floating point types. Specializations for integer types shall return
round_toward_zero.

[lib.round.style] 18.2.1.3 Type float_round_style

namespace std {
enum float_round_style {
round_indeterminate = -1,
round_toward_zero = 0,
round_to_nearest = 1,
round_toward_infinity = 2,
round_toward_neg_infinity = 3

};
}

1 The rounding mode for floating point arithmetic is characterized by the values:

— round_indeterminate if the rounding style is indeterminable

— round_toward_zero if the rounding style is toward zero

202) Required by LIA-1.
203) Required by LIA-1.
204) Required by LIA-1.
205) Refer to IEC 559. Required by LIA-1.
206) Equivalent to FLT_ROUNDS. Required by LIA-1.

339

ISO/IEC 14882:2003(E)  ISO/IEC

18.2.1.3 Type float_round_style 18 Language support library

— round_to_nearest if the rounding style is to the nearest representable value

— round_toward_infinity if the rounding style is toward infinity

— round_toward_neg_infinity if the rounding style is toward negative infinity

[lib.denorm.style] 18.2.1.4 Type float_denorm_style

namespace std {
enum float_denorm_style {
denorm_indeterminate = -1;
denorm_absent = 0;
denorm_present = 1;

};
}

1 The presence or absence of denormalization (variable number of exponent bits) is characterized by the val-
ues:

— denorm_indeterminate if it cannot be determined whether or not the type allows denormalized
values

— denorm_absent if the type does not allow denormalized values

— denorm_present if the type does allow denormalized values

[lib.numeric.special] 18.2.1.5 numeric_limits specializations

1 All members shall be provided for all specializations. However, many values are only required to be mean-
ingful under certain conditions (for example, epsilon() is only meaningful if is_integer is false).
Any value that is not ‘‘meaningful’’ shall be set to 0 or false.

2 [Example:

namespace std {
template<> class numeric_limits<float> {
public:
static const bool is_specialized = true;

inline static float min() throw() { return 1.17549435E-38F; }
inline static float max() throw() { return 3.40282347E+38F; }

static const int digits = 24;
static const int digits10 = 6;

static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;

static const int radix = 2;
inline static float epsilon() throw() { return 1.19209290E-07F; }
inline static float round_error() throw() { return 0.5F; }

static const int min_exponent = -125;
static const int min_exponent10 = - 37;
static const int max_exponent = +128;
static const int max_exponent10 = + 38;

340

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.2.1.5 numeric_limits specializations

static const bool has_infinity = true;
static const bool has_quiet_NaN = true;
static const bool has_signaling_NaN = true;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;

inline static float infinity() throw() { return ...; }
inline static float quiet_NaN() throw() { return ...; }
inline static float signaling_NaN() throw() { return ...; }
inline static float denorm_min() throw() { return min(); }

static const bool is_iec559 = true;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = true;
static const bool tinyness_before = true;

static const float_round_style round_style = round_to_nearest;
};

}

—end example]

[lib.c.limits] 18.2.2 C Library

1 Header <climits> (Table 16):

Table 16—Header <climits> synopsis
_ __

Type Name(s)_ __
Values:
CHAR_BIT INT_MAX LONG_MIN SCHAR_MIN UCHAR_MAX USHRT_MAX

CHAR_MAX INT_MIN MB_LEN_MAX SHRT_MAX UINT_MAX

CHAR_MIN LONG_MAX SCHAR_MAX SHRT_MIN ULONG_MAX_ __ 













2 The contents are the same as the Standard C library header <limits.h>.

3 Header <cfloat> (Table 17):

Table 17—Header <cfloat> synopsis
_ __

Type Name(s)_ __
Values:
DBL_DIG DBL_MIN_EXP FLT_MIN_10_EXP LDBL_MAX_10_EXP

DBL_EPSILON FLT_DIG FLT_MIN_EXP LDBL_MAX_EXP

DBL_MANT_DIG FLT_EPSILON FLT_RADIX LDBL_MIN

DBL_MAX FLT_MANT_DIG FLT_ROUNDS LDBL_MIN_10_EXP

DBL_MAX_10_EXP FLT_MAX LDBL_DIG LDBL_MIN_EXP

DBL_MAX_EXP FLT_MAX_10_EXP LDBL_EPSILON

DBL_MIN FLT_MAX_EXP LDBL_MANT_DIG

DBL_MIN_10_EXP FLT_MIN LDBL_MAX_ __ 

























4 The contents are the same as the Standard C library header <float.h>.

SEE ALSO: ISO C subclause 7.1.5, 5.2.4.2.2, 5.2.4.2.1.

341

ISO/IEC 14882:2003(E)  ISO/IEC

18.3 Start and termination 18 Language support library

[lib.support.start.term] 18.3 Start and termination

1 Header <cstdlib> (partial), Table 18:

Table 18—Header <cstdlib> synopsis

Type Name(s)___
Macros: EXIT_FAILURE EXIT_SUCCESS___
Functions: abort atexit exit___ 










2 The contents are the same as the Standard C library header <stdlib.h>, with the following changes:

abort(void)

3 The function abort() has additional behavior in this International Standard:

— The program is terminated without executing destructors for objects of automatic or static storage dura-
tion and without calling the functions passed to atexit() (3.6.3).

extern "C" int atexit(void (*f)(void))
extern "C++" int atexit(void (*f)(void))

4 Effects: The atexit() functions register the function pointed to by f, to be called without arguments at
normal program termination.

5 For the execution of a function registered with atexit(), if control leaves the function because it pro-
vides no handler for a thrown exception, terminate() is called (18.6.3.3).

6 Implementation Limits: The implementation shall support the registration of at least 32 functions.
7 Returns: The atexit() function returns zero if the registration succeeds, nozero if it fails.

exit(int status)

8 The function exit() has additional behavior in this International Standard:

— First, objects with static storage duration are destroyed and functions registered by calling atexit are
called. Non-local objects with static storage duration are destroyed in the reverse order of the comple-
tion of their constructor. (Automatic objects are not destroyed as a result of calling exit().)207) Func-
tions registered with atexit are called in the reverse order of their registration, except that a function
is called after any previously registered functions that had already been called at the time it was regis-
tered.208) A function registered with atexit before a non-local object obj1 of static storage duration
is initialized will not be called until obj1’s destruction has completed. A function registered with
atexit after a non-local object obj2 of static storage duration is initialized will be called before
obj2’s destruction starts. A local static object obj3 is destroyed at the same time it would be if a
function calling the obj3 destructor were registered with atexit at the completion of the obj3 con-
structor.

— Next, all open C streams (as mediated by the function signatures declared in <cstdio>) with unwrit-
ten buffered data are flushed, all open C streams are closed, and all files created by calling tmpfile()
are removed.209)

207) Objects with automatic storage duration are all destroyed in a program whose function main() contains no automatic objects
and executes the call to exit(). Control can be transferred directly to such a main() by throwing an exception that is caught in
main().
208) A function is called for every time it is registered.
209) Any C streams associated with cin, cout, etc (27.3) are flushed and closed when static objects are destroyed in the previous
phase. The function tmpfile() is declared in <cstdio>.

342

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.3 Start and termination

— Finally, control is returned to the host environment. If status is zero or EXIT_SUCCESS, an
implementation-defined form of the status successful termination is returned. If status is
EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is returned.
Otherwise the status returned is implementation-defined.210)

9 The function exit() never returns to its caller.

SEE ALSO: subclauses 3.6, 3.6.3, ISO C subclause 7.10.4.

[lib.support.dynamic] 18.4 Dynamic memory management

1 The header <new> defines several functions that manage the allocation of dynamic storage in a program.
It also defines components for reporting storage management errors.

Header <new> synopsis

namespace std {
class bad_alloc;
struct nothrow_t {};
extern const nothrow_t nothrow;
typedef void (*new_handler)();
new_handler set_new_handler(new_handler new_p) throw();

}

void* operator new(std::size_t size) throw(std::bad_alloc);
void* operator new(std::size_t size, const std::nothrow_t&) throw();
void operator delete(void* ptr) throw();
void operator delete(void* ptr, const std::nothrow_t&) throw();
void* operator new[](std::size_t size) throw(std::bad_alloc);
void* operator new[](std::size_t size, const std::nothrow_t&) throw();
void operator delete[](void* ptr) throw();
void operator delete[](void* ptr, const std::nothrow_t&) throw();

void* operator new (std::size_t size, void* ptr) throw();
void* operator new[](std::size_t size, void* ptr) throw();
void operator delete (void* ptr, void*) throw();
void operator delete[](void* ptr, void*) throw();

SEE ALSO: 1.7, 3.7.3, 5.3.4, 5.3.5, 12.5, 20.4.

[lib.new.delete] 18.4.1 Storage allocation and deallocation

1 Except where otherwise specified, the provisions of (3.7.3) apply to the library versions of operator
new and operator delete.

[lib.new.delete.single] 18.4.1.1 Single-object forms

void* operator new(std::size_t size) throw(std::bad_alloc);

1 Effects: The allocation function (3.7.3.1) called by a new-expression (5.3.4) to allocate size bytes of
storage suitably aligned to represent any object of that size.

2 Replaceable: a C + + program may define a function with this function signature that displaces the default
version defined by the C + + Standard library.

3 Required behavior: Return a non-null pointer to suitably aligned storage (3.7.3), or else throw a
bad_alloc exception. This requirement is binding on a replacement version of this function.

210) The macros EXIT_FAILURE and EXIT_SUCCESS are defined in <cstdlib>.

343

ISO/IEC 14882:2003(E)  ISO/IEC

18.4.1.1 Single-object forms 18 Language support library

4 Default behavior:

— Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether
the attempt involves a call to the Standard C library function malloc is unspecified.

— Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to
set_new_handler() was a null pointer, throw bad_alloc.

— Otherwise, the function calls the current new_handler (18.4.2.2). If the called function returns, the loop
repeats.

— The loop terminates when an attempt to allocate the requested storage is successful or when a called
new_handler function does not return.

void* operator new(std::size_t size, const std::nothrow_t&) throw();

5 Effects: Same as above, except that it is called by a placement version of a new-expression when a C + +
program prefers a null pointer result as an error indication, instead of a bad_alloc exception.

6 Replaceable: a C + + program may define a function with this function signature that displaces the default
version defined by the C + + Standard library.

7 Required behavior: Return a non-null pointer to suitably aligned storage (3.7.3), or else return a null
pointer. This nothrow version of operator new returns a pointer obtained as if acquired from the
ordinary version. This requirement is binding on a replacement version of this function.

8 Default behavior:

— Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether
the attempt involves a call to the Standard C library function malloc is unspecified.

— Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to
set_new_handler() was a null pointer, return a null pointer.

— Otherwise, the function calls the current new_handler (18.4.2.2). If the called function returns, the loop
repeats.

— The loop terminates when an attempt to allocate the requested storage is successful or when a called
new_handler function does not return. If the called new_handler function terminates by throwing a
bad_alloc exception, the function returns a null pointer.

9 [Example:

T* p1 = new T; // throws bad_alloc if it fails
T* p2 = new(nothrow) T; // returns 0 if it fails

—end example]

void operator delete(void* ptr) throw();
void operator delete(void* ptr, const std::nothrow_t&) throw();

10 Effects: The deallocation function (3.7.3.2) called by a delete-expression to render the value of ptr
invalid.

11 Replaceable: a C + + program may define a function with this function signature that displaces the default
version defined by the C + + Standard library.

12 Required behavior: accept a value of ptr that is null or that was returned by an earlier call to the default
operator new(std::size_t) or operator new(std::size_t,const
std::nothrow_t&).

13 Default behavior:

— For a null value of ptr, do nothing.

— Any other value of ptr shall be a value returned earlier by a call to the default operator new,
which was not invalidated by an intervening call to operator delete(void*) (17.4.3.7). For
such a non-null value of ptr, reclaims storage allocated by the earlier call to the default operator
new.

344

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.4.1.1 Single-object forms

14 Notes: It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subse-
quent call to operator new or any of calloc, malloc, or realloc, declared in <cstdlib>.

[lib.new.delete.array] 18.4.1.2 Array forms

void* operator new[](std::size_t size) throw(std::bad_alloc);

1 Effects: The allocation function (3.7.3.1) called by the array form of a new-expression (5.3.4) to allocate
size bytes of storage suitably aligned to represent any array object of that size or smaller.211)

2 Replaceable: a C + + program can define a function with this function signature that displaces the default
version defined by the C + + Standard library.

3 Required behavior: Same as for operator new(std::size_t). This requirement is binding on a
replacement version of this function.

4 Default behavior: Returns operator new(size).

void* operator new[](std::size_t size, const std::nothrow_t&) throw();

5 Effects: Same as above, except that it is called by a placement version of a new-expression when a C + +
program prefers a null pointer result as an error indication, instead of a bad_alloc exception.

6 Replaceable: a C + + program can define a function with this function signature that displaces the default
version defined by the C + + Standard library.

7 Required behavior: Same as for operator new(std::size_t,const std::nothrow_t&).
This nothrow version of operator new[] returns a pointer obtained as if acquired from the ordinary
version.

8 Default behavior: Returns operator new(size,nothrow).

void operator delete[](void* ptr) throw();
void operator delete[](void* ptr, const std::nothrow_t&) throw();

9 Effects: The deallocation function (3.7.3.2) called by the array form of a delete-expression to render the
value of ptr invalid.

10 Replaceable: a C + + program can define a function with this function signature that displaces the default
version defined by the C + + Standard library.

11 Required behavior: accept a value of ptr that is null or that was returned by an earlier call to
operator new[](std::size_t) or operator new[](std::size_t,const
std::nothrow_t&).

12 Default behavior:

— For a null value of ptr, does nothing.

— Any other value of ptr shall be a value returned earlier by a call to the default operator
new[](std::size_t).212) For such a non-null value of ptr, reclaims storage allocated by the ear-
lier call to the default operator new[].

13 It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subsequent call
to operator new or any of calloc, malloc, or realloc, declared in <cstdlib>.

[lib.new.delete.placement] 18.4.1.3 Placement forms

1 These functions are reserved, a C + + program may not define functions that displace the versions in the Stan-
dard C + + library (17.4.3). The provisions of (3.7.3) do not apply to these reserved placement forms of
operator new and operator delete.

211) It is not the direct responsibility of operator new[](std::size_t) or operator delete[](void*) to note the
repetition count or element size of the array. Those operations are performed elsewhere in the array new and delete expressions.
The array new expression, may, however, increase the size argument to operator new[](std::size_t) to obtain space to
store supplemental information.
212) The value must not have been invalidated by an intervening call to operator delete[](void*) (17.4.3.7).

345

ISO/IEC 14882:2003(E)  ISO/IEC

18.4.1.3 Placement forms 18 Language support library

void* operator new(std::size_t size, void* ptr) throw();

2 Returns: ptr.
3 Notes: Intentionally performs no other action.

4 [Example: This can be useful for constructing an object at a known address:

void* place = operator new(sizeof(Something));
Something* p = new (place) Something();

—end example]

void* operator new[](std::size_t size, void* ptr) throw();

5 Returns: ptr.
6 Notes: Intentionally performs no other action.

void operator delete(void* ptr, void*) throw();

7 Effects: Intentionally performs no action.
8 Notes: Default function called when any part of the initialization in a placement new expression that

invokes the library’s non-array placement operator new terminates by throwing an exception (5.3.4).

void operator delete[](void* ptr, void*) throw();

9 Effects: Intentionally performs no action.
10 Notes: Default function called when any part of the initialization in a placement new expression that

invokes the library’s array placement operator new terminates by throwing an exception (5.3.4).

[lib.alloc.errors] 18.4.2 Storage allocation errors

[lib.bad.alloc] 18.4.2.1 Class bad_alloc

namespace std {
class bad_alloc : public exception {
public:
bad_alloc() throw();
bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();
virtual ˜bad_alloc() throw();
virtual const char* what() const throw();

};
}

1 The class bad_alloc defines the type of objects thrown as exceptions by the implementation to report a
failure to allocate storage.

bad_alloc() throw();

2 Effects: Constructs an object of class bad_alloc.
3 Notes: The result of calling what() on the newly constructed object is implementation-defined.

bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();

4 Effects: Copies an object of class bad_alloc.

346

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.4.2.1 Class bad_alloc

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.

[lib.new.handler] 18.4.2.2 Type new_handler

typedef void (*new_handler)();

1 The type of a handler function to be called by operator new() or operator new[]() (18.4.1)
when they cannot satisfy a request for additional storage.

2 Required behavior: A new_handler shall perform one of the following:

— make more storage available for allocation and then return;

— throw an exception of type bad_alloc or a class derived from bad_alloc;

— call either abort() or exit();

[lib.set.new.handler] 18.4.2.3 set_new_handler

new_handler set_new_handler(new_handler new_p) throw();

1 Effects: Establishes the function designated by new_p as the current new_handler.
2 Returns: 0 on the first call, the previous new_handler on subsequent calls.

[lib.support.rtti] 18.5 Type identification

1 The header <typeinfo> defines a type associated with type information generated by the implementa-
tion. It also defines two types for reporting dynamic type identification errors.

Header <typeinfo> synopsis

namespace std {
class type_info;
class bad_cast;
class bad_typeid;

}

SEE ALSO: 5.2.7, 5.2.8.

[lib.type.info] 18.5.1 Class type_info

namespace std {
class type_info {
public:
virtual ˜type_info();
bool operator==(const type_info& rhs) const;
bool operator!=(const type_info& rhs) const;
bool before(const type_info& rhs) const;
const char* name() const;

private:
type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);

};
}

1 The class type_info describes type information generated by the implementation. Objects of this class
effectively store a pointer to a name for the type, and an encoded value suitable for comparing two types for
equality or collating order. The names, encoding rule, and collating sequence for types are all unspecified
and may differ between programs.

347

ISO/IEC 14882:2003(E)  ISO/IEC

18.5.1 Class type_info 18 Language support library

bool operator==(const type_info& rhs) const;

2 Effects: Compares the current object with rhs.
3 Returns: true if the two values describe the same type.

bool operator!=(const type_info& rhs) const;

4 Returns: !(*this == rhs).

bool before(const type_info& rhs) const;

5 Effects: Compares the current object with rhs.
6 Returns: true if *this precedes rhs in the implementation’s collation order.

const char* name() const;

7 Returns: an implementation-defined NTBS.
8 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as a wstring (21.2, 22.2.1.5)

type_info(const type_info& rhs);
type_info& operator=(const type_info& rhs);

9 Effects: Copies a type_info object.
10 Notes: Since the copy constructor and assignment operator for type_info are private to the class,

objects of this type cannot be copied.

[lib.bad.cast] 18.5.2 Class bad_cast

namespace std {
class bad_cast : public exception {
public:
bad_cast() throw();
bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();
virtual ˜bad_cast() throw();
virtual const char* what() const throw();

};
}

1 The class bad_cast defines the type of objects thrown as exceptions by the implementation to report the
execution of an invalid dynamic-cast expression (5.2.7).

bad_cast() throw();

2 Effects: Constructs an object of class bad_cast.
3 Notes: The result of calling what() on the newly constructed object is implementation-defined.

bad_cast(const bad_cast&) throw();
bad_cast& operator=(const bad_cast&) throw();

4 Effects: Copies an object of class bad_cast.

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.
6 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as a wstring (21.2, 22.2.1.5)

348

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.5.3 Class bad_typeid

[lib.bad.typeid] 18.5.3 Class bad_typeid

namespace std {
class bad_typeid : public exception {
public:
bad_typeid() throw();
bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();
virtual ˜bad_typeid() throw();
virtual const char* what() const throw();

};
}

1 The class bad_typeid defines the type of objects thrown as exceptions by the implementation to report a
null pointer in a typeid expression (5.2.8).

bad_typeid() throw();

2 Effects: Constructs an object of class bad_typeid.
3 Notes: The result of calling what() on the newly constructed object is implementation-defined.

bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();

4 Effects: Copies an object of class bad_typeid.

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.
6 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as a wstring (21.2, 22.2.1.5)

[lib.support.exception] 18.6 Exception handling

1 The header <exception> defines several types and functions related to the handling of exceptions in a
C + + program.

Header <exception> synopsis

namespace std {
class exception;
class bad_exception;

typedef void (*unexpected_handler)();
unexpected_handler set_unexpected(unexpected_handler f) throw();
void unexpected();

typedef void (*terminate_handler)();
terminate_handler set_terminate(terminate_handler f) throw();
void terminate();

bool uncaught_exception() throw();
}

SEE ALSO: 15.5.

[lib.exception] 18.6.1 Class exception

349

ISO/IEC 14882:2003(E)  ISO/IEC

18.6.1 Class exception 18 Language support library

namespace std {
class exception {
public:

exception() throw();
exception(const exception&) throw();
exception& operator=(const exception&) throw();
virtual ˜exception() throw();
virtual const char* what() const throw();

};
}

1 The class exception defines the base class for the types of objects thrown as exceptions by C + + Standard
library components, and certain expressions, to report errors detected during program execution.

exception() throw();

2 Effects: Constructs an object of class exception.
3 Notes: Does not throw any exceptions.

exception(const exception&) throw();
exception& operator=(const exception&) throw();

4 Effects: Copies an exception object.
5 Notes: The effects of calling what() after assignment are implementation-defined.

virtual ˜exception() throw();

6 Effects: Destroys an object of class exception.
7 Notes: Does not throw any exceptions.

virtual const char* what() const throw();

8 Returns: An implementation-defined NTBS.
9 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as a wstring (21.2, 22.2.1.5). The return value remains valid until the exception object from
which it is obtained is destroyed or a non-const member function of the exception object is called.

[lib.exception.unexpected] 18.6.2 Violating exception-specifications

[lib.bad.exception] 18.6.2.1 Class bad_exception

namespace std {
class bad_exception : public exception {
public:
bad_exception() throw();
bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();
virtual ˜bad_exception() throw();
virtual const char* what() const throw();

};
}

1 The class bad_exception defines the type of objects thrown as described in (15.5.2).

350

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.6.2.1 Class bad_exception

bad_exception() throw();

2 Effects: Constructs an object of class bad_exception.
3 Notes: The result of calling what() on the newly constructed object is implementation-defined.

bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();

4 Effects: Copies an object of class bad_exception.

virtual const char* what() const throw();

5 Returns: An implementation-defined NTBS.
6 Notes: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and

display as a wstring (21.2, 22.2.1.5).

[lib.unexpected.handler] 18.6.2.2 Type unexpected_handler

typedef void (*unexpected_handler)();

1 The type of a handler function to be called by unexpected() when a function attempts to throw an
exception not listed in its exception-specification.

2 Required behavior: An unexpected_handler shall not return. See also 15.5.2.
3 Default behavior: The implementation’s default unexpected_handler calls terminate().

[lib.set.unexpected] 18.6.2.3 set_unexpected

unexpected_handler set_unexpected(unexpected_handler f) throw();

1 Effects: Establishes the function designated by f as the current unexpected_handler.
2 Requires: f shall not be a null pointer.
3 Returns: The previous unexpected_handler.

[lib.unexpected] 18.6.2.4 unexpected

void unexpected();

1 Called by the implementation when a function exits via an exception not allowed by its exception-
specification (15.5.2). May also be called directly by the program.

2 Effects: Calls the unexpected_handler function in effect immediately after evaluating the throw-
expression (18.6.2.2), if called by the implementation, or calls the current unexpected_handler, if
called by the program.

[lib.exception.terminate] 18.6.3 Abnormal termination

[lib.terminate.handler] 18.6.3.1 Type terminate_handler

typedef void (*terminate_handler)();

1 The type of a handler function to be called by terminate() when terminating exception processing.
2 Required behavior: A terminate_handler shall terminate execution of the program without return-

ing to the caller.
3 Default behavior: The implementation’s default terminate_handler calls abort().

351

ISO/IEC 14882:2003(E)  ISO/IEC

18.6.3.2 set_terminate 18 Language support library

[lib.set.terminate] 18.6.3.2 set_terminate

terminate_handler set_terminate(terminate_handler f) throw();

1 Effects: Establishes the function designated by f as the current handler function for terminating exception
processing.

2 Requires: f shall not be a null pointer.
3 Returns: The previous terminate_handler.

[lib.terminate] 18.6.3.3 terminate

void terminate();

1 Called by the implementation when exception handling must be abandoned for any of several reasons
(15.5.1). May also be called directly by the program.

2 Effects: Calls the terminate_handler function in effect immediately after evaluating the throw-
expression (18.6.3.1), if called by the implementation, or calls the current terminate_handler
function, if called by the program.

[lib.uncaught] 18.6.4 uncaught_exception

bool uncaught_exception() throw();

1 Returns: true after completing evaluation of a throw-expression until either completing initialization of
the exception-declaration in the matching handler or entering unexpected() due to the throw; or
after entering terminate() for any reason other than an explicit call to terminate(). [Note:
This includes stack unwinding (15.2). —end note]

2 Notes: When uncaught_exception() is true, throwing an exception can result in a call of
terminate() (15.5.1).

[lib.support.runtime] 18.7 Other runtime support

1 Headers <cstdarg> (variable arguments), <csetjmp> (nonlocal jumps), <ctime> (system clock
clock(), time()), <csignal> (signal handling), and <cstdlib> (runtime environment
getenv(), system()).

Table 19—Header <cstdarg> synopsis
_ __

Type Name(s)_ __
Macros: va_arg va_end va_start_ __
Type: va_list_ __ 










Table 20—Header <csetjmp> synopsis
_ ____________________

Type Name(s)_ ____________________
Macro: setjmp_ ____________________
Type: jmp_buf_ ____________________
Function: longjmp_ ____________________ 












352

 ISO/IEC ISO/IEC 14882:2003(E)

18 Language support library 18.7 Other runtime support

Table 21—Header <ctime> synopsis
_ _____________________________

Type Name(s)_ _____________________________
Macros: CLOCKS_PER_SEC_ _____________________________
Types: clock_t_ _____________________________
Functions: clock_ _____________________________ 












Table 22—Header <csignal> synopsis
_ ___

Type Name(s)_ ___
Macros: SIGABRT SIGILL SIGSEGV SIG_DFL

SIG_IGN SIGFPE SIGINT SIGTERM SIG_ERR_ ___
Type: sig_atomic_t_ ___
Functions: raise signal_ ___ 
















Table 23—Header <cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Functions: getenv system_ ______________________________ 








2 The contents of these headers are the same as the Standard C library headers <stdarg.h>,
<setjmp.h>, <time.h>, <signal.h>, and <stdlib.h> respectively, with the following changes:

3 The restrictions that ISO C places on the second parameter to the va_start() macro in header
<stdarg.h> are different in this International Standard. The parameter parmN is the identifier of the
rightmost parameter in the variable parameter list of the function definition (the one just before the ...).
If the parameter parmN is declared with a function, array, or reference type, or with a type that is not com-
patible with the type that results when passing an argument for which there is no parameter, the behavior is
undefined.

SEE ALSO: ISO C subclause 4.8.1.1.

4 The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this
International Standard. If any automatic objects would be destroyed by a thrown exception transferring
control to another (destination) point in the program, then a call to longjmp(jbuf, val) at the throw
point that transfers control to the same (destination) point has undefined behavior.

SEE ALSO: ISO C subclause 7.10.4, 7.8, 7.6, 7.12.

5 The common subset of the C and C + + languages consists of all declarations, definitions, and expressions
that may appear in a well formed C + + program and also in a conforming C program. A POF (‘‘plain old
function’’) is a function that uses only features from this common subset, and that does not directly or indi-
rectly use any function that is not a POF. All signal handlers shall have C linkage. A POF that could be
used as a signal handler in a conforming C program does not produce undefined behavior when used as a
signal handler in a C + + program. The behavior of any other function used as a signal handler in a C + + pro-
gram is implementation defined.213)

213) In particular, a signal handler using exception handling is very likely to have problems

353

ISO/IEC 14882:2003(E)  ISO/IEC

354

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

19 Diagnostics library 19 Diagnostics library

19 Diagnostics library [lib.diagnostics]

1 This clause describes components that C + + programs may use to detect and report error conditions.

2 The following subclauses describe components for reporting several kinds of exceptional conditions, docu-
menting program assertions, and a global variable for error number codes, as summarized in Table 24:

Table 24—Diagnostics library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
19.1 Exception classes <stdexcept>_ ____________________________________
19.2 Assertions <cassert>_ ____________________________________
19.3 Error numbers <cerrno>_ ____________________________________ 












[lib.std.exceptions] 19.1 Exception classes

1 The Standard C + + library provides classes to be used to report certain errors (17.4.4.8) in C + + programs. In
the error model reflected in these classes, errors are divided into two broad categories: logic errors and
runtime errors.

2 The distinguishing characteristic of logic errors is that they are due to errors in the internal logic of the pro-
gram. In theory, they are preventable.

3 By contrast, runtime errors are due to events beyond the scope of the program. They cannot be easily pre-
dicted in advance. The header <stdexcept> defines several types of predefined exceptions for reporting
errors in a C + + program. These exceptions are related by inheritance.

Header <stdexcept> synopsis

namespace std {
class logic_error;
class domain_error;
class invalid_argument;
class length_error;
class out_of_range;

class runtime_error;
class range_error;
class overflow_error;
class underflow_error;

}

[lib.logic.error] 19.1.1 Class logic_error

namespace std {
class logic_error : public exception {
public:
explicit logic_error(const string& what_arg);

};
}

1 The class logic_error defines the type of objects thrown as exceptions to report errors presumably
detectable before the program executes, such as violations of logical preconditions or class invariants.

355

ISO/IEC 14882:2003(E)  ISO/IEC

19.1.1 Class logic_error 19 Diagnostics library

logic_error(const string& what_arg);

2 Effects: Constructs an object of class logic_error.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.domain.error] 19.1.2 Class domain_error

namespace std {
class domain_error : public logic_error {
public:
explicit domain_error(const string& what_arg);

};
}

1 The class domain_error defines the type of objects thrown as exceptions by the implementation to
report domain errors.

domain_error(const string& what_arg);

2 Effects: Constructs an object of class domain_error.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.invalid.argument] 19.1.3 Class invalid_argument

namespace std {
class invalid_argument : public logic_error {
public:
explicit invalid_argument(const string& what_arg);

};
}

1 The class invalid_argument defines the type of objects thrown as exceptions to report an invalid
argument.

invalid_argument(const string& what_arg);

2 Effects: Constructs an object of class invalid_argument.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.length.error] 19.1.4 Class length_error

namespace std {
class length_error : public logic_error {
public:
explicit length_error(const string& what_arg);

};
}

1 The class length_error defines the type of objects thrown as exceptions to report an attempt to produce
an object whose length exceeds its maximum allowable size.

length_error(const string& what_arg);

2 Effects: Constructs an object of class length_error.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

356

 ISO/IEC ISO/IEC 14882:2003(E)

19 Diagnostics library 19.1.4 Class length_error

[lib.out.of.range] 19.1.5 Class out_of_range

namespace std {
class out_of_range : public logic_error {
public:
explicit out_of_range(const string& what_arg);

};
}

1 The class out_of_range defines the type of objects thrown as exceptions to report an argument value
not in its expected range.

out_of_range(const string& what_arg);

2 Effects: Constructs an object of class out_of_range.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.runtime.error] 19.1.6 Class runtime_error

namespace std {
class runtime_error : public exception {
public:
explicit runtime_error(const string& what_arg);

};
}

1 The class runtime_error defines the type of objects thrown as exceptions to report errors presumably
detectable only when the program executes.

runtime_error(const string& what_arg);

2 Effects: Constructs an object of class runtime_error.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.range.error] 19.1.7 Class range_error

namespace std {
class range_error : public runtime_error {
public:
explicit range_error(const string& what_arg);

};
}

1 The class range_error defines the type of objects thrown as exceptions to report range errors in internal
computations.

range_error(const string& what_arg);

2 Effects: Constructs an object of class range_error.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.overflow.error] 19.1.8 Class overflow_error

namespace std {
class overflow_error : public runtime_error {
public:
explicit overflow_error(const string& what_arg);

};
}

357

ISO/IEC 14882:2003(E)  ISO/IEC

19.1.8 Class overflow_error 19 Diagnostics library

1 The class overflow_error defines the type of objects thrown as exceptions to report an arithmetic
overflow error.

overflow_error(const string& what_arg);

2 Effects: Constructs an object of class overflow_error.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.underflow.error] 19.1.9 Class underflow_error

namespace std {
class underflow_error : public runtime_error {
public:
explicit underflow_error(const string& what_arg);

};
}

1 The class underflow_error defines the type of objects thrown as exceptions to report an arithmetic
underflow error.

underflow_error(const string& what_arg);

2 Effects: Constructs an object of class underflow_error.
3 Postcondition: strcmp(what(), what_arg.c_str()) == 0.

[lib.assertions] 19.2 Assertions

1 Provides macros for documenting C + + program assertions, and for disabling the assertion checks.

2 Header <cassert> (Table 25):

Table 25—Header <cassert> synopsis
_ ____________________

Type Name(s)_ ____________________
Macro: assert_ ____________________ 








3 The contents are the same as the Standard C library header <assert.h>.

SEE ALSO: ISO C subclause 7.2.

[lib.errno] 19.3 Error numbers

1 Header <cerrno> (Table 26):

Table 26—Header <cerrno> synopsis
_ __________________________________

Type Name(s)_ __________________________________
Macros: EDOM ERANGE errno_ __________________________________ 








2 The contents are the same as the Standard C library header <errno.h>.

SEE ALSO: ISO C subclause 7.1.4, 7.2, Amendment 1 subclause 4.3.

358

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library [lib.utilities]

1 This clause describes components used by other elements of the Standard C + + library. These components
may also be used by C + + programs.

2 The following clauses describe utility and allocator requirements, utility components, function objects,
dynamic memory management utilities, and date/time utilities, as summarized in Table 27:

Table 27—General utilities library summary
_ _____________________________________

Clause Header(s)_ ______________________________________ _____________________________________
20.1 Requirements_ _____________________________________
20.2 Utility components <utility>_ _____________________________________
20.3 Function objects <functional>_ _____________________________________
20.4 Memory <memory>_ _____________________________________
20.5 Date and time <ctime>_ _____________________________________ 


















[lib.utility.requirements] 20.1 Requirements

1 20.1 describes requirements on template arguments. 20.1.1 through 20.1.3 describe requirements on types
used to instantiate templates. 20.1.5 describes the requirements on storage allocators.

[lib.equalitycomparable] 20.1.1 Equality comparison

1 In Table 28, T is a type to be supplied by a C + + program instantiating a template, a, b and c are values of
type T.

Table 28—EqualityComparable requirements

expression return type requirement__
a == b convertible to bool == is an equivalence rela-

tion, that is, it satisfies the
following properties:

— For all a, a == a.

— If a == b, then b == a.

— If a == b and b == c, then a == c.___ 





















[lib.lessthancomparable] 20.1.2 Less than comparison

1 In the following Table 29, T is a type to be supplied by a C + + program instantiating a template, a and b are
values of type T.

Table 29—LessThanComparable requirements
_ __
expression return type requirement_ ___ __
a < b convertible to bool < is a strict weak ordering relation (25.3)_ __ 








359

ISO/IEC 14882:2003(E)  ISO/IEC

20.1.3 Copy construction 20 General utilities library

[lib.copyconstructible] 20.1.3 Copy construction

1 In the following Table 30, T is a type to be supplied by a C + + program instantiating a template, t is a value
of type T, and u is a value of type const T.

Table 30—CopyConstructible requirements
_ __
expression return type requirement_ ___ __
T(t) t is equivalent to T(t)_ __
T(u) u is equivalent to T(u)_ __
t.˜T()_ __
&t T* denotes the address of t_ __
&u const T* denotes the address of u_ __ 


















[lib.default.con.req] 20.1.4 Default construction

1 The default constructor is not required. Certain container class member function signatures specify the
default constructor as a default argument. T() shall be a well-defined expression (8.5) if one of those sig-
natures is called using the default argument (8.3.6).

[lib.allocator.requirements] 20.1.5 Allocator requirements

1 The library describes a standard set of requirements for allocators, which are objects that encapsulate the
information about an allocation model. This information includes the knowledge of pointer types, the type
of their difference, the type of the size of objects in this allocation model, as well as the memory allocation
and deallocation primitives for it. All of the containers (clause 23) are parameterized in terms of allocators.

2 Table 31 describes the requirements on types manipulated through allocators. All the operations on the
allocators are expected to be amortized constant time. Table 32 describes the requirements on allocator
types.

360

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.1.5 Allocator requirements

Table 31—Descriptive variable definitions
_ ___

Variable Definition_ __ ___
T, U any type_ ___
X an Allocator class for type T_ ___
Y the corresponding Allocator class for type U_ ___
t a value of type const T&_ ___
a, a1, a2 values of type X&_ ___
b a value of type Y_ ___
p a value of type X::pointer, obtained by calling

a1.allocate, where a1 == a._ ___
q a value of type X::const_pointer obtained by

conversion from a value p._ ___
r a value of type X::reference obtained by

the expression *p._ ___
s a value of type X::const_reference obtained by

the expression *q or by conversion from a value r._ ___
u a value of type Y::const_pointer obtained by

calling Y::allocate, or else 0._ ___
n a value of type X::size_type._ ___ 


















































361

ISO/IEC 14882:2003(E)  ISO/IEC

20.1.5 Allocator requirements 20 General utilities library

Table 32—Allocator requirements
_ __

assertion/note
expression return type

pre/post-condition_ ___ __
X::pointer Pointer to T._ __
X::const_pointer Pointer to const T._ __

T&X::reference_ __
T const&X::const_reference_ __
Identical to TX::value_type_ __

X::size_type unsigned integral type a type that can represent the size
of the largest object in the alloca-
tion model._ __

X::difference_type signed integral type a type that can represent the dif-
ference between any two pointers
in the allocation model._ __

Ytypename X::template
rebind<U>::other

For all U (including T),
Y::template
rebind<T>::other is X._ __

a.address(r) X::pointer_ __
a.address(s) X::const_pointer_ __
a.allocate(n)
a.allocate(n,u)

X::pointer Memory is allocated for n objects
of type T but objects are not con-
structed. allocate may raise
an appropriate exception. The
result is a random access itera-
tor.214) [Note: If n == 0, the
return value is unspecified.]_ __

(not used)a.deallocate(p, n) All n T objects in the area pointed
by p shall be destroyed prior to
this call. n shall match the
value passed to allocate to
obtain this memory. Does not
throw exceptions. [Note: p shall
not be null.]_ __

a.max_size() X::size_type the largest value that can mean-
ingfully be passed to
X::allocate()._ __

a1 == a2 bool returns true iff storage allocated
from each can be deallocated via
the other._ __

a1 != a2 bool same as !(a1 == a2)_ __
X() creates a default instance. Note: a

destructor is assumed._ __
X a(b); post: Y(a) == b_ __
a.construct(p,t) (not used) Effect: new((void*)p) T(t)_ __
a.destroy(p) (not used) Effect: ((T*)p)->˜T()_ __ 




















































































































214) It is intended that a.allocate be an efficient means of allocating a single object of type T, even when sizeof(T) is small.

362

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.1.5 Allocator requirements

3 The member class template rebind in the table above is effectively a typedef template: if the name Allo-
cator is bound to SomeAllocator<T>, then Allocator::rebind<U>::other is the same type as
SomeAllocator<U>.

4 Implementations of containers described in this International Standard are permitted to assume that their
Allocator template parameter meets the following two additional requirements beyond those in Table 32.

— All instances of a given allocator type are required to be interchangeable and always compare equal to
each other.

— The typedef members pointer, const_pointer, size_type, and difference_type are
required to be T*, T const*, size_t, and ptrdiff_t, respectively.

5 Implementors are encouraged to supply libraries that can accept allocators that encapsulate more general
memory models and that support non-equal instances. In such implementations, any requirements imposed
on allocators by containers beyond those requirements that appear in Table 32, and the semantics of con-
tainers and algorithms when allocator instances compare non-equal, are implementation-defined.

[lib.utility] 20.2 Utility components

1 This subclause contains some basic function and class templates that are used throughout the rest of the
library.

Header <utility> synopsis

namespace std {
// 20.2.1, operators:
namespace rel_ops {

template<class T> bool operator!=(const T&, const T&);
template<class T> bool operator> (const T&, const T&);
template<class T> bool operator<=(const T&, const T&);
template<class T> bool operator>=(const T&, const T&);

}

// 20.2.2, pairs:
template <class T1, class T2> struct pair;
template <class T1, class T2>

bool operator==(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator< (const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator!=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator> (const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator>=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2>

bool operator<=(const pair<T1,T2>&, const pair<T1,T2>&);
template <class T1, class T2> pair<T1,T2> make_pair(T1, T2);

}

That is, there is no need for a container to maintain its own ‘‘free list’’.

363

ISO/IEC 14882:2003(E)  ISO/IEC

20.2 Utility components 20 General utilities library

[lib.operators] 20.2.1 Operators

1 To avoid redundant definitions of operator!= out of operator== and operators >, <=, and >= out of
operator<, the library provides the following:

template <class T> bool operator!=(const T& x, const T& y);

2 Requires: Type T is EqualityComparable (20.1.1).
3 Returns: !(x == y).

template <class T> bool operator>(const T& x, const T& y);

4 Requires: Type T is LessThanComparable (20.1.2).
5 Returns: y < x.

template <class T> bool operator<=(const T& x, const T& y);

6 Requires: Type T is LessThanComparable (20.1.2).
7 Returns: !(y < x).

template <class T> bool operator>=(const T& x, const T& y);

8 Requires: Type T is LessThanComparable (20.1.2).
9 Returns: !(x < y).

10 In this library, whenever a declaration is provided for an operator!=, operator>, operator>=, or
operator<=, and requirements and semantics are not explicitly provided, the requirements and semantics
are as specified in this clause.

[lib.pairs] 20.2.2 Pairs

1 The library provides a template for heterogeneous pairs of values. The library also provides a matching
function template to simplify their construction.

template <class T1, class T2>
struct pair {

typedef T1 first_type;
typedef T2 second_type;

T1 first;
T2 second;
pair();
pair(const T1& x, const T2& y);
template<class U, class V> pair(const pair<U, V> &p);

};

pair();

2 Effects: Initializes its members as if implemented: pair() : first(T1()), second(T2()) {}

pair(const T1& x, const T2& y);

3 Effects: The constructor initializes first with x and second with y.

template<class U, class V> pair(const pair<U, V> &p);

4 Effects: Initializes members from the corresponding members of the argument, performing implicit con-
versions as needed.

364

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.2.2 Pairs

template <class T1, class T2>
bool operator==(const pair<T1, T2>& x, const pair<T1, T2>& y);

5 Returns: x.first == y.first && x.second == y.second.

template <class T1, class T2>
bool operator<(const pair<T1, T2>& x, const pair<T1, T2>& y);

6 Returns: x.first < y.first || (!(y.first < x.first) && x.second <
y.second).

template <class T1, class T2>
pair<T1, T2> make_pair(T1 x, T2 y);

7 Returns: pair<T1, T2>(x, y).214a)

8 [Example: In place of:

return pair<int, double>(5, 3.1415926); // explicit types

a C + + program may contain:

return make_pair(5, 3.1415926); // types are deduced

—end example]

[lib.function.objects] 20.3 Function objects

1 Function objects are objects with an operator() defined. They are important for the effective use of the
library. In the places where one would expect to pass a pointer to a function to an algorithmic template
(clause 25), the interface is specified to accept an object with an operator() defined. This not only
makes algorithmic templates work with pointers to functions, but also enables them to work with arbitrary
function objects.

Header <functional> synopsis

namespace std {
// 20.3.1, base:
template <class Arg, class Result> struct unary_function;
template <class Arg1, class Arg2, class Result> struct binary_function;

// 20.3.2, arithmetic operations:
template <class T> struct plus;
template <class T> struct minus;
template <class T> struct multiplies;
template <class T> struct divides;
template <class T> struct modulus;
template <class T> struct negate;

// 20.3.3, comparisons:
template <class T> struct equal_to;
template <class T> struct not_equal_to;
template <class T> struct greater;
template <class T> struct less;
template <class T> struct greater_equal;
template <class T> struct less_equal;

214a) According to (12.8), an implementation is permitted to not perform a copy of an argument, thus avoiding unnecessary copies.

365

ISO/IEC 14882:2003(E)  ISO/IEC

20.3 Function objects 20 General utilities library

// 20.3.4, logical operations:
template <class T> struct logical_and;
template <class T> struct logical_or;
template <class T> struct logical_not;

// 20.3.5, negators:
template <class Predicate> struct unary_negate;
template <class Predicate>

unary_negate<Predicate> not1(const Predicate&);
template <class Predicate> struct binary_negate;
template <class Predicate>

binary_negate<Predicate> not2(const Predicate&);

// 20.3.6, binders:
template <class Operation> class binder1st;
template <class Operation, class T>

binder1st<Operation> bind1st(const Operation&, const T&);
template <class Operation> class binder2nd;
template <class Operation, class T>

binder2nd<Operation> bind2nd(const Operation&, const T&);

// 20.3.7, adaptors:
template <class Arg, class Result> class pointer_to_unary_function;
template <class Arg, class Result>

pointer_to_unary_function<Arg,Result> ptr_fun(Result (*)(Arg));
template <class Arg1, class Arg2, class Result>

class pointer_to_binary_function;
template <class Arg1, class Arg2, class Result>

pointer_to_binary_function<Arg1,Arg2,Result>
ptr_fun(Result (*)(Arg1,Arg2));

// 20.3.8, adaptors:
template<class S, class T> class mem_fun_t;
template<class S, class T, class A> class mem_fun1_t;
template<class S, class T>

mem_fun_t<S,T> mem_fun(S (T::*f)());
template<class S, class T, class A>

mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
template<class S, class T> class mem_fun_ref_t;
template<class S, class T, class A> class mem_fun1_ref_t;
template<class S, class T>

mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
template<class S, class T, class A>

mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A));

template <class S, class T> class const_mem_fun_t;
template <class S, class T, class A> class const_mem_fun1_t;
template <class S, class T>
const_mem_fun_t<S,T> mem_fun(S (T::*f)() const);

template <class S, class T, class A>
const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const);

template <class S, class T> class const_mem_fun_ref_t;
template <class S, class T, class A> class const_mem_fun1_ref_t;
template <class S, class T>

const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const);
template <class S, class T, class A>

const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const);
}

366

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.3 Function objects

2 Using function objects together with function templates increases the expressive power of the library as
well as making the resulting code much more efficient.

3 [Example: If a C + + program wants to have a by-element addition of two vectors a and b containing
double and put the result into a, it can do:

transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());

—end example]

4 [Example: To negate every element of a:

transform(a.begin(), a.end(), a.begin(), negate<double>());

The corresponding functions will inline the addition and the negation. —end example]

5 To enable adaptors and other components to manipulate function objects that take one or two arguments it
is required that the function objects correspondingly provide typedefs argument_type and
result_type for function objects that take one argument and first_argument_type,
second_argument_type, and result_type for function objects that take two arguments.

[lib.base] 20.3.1 Base

1 The following classes are provided to simplify the typedefs of the argument and result types:

template <class Arg, class Result>
struct unary_function {
typedef Arg argument_type;
typedef Result result_type;

};

template <class Arg1, class Arg2, class Result>
struct binary_function {

typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};

[lib.arithmetic.operations] 20.3.2 Arithmetic operations

1 The library provides basic function object classes for all of the arithmetic operators in the language (5.6,
5.7).

template <class T> struct plus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

2 operator() returns x + y.

template <class T> struct minus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

3 operator() returns x - y.

template <class T> struct multiplies : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

4 operator() returns x * y.

367

ISO/IEC 14882:2003(E)  ISO/IEC

20.3.2 Arithmetic operations 20 General utilities library

template <class T> struct divides : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

5 operator() returns x / y.

template <class T> struct modulus : binary_function<T,T,T> {
T operator()(const T& x, const T& y) const;

};

6 operator() returns x % y.

template <class T> struct negate : unary_function<T,T> {
T operator()(const T& x) const;

};

7 operator() returns -x.

[lib.comparisons] 20.3.3 Comparisons

1 The library provides basic function object classes for all of the comparison operators in the language (5.9,
5.10).

template <class T> struct equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

2 operator() returns x == y.

template <class T> struct not_equal_to : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

3 operator() returns x != y.

template <class T> struct greater : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

4 operator() returns x > y.

template <class T> struct less : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

5 operator() returns x < y.

template <class T> struct greater_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

6 operator() returns x >= y.

368

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.3.3 Comparisons

template <class T> struct less_equal : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

7 operator() returns x <= y.

8 For templates greater, less, greater_equal, and less_equal, the specializations for any
pointer type yield a total order, even if the built-in operators <, >, <=, >= do not.

[lib.logical.operations] 20.3.4 Logical operations

1 The library provides basic function object classes for all of the logical operators in the language (5.14, 5.15,
5.3.1).

template <class T> struct logical_and : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

2 operator() returns x && y.

template <class T> struct logical_or : binary_function<T,T,bool> {
bool operator()(const T& x, const T& y) const;

};

3 operator() returns x || y.

template <class T> struct logical_not : unary_function<T,bool> {
bool operator()(const T& x) const;

};

4 operator() returns !x.

[lib.negators] 20.3.5 Negators

1 Negators not1 and not2 take a unary and a binary predicate, respectively, and return their complements
(5.3.1).

template <class Predicate>
class unary_negate
: public unary_function<typename Predicate::argument_type,bool> {

public:
explicit unary_negate(const Predicate& pred);
bool operator()(const typename Predicate::argument_type& x) const;

};

2 operator() returns !pred(x).

template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred);

3 Returns: unary_negate<Predicate>(pred).

369

ISO/IEC 14882:2003(E)  ISO/IEC

20.3.5 Negators 20 General utilities library

template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type,

typename Predicate::second_argument_type, bool> {
public:

explicit binary_negate(const Predicate& pred);
bool operator()(const typename Predicate::first_argument_type& x,

const typename Predicate::second_argument_type& y) const;
};

4 operator() returns !pred(x,y).

template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred);

5 Returns: binary_negate<Predicate>(pred).

[lib.binders] 20.3.6 Binders

1 Binders bind1st and bind2nd take a function object f of two arguments and a value x and return a
function object of one argument constructed out of f with the first or second argument correspondingly
bound to x.

[lib.binder.1st] 20.3.6.1 Class template binder1st

template <class Operation>
class binder1st
: public unary_function<typename Operation::second_argument_type,

typename Operation::result_type> {
protected:

Operation op;
typename Operation::first_argument_type value;

public:
binder1st(const Operation& x,

const typename Operation::first_argument_type& y);
typename Operation::result_type

operator()(const typename Operation::second_argument_type& x) const;
};

1 The constructor initializes op with x and value with y.

2 operator() returns op(value,x).

[lib.bind.1st] 20.3.6.2 bind1st

template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x);

1 Returns: binder1st<Operation>(op, typename Operation::first_argument_type(x)).

[lib.binder.2nd] 20.3.6.3 Class template binder2nd

template <class Operation>
class binder2nd
: public unary_function<typename Operation::first_argument_type,

typename Operation::result_type> {
protected:

Operation op;
typename Operation::second_argument_type value;

370

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.3.6.3 Class template binder2nd

public:
binder2nd(const Operation& x,

const typename Operation::second_argument_type& y);
typename Operation::result_type

operator()(const typename Operation::first_argument_type& x) const;
};

1 The constructor initializes op with x and value with y.

2 operator() returns op(x,value).

[lib.bind.2nd] 20.3.6.4 bind2nd

template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x);

1 Returns: binder2nd<Operation>(op, typename Operation::second_argument_type(x)).

2 [Example:

find_if(v.begin(), v.end(), bind2nd(greater<int>(), 5));

finds the first integer in vector v greater than 5;

find_if(v.begin(), v.end(), bind1st(greater<int>(), 5));

finds the first integer in v less than 5. —end example]

[lib.function.pointer.adaptors] 20.3.7 Adaptors for pointers to functions

1 To allow pointers to (unary and binary) functions to work with function adaptors the library provides:

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
public:
explicit pointer_to_unary_function(Result (*f)(Arg));
Result operator()(Arg x) const;

};

2 operator() returns f(x).

template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result (*f)(Arg));

3 Returns: pointer_to_unary_function<Arg, Result>(f).

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function :

public binary_function<Arg1,Arg2,Result> {
public:

explicit pointer_to_binary_function(Result (*f)(Arg1, Arg2));
Result operator()(Arg1 x, Arg2 y) const;

};

4 operator() returns f(x,y).

template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1,Arg2,Result>
ptr_fun(Result (*f)(Arg1, Arg2));

5 Returns: pointer_to_binary_function<Arg1,Arg2,Result>(f).

6 [Example:

371

ISO/IEC 14882:2003(E)  ISO/IEC

20.3.7 Adaptors for pointers to functions 20 General utilities library

replace_if(v.begin(), v.end(), not1(bind2nd(ptr_fun(strcmp), "C")), "C + +");

replaces each C with C + + in sequence v.215) —end example]

[lib.member.pointer.adaptors] 20.3.8 Adaptors for pointers to members

1 The purpose of the following is to provide the same facilities for pointer to members as those provided for
pointers to functions in 20.3.7.

template <class S, class T> class mem_fun_t
: public unary_function<T*, S> {

public:
explicit mem_fun_t(S (T::*p)());
S operator()(T* p) const;

};

2 mem_fun_t calls the member function it is initialized with given a pointer argument.

template <class S, class T, class A> class mem_fun1_t
: public binary_function<T*, A, S> {

public:
explicit mem_fun1_t(S (T::*p)(A));
S operator()(T* p, A x) const;

};

3 mem_fun1_t calls the member function it is initialized with given a pointer argument and an additional
argument of the appropriate type.

template<class S, class T> mem_fun_t<S,T>
mem_fun(S (T::*f)());

template<class S, class T, class A> mem_fun1_t<S,T,A>
mem_fun(S (T::*f)(A));

4 mem_fun(&X::f) returns an object through which X::f can be called given a pointer to an X followed
by the argument required for f (if any).

template <class S, class T> class mem_fun_ref_t
: public unary_function<T, S> {

public:
explicit mem_fun_ref_t(S (T::*p)());
S operator()(T& p) const;

};

5 mem_fun_ref_t calls the member function it is initialized with given a reference argument.

template <class S, class T, class A> class mem_fun1_ref_t
: public binary_function<T, A, S> {

public:
explicit mem_fun1_ref_t(S (T::*p)(A));
S operator()(T& p, A x) const;

};

6 mem_fun1_ref_t calls the member function it is initialized with given a reference argument and an
additional argument of the appropriate type.

template<class S, class T> mem_fun_ref_t<S,T>
mem_fun_ref(S (T::*f)());

215) Implementations that have multiple pointer to function types provide additional ptr_fun function templates.

372

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.3.8 Adaptors for pointers to members

template<class S, class T, class A> mem_fun1_ref_t<S,T,A>
mem_fun_ref(S (T::*f)(A));

7 mem_fun_ref(&X::f) returns an object through which X::f can be called given a reference to an X
followed by the argument required for f (if any).

template <class S, class T> class const_mem_fun_t
: public unary_function<T*, S> {

public:
explicit const_mem_fun_t(S (T::*p)() const);
S operator()(const T* p) const;

};

8 const_mem_fun_t calls the member function it is initialized with given a pointer argument.

template <class S, class T, class A> class const_mem_fun1_t
: public binary_function<T*, A, S> {

public:
explicit const_mem_fun1_t(S (T::*p)(A) const);
S operator()(const T* p, A x) const;

};

9 const_mem_fun1_t calls the member function it is initialized with given a pointer argument and an
additional argument of the appropriate type.

template<class S, class T> const_mem_fun_t<S,T>
mem_fun(S (T::*f)() const);

template<class S, class T, class A> const_mem_fun1_t<S,T,A>
mem_fun(S (T::*f)(A) const);

10 mem_fun(&X::f) returns an object through which X::f can be called given a pointer to an X followed
by the argument required for f (if any).

template <class S, class T> class const_mem_fun_ref_t
: public unary_function<T, S> {

public:
explicit const_mem_fun_ref_t(S (T::*p)() const);
S operator()(const T& p) const;

};

11 const_mem_fun_ref_t calls the member function it is initialized with given a reference argument.

template <class S, class T, class A> class const_mem_fun1_ref_t
: public binary_function<T, A, S> {

public:
explicit const_mem_fun1_ref_t(S (T::*p)(A) const);
S operator()(const T& p, A x) const;

};

12 const_mem_fun1_ref_t calls the member function it is initialized with given a reference argument
and an additional argument of the appropriate type.

template<class S, class T> const_mem_fun_ref_t<S,T>
mem_fun_ref(S (T::*f)() const);

template<class S, class T, class A> const_mem_fun1_ref_t<S,T,A>
mem_fun_ref(S (T::*f)(A) const);

13 mem_fun_ref(&X::f) returns an object through which X::f can be called given a reference to an X
followed by the argument required for f (if any).

373

ISO/IEC 14882:2003(E)  ISO/IEC

20.4 Memory 20 General utilities library

[lib.memory] 20.4 Memory

Header <memory> synopsis

namespace std {
// 20.4.1, the default allocator:
template <class T> class allocator;
template <> class allocator<void>;
template <class T, class U>

bool operator==(const allocator<T>&, const allocator<U>&) throw();
template <class T, class U>

bool operator!=(const allocator<T>&, const allocator<U>&) throw();

// 20.4.2, raw storage iterator:
template <class OutputIterator, class T> class raw_storage_iterator;

// 20.4.3, temporary buffers:
template <class T>

pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
template <class T>

void return_temporary_buffer(T* p);

// 20.4.4, specialized algorithms:
template <class InputIterator, class ForwardIterator>

ForwardIterator
uninitialized_copy(InputIterator first, InputIterator last,

ForwardIterator result);
template <class ForwardIterator, class T>

void uninitialized_fill(ForwardIterator first, ForwardIterator last,
const T& x);

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);

// 20.4.5, pointers:
template<class X> class auto_ptr;

}

[lib.default.allocator] 20.4.1 The default allocator

namespace std {
template <class T> class allocator;

// specialize for void:
template <> class allocator<void> {
public:

typedef void* pointer;
typedef const void* const_pointer;
// reference-to-void members are impossible.
typedef void value_type;
template <class U> struct rebind { typedef allocator<U> other; };

};

374

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.4.1 The default allocator

template <class T> class allocator {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef allocator<U> other; };

allocator() throw();
allocator(const allocator&) throw();
template <class U> allocator(const allocator<U>&) throw();

˜allocator() throw();

pointer address(reference x) const;
const_pointer address(const_reference x) const;

pointer allocate(
size_type, allocator<void>::const_pointer hint = 0);

void deallocate(pointer p, size_type n);
size_type max_size() const throw();

void construct(pointer p, const T& val);
void destroy(pointer p);

};
}

[lib.allocator.members] 20.4.1.1 allocator members

pointer address(reference x) const;

1 Returns: &x.

const_pointer address(const_reference x) const;

2 Returns: &x.

pointer allocate(size_type n, allocator<void>::const_pointer hint=0);

3 Notes: Uses ::operator new(size_t) (18.4.1).
4 Requires: hint either 0 or previously obtained from member allocate and not yet passed to member

deallocate. The value hint may be used by an implementation to help improve performance216).
5 Returns: a pointer to the initial element of an array of storage of size n * sizeof(T), aligned appro-

priately for objects of type T.
6 Note: the storage is obtained by calling ::operator new(size_t), but it is unspecified when or

how often this function is called. The use of hint is unspecified, but intended as an aid to locality if
an implementation so desires.

7 Throws: bad_alloc if the storage cannot be obtained.

216) In a container member function, the address of an adjacent element is often a good choice to pass for this argument.

375

ISO/IEC 14882:2003(E)  ISO/IEC

20.4.1.1 allocator members 20 General utilities library

void deallocate(pointer p, size_type n);

8 Requires: p shall be a pointer value obtained from allocate(). n shall equal the value passed as the
first argument to the invocation of allocate which returned p.

9 Effects: Deallocates the storage referenced by p.
10 Notes: Uses ::operator delete(void*) (18.4.1), but it is unspecified when this function is called.

size_type max_size() const throw();

11 Returns: the largest value N for which the call allocate(N,0) might succeed.

void construct(pointer p, const_reference val);

12 Returns: new((void *)p) T(val)

void destroy(pointer p);

13 Returns: ((T*)p)->˜T()

[lib.allocator.globals] 20.4.1.2 allocator globals

template <class T1, class T2>
bool operator==(const allocator<T1>&, const allocator<T2>&) throw();

1 Returns: true.

template <class T1, class T2>
bool operator!=(const allocator<T1>&, const allocator<T2>&) throw();

2 Returns: false.

[lib.storage.iterator] 20.4.2 Raw storage iterator

1 raw_storage_iterator is provided to enable algorithms to store their results into uninitialized mem-
ory. The formal template parameter OutputIterator is required to have its operator* return an
object for which operator& is defined and returns a pointer to T, and is also required to satisfy the
requirements of an output iterator (24.1.2).

namespace std {
template <class OutputIterator, class T>
class raw_storage_iterator
: public iterator<output_iterator_tag,void,void,void,void> {

public:
explicit raw_storage_iterator(OutputIterator x);

raw_storage_iterator<OutputIterator,T>& operator*();
raw_storage_iterator<OutputIterator,T>& operator=(const T& element);
raw_storage_iterator<OutputIterator,T>& operator++();
raw_storage_iterator<OutputIterator,T> operator++(int);

};
}

raw_storage_iterator(OutputIterator x);

2 Effects: Initializes the iterator to point to the same value to which x points.

376

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.4.2 Raw storage iterator

raw_storage_iterator<OutputIterator,T>& operator*();

3 Returns: *this

raw_storage_iterator<OutputIterator,T>& operator=(const T& element);

4 Effects: Constructs a value from element at the location to which the iterator points.
5 Returns: A reference to the iterator.

raw_storage_iterator<OutputIterator,T>& operator++();

6 Effects: Pre-increment: advances the iterator and returns a reference to the updated iterator.

raw_storage_iterator<OutputIterator,T> operator++(int);

7 Effects: Post-increment: advances the iterator and returns the old value of the iterator.

[lib.temporary.buffer] 20.4.3 Temporary buffers

template <class T>
pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);

1 Effects: Obtains a pointer to storage sufficient to store up to n adjacent T objects.
2 Returns: A pair containing the buffer’s address and capacity (in the units of sizeof(T)), or a pair of

0 values if no storage can be obtained.

template <class T> void return_temporary_buffer(T* p);

3 Effects: Deallocates the buffer to which p points.
4 Requires: The buffer shall have been previously allocated by get_temporary_buffer.

[lib.specialized.algorithms] 20.4.4 Specialized algorithms

1 All the iterators that are used as formal template parameters in the following algorithms are required to
have their operator* return an object for which operator& is defined and returns a pointer to T. In
the algorithm uninitialized_copy, the formal template parameter InputIterator is required to
satisfy the requirements of an input iterator (24.1.1). In all of the following algorithms, the formal template
parameter ForwardIterator is required to satisfy the requirements of a forward iterator (24.1.3) and
also to satisfy the requirements of a mutable iterator (24.1), and is required to have the property that no
exceptions are thrown from increment, assignment, comparison, or dereference of valid iterators. In the fol-
lowing algorithms, if an exception is thrown there are no effects.

[lib.uninitialized.copy] 20.4.4.1 uninitialized_copy

template <class InputIterator, class ForwardIterator>
ForwardIterator
uninitialized_copy(InputIterator first, InputIterator last,

ForwardIterator result);

1 Effects:

for (; first != last; ++result, ++first)
new (static_cast<void*>(&*result))

typename iterator_traits<ForwardIterator>::value_type(*first);

2 Returns: result

377

ISO/IEC 14882:2003(E)  ISO/IEC

20.4.4.2 uninitialized_fill 20 General utilities library

[lib.uninitialized.fill] 20.4.4.2 uninitialized_fill

template <class ForwardIterator, class T>
void uninitialized_fill(ForwardIterator first, ForwardIterator last,

const T& x);

1 Effects:

for (; first != last; ++first)
new (static_cast<void*>(&*first))

typename iterator_traits<ForwardIterator>::value_type(x);

[lib.uninitialized.fill.n] 20.4.4.3 uninitialized_fill_n

template <class ForwardIterator, class Size, class T>
void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);

1 Effects:

for (; n--; ++first)
new (static_cast<void*>(&*first))

typename iterator_traits<ForwardIterator>::value_type(x);

[lib.auto.ptr] 20.4.5 Class template auto_ptr

1 Template auto_ptr stores a pointer to an object obtained via new and deletes that object when it itself is
destroyed (such as when leaving block scope 6.7).

2 Template auto_ptr_ref holds a reference to an auto_ptr. It is used by the auto_ptr conversions
to allow auto_ptr objects to be passed to and returned from functions.

namespace std {
template <class Y> struct auto_ptr_ref {};

template<class X> class auto_ptr {
public:
typedef X element_type;

// 20.4.5.1 construct/copy/destroy:
explicit auto_ptr(X* p =0) throw();
auto_ptr(auto_ptr&) throw();
template<class Y> auto_ptr(auto_ptr<Y>&) throw();
auto_ptr& operator=(auto_ptr&) throw();
template<class Y> auto_ptr& operator=(auto_ptr<Y>&) throw();
auto_ptr& operator=(auto_ptr_ref<X> r) throw();

˜auto_ptr() throw();

// 20.4.5.2 members:
X& operator*() const throw();
X* operator->() const throw();
X* get() const throw();
X* release() throw();
void reset(X* p =0) throw();

// 20.4.5.3 conversions:
auto_ptr(auto_ptr_ref<X>) throw();
template<class Y> operator auto_ptr_ref<Y>() throw();
template<class Y> operator auto_ptr<Y>() throw();

};
}

378

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.4.5 Class template auto_ptr

3 The auto_ptr provides a semantics of strict ownership. An auto_ptr owns the object it holds a
pointer to. Copying an auto_ptr copies the pointer and transfers ownership to the destination. If more
than one auto_ptr owns the same object at the same time the behavior of the program is undefined.
[Note: The uses of auto_ptr include providing temporary exception-safety for dynamically allocated
memory, passing ownership of dynamically allocated memory to a function, and returning dynamically
allocated memory from a function. auto_ptr does not meet the CopyConstructible and
Assignable requirements for Standard Library container elements and thus instantiating a Standard
Library container with an auto_ptr results in undefined behavior. —end note]

[lib.auto.ptr.cons] 20.4.5.1 auto_ptr constructors

explicit auto_ptr(X* p =0) throw();

1 Postconditions: *this holds the pointer p.

auto_ptr(auto_ptr& a) throw();

2 Effects: Calls a.release().
3 Postconditions: *this holds the pointer returned from a.release().

template<class Y> auto_ptr(auto_ptr<Y>& a) throw();

4 Requires: Y* can be implicitly converted to X*.
5 Effects: Calls a.release().
6 Postconditions: *this holds the pointer returned from a.release().

auto_ptr& operator=(auto_ptr& a) throw();

7 Requires: The expression delete get() is well formed.
8 Effects: reset(a.release()).
9 Returns: *this.

template<class Y> auto_ptr& operator=(auto_ptr<Y>& a) throw();

10 Requires: Y* can be implicitly converted to X*. The expression delete get() is well formed.
11 Effects: reset(a.release()).
12 Returns: *this.

˜auto_ptr() throw();

13 Requires: The expression delete get() is well formed.
14 Effects: delete get().

[lib.auto.ptr.members] 20.4.5.2 auto_ptr members

X& operator*() const throw();

1 Requires: get() != 0
2 Returns: *get()

X* operator->() const throw();

3 Returns: get()

379

ISO/IEC 14882:2003(E)  ISO/IEC

20.4.5.2 auto_ptr members 20 General utilities library

X* get() const throw();

4 Returns: The pointer *this holds.

X* release() throw();

5 Returns: get()
6 Postcondition: *this holds the null pointer.

void reset(X* p=0) throw();

7 Effects: If get() != p then delete get().
8 Postconditions: *this holds the pointer p.

[lib.auto.ptr.conv] 20.4.5.3 auto_ptr conversions

auto_ptr(auto_ptr_ref<X> r) throw();

1 Effects: Calls p.release() for the auto_ptr p that r holds.
2 Postconditions: *this hold the pointer returned from release().

template<class Y> operator auto_ptr_ref<Y>() throw();

3 Returns: An auto_ptr_ref<Y> that holds *this.

template<class Y> operator auto_ptr<Y>() throw();

4 Effects: Calls release().
5 Returns: An auto_ptr<Y> that holds the pointer returned from release().

auto_ptr& operator=(auto_ptr_ref<X> r) throw()

6 Effects: Calls reset(p.release()) for the auto_ptr p that r holds a reference to.
7 Returns: *this

[lib.c.malloc] 20.4.6 C Library

1 Header <cstdlib> (Table 33):

Table 33—Header <cstdlib> synopsis
_ _______________________________

Type Name(s)_ _______________________________
Functions: calloc malloc

free realloc_ _______________________________ 









2 The contents are the same as the Standard C library header <stdlib.h>, with the following changes:

3 The functions calloc(), malloc(), and realloc() do not attempt to allocate storage by calling
::operator new() (18.4).

4 The function free() does not attempt to deallocate storage by calling ::operator delete().

SEE ALSO: ISO C clause 7.11.2.

380

 ISO/IEC ISO/IEC 14882:2003(E)

20 General utilities library 20.4.6 C Library

5 Header <cstring> (Table 34):

Table 34—Header <cstring> synopsis
_ _______________________________

Type Name(s)_ _______________________________
Macro: NULL_ _______________________________
Type: size_t_ _______________________________
Functions: memchr memcmp

memcpy memmove memset_ _______________________________ 















6 The contents are the same as the Standard C library header <string.h>, with the change to memchr()
specified in 21.4.

SEE ALSO: ISO C clause 7.11.2.

[lib.date.time] 20.5 Date and time

1 Header <ctime> (Table 35):

Table 35—Header <ctime> synopsis
_ ___

Type Name(s)_ ___
Macros: NULL_ ___
Types: size_t clock_t time_t_ ___
Struct: tm_ ___
Functions:
asctime clock difftime localtime strftime

ctime gmtime mktime time_ ___ 



















2 The contents are the same as the Standard C library header <time.h>.

SEE ALSO: ISO C clause 7.12, Amendment 1 clause 4.6.4.

381

ISO/IEC 14882:2003(E)  ISO/IEC

382

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21 Strings library

21 Strings library [lib.strings]

1 This clause describes components for manipulating sequences of “characters,” where characters may be of
any POD (3.9) type. In this clause such types are called char-like types, and objects of char-like types are
called char-like objects or simply “characters.”

2 The following subclauses describe a character traits class, a string class, and null-terminated sequence utili-
ties, as summarized in Table 36:

Table 36—Strings library summary
_ ___

Subclause Header(s)_ __ ___
21.1 Character traits <string>_ ___
21.2 String classes <string>_ ___

<cctype>

<cwctype>

<cstring>

<cwchar>

21.4 Null-terminated sequence utilities

<cstdlib>_ ___ 





















[lib.char.traits] 21.1 Character traits

1 This subclause defines requirements on classes representing character traits, and defines a class template
char_traits<charT>, along with two specializations, char_traits<char> and
char_traits<wchar_t>, that satisfy those requirements.

2 Most classes specified in clauses 21.2 and 27 need a set of related types and functions to complete the defi-
nition of their semantics. These types and functions are provided as a set of member typedefs and functions
in the template parameter ‘traits’ used by each such template. This subclause defines the semantics guaran-
teed by these members.

3 To specialize those templates to generate a string or iostream class to handle a particular character container
type CharT, that and its related character traits class Traits are passed as a pair of parameters to the
string or iostream template as formal parameters charT and traits. Traits::char_type shall be
the same as CharT.

4 This subclause specifies a struct template, char_traits<charT>, and two explicit specializations of it,
char_traits<char> and char_traits<wchar_t>, all of which appear in the header <string>
and satisfy the requirements below.

[lib.char.traits.require] 21.1.1 Character traits requirements

1 In Table 37, X denotes a Traits class defining types and functions for the character container type CharT; c
and d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of
type CharT*; n, i and j denote values of type size_t; e and f denote values of type X::int_type;
pos denotes a value of type X::pos_type; and state denotes a value of type X::state_type.
Operations on Traits shall not throw exceptions.

383

ISO/IEC 14882:2003(E)  ISO/IEC

21.1.1 Character traits requirements 21 Strings library

Table 37—Traits requirements
_ __

assertion/note
expression return type

pre/post-condition
complexity

_ ___ __
X::char_type charT (described in 21.1.2) compile-time_ __
X::int_type (described in 21.1.2) compile-time_ __
X::off_type (described in 21.1.2) compile-time_ __
X::pos_type (described in 21.1.2) compile-time_ __
X::state_type (described in 21.1.2) compile-time_ __
X::assign(c,d) (not used) assigns c=d. constant_ __
X::eq(c,d) bool constant yields: whether c is to be treated as equal to d._ __
X::lt(c,d) bool constant yields: whether c is to be treated as less than d._ __

int linearX::compare
(p,q,n)

yields: 0 if for each i in [0,n),
X::eq(p[i],q[i]) is true; else, a negative
value if, for some j in [0,n),
X::lt(p[j],q[j]) is true and for each i in
[0,j) X::eq(p[i],q[i]) is true; else a positive
value._ __

X::length(p) size_t linear yields: the smallest i such that
X::eq(p[i],charT()) is true._ __

X::find(p,n,c) linearconst X::
char_type*

yields: the smallest q in [p,p+n) such that
X::eq(*q,c) is true, zero otherwise._ __

X::move(s,p,n) linearX::
char_type*

for each i in [0,n), performs
X::assign(s[i],p[i]). Copies correctly
even where the ranges [p, p+n) and [s, s+n) over-
lap. yields: s._ __

X::copy(s,p,n) linearX::
char_type*

pre: p not in [s,s+n). yields: s. for each i in
[0,n), performs X::assign(s[i],p[i])._ __

linearX::assign
(s,n,c)

X::
char_type*

for each i in [0,n), performs
X::assign(s[i],c). yields: s._ __

X::not_eof(e) int_type constant yields: e if X::eq_int_type(e,X::eof()) is
false, otherwise a value f such that
X::eq_int_type(f,X::eof()) is false._ __

constantX::to_char_type
(e)

X::
char_type

yields: if for some c,
X::eq_int_type(e,X::to_int_type(c))
is true, c; else some unspecified value._ __

constantX::to_int_type
(c)

X::
int_type

yields: some value e, constrained by the definitions
of to_char_type and eq_int_type._ __

bool constantX::eq_int_type
(e,f)

yields: for all c and d, X::eq(c,d) is equal to
X::eq_int_type(X::to_int_type(c),
X::to_int_type(d)); otherwise, yields true if
e and f are both copies of X::eof(); otherwise,
yields false if one of e and f are copies of
X::eof() and the other is not; otherwise the value
is unspecified._ __

X::eof() constantX::
int_type

yields: a value e such that
X::eq_int_type(e,X::to_int_type(c))
is false for all values c._ __ 




















































































































2 The struct template

384

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.1.1 Character traits requirements

template<class charT> struct char_traits;

shall be provided in the header <string> as a basis for explicit specializations.

3 In the following subclauses, the token charT represents the parameter of the traits template.

[lib.char.traits.typedefs] 21.1.2 traits typedefs

typedef CHAR_T char_type;

1 The type char_type is used to refer to the character container type in the implementation of the library
classes defined in 21.2 and clause 27.

typedef INT_T int_type;

2 Requires: For a certain character container type char_type, a related container type INT_T shall be a
type or class which can represent all of the valid characters converted from the corresponding
char_type values, as well as an end-of-file value, eof(). The type int_type represents a charac-
ter container type which can hold end-of-file to be used as a return type of the iostream class member
functions.217)

typedef OFF_T off_type;
typedef POS_T pos_type;

3 Requires: Requirements for off_type and pos_type are described in 27.1.2.

typedef STATE_T state_type;

4 Requires: state_type shall meet the requirements of CopyConstructible types (20.1.3).

[lib.char.traits.specializations] 21.1.3 char_traits specializations

namespace std {
template<> struct char_traits<char>;
template<> struct char_traits<wchar_t>;

}

1 The header <string> declares two structs that are specializations of the template struct char_traits.

2 The struct char_traits<char> is the char type specialization of the template struct char_traits,
which contains all of the types and functions necessary to ensure the behavior of the classes in 21.2 and
clause 27.

3 The types and static member functions are described in detail in 21.1.1.

[lib.char.traits.specializations.char] 21.1.3.1 struct char_traits<char>

namespace std {
template<>
struct char_traits<char> {
typedef char char_type;
typedef int int_type;
typedef streamoff off_type;
typedef streampos pos_type;
typedef mbstate_t state_type;

217) If eof() can be held in char_type then some iostreams operations may give surprising results.

385

ISO/IEC 14882:2003(E)  ISO/IEC

21.1.3.1 struct char_traits<char> 21 Strings library

static void assign(char_type& c1, const char_type& c2);
static bool eq(const char_type& c1, const char_type& c2);
static bool lt(const char_type& c1, const char_type& c2);

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

static int_type not_eof(const int_type& c);
static char_type to_char_type(const int_type& c);
static int_type to_int_type(const char_type& c);
static bool eq_int_type(const int_type& c1, const int_type& c2);
static int_type eof();

};
}

1 The header <string> (21.2) declares a specialization of the template struct char_traits for char. It
is for narrow-oriented iostream classes.

2 The defined types for int_type, pos_type, off_type, and state_type are int, streampos,
streamoff, and mbstate_t respectively.

3 The type streampos is an implementation-defined type that satisfies the requirements for POS_T in
21.1.2.

4 The type streamoff is an implementation-defined type that satisfies the requirements for OFF_T in
21.1.2.

5 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states possible to
occur in an implementation-defined set of supported multibyte character encoding rules.

6 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==,
and < respectively.

7 The member eof() returns EOF.

[lib.char.traits.specializations.wchar.t] 21.1.3.2 struct char_traits<wchar_t>

namespace std {
template<>
struct char_traits<wchar_t> {
typedef wchar_t char_type;
typedef wint_t int_type;
typedef streamoff off_type;
typedef wstreampos pos_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static bool eq(const char_type& c1, const char_type& c2);
static bool lt(const char_type& c1, const char_type& c2);

386

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.1.3.2 struct char_traits<wchar_t>

static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,

const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);

static int_type not_eof(const int_type& c);
static char_type to_char_type(const int_type& c);
static int_type to_int_type(const char_type& c);
static bool eq_int_type(const int_type& c1, const int_type& c2);
static int_type eof();

};
}

The header <string> (21.2) declares a specialization of the template struct char_traits for
wchar_t. It is for wide-oriented iostream classes.

1 The defined types for int_type, pos_type, and state_type are wint_t, wstreampos, and
mbstate_t respectively.

2 The type wstreampos is an implementation-defined type that satisfies the requirements for POS_T in
21.1.2.

3 [Note: This paragraph is intentionally empty. —end note]

4 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states possible to
occur in an implementation-defined set of supported multibyte character encoding rules.

5 The two-argument members assign, eq, and lt are defined identically to the built-in operators =, ==,
and < respectively.

6 The member eof() returns WEOF.

[lib.string.classes] 21.2 String classes

1 The header <string> defines a basic string class template and its traits that can handle all char-like
(clause 21) template arguments with several function signatures for manipulating varying-length sequences
of char-like objects.

2 The header <string> also defines two specific template classes string and wstring and their special
traits.

Header <string> synopsis

namespace std {
// 21.1, character traits:
template<class charT>

struct char_traits;
template <> struct char_traits<char>;
template <> struct char_traits<wchar_t>;

// 21.3, basic_string:
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_string;

387

ISO/IEC 14882:2003(E)  ISO/IEC

21.2 String classes 21 Strings library

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(charT lhs, const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs, charT rhs);

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator==(const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator!=(const basic_string<charT,traits,Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator< (const basic_string<charT,traits,Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator> (const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator> (const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

388

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.2 String classes

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator<=(const basic_string<charT,traits,Allocator>& lhs,
const charT* rhs);

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const basic_string<charT,traits,Allocator>& lhs,
const basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);
template<class charT, class traits, class Allocator>

bool operator>=(const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

// 21.3.7.8:
template<class charT, class traits, class Allocator>

void swap(basic_string<charT,traits,Allocator>& lhs,
basic_string<charT,traits,Allocator>& rhs);

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&
operator>>(basic_istream<charT,traits>& is,

basic_string<charT,traits,Allocator>& str);
template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,

const basic_string<charT,traits,Allocator>& str);
template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&
getline(basic_istream<charT,traits>& is,

basic_string<charT,traits,Allocator>& str,
charT delim);

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&

getline(basic_istream<charT,traits>& is,
basic_string<charT,traits,Allocator>& str);

typedef basic_string<char> string;
typedef basic_string<wchar_t> wstring;

}

[lib.basic.string] 21.3 Class template basic_string

1 For a char-like type charT, the class template basic_string describes objects that can store a
sequence consisting of a varying number of arbitrary char-like objects (clause 21). The first element of the
sequence is at position zero. Such a sequence is also called a “string” if the given char-like type is clear
from context. In the rest of this clause, charT denotes such a given char-like type. Storage for the string
is allocated and freed as necessary by the member functions of class basic_string, via the
Allocator class passed as template parameter. Allocator::value_type shall be the same as
charT.

2 The class template basic_string conforms to the requirements of a Sequence, as specified in (23.1.1).
Additionally, because the iterators supported by basic_string are random access iterators (24.1.5),
basic_string conforms to the the requirements of a Reversible Container, as specified in (23.1).

389

ISO/IEC 14882:2003(E)  ISO/IEC

21.3 Class template basic_string 21 Strings library

3 In all cases, size() <= capacity().

4 The functions described in this clause can report two kinds of errors, each associated with a distinct excep-
tion:

— a length error is associated with exceptions of type length_error (19.1.4);

— an out-of-range error is associated with exceptions of type out_of_range (19.1.5).

4a For any string operation, if as a result of the operation, size() would exceed max_size() then the
operation throws length_error.

5 References, pointers, and iterators referring to the elements of a basic_string sequence may be invalidated
by the following uses of that basic_string object:

— As an argument to non-member functions swap() (21.3.7.8), operator>>() (21.3.7.9), and
getline() (21.3.7.9).

— As an argument to basic_string::swap().

— Calling data() and c_str() member functions.

— Calling non-const member functions, except operator[](), at(), begin(), rbegin(),
end(), and rend().

— Subsequent to any of the above uses except the forms of insert() and erase() which return itera-
tors, the first call to non-const member functions operator[](), at(), begin(), rbegin(),
end(), or rend().

6 [Note: These rules are formulated to allow, but not require, a reference counted implementation. A refer-
ence counted implementation must have the same semantics as a non-reference counted implementation.
[Example:

string s1("abc");

string::iterator i = s1.begin();
string s2 = s1;

*i = ’a’; // Must modify only s1

—end example] —end note]

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_string {
public:

// types:
typedef traits traits_type;
typedef typename traits::char_type value_type;
typedef Allocator allocator_type;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;

typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;

typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
static const size_type npos = -1;

390

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3 Class template basic_string

// 21.3.1 construct/copy/destroy:
explicit basic_string(const Allocator& a = Allocator());
basic_string(const basic_string& str);
basic_string(const basic_string& str, size_type pos, size_type n = npos,

const Allocator& a = Allocator());
basic_string(const charT* s,

size_type n, const Allocator& a = Allocator());
basic_string(const charT* s, const Allocator& a = Allocator());
basic_string(size_type n, charT c, const Allocator& a = Allocator());
template<class InputIterator>

basic_string(InputIterator begin, InputIterator end,
const Allocator& a = Allocator());

˜basic_string();
basic_string& operator=(const basic_string& str);
basic_string& operator=(const charT* s);
basic_string& operator=(charT c);

// 21.3.2 iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 21.3.3 capacity:
size_type size() const;
size_type length() const;
size_type max_size() const;
void resize(size_type n, charT c);
void resize(size_type n);
size_type capacity() const;
void reserve(size_type res_arg = 0);
void clear();
bool empty() const;

// 21.3.4 element access:
const_reference operator[](size_type pos) const;
reference operator[](size_type pos);
const_reference at(size_type n) const;
reference at(size_type n);

// 21.3.5 modifiers:
basic_string& operator+=(const basic_string& str);
basic_string& operator+=(const charT* s);
basic_string& operator+=(charT c);
basic_string& append(const basic_string& str);
basic_string& append(const basic_string& str, size_type pos,

size_type n);
basic_string& append(const charT* s, size_type n);
basic_string& append(const charT* s);
basic_string& append(size_type n, charT c);
template<class InputIterator>

basic_string& append(InputIterator first, InputIterator last);
void push_back(charT c);

391

ISO/IEC 14882:2003(E)  ISO/IEC

21.3 Class template basic_string 21 Strings library

basic_string& assign(const basic_string& str);
basic_string& assign(const basic_string& str, size_type pos,

size_type n);
basic_string& assign(const charT* s, size_type n);
basic_string& assign(const charT* s);
basic_string& assign(size_type n, charT c);
template<class InputIterator>

basic_string& assign(InputIterator first, InputIterator last);

basic_string& insert(size_type pos1, const basic_string& str);
basic_string& insert(size_type pos1, const basic_string& str,

size_type pos2, size_type n);
basic_string& insert(size_type pos, const charT* s, size_type n);
basic_string& insert(size_type pos, const charT* s);
basic_string& insert(size_type pos, size_type n, charT c);
iterator insert(iterator p, charT c);
void insert(iterator p, size_type n, charT c);
template<class InputIterator>

void insert(iterator p, InputIterator first, InputIterator last);

basic_string& erase(size_type pos = 0, size_type n = npos);
iterator erase(iterator position);
iterator erase(iterator first, iterator last);

basic_string& replace(size_type pos1, size_type n1,
const basic_string& str);

basic_string& replace(size_type pos1, size_type n1,
const basic_string& str,
size_type pos2, size_type n2);

basic_string& replace(size_type pos, size_type n1, const charT* s,
size_type n2);

basic_string& replace(size_type pos, size_type n1, const charT* s);
basic_string& replace(size_type pos, size_type n1, size_type n2,

charT c);

basic_string& replace(iterator i1, iterator i2,
const basic_string& str);

basic_string& replace(iterator i1, iterator i2, const charT* s,
size_type n);

basic_string& replace(iterator i1, iterator i2, const charT* s);
basic_string& replace(iterator i1, iterator i2,

size_type n, charT c);
template<class InputIterator>

basic_string& replace(iterator i1, iterator i2,
InputIterator j1, InputIterator j2);

size_type copy(charT* s, size_type n, size_type pos = 0) const;
void swap(basic_string& str);

// 21.3.6 string operations:
const charT* c_str() const; // explicit
const charT* data() const;
allocator_type get_allocator() const;

392

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3 Class template basic_string

size_type find (const basic_string& str, size_type pos = 0) const;
size_type find (const charT* s, size_type pos, size_type n) const;
size_type find (const charT* s, size_type pos = 0) const;
size_type find (charT c, size_type pos = 0) const;
size_type rfind(const basic_string& str, size_type pos = npos) const;
size_type rfind(const charT* s, size_type pos, size_type n) const;
size_type rfind(const charT* s, size_type pos = npos) const;
size_type rfind(charT c, size_type pos = npos) const;

size_type find_first_of(const basic_string& str,
size_type pos = 0) const;

size_type find_first_of(const charT* s,
size_type pos, size_type n) const;

size_type find_first_of(const charT* s, size_type pos = 0) const;
size_type find_first_of(charT c, size_type pos = 0) const;
size_type find_last_of (const basic_string& str,

size_type pos = npos) const;
size_type find_last_of (const charT* s,

size_type pos, size_type n) const;
size_type find_last_of (const charT* s, size_type pos = npos) const;
size_type find_last_of (charT c, size_type pos = npos) const;

size_type find_first_not_of(const basic_string& str,
size_type pos = 0) const;

size_type find_first_not_of(const charT* s, size_type pos,
size_type n) const;

size_type find_first_not_of(const charT* s, size_type pos = 0) const;
size_type find_first_not_of(charT c, size_type pos = 0) const;
size_type find_last_not_of (const basic_string& str,

size_type pos = npos) const;
size_type find_last_not_of (const charT* s, size_type pos,

size_type n) const;
size_type find_last_not_of (const charT* s,

size_type pos = npos) const;
size_type find_last_not_of (charT c, size_type pos = npos) const;

basic_string substr(size_type pos = 0, size_type n = npos) const;
int compare(const basic_string& str) const;
int compare(size_type pos1, size_type n1,

const basic_string& str) const;
int compare(size_type pos1, size_type n1,

const basic_string& str,
size_type pos2, size_type n2) const;

int compare(const charT* s) const;
int compare(size_type pos1, size_type n1,

const charT* s) const;
int compare(size_type pos1, size_type n1,

const charT* s, size_type n2) const;
};

}

[lib.string.cons] 21.3.1 basic_string constructors

1 In all basic_string constructors, a copy of the Allocator argument is used for any memory alloca-
tion performed by the constructor or member functions during the lifetime of the object.

393

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.1 basic_string constructors 21 Strings library

explicit basic_string(const Allocator& a = Allocator());

2 Effects: Constructs an object of class basic_string. The postconditions of this function are indicated
in Table 38:

Table 38—basic_string(const Allocator&) effects
_ ___

Element Value_ __ ___
data() a non-null pointer that is copyable and can have 0 added to it
size() 0
capacity() an unspecified value_ ___ 












basic_string(const basic_string<charT,traits,Allocator>& str);

basic_string(const basic_string<charT,traits,Allocator>& str,
size_type pos, size_type n = npos,
const Allocator& a = Allocator());

3 Requires: pos <= str.size()
4 Throws: out_of_range if pos > str.size().
5 Effects: Constructs an object of class basic_string and determines the effective length rlen of the

initial string value as the smaller of n and str.size() - pos, as indicated in Table 39. In the first
form, the Allocator value used is copied from str.get_allocator().

Table 39—basic_string(basic_string, size_type,
size_type, const Allocator&) effects

_ ___
Element Value_ __ ___

data() points at the first element of an
allocated copy of rlen consecu-
tive elements of the string con-
trolled by str beginning at posi-
tion pos

size() rlen
capacity() a value at least as large as size()_ ___ 






















basic_string(const charT* s, size_type n,
const Allocator& a = Allocator());

6 Requires: s shall not be a null pointer and n < npos.

7 [Note: This paragraph is intentionally empty. —end note]
8 Effects: Constructs an object of class basic_string and determines its initial string value from the

array of charT of length n whose first element is designated by s, as indicated in Table 40:

394

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.1 basic_string constructors

Table 40—basic_string(const charT*, size_type,
const Allocator&) effects

_ ___
Element Value_ __ ___

data() points at the first element of an
allocated copy of the array whose
first element is pointed at by s

size() n
capacity() a value at least as large as size()_ ___ 
















basic_string(const charT* s, const Allocator& a = Allocator());

9 Requires: s shall not be a null pointer.
10 Effects: Constructs an object of class basic_string and determines its initial string value from the

array of charT of length traits::length(s) whose first element is designated by s, as indicated
in Table 41:

Table 41—basic_string(const charT*, const Allocator&) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated copy of the array whose
first element is pointed at by s

size() traits::length(s)
capacity() a value at least as large as size()_ ___ 
















11 Notes: Uses traits::length().

basic_string(size_type n, charT c, const Allocator& a = Allocator());

12 Requires: n < npos

13 [Note: This paragraph is intentionally empty. —end note]
14 Effects: Constructs an object of class basic_string and determines its initial string value by repeating

the char-like object c for all n elements, as indicated in Table 42:

Table 42—basic_string(size_type, charT, const Allocator&) effects
_ ___

Element Value_ __ ___
data() points at the first element of an

allocated array of n elements, each
storing the initial value c

size() n
capacity() a value at least as large as size()_ ___ 
















template<class InputIterator>
basic_string(InputIterator begin, InputIterator end,

const Allocator& a = Allocator());

15 Effects: If InputIterator is an integral type, equivalent to

basic_string(static_cast<size_type>(begin), static_cast<value_type>(end))

Otherwise constructs a string from the values in the range [begin, end), as indicated in the Sequence

395

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.1 basic_string constructors 21 Strings library

Requirements table (see 23.1.1).

basic_string<charT,traits,Allocator>&
operator=(const basic_string<charT,traits,Allocator>& str);

16 Effects: If *this and str are not the same object, modifies *this as shown in Table 43:

Table 43—operator=(const basic_string<charT, traits, Allocator>&)
effects

_ ___
Element Value_ __ ___

data() points at the first element of an
allocated copy of the array whose
first element is pointed at by
str.data()

size() str.size()
capacity() a value at least as large as size()_ ___ 




















If *this and str are the same object, the member has no effect.
17 Returns: *this

basic_string<charT,traits,Allocator>&
operator=(const charT* s);

18 Returns: *this = basic_string<charT,traits,Allocator>(s).
19 Notes: Uses traits::length().

basic_string<charT,traits,Allocator>& operator=(charT c);

20 Returns: *this = basic_string<charT,traits,Allocator>(1,c).

[lib.string.iterators] 21.3.2 basic_string iterator support

iterator begin();
const_iterator begin() const;

1 Returns: an iterator referring to the first character in the string.

iterator end();
const_iterator end() const;

2 Returns: an iterator which is the past-the-end value.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

3 Returns: an iterator which is semantically equivalent to reverse_iterator(end()).

reverse_iterator rend();
const_reverse_iterator rend() const;

4 Returns: an iterator which is semantically equivalent to reverse_iterator(begin()).

[lib.string.capacity] 21.3.3 basic_string capacity

396

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.3 basic_string capacity

size_type size() const;

1 Returns: a count of the number of char-like objects currently in the string.

size_type length() const;

2 Returns: size().

size_type max_size() const;

3 Returns: The maximum size of the string.
4 Note: See Container requirements table (23.1).

void resize(size_type n, charT c);

5 Requires: n <= max_size()
6 Throws: length_error if n > max_size().
7 Effects: Alters the length of the string designated by *this as follows:

— If n <= size(), the function replaces the string designated by *this with a string of length n
whose elements are a copy of the initial elements of the original string designated by *this.

— If n > size(), the function replaces the string designated by *this with a string of length n whose
first size() elements are a copy of the original string designated by *this, and whose remaining
elements are all initialized to c.

void resize(size_type n);

8 Effects: resize(n,charT()).

size_type capacity() const;

9 Returns: the size of the allocated storage in the string.

void reserve(size_type res_arg=0);

10 The member function reserve() is a directive that informs a basic_string object of a planned
change in size, so that it can manage the storage allocation accordingly.

11 Effects: After reserve(), capacity() is greater or equal to the argument of reserve. [Note: Call-
ing reserve() with a res_arg argument less than capacity() is in effect a non-binding shrink
request. A call with res_arg <= size() is in effect a non-binding shrink-to-fit request.
—end note]

12 Throws: length_error if res_arg > max_size().218)

void clear();

13 Effects: Behaves as if the function calls:

erase(begin(), end());

bool empty() const;

14 Returns: size() == 0.

218) reserve() uses Allocator::allocate() which may throw an appropriate exception.

397

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.4 basic_string element access 21 Strings library

[lib.string.access] 21.3.4 basic_string element access

const_reference operator[](size_type pos) const;
reference operator[](size_type pos);

1 Returns: If pos < size(), returns data()[pos]. Otherwise, if pos == size(), the const
version returns charT(). Otherwise, the behavior is undefined.

const_reference at(size_type pos) const;
reference at(size_type pos);

2 Requires: pos < size()
3 Throws: out_of_range if pos >= size().
4 Returns: operator[](pos).

[lib.string.modifiers] 21.3.5 basic_string modifiers

[lib.string::op+=] 21.3.5.1 basic_string::operator+=

basic_string<charT,traits,Allocator>&
operator+=(const basic_string<charT,traits,Allocator>& str);

1 Returns: append(str).

basic_string<charT,traits,Allocator>& operator+=(const charT* s);

2 Returns: *this += basic_string<charT,traits,Allocator>(s).
3 Notes: Uses traits::length().

basic_string<charT,traits,Allocator>& operator+=(charT c);

4 Returns: *this += basic_string<charT,traits,Allocator>(1,c).

[lib.string::append] 21.3.5.2 basic_string::append

basic_string<charT,traits,Allocator>&
append(const basic_string<charT,traits>& str);

1 Returns: append(str, 0, npos).

basic_string<charT,traits,Allocator>&
append(const basic_string<charT,traits>& str, size_type pos, size_type n);

2 Requires: pos <= str.size()
3 Throws: out_of_range if pos > str.size().
4 Effects: Determines the effective length rlen of the string to append as the smaller of n and

str.size() - pos. The function then throws length_error if size() >= npos -
rlen.
Otherwise, the function replaces the string controlled by *this with a string of length size() +
rlen whose first size() elements are a copy of the original string controlled by *this and whose
remaining elements are a copy of the initial elements of the string controlled by str beginning at posi-
tion pos.

5 Returns: *this.

398

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.5.2 basic_string::append

basic_string<charT,traits,Allocator>&
append(const charT* s, size_type n);

6 Returns: append(basic_string<charT,traits,Allocator>(s,n)).

basic_string<charT,traits,Allocator>& append(const charT* s);

7 Returns: append(basic_string<charT,traits,Allocator>(s)).
8 Notes: Uses traits::length().

basic_string<charT,traits,Allocator>&
append(size_type n, charT c);

9 Returns: append(basic_string<charT,traits,Allocator>(n,c)).

template<class InputIterator>
basic_string& append(InputIterator first, InputIterator last);

10 Returns: append(basic_string<charT,traits,Allocator>(first,last)).

void push_back(charT c)

11 Effects: Equivalent to append(static_cast<size_type>(1), c).

[lib.string::assign] 21.3.5.3 basic_string::assign

basic_string<charT,traits,Allocator>&
assign(const basic_string<charT,traits>& str);

1 Returns: assign(str, 0, npos).

basic_string<charT,traits,Allocator>&
assign(const basic_string<charT,traits>& str, size_type pos,

size_type n);

2 Requires: pos <= str.size()
3 Throws: out_of_range if pos > str.size().
4 Effects: Determines the effective length rlen of the string to assign as the smaller of n and

str.size() - pos.
The function then replaces the string controlled by *this with a string of length rlen whose elements
are a copy of the string controlled by str beginning at position pos.

5 Returns: *this.

basic_string<charT,traits,Allocator>&
assign(const charT* s, size_type n);

6 Returns: assign(basic_string<charT,traits,Allocator>(s,n)).

basic_string<charT,traits,Allocator>& assign(const charT* s);

7 Returns: assign(basic_string<charT, traits, Allocator>(s)).
8 Notes: Uses traits::length().

basic_string<charT,traits,Allocator>&
assign(size_type n, charT c);

9 Returns: assign(basic_string<charT,traits,Allocator>(n,c)).

399

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.5.3 basic_string::assign 21 Strings library

template<class InputIterator>
basic_string& assign(InputIterator first, InputIterator last);

10 Returns: assign(basic_string<charT,traits,Allocator>(first,last)).

[lib.string::insert] 21.3.5.4 basic_string::insert

basic_string<charT,traits,Allocator>&
insert(size_type pos1,

const basic_string<charT,traits,Allocator>& str);

1 Returns: insert(pos1,str,0,npos).

basic_string<charT,traits,Allocator>&
insert(size_type pos1,

const basic_string<charT,traits,Allocator>& str,
size_type pos2, size_type n);

2 Requires pos1 <= size() and pos2 <= str.size()
3 Throws: out_of_range if pos1 > size() or pos2 > str.size().
4 Effects: Determines the effective length rlen of the string to insert as the smaller of n and str.size()

- pos2. Then throws length_error if size() >= npos - rlen.
Otherwise, the function replaces the string controlled by *this with a string of length size() +
rlen whose first pos1 elements are a copy of the initial elements of the original string controlled by
*this, whose next rlen elements are a copy of the elements of the string controlled by str begin-
ning at position pos2, and whose remaining elements are a copy of the remaining elements of the origi-
nal string controlled by *this.

5 Returns: *this.

basic_string<charT,traits,Allocator>&
insert(size_type pos, const charT* s, size_type n);

6 Returns: insert(pos,basic_string<charT,traits,Allocator>(s,n)).

basic_string<charT,traits,Allocator>&
insert(size_type pos, const charT* s);

7 Returns: insert(pos,basic_string<charT,traits,Allocator>(s)).
8 Notes: Uses traits::length().

basic_string<charT,traits,Allocator>&
insert(size_type pos, size_type n, charT c);

9 Returns: insert(pos,basic_string<charT,traits,Allocator>(n,c)).

iterator insert(iterator p, charT c);

10 Requires: p is a valid iterator on *this.
11 Effects: inserts a copy of c before the character referred to by p.
12 Returns: an iterator which refers to the copy of the inserted character.

void insert(iterator p, size_type n, charT c);

13 Requires: p is a valid iterator on *this.
14 Effects: inserts n copies of c before the character referred to by p.

400

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.5.4 basic_string::insert

template<class InputIterator>
void insert(iterator p, InputIterator first, InputIterator last);

15 Requires: p is a valid iterator on *this. [first,last) is a valid range.
16 Effects: Equivalent to insert(p - begin(), basic_string(first, last)).

[lib.string::erase] 21.3.5.5 basic_string::erase

basic_string<charT,traits,Allocator>&
erase(size_type pos = 0, size_type n = npos);

1 Requires: pos <= size()
2 Throws: out_of_range if pos > size().
3 Effects: Determines the effective length xlen of the string to be removed as the smaller of n and

size() - pos.
The function then replaces the string controlled by *this with a string of length size() - xlen
whose first pos elements are a copy of the initial elements of the original string controlled by *this,
and whose remaining elements are a copy of the elements of the original string controlled by *this
beginning at position pos + xlen.

4 Returns: *this.

iterator erase(iterator p);

5 Requires: p is a valid iterator on *this.
6 Effects: removes the character referred to by p.
7 Returns: an iterator which points to the element immediately following p prior to the element being

erased. If no such element exists, end() is returned.

iterator erase(iterator first, iterator last);

8 Requires: first and last are valid iterators on *this, defining a range [first,last).
9 Effects: removes the characters in the range [first,last).
10 Returns: an iterator which points to the element pointed to by last prior to the other elements being

erased. If no such element exists, end() is returned.

[lib.string::replace] 21.3.5.6 basic_string::replace

basic_string<charT,traits,Allocator>&
replace(size_type pos1, size_type n1,

const basic_string<charT,traits,Allocator>& str);

1 Returns: replace(pos1, n1, str, 0, npos).

basic_string<charT,traits,Allocator>&
replace(size_type pos1, size_type n1,

const basic_string<charT,traits,Allocator>& str,
size_type pos2, size_type n2);

2 Requires: pos1 <= size() && pos2 <= str.size().
3 Throws: out_of_range if pos1 > size() or pos2 > str.size().
4 Effects: Determines the effective length xlen of the string to be removed as the smaller of n1 and

size() - pos1. It also determines the effective length rlen of the string to be inserted as the
smaller of n2 and str.size() - pos2.

5 Throws: length_error if size() - xlen >= npos - rlen.
Otherwise, the function replaces the string controlled by *this with a string of length size() -
xlen + rlen whose first pos1 elements are a copy of the initial elements of the original string con-
trolled by *this, whose next rlen elements are a copy of the initial elements of the string controlled
by str beginning at position pos2, and whose remaining elements are a copy of the elements of the
original string controlled by *this beginning at position pos1 + xlen.

401

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.5.6 basic_string::replace 21 Strings library

6 Returns: *this.

basic_string<charT,traits,Allocator>&
replace(size_type pos, size_type n1, const charT* s, size_type n2);

7 Returns: replace(pos,n1,basic_string<charT,traits,Allocator>(s,n2)).

basic_string<charT,traits,Allocator>&
replace(size_type pos, size_type n1, const charT* s);

8 Returns: replace(pos,n1,basic_string<charT,traits,Allocator>(s)).
9 Notes: Uses traits::length().

basic_string<charT,traits,Allocator>&
replace(size_type pos, size_type n1,

size_type n2, charT c);

10 Returns: replace(pos,n1,basic_string<charT,traits,Allocator>(n2,c)).

basic_string& replace(iterator i1, iterator i2, const basic_string& str);

11 Requires: The iterators i1 and i2 are valid iterators on *this, defining a range [i1,i2).
12 Effects: Replaces the string controlled by *this with a string of length size() - (i2 - i1) +

str.size() whose first begin() - i1 elements are a copy of the initial elements of the original
string controlled by *this, whose next str.size() elements are a copy of the string controlled by
str, and whose remaining elements are a copy of the elements of the original string controlled by
*this beginning at position i2.

13 Returns: *this.
14 Notes: After the call, the length of the string will be changed by: str.size() - (i2 - i1).

basic_string&
replace(iterator i1, iterator i2, const charT* s, size_type n);

15 Returns: replace(i1,i2,basic_string(s,n)).
16 Notes: Length change: n - (i2 - i1).

basic_string& replace(iterator i1, iterator i2, const charT* s);

17 Returns: replace(i1,i2,basic_string(s)).
18 Notes: Length change: traits::length(s) - (i2 - i1).

Uses traits::length().

basic_string& replace(iterator i1, iterator i2, size_type n,
charT c);

19 Returns: replace(i1,i2,basic_string(n,c)).
20 Notes: Length change: n - (i2 - i1).

template<class InputIterator>
basic_string& replace(iterator i1, iterator i2,

InputIterator j1, InputIterator j2);

21 Returns: replace(i1,i2,basic_string(j1,j2)).
22 Notes: Length change: j2 - j1 - (i2 - i1).

[lib.string::copy] 21.3.5.7 basic_string::copy

402

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.5.7 basic_string::copy

size_type copy(charT* s, size_type n, size_type pos = 0) const;

1 Requires: pos <= size()
2 Throws: out_of_range if pos > size().
3 Effects: Determines the effective length rlen of the string to copy as the smaller of n and size() -

pos. s shall designate an array of at least rlen elements.
The function then replaces the string designated by s with a string of length rlen whose elements are a
copy of the string controlled by *this beginning at position pos.
The function does not append a null object to the string designated by s.

4 Returns: rlen.

[lib.string::swap] 21.3.5.8 basic_string::swap

void swap(basic_string<charT,traits,Allocator>& s);

1 Effects: Swaps the contents of the two strings.
2 Postcondition: *this contains the characters that were in s, s contains the characters that were in

*this.
3 Complexity: constant time.

[lib.string.ops] 21.3.6 basic_string string operations

const charT* c_str() const;

1 Returns: A pointer to the initial element of an array of length size() + 1 whose first size() ele-
ments equal the corresponding elements of the string controlled by *this and whose last element is a
null character specified by charT().

2 Requires: The program shall not alter any of the values stored in the array. Nor shall the program treat the
returned value as a valid pointer value after any subsequent call to a non-const member function of the
class basic_string that designates the same object as this.

const charT* data() const;

3 Returns: If size() is nonzero, the member returns a pointer to the initial element of an array whose first
size() elements equal the corresponding elements of the string controlled by *this. If size() is
zero, the member returns a non-null pointer that is copyable and can have zero added to it.

4 Requires: The program shall not alter any of the values stored in the character array. Nor shall the pro-
gram treat the returned value as a valid pointer value after any subsequent call to a non- const member
function of basic_string that designates the same object as this.

allocator_type get_allocator() const;

5 Returns: a copy of the Allocator object used to construct the string.

[lib.string::find] 21.3.6.1 basic_string::find

size_type find(const basic_string<charT,traits,Allocator>& str,
size_type pos = 0) const;

1 Effects: Determines the lowest position xpos, if possible, such that both of the following conditions
obtain:

— pos <= xpos and xpos + str.size() <= size();

— at(xpos+I) == str.at(I) for all elements I of the string controlled by str.
2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
3 Notes: Uses traits::eq().

403

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.6.1 basic_string::find 21 Strings library

size_type find(const charT* s, size_type pos, size_type n) const;

4 Returns: find(basic_string<charT,traits,Allocator>(s,n),pos).

size_type find(const charT* s, size_type pos = 0) const;

5 Returns: find(basic_string<charT,traits,Allocator>(s),pos).
6 Notes: Uses traits::length().

size_type find(charT c, size_type pos = 0) const;

7 Returns: find(basic_string<charT,traits,Allocator>(1,c),pos).

[lib.string::rfind] 21.3.6.2 basic_string::rfind

size_type rfind(const basic_string<charT,traits,Allocator>& str,
size_type pos = npos) const;

1 Effects: Determines the highest position xpos, if possible, such that both of the following conditions
obtain:

— xpos <= pos and xpos + str.size() <= size();

— at(xpos+I) == str.at(I) for all elements I of the string controlled by str.
2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
3 Notes: Uses traits::eq().

size_type rfind(const charT* s, size_type pos, size_type n) const;

4 Returns: rfind(basic_string<charT,traits,Allocator>(s,n),pos).

size_type rfind(const charT* s, size_type pos = npos) const;

5 Returns: rfind(basic_string<charT,traits,Allocator>(s),pos).
6 Notes: Uses traits::length().

size_type rfind(charT c, size_type pos = npos) const;

7 Returns: rfind(basic_string<charT,traits,Allocator>(1,c),pos).

[lib.string::find.first.of] 21.3.6.3 basic_string::find_first_of

size_type
find_first_of(const basic_string<charT,traits,Allocator>& str,

size_type pos = 0) const;

1 Effects: Determines the lowest position xpos, if possible, such that both of the following conditions
obtain:

— pos <= xpos and xpos < size();

— at(xpos) == str.at(I) for some element I of the string controlled by str.
2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
3 Notes: Uses traits::eq().

size_type
find_first_of(const charT* s, size_type pos, size_type n) const;

4 Returns: find_first_of(basic_string<charT,traits,Allocator>(s,n),pos).

404

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.6.3 basic_string::find_first_of

size_type find_first_of(const charT* s, size_type pos = 0) const;

5 Returns: find_first_of(basic_string<charT,traits,Allocator>(s),pos).
6 Notes: Uses traits::length().

size_type find_first_of(charT c, size_type pos = 0) const;

7 Returns: find_first_of(basic_string<charT,traits,Allocator>(1,c),pos).

[lib.string::find.last.of] 21.3.6.4 basic_string::find_last_of

size_type
find_last_of(const basic_string<charT,traits,Allocator>& str,

size_type pos = npos) const;

1 Effects: Determines the highest position xpos, if possible, such that both of the following conditions
obtain:

— xpos <= pos and xpos < size();

— at(xpos) == str.at(I) for some element I of the string controlled by str.
2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
3 Notes: Uses traits::eq().

size_type find_last_of(const charT* s, size_type pos, size_type n) const;

4 Returns: find_last_of(basic_string<charT,traits,Allocator>(s,n),pos).

size_type find_last_of(const charT* s, size_type pos = npos) const;

5 Returns: find_last_of(basic_string<charT,traits,Allocator>(s),pos).
6 Notes: Uses traits::length().

size_type find_last_of(charT c, size_type pos = npos) const;

7 Returns: find_last_of(basic_string<charT,traits,Allocator>(1,c),pos).

[lib.string::find.first.not.of] 21.3.6.5 basic_string::find_first_not_of

size_type
find_first_not_of(const basic_string<charT,traits,Allocator>& str,

size_type pos = 0) const;

1 Effects: Determines the lowest position xpos, if possible, such that both of the following conditions
obtain:

— pos <= xpos and xpos < size();

— at(xpos) == str.at(I) for no element I of the string controlled by str.
2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
3 Notes: Uses traits::eq().

size_type
find_first_not_of(const charT* s, size_type pos, size_type n) const;

4 Returns: find_first_not_of(basic_string<charT,traits,Allocator>(s,n),pos).

405

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.6.5 basic_string::find_first_not_of 21 Strings library

size_type find_first_not_of(const charT* s, size_type pos = 0) const;

5 Returns: find_first_not_of(basic_string<charT,traits,Allocator>(s),pos).
6 Notes: Uses traits::length().

size_type find_first_not_of(charT c, size_type pos = 0) const;

7 Returns: find_first_not_of(basic_string<charT,traits,Allocator>(1,c),pos).

[lib.string::find.last.not.of] 21.3.6.6 basic_string::find_last_not_of

size_type
find_last_not_of(const basic_string<charT,traits,Allocator>& str,

size_type pos = npos) const;

1 Effects: Determines the highest position xpos, if possible, such that both of the following conditions
obtain:

— xpos <= pos and xpos < size();

— at(xpos) == str.at(I)) for no element I of the string controlled by str.
2 Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
3 Notes: Uses traits::eq().

size_type find_last_not_of(const charT* s, size_type pos,
size_type n) const;

4 Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s,n),pos).

size_type find_last_not_of(const charT* s, size_type pos = npos) const;

5 Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s),pos).
6 Notes: Uses traits::length().

size_type find_last_not_of(charT c, size_type pos = npos) const;

7 Returns: find_last_not_of(basic_string<charT,traits,Allocator>(1,c),pos).

[lib.string::substr] 21.3.6.7 basic_string::substr

basic_string<charT,traits,Allocator>
substr(size_type pos = 0, size_type n = npos) const;

1 Requires: pos <= size()
2 Throws: out_of_range if pos > size().
3 Effects: Determines the effective length rlen of the string to copy as the smaller of n and size() -

pos.
4 Returns: basic_string<charT,traits,Allocator>(data()+pos,rlen).

[lib.string::compare] 21.3.6.8 basic_string::compare

int compare(const basic_string<charT,traits,Allocator>& str) const

1 Effects: Determines the effective length rlen of the strings to compare as the smallest of size() and
str.size(). The function then compares the two strings by calling
traits::compare(data(), str.data(), rlen).

2 Returns: the nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as indi-
cated in Table 44:

406

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.6.8 basic_string::compare

Table 44—compare() results
_ __

Condition Return Value_ ___ __
size() < str.size() < 0
size() == str.size() 0
size() > str.size() > 0_ __ 












int compare(size_type pos1, size_type n1,
const basic_string<charT,traits,Allocator>& str) const;

3 Returns:

basic_string<charT,traits,Allocator>(*this,pos1,n1).compare(
str) .

int compare(size_type pos1, size_type n1,
const basic_string<charT,traits,Allocator>& str,
size_type pos2, size_type n2) const;

4 Returns:

basic_string<charT,traits,Allocator>(*this,pos1,n1).compare(
basic_string<charT,traits,Allocator>(str,pos2,n2)) .

int compare(const charT *s) const;

5 Returns: this->compare(basic_string<charT,traits,Allocator>(s)).

int compare(size_type pos, size_type n1,
const charT *s) const;

6 Returns:

basic_string<charT,traits,Allocator>(*this,pos,n1).compare(
basic_string<charT,traits,Allocator>(s))

int compare(size_type pos, size_type n1,
const charT *s, size_type n2) const;

7 Returns:

basic_string<charT,traits,Allocator>(*this,pos,n1).compare(
basic_string<charT,traits,Allocator>(s,n2))

[lib.string.nonmembers] 21.3.7 basic_string non-member functions

[lib.string::op+] 21.3.7.1 operator+

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: basic_string<charT,traits,Allocator>(lhs).append(rhs)

407

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.7.1 operator+ 21 Strings library

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>

operator+(const charT* lhs,
const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) + rhs.
3 Notes: Uses traits::length().

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(charT lhs,

const basic_string<charT,traits,Allocator>& rhs);

4 Returns: basic_string<charT,traits,Allocator>(1,lhs) + rhs.

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

5 Returns: lhs + basic_string<charT,traits,Allocator>(rhs).
6 Notes: Uses traits::length().

template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>& lhs,

charT rhs);

7 Returns: lhs + basic_string<charT,traits,Allocator>(1,rhs).

[lib.string::operator==] 21.3.7.2 operator==

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) == 0.

template<class charT, class traits, class Allocator>
bool operator==(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) == rhs.

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs == basic_string<charT,traits,Allocator>(rhs).
4 Notes: Uses traits::length().

[lib.string::op!=] 21.3.7.3 operator!=

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: !(lhs == rhs).

408

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.7.3 operator!=

template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) != rhs.

template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs != basic_string<charT,traits,Allocator>(rhs).
4 Notes: Uses traits::length().

[lib.string::op<] 21.3.7.4 operator<

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) < 0.

template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) < rhs.

template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs < basic_string<charT,traits,Allocator>(rhs).

[lib.string::op>] 21.3.7.5 operator>

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) > 0.

template<class charT, class traits, class Allocator>
bool operator> (const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) > rhs.

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs > basic_string<charT,traits,Allocator>(rhs).

[lib.string::op<=] 21.3.7.6 operator<=

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) <= 0.

409

ISO/IEC 14882:2003(E)  ISO/IEC

21.3.7.6 operator<= 21 Strings library

template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) <= rhs.

template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs <= basic_string<charT,traits,Allocator>(rhs).

[lib.string::op>=] 21.3.7.7 operator>=

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs,

const basic_string<charT,traits,Allocator>& rhs);

1 Returns: lhs.compare(rhs) >= 0.

template<class charT, class traits, class Allocator>
bool operator>=(const charT* lhs,

const basic_string<charT,traits,Allocator>& rhs);

2 Returns: basic_string<charT,traits,Allocator>(lhs) >= rhs.

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>& lhs,

const charT* rhs);

3 Returns: lhs >= basic_string<charT,traits,Allocator>(rhs).

[lib.string.special] 21.3.7.8 swap

template<class charT, class traits, class Allocator>
void swap(basic_string<charT,traits,Allocator>& lhs,

basic_string<charT,traits,Allocator>& rhs);

1 Effects: lhs.swap(rhs);

[lib.string.io] 21.3.7.9 Inserters and extractors

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&
operator>>(basic_istream<charT,traits>& is,

basic_string<charT,traits,Allocator>& str);

1 Effects: Begins by constructing a sentry object k as if k were constructed by typename
basic_istream<charT,traits>::sentry k(is). If bool(k) is true, it calls
str.erase() and then extracts characters from is and appends them to str as if by calling
str.append(1,c). If is.width() is greater than zero, the maximum number n of characters
appended is is.width(); otherwise n is str.max_size(). Characters are extracted and
appended until any of the following occurs:

— n characters are stored;

— end-of-file occurs on the input sequence;

— isspace(c,is.getloc()) is true for the next available input character c.

2 After the last character (if any) is extracted, is.width(0) is called and the sentry object k is
destroyed.

410

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.3.7.9 Inserters and extractors

2a If the function extracts no characters, it calls is.setstate(ios::failbit), which may throw
ios_base::failure (27.4.4.3).

3 Returns: is

template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os,

const basic_string<charT,traits,Allocator>& str);

4 Effects: Begins by constructing a sentry object k as if k were constructed by typename
basic_ostream<charT,traits>::sentry k(os). If bool(k) is true, inserts characters as
if by calling os.rdbuf()->sputn(str.data(), n), padding as described in stage 3 of
22.2.2.2.2, where n is the larger of os.width() and str.size(); then calls os.width(0). If
the call to sputn fails, calls os.setstate(ios_base::failbit).

5 Returns: os

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&
getline(basic_istream<charT,traits>& is,

basic_string<charT,traits,Allocator>& str,
charT delim);

6 Effects: Begins by constructing a sentry object k as if by typename
basic_istream<charT,traits>::sentry k(is, true). If bool(k) is true, it calls
str.erase() and then extracts characters from is and appends them to str as if by calling
str.append(1,c) until any of the following occurs:

— end-of-file occurs on the input sequence (in which case, the getline function calls
is.setstate(ios_base::eofbit)).

— c == delim for the next available input character c (in which case, c is extracted but not appended)
(27.4.4.3)

— str.max_size() characters are stored (in which case, the function calls
is.setstate(ios_base::failbit) (27.4.4.3)

7 The conditions are tested in the order shown. In any case, after the last character is extracted, the sentry
object k is destroyed.

8 If the function extracts no characters, it calls is.setstate(ios_base::failbit) which may
throw ios_base::failure (27.4.4.3).

9 Returns: is.

template<class charT, class traits, class Allocator>
basic_istream<charT,traits>&
getline(basic_istream<charT,traits>& is,

basic_string<charT,traits,Allocator>& str)

10 Returns: getline(is,str,is.widen(’\n’))

[lib.c.strings] 21.4 Null-terminated sequence utilities

1 Tables 45, 46, 47, 48, and 49 describe headers <cctype>, <cwctype>, <cstring>, <cwchar>, and
<cstdlib> (multibyte conversions), respectively.

411

ISO/IEC 14882:2003(E)  ISO/IEC

21.4 Null-terminated sequence utilities 21 Strings library

Table 45—Header <cctype> synopsis
_ __

Type Name(s)_ __
Functions:
isalnum isdigit isprint isupper tolower

isalpha isgraph ispunct isxdigit toupper

iscntrl islower isspace_ __ 













Table 46—Header <cwctype> synopsis

Type Name(s)___
Macro: WEOF <cwctype>___
Types: wctrans_t wctype_t wint_t <cwctype>___
Functions:
iswalnum iswctype iswlower iswspace towctrans wctrans

iswalpha iswdigit iswprint iswupper towlower wctype

iswcntrl iswgraph iswpunct iswxdigit towupper___ 



















Table 47—Header <cstring> synopsis
_ __

Type Name(s)_ __
Macro: NULL <cstring>_ __
Type: size_t <cstring>_ __
Functions:
memchr strcat strcspn strncpy strtok

memcmp strchr strerror strpbrk strxfrm

memcpy strcmp strlen strrchr

memmove strcoll strncat strspn

memset strcpy strncmp strstr_ __ 























Table 48—Header <cwchar> synopsis
__

Type Name(s)__
Macros: NULL <cwchar> WCHAR_MAX WCHAR_MIN WEOF <cwchar>__
Types: mbstate_t wint_t <cwchar> size_t__
Functions:
btowc getwchar ungetwc wcscpy wcsrtombs wmemchr

fgetwc mbrlen vfwprintf wcscspn wcsspn wmemcmp

fgetws mbrtowc vswprintf wcsftime wcsstr wmemcpy

fputwc mbsinit vwprintf wcslen wcstod wmemmove

fputws mbsrtowcs wcrtomb wcsncat wcstok wmemset

fwide putwc wcscat wcsncmp wcstol wprintf

fwprintf putwchar wcschr wcsncpy wcstoul wscanf

fwscanf swprintf wcscmp wcspbrk wcsxfrm

getwc swscanf wcscoll wcsrchr wctob__ 

































412

 ISO/IEC ISO/IEC 14882:2003(E)

21 Strings library 21.4 Null-terminated sequence utilities

Table 49—Header <cstdlib> synopsis
_ ___

Type Name(s)_ ___
Macros: MB_CUR_MAX_ ___
Functions:
atol mblen strtod wctomb

atof mbstowcs strtol wcstombs

atoi mbtowc strtoul_ ___ 

















2 The contents of these headers are the same as the Standard C library headers <ctype.h>, <wctype.h>,
<string.h>, <wchar.h> and <stdlib.h> respectively, with the following modifications:

3 None of the headers shall define the type wchar_t (2.11).

4 The function signature strchr(const char*, int) is replaced by the two declarations:

const char* strchr(const char* s, int c);
char* strchr(char* s, int c);

5 both of which have the same behavior as the original declaration.

6 The function signature strpbrk(const char*, const char*) is replaced by the two declara-
tions:

const char* strpbrk(const char* s1, const char* s2);
char* strpbrk(char* s1, const char* s2);

7 both of which have the same behavior as the original declaration.

8 The function signature strrchr(const char*, int) is replaced by the two declarations:

const char* strrchr(const char* s, int c);
char* strrchr(char* s, int c);

9 both of which have the same behavior as the original declaration.

10 The function signature strstr(const char*, const char*) is replaced by the two declarations:

const char* strstr(const char* s1, const char* s2);
char* strstr(char* s1, const char* s2);

11 both of which have the same behavior as the original declaration.

12 The function signature memchr(const void*, int, size_t) is replaced by the two declarations:

const void* memchr(const void* s, int c, size_t n);
void* memchr(void* s, int c, size_t n);

13 both of which have the same behavior as the original declaration.

14 The function signature wcschr(const wchar_t*, wchar_t) is replaced by the two declarations:

413

ISO/IEC 14882:2003(E)  ISO/IEC

21.4 Null-terminated sequence utilities 21 Strings library

const wchar_t* wcschr(const wchar_t* s, wchar_t c);
wchar_t* wcschr(wchar_t* s, wchar_t c);

15 both of which have the same behavior as the original declaration.

16 The function signature wcspbrk(const wchar_t*, const wchar_t*) is replaced by the two
declarations:

const wchar_t* wcspbrk(const wchar_t* s1, const wchar_t* s2);
wchar_t* wcspbrk(wchar_t* s1, const wchar_t* s2);

17 both of which have the same behavior as the original declaration.

18 The function signature wcsrchr(const wchar_t*, wchar_t) is replaced by the two declarations:

const wchar_t* wcsrchr(const wchar_t* s, wchar_t c);
wchar_t* wcsrchr(wchar_t* s, wchar_t c);

19 both of which have the same behavior as the original declaration.

20 The function signature wcsstr(const wchar_t*, const wchar_t*) is replaced by the two dec-
larations:

const wchar_t* wcsstr(const wchar_t* s1, const wchar_t* s2);
wchar_t* wcsstr(wchar_t* s1, const wchar_t* s2);

21 both of which have the same behavior as the original declaration.

22 The function signature wmemchr(const wwchar_t*, int, size_t) is replaced by the two decla-
rations:

const wchar_t* wmemchr(const wchar_t* s, wchar_t c, size_t n);
wchar_t* wmemchr(wchar_t* s, wchar_t c, size_t n);

23 both of which have the same behavior as the original declaration.

SEE ALSO: ISO C subclauses 7.3, 7.10.7, 7.10.8, and 7.11. Amendment 1 subclauses 4.4, 4.5, and 4.6.

414

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library [lib.localization]

1 This clause describes components that C + + programs may use to encapsulate (and therefore be more port-
able when confronting) cultural differences. The locale facility includes internationalization support for
character classification and string collation, numeric, monetary, and date/time formatting and parsing, and
message retrieval.

2 The following subclauses describe components for locales themselves, the standard facets, and facilities
from the ISO C library, as summarized in Table 50:

Table 50—Localization library summary
_ ___

Subclause Header(s)_ __ ___
22.1 Locales
22.2 Standard locale Categories

<locale>
_ ___
22.3 C library locales <clocale>_ ___ 












[lib.locales] 22.1 Locales

Header <locale> synopsis

namespace std {
// 22.1.1, locale:
class locale;
template <class Facet> const Facet& use_facet(const locale&);
template <class Facet> bool has_facet(const locale&) throw();

// 22.1.3, convenience interfaces:
template <class charT> bool isspace (charT c, const locale& loc);
template <class charT> bool isprint (charT c, const locale& loc);
template <class charT> bool iscntrl (charT c, const locale& loc);
template <class charT> bool isupper (charT c, const locale& loc);
template <class charT> bool islower (charT c, const locale& loc);
template <class charT> bool isalpha (charT c, const locale& loc);
template <class charT> bool isdigit (charT c, const locale& loc);
template <class charT> bool ispunct (charT c, const locale& loc);
template <class charT> bool isxdigit(charT c, const locale& loc);
template <class charT> bool isalnum (charT c, const locale& loc);
template <class charT> bool isgraph (charT c, const locale& loc);
template <class charT> charT toupper(charT c, const locale& loc);
template <class charT> charT tolower(charT c, const locale& loc);

// 22.2.1 and 22.2.1.3, ctype:
class ctype_base;
template <class charT> class ctype;
template <> class ctype<char>; // specialization
template <class charT> class ctype_byname;
template <> class ctype_byname<char>; // specialization
class codecvt_base;
template <class internT, class externT, class stateT>

class codecvt;
template <class internT, class externT, class stateT>

class codecvt_byname;

415

ISO/IEC 14882:2003(E)  ISO/IEC

22.1 Locales 22 Localization library

// 22.2.2 and 22.2.3, numeric:
template <class charT, class InputIterator> class num_get;
template <class charT, class OutputIterator> class num_put;
template <class charT> class numpunct;
template <class charT> class numpunct_byname;

// 22.2.4, collation:
template <class charT> class collate;
template <class charT> class collate_byname;

// 22.2.5, date and time:
class time_base;
template <class charT, class InputIterator> class time_get;
template <class charT, class InputIterator> class time_get_byname;
template <class charT, class OutputIterator> class time_put;
template <class charT, class OutputIterator> class time_put_byname;

// 22.2.6, money:
class money_base;
template <class charT, class InputIterator> class money_get;
template <class charT, class OutputIterator> class money_put;
template <class charT, bool Intl> class moneypunct;
template <class charT, bool Intl> class moneypunct_byname;

// 22.2.7, message retrieval:
class messages_base;
template <class charT> class messages;
template <class charT> class messages_byname;

}

1 The header <locale> defines classes and declares functions that encapsulate and manipulate the informa-
tion peculiar to a locale.219)

[lib.locale] 22.1.1 Class locale

namespace std {
class locale {
public:
// types:
class facet;
class id;
typedef int category;
static const category // values assigned here are for exposition only

none = 0,
collate = 0x010, ctype = 0x020,
monetary = 0x040, numeric = 0x080,
time = 0x100, messages = 0x200,
all = collate | ctype | monetary | numeric | time | messages;

219) In this subclause, the type name struct tm is an incomplete type that is defined in <ctime>.

416

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.1.1 Class locale

// construct/copy/destroy:
locale() throw();
locale(const locale& other) throw();
explicit locale(const char* std_name);
locale(const locale& other, const char* std_name, category);
template <class Facet> locale(const locale& other, Facet* f);
locale(const locale& other, const locale& one, category);

˜locale() throw(); // non-virtual
const locale& operator=(const locale& other) throw();
template <class Facet> locale combine(const locale& other) const;

// locale operations:
basic_string<char> name() const;

bool operator==(const locale& other) const;
bool operator!=(const locale& other) const;

template <class charT, class Traits, class Allocator>
bool operator()(const basic_string<charT,Traits,Allocator>& s1,

const basic_string<charT,Traits,Allocator>& s2) const;

// global locale objects:
static locale global(const locale&);
static const locale& classic();

};
}

1 Class locale implements a type-safe polymorphic set of facets, indexed by facet type. In other words, a
facet has a dual role: in one sense, it’s just a class interface; at the same time, it’s an index into a locale’s set
of facets.

2 Access to the facets of a locale is via two function templates, use_facet<> and has_facet<>.

3 [Example: An iostream operator<< might be implemented as:220)

template <class charT, class traits>
basic_ostream<charT,traits>&
operator<< (basic_ostream<charT,traits>& s, Date d)

{
typename basic_ostream<charT,traits>::sentry cerberos(s);
if (cerberos) {

ios_base::iostate err = 0;
tm tmbuf; d.extract(tmbuf);
use_facet< time_put<charT,ostreambuf_iterator<charT,traits> > >(

s.getloc()).put(s, s, s.fill(), err, &tmbuf, ’x’);
s.setstate(err); // might throw

}
return s;

}

—end example]

4 In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all mem-
bers of the named type. If Facet is not present in a locale, it throws the standard exception bad_cast.
A C + + program can check if a locale implements a particular facet with the function template
has_facet<Facet>(). User-defined facets may be installed in a locale, and used identically as may
standard facets (22.2.8).

220) Notice that, in the call to put, the stream is implicitly converted to an ostreambuf_iterator<charT,traits>.

417

ISO/IEC 14882:2003(E)  ISO/IEC

22.1.1 Class locale 22 Localization library

5 [Note: All locale semantics are accessed via use_facet<> and has_facet<>, except that:

— A member operator template operator()(basic_string<C,T,A>&,
basic_string<C,T,A>&) is provided so that a locale may be used as a predicate argument to the
standard collections, to collate strings.

— Convenient global interfaces are provided for traditional ctype functions such as isdigit() and
isspace(), so that given a locale object loc a C + + program can call isspace(c,loc). (This
eases upgrading existing extractors (27.6.1.2).) —end note]

6 Once a facet reference is obtained from a locale object by calling use_facet<>, that reference remains
usable, and the results from member functions of it may be cached and re-used, as long as some locale
object refers to that facet.

7 In successive calls to a locale facet member function during a call to an iostream inserter or extractor or a
streambuf member function, the returned result shall be identical. [Note: This implies that such results may
safely be reused without calling the locale facet member function again, and that member functions of ios-
tream classes cannot safely call imbue() themselves, except as specified elsewhere. —end note]

8 A locale constructed from a name string (such as "POSIX"), or from parts of two named locales, has a
name; all others do not. Named locales may be compared for equality; an unnamed locale is equal only to
(copies of) itself. For an unnamed locale, locale::name() returns the string “*”.

[lib.locale.types] 22.1.1.1 locale types

[lib.locale.category] 22.1.1.1.1 Type locale::category

typedef int category;

1 Valid category values include the locale member bitmask elements none, collate, ctype,
monetary, numeric, time, and messages. In addition, locale member all is defined such that
the expression

(collate | ctype | monetary | numeric | time | messages | all) == all

is true. Further, the result of applying operators | and & to any two valid values is valid, and results in
the setwise union and intersection, respectively, of the argument categories.

2 locale member functions expecting a category argument require either a valid category value or
one of the constants LC_CTYPE etc., defined in <clocale>. Such a category value identifies a set of
locale categories. Each locale category, in turn, identifies a set of locale facets, including at least those
shown in Table 51:

418

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.1.1.1.1 Type locale::category

Table 51—Locale Category Facets
_ __

Category Includes Facets_ ___ __
collate collate<char>, collate<wchar_t>_ __
ctype ctype<char>, ctype<wchar_t>

codecvt<char,char,mbstate_t>,
codecvt<wchar_t,char,mbstate_t>_ __

monetary moneypunct<char>, moneypunct<wchar_t>
moneypunct<char,true>, moneypunct<wchar_t,true>,
money_get<char>, money_get<wchar_t>
money_put<char>, money_put<wchar_t>_ __

numeric numpunct<char>, numpunct<wchar_t>,
num_get<char>, num_get<wchar_t>
num_put<char>, num_put<wchar_t>_ __

time time_get<char>, time_get<wchar_t>,
time_put<char>, time_put<wchar_t>_ __

messages messages<char>, messages<wchar_t>_ __ 







































3 For any locale loc either constructed, or returned by locale::classic(), and any facet Facet that
is a member of a standard category, has_facet<Facet>(loc) is true. Each locale member func-
tion which takes a locale::category argument operates on the corresponding set of facets.

4 An implementation is required to provide those instantiations for facet templates identified as members of a
category, and for those shown in Table 52:

Table 52—Required Instantiations
_ ___

Category Includes Facets_ __ ___
collate collate_byname<char>, collate_byname<wchar_t>_ ___
ctype ctype_byname<char>, ctype_byname<wchar_t>,

codecvt_byname<char,char,mbstate_t>,
codecvt_byname<wchar_t,char,mbstate_t>_ ___

monetary moneypunct_byname<char,International>,
moneypunct_byname<wchar_t,International>,
money_get<C,InputIterator>,
money_put<C,OutputIterator>_ ___

numeric numpunct_byname<char>, numpunct_byname<wchar_t>
num_get<C,InputIterator>, num_put<C,OutputIterator>_ ___

time time_get<char,InputIterator>,
time_get_byname<char,InputIterator>,
time_get<wchar_t,OutputIterator>,
time_get_byname<wchar_t,OutputIterator>,
time_put<char,OutputIterator>,
time_put_byname<char,OutputIterator>,
time_put<wchar_t,OutputIterator>
time_put_byname<wchar_t,OutputIterator>_ ___

messages messages_byname<char>, messages_byname<wchar_t>_ ___ 



















































5 The provided implementation of members of facets num_get<charT> and num_put<charT> calls
use_facet<F>(l) only for facet F of types numpunct<charT> and ctype<charT>, and for

419

ISO/IEC 14882:2003(E)  ISO/IEC

22.1.1.1.1 Type locale::category 22 Localization library

locale l the value obtained by calling member getloc() on the ios_base& argument to these func-
tions.

6 In declarations of facets, a template formal parameter with name InputIterator or
OutputIterator indicates the set of all possible instantiations on parameters that satisfy the require-
ments of an Input Iterator or an Output Iterator, respectively (24.1). A template formal parameter with
name C represents the set of all possible instantiations on a parameter that satisfies the requirements for a
character on which any of the iostream components can be instantiated. A template formal parameter with
name International represents the set of all possible instantiations on a bool parameter.

[lib.locale.facet] 22.1.1.1.2 Class locale::facet

namespace std {
class locale::facet {
protected:
explicit facet(size_t refs = 0);
virtual ˜facet();

private:
facet(const facet&); // not defined
void operator=(const facet&); // not defined

};
}

1 Class facet is the base class for locale feature sets. A class is a facet if it is publicly derived from another
facet, or if it is a class derived from locale::facet and containing a publicly-accessible declaration as
follows:221)

static ::std::locale::id id;

Template parameters in this clause which are required to be facets are those named Facet in declarations.
A program that passes a type that is not a facet, as an (explicit or deduced) template parameter to a locale
function expecting a facet, is ill-formed.

2 The refs argument to the constructor is used for lifetime management.

— For refs == 0, the implementation performs delete static_cast<locale::facet*>(f)
(where f is a pointer to the facet) when the last locale object containing the facet is destroyed; for
refs == 1, the implementation never destroys the facet.

3 Constructors of all facets defined in this clause take such an argument and pass it along to their facet
base class constructor. All one-argument constructors defined in this clause are explicit, preventing their
participation in automatic conversions.

4 For some standard facets a standard “..._byname” class, derived from it, implements the virtual function
semantics equivalent to that facet of the locale constructed by locale(const char*) with the same
name. Each such facet provides a constructor that takes a const char* argument, which names the
locale, and a refs argument, which is passed to the base class constructor. If there is no “..._byname”
version of a facet, the base class implements named locale semantics itself by reference to other facets.

[lib.locale.id] 22.1.1.1.3 Class locale::id

221) This is a complete list of requirements; there are no other requirements. Thus, a facet class need not have a public copy construc-
tor, assignment, default constructor, destructor, etc.

420

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.1.1.1.3 Class locale::id

namespace std {
class locale::id {
public:

id();
private:

void operator=(const id&); // not defined
id(const id&); // not defined

};
}

1 The class locale::id provides identification of a locale facet interfaces, used as an index for lookup and to
encapsulate initialization.

2 [Note: Because facets are used by iostreams, potentially while static constructors are running, their initial-
ization cannot depend on programmed static initialization. One initialization strategy is for locale to ini-
tialize each facet’s id member the first time an instance of the facet is installed into a locale. This depends
only on static storage being zero before constructors run (3.6.2). —end note]

[lib.locale.cons] 22.1.1.2 locale constructors and destructor

locale() throw();

1 Default constructor: a snapshot of the current global locale.
2 Effects: Constructs a copy of the argument last passed to locale::global(locale&), if it has been

called; else, the resulting facets have virtual function semantics identical to those of
locale::classic(). [Note: This constructor is commonly used as the default value for arguments
of functions that take a const locale& argument. —end note]

locale(const locale& other) throw();

3 Effects: Constructs a locale which is a copy of other.

const locale& operator=(const locale& other) throw();

4 Effects: Creates a copy of other, replacing the current value.
5 Returns: *this

explicit locale(const char* std_name);

6 Effects: Constructs a locale using standard C locale names, e.g. "POSIX". The resulting locale imple-
ments semantics defined to be associated with that name.

7 Throws: runtime_error if the argument is not valid, or is null.
8 Notes: The set of valid string argument values is "C", "", and any implementation-defined values.

locale(const locale& other, const char* std_name, category);

9 Effects: Constructs a locale as a copy of other except for the facets identified by the category argu-
ment, which instead implement the same semantics as locale(std_name).

10 Throws: runtime_error if the argument is not valid, or is null.
11 Notes: The locale has a name if and only if other has a name.

template <class Facet> locale(const locale& other, Facet* f);

12 Effects: Constructs a locale incorporating all facets from the first argument except that of type Facet, and
installs the second argument as the remaining facet. If f is null, the resulting object is a copy of
other.

13 Notes: The resulting locale has no name.

421

ISO/IEC 14882:2003(E)  ISO/IEC

22.1.1.2 locale constructors and destructor 22 Localization library

locale(const locale& other, const locale& one, category cats);

14 Effects: Constructs a locale incorporating all facets from the first argument except those that implement
cats, which are instead incorporated from the second argument.

15 Notes: The resulting locale has a name if and only if the first two arguments have names.

˜locale() throw();

16 A non-virtual destructor that throws no exceptions.

[lib.locale.members] 22.1.1.3 locale members

template <class Facet> locale combine(const locale& other) const;

1 Effects: Constructs a locale incorporating all facets from *this except for that one facet of other that is
identified by Facet.

2 Returns: The newly created locale.
3 Throws: runtime_error if has_facet<Facet>(other) is false.
4 Notes: The resulting locale has no name.

basic_string<char> name() const;

5 Returns: The name of *this, if it has one; otherwise, the string "*". If *this has a name, then
locale(name().c_str()) is equivalent to *this. Details of the contents of the resulting string
are otherwise implementation-defined.

[lib.locale.operators] 22.1.1.4 locale operators

bool operator==(const locale& other) const;

1 Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name
and the names are identical; false otherwise.

bool operator!=(const locale& other) const;

2 Returns: The result of the expression: !(*this == other)

template <class charT, class Traits, class Allocator>
bool operator()(const basic_string<charT,Traits,Allocator>& s1,

const basic_string<charT,Traits,Allocator>& s2) const;

3 Effects: Compares two strings according to the collate<charT> facet.
4 Notes: This member operator template (and therefore locale itself) satisfies requirements for a compara-

tor predicate template argument (clause 25) applied to strings.
5 Returns: The result of the following expression:

use_facet< collate<charT> >(*this).compare
(s1.data(), s1.data()+s1.size(), s2.data(), s2.data()+s2.size()) < 0;

6 [Example: A vector of strings v can be collated according to collation rules in locale loc simply by
(25.3.1, 23.2.4):

std::sort(v.begin(), v.end(), loc);

—end example]

422

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.1.1.5 locale static members

[lib.locale.statics] 22.1.1.5 locale static members

static locale global(const locale& loc);

1 Sets the global locale to its argument.
2 Effects: Causes future calls to the constructor locale() to return a copy of the argument. If the argu-

ment has a name, does

std::setlocale(LC_ALL, loc.name().c_str());

otherwise, the effect on the C locale, if any, is implementation-defined. No library function other than
locale::global() shall affect the value returned by locale().

3 Returns: The previous value of locale().

static const locale& classic();

4 The "C" locale.
5 Returns: A locale that implements the classic "C" locale semantics, equivalent to the value

locale("C").
6 Notes: This locale, its facets, and their member functions, do not change with time.

[lib.locale.global.templates] 22.1.2 locale globals

template <class Facet> const Facet& use_facet(const locale& loc);

1 Requires: Facet is a facet class whose definition contains the public static member id as defined in
22.1.1.1.2.

2 Returns: a reference to the corresponding facet of loc, if present.
3 Throws: bad_cast if has_facet<Facet>(loc) is false.
4 Notes: The reference returned remains valid at least as long as any copy of loc exists.

template <class Facet> bool has_facet(const locale& loc) throw();

5 Returns: true if the facet requested is present in loc; otherwise false

[lib.locale.convenience] 22.1.3 Convenience interfaces

[lib.classification] 22.1.3.1 Character classification

template <class charT> bool isspace (charT c, const locale& loc);
template <class charT> bool isprint (charT c, const locale& loc);
template <class charT> bool iscntrl (charT c, const locale& loc);
template <class charT> bool isupper (charT c, const locale& loc);
template <class charT> bool islower (charT c, const locale& loc);
template <class charT> bool isalpha (charT c, const locale& loc);
template <class charT> bool isdigit (charT c, const locale& loc);
template <class charT> bool ispunct (charT c, const locale& loc);
template <class charT> bool isxdigit(charT c, const locale& loc);
template <class charT> bool isalnum (charT c, const locale& loc);
template <class charT> bool isgraph (charT c, const locale& loc);

1 Each of these functions isF returns the result of the expression:

use_facet< ctype<charT> >(loc).is(ctype_base::F, c)

where F is the ctype_base::mask value corresponding to that function (22.2.1).222)

222) When used in a loop, it is faster to cache the ctype<> facet and use it directly, or use the vector form of ctype<>::is.

423

ISO/IEC 14882:2003(E)  ISO/IEC

22.1.3.2 Character conversions 22 Localization library

[lib.conversions] 22.1.3.2 Character conversions

template <class charT> charT toupper(charT c, const locale& loc);

1 Returns: use_facet<ctype<charT> >(loc).toupper(c).

template <class charT> charT tolower(charT c, const locale& loc);

2 Returns: use_facet<ctype<charT> >(loc).tolower(c).

[lib.locale.categories] 22.2 Standard locale categories

1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing
of a datum, for use by standard or users’ iostream operators << and >>, as members put() and get(),
respectively. Each such member function takes an ios_base& argument whose members flags(),
precision(), and width(), specify the format of the corresponding datum. (27.4.2). Those functions
which need to use other facets call its member getloc() to retrieve the locale imbued there. Formatting
facets use the character argument fill to fill out the specified width where necessary.

2 The put() members make no provision for error reporting. (Any failures of the OutputIterator argument
must be extracted from the returned iterator.) The get() members take an ios_base::iostate&
argument whose value they ignore, but set to ios_base::failbit in case of a parse error.

[lib.category.ctype] 22.2.1 The ctype category

namespace std {
class ctype_base {
public:
enum mask { // numeric values are for exposition only.
space=1<<0, print=1<<1, cntrl=1<<2, upper=1<<3, lower=1<<4,
alpha=1<<5, digit=1<<6, punct=1<<7, xdigit=1<<8,
alnum=alpha|digit, graph=alnum|punct

};
};

}

1 The type mask is a bitmask type.

[lib.locale.ctype] 22.2.1.1 Class template ctype

template <class charT>
class ctype : public locale::facet, public ctype_base {
public:
typedef charT char_type;
explicit ctype(size_t refs = 0);

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high, mask* vec) const;
const charT* scan_is(mask m,

const charT* low, const charT* high) const;
const charT* scan_not(mask m,

const charT* low, const charT* high) const;
charT toupper(charT c) const;
const charT* toupper(charT* low, const charT* high) const;
charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

424

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.1.1 Class template ctype

charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;
char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT*, char dfault,

char* to) const;

static locale::id id;

protected:
˜ctype(); // virtual
virtual bool do_is(mask m, charT c) const;
virtual const charT* do_is(const charT* low, const charT* high,

mask* vec) const;
virtual const charT* do_scan_is(mask m,

const charT* low, const charT* high) const;
virtual const charT* do_scan_not(mask m,

const charT* low, const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low, const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low, const charT* high) const;
virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low, const char* high,

charT* dest) const;
virtual char do_narrow(charT, char dfault) const;
virtual const charT* do_narrow(const charT* low, const charT* high,

char dfault, char* dest) const;
};

1 Class ctype encapsulates the C library <cctype> features. istream members are required to use
ctype<> for character classing during input parsing.

2 The instantiations required in Table 51 (22.1.1.1.1), namely ctype<char> and ctype<wchar_t>,
implement character classing appropriate to the implementation’s native character set.

[lib.locale.ctype.members] 22.2.1.1.1 ctype members

bool is(mask m, charT c) const;
const charT* is(const charT* low, const charT* high,

mask* vec) const;

1 Returns: do_is(m,c) or do_is(low,high,vec)

const charT* scan_is(mask m,
const charT* low, const charT* high) const;

2 Returns: do_scan_is(m,low,high)

const charT* scan_not(mask m,
const charT* low, const charT* high) const;

3 Returns: do_scan_not(m,low,high)

charT toupper(charT) const;
const charT* toupper(charT* low, const charT* high) const;

4 Returns: do_toupper(c) or do_toupper(low,high)

425

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.1.1.1 ctype members 22 Localization library

charT tolower(charT c) const;
const charT* tolower(charT* low, const charT* high) const;

5 Returns: do_tolower(c) or do_tolower(low,high)

charT widen(char c) const;
const char* widen(const char* low, const char* high, charT* to) const;

6 Returns: do_widen(c) or do_widen(low,high,to)

char narrow(charT c, char dfault) const;
const charT* narrow(const charT* low, const charT*, char dfault,

char* to) const;

7 Returns: do_narrow(c,dfault) or do_narrow(low,high,dfault,to)

[lib.locale.ctype.virtuals] 22.2.1.1.2 ctype virtual functions

bool do_is(mask m, charT c) const;
const charT* do_is(const charT* low, const charT* high,

mask* vec) const;

1 Effects: Classifies a character or sequence of characters. For each argument character, identifies a value
M of type ctype_base::mask. The second form identifies a value M of type
ctype_base::mask for each *p where (low<=p && p<high), and places it into
vec[p-low].

2 Returns: The first form returns the result of the expression (M & m) != 0; i.e., true if the character
has the characteristics specified. The second form returns high.

const charT* do_scan_is(mask m,
const charT* low, const charT* high) const;

3 Effects: Locates a character in a buffer that conforms to a classification m.
4 Returns: The smallest pointer p in the range [low, high) such that is(m, *p) would return true;

otherwise, returns high.

const charT* do_scan_not(mask m,
const charT* low, const charT* high) const;

5 Effects: Locates a character in a buffer that fails to conform to a classification m.
6 Returns: The smallest pointer p, if any, in the range [low, high) such that is(m, *p) would return

false; otherwise, returns high.

charT do_toupper(charT c) const;
const charT* do_toupper(charT* low, const charT* high) const;

7 Effects: Converts a character or characters to upper case. The second form replaces each character *p in
the range [low, high) for which a corresponding upper-case character exists, with that character.

8 Returns: The first form returns the corresponding upper-case character if it is known to exist, or its argu-
ment if not. The second form returns high.

charT do_tolower(charT c) const;
const charT* do_tolower(charT* low, const charT* high) const;

9 Effects: Converts a character or characters to lower case. The second form replaces each character *p in
the range [low, high) and for which a corresponding lower-case character exists, with that charac-
ter.

10 Returns: The first form returns the corresponding lower-case character if it is known to exist, or its argu-
ment if not. The second form returns high.

426

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.1.1.2 ctype virtual functions

charT do_widen(char c) const;
const char* do_widen(const char* low, const char* high,

charT* dest) const;

11 Effects: Applies the simplest reasonable transformation from a char value or sequence of char values to
the corresponding charT value or values.223) The only characters for which unique transformations are
required are those in the basic source character set (2.2).
For any named ctype category with a ctype<charT> facet ctw and valid ctype_base::mask
value M (is(M, c) || !ctw.is(M, do_widen(c))) is true.224)

The second form transforms each character *p in the range [low, high), placing the result in
dest[p-low].

12 Returns: The first form returns the transformed value. The second form returns high.

char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low, const charT* high,

char dfault, char* dest) const;

13 Effects: Applies the simplest reasonable transformation from a charT value or sequence of charT val-
ues to the corresponding char value or values.
For any character c in the basic source character set(2.2) the transformation is such that

do_widen(do_narrow(c,0)) == c

For any named ctype category with a ctype<char> facet ctc however, and
ctype_base::mask value M,

(is(M,c) || !ctc.is(M, do_narrow(c,dfault)))

is true (unless do_narrow returns dfault). In addition, for any digit character c, the expression
(do_narrow(c,dfault)-’0’) evaluates to the digit value of the character. The second form
transforms each character *p in the range [low, high), placing the result (or dfault if no simple
transformation is readly available) in dest[p-low].

14 Returns: The first form returns the transformed value; or dfault if no mapping is readily available. The
second form returns high.

[lib.locale.ctype.byname] 22.2.1.2 Class template ctype_byname

namespace std {
template <class charT>
class ctype_byname : public ctype<charT> {
public:
typedef ctype<charT>::mask mask;
explicit ctype_byname(const char*, size_t refs = 0);

protected:
˜ctype_byname(); // virtual

223) The char argument of do_widen is intended to accept values derived from character literals for conversion the locale’s encod-
ing.
224) In other words, the transformed character is not a member of any character classification that c is not also a member of.

427

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.1.2 Class template ctype_byname 22 Localization library

virtual bool do_is(mask m, charT c) const;
virtual const charT* do_is(const charT* low, const charT* high,

mask* vec) const;
virtual const charT* do_scan_is(mask m,

const charT* low, const charT* high) const;
virtual const charT* do_scan_not(mask m,

const charT* low, const charT* high) const;
virtual charT do_toupper(charT) const;
virtual const charT* do_toupper(charT* low, const charT* high) const;
virtual charT do_tolower(charT) const;
virtual const charT* do_tolower(charT* low, const charT* high) const;
virtual charT do_widen(char) const;
virtual const char* do_widen(const char* low, const char* high,

charT* dest) const;
virtual char do_narrow(charT, char dfault) const;
virtual const charT* do_narrow(const charT* low, const charT* high,

char dfault, char* dest) const;
};

}

[lib.facet.ctype.special] 22.2.1.3 ctype specializations

namespace std {
template <> class ctype<char>
: public locale::facet, public ctype_base {

public:
typedef char char_type;

explicit ctype(const mask* tab = 0, bool del = false,
size_t refs = 0);

bool is(mask m, char c) const;
const char* is(const char* low, const char* high, mask* vec) const;
const char* scan_is (mask m,

const char* low, const char* high) const;
const char* scan_not(mask m,

const char* low, const char* high) const;

char toupper(char c) const;
const char* toupper(char* low, const char* high) const;
char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

char widen(char c) const;
const char* widen(const char* low, const char* high, char* to) const;
char narrow(char c, char dfault) const;
const char* narrow(const char* low, const char* high, char dfault,

char* to) const;

static locale::id id;
static const size_t table_size = IMPLEMENTATION_DEFINED;

protected:
const mask* table() const throw();
static const mask* classic_table() throw();

428

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.1.3 ctype specializations

˜ctype(); // virtual
virtual char do_toupper(char c) const;
virtual const char* do_toupper(char* low, const char* high) const;
virtual char do_tolower(char c) const;
virtual const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low,

const char* high,
char* to) const;

virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low,

const char* high,
char dfault, char* to) const;

};
}

1 A specialization ctype<char> is provided so that the member functions on type char can be imple-
mented inline.225) The implementation-defined value of member table_size is at least 256.

[lib.facet.ctype.char.dtor] 22.2.1.3.1 ctype<char> destructor

˜ctype();

1 Effects: If the constructor’s first argument was nonzero, and its second argument was true, does delete
[] table().

[lib.facet.ctype.char.members] 22.2.1.3.2 ctype<char> members

1 In the following member descriptions, for unsigned char values v where (v >= table_size),
table()[v] is assumed to have an implementation-defined value (possibly different for each such value
v) without performing the array lookup.

explicit ctype(const mask* tbl = 0, bool del = false,
size_t refs = 0);

2 Precondition: tbl either 0 or an array of at least table_size elements.
3 Effects: Passes its refs argument to its base class constructor.

bool is(mask m, char c) const;
const char* is(const char* low, const char* high,

mask* vec) const;

4 Effects: The second form, for all *p in the range [low, high), assigns into vec[p-low] the value
table()[(unsigned char)*p].

5 Returns: The first form returns table()[(unsigned char)c] & m; the second form returns
high.

const char* scan_is(mask m,
const char* low, const char* high) const;

6 Returns: The smallest p in the range [low, high) such that

table()[(unsigned char) *p] & m

is true.

225) Only the char (not unsigned char and signed char) form is provided. The specialization is specified in the standard,
and not left as an implementation detail, because it affects the derivation interface for ctype<char>.

429

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.1.3.2 ctype<char> members 22 Localization library

const char* scan_not(mask m,
const char* low, const char* high) const;

7 Returns: The smallest p in the range [low, high) such that

table()[(unsigned char) *p] & m

is false.

char toupper(char c) const;
const char* toupper(char* low, const char* high) const;

8 Returns: do_toupper(c) or do_toupper(low,high), respectively.

char tolower(char c) const;
const char* tolower(char* low, const char* high) const;

9 Returns: do_tolower(c) or do_tolower(low,high), respectively.

char widen(char c) const;
const char* widen(const char* low, const char* high,

char* to) const;

10 Returns: do_widen(c) or do_widen(low, high, to), respectively.

char narrow(char c, char /*dfault*/) const;
const char* narrow(const char* low, const char* high,

char /*dfault*/, char* to) const;

11 Returns: do_narrow(c) or do_narrow(low, high, to), respectively.

const mask* table() const throw();

12 Returns: The first constructor argument, if it was non-zero, otherwise classic_table().

[lib.facet.ctype.char.statics] 22.2.1.3.3 ctype<char> static members

static const mask* classic_table() throw();

1 Returns: A pointer to the initial element of an array of size table_size which represents the classifica-
tions of characters in the "C" locale.

[lib.facet.ctype.char.virtuals] 22.2.1.3.4 ctype<char> virtual functions

char do_toupper(char) const;
const char* do_toupper(char* low, const char* high) const;
char do_tolower(char) const;
const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low,

const char* high,
char* to) const;

virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low,

const char* high,
char dfault, char* to) const;

These functions are described identically as those members of the same name in the ctype class template
(22.2.1.1.1).

430

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.1.4 Class ctype_byname<char>

[lib.locale.ctype.byname.special] 22.2.1.4 Class ctype_byname<char>

namespace std {
template <> class ctype_byname<char> : public ctype<char> {
public:
explicit ctype_byname(const char*, size_t refs = 0);

protected:
˜ctype_byname(); // virtual
virtual char do_toupper(char c) const;
virtual const char* do_toupper(char* low, const char* high) const;
virtual char do_tolower(char c) const;
virtual const char* do_tolower(char* low, const char* high) const;

virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low,

const char* high,
char* to) const;

virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low,

const char* high,
char dfault, char* to) const;

};
}

1
[lib.locale.codecvt] 22.2.1.5 Class template codecvt

namespace std {
class codecvt_base {
public:
enum result { ok, partial, error, noconv };

};
template <class internT, class externT, class stateT>
class codecvt : public locale::facet, public codecvt_base {
public:
typedef internT intern_type;
typedef externT extern_type;
typedef stateT state_type;

explicit codecvt(size_t refs = 0);

result out(stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_limit, externT*& to_next) const;
result unshift(stateT& state,

externT* to, externT* to_limit, externT*& to_next) const;
result in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_limit, internT*& to_next) const;
int encoding() const throw();
bool always_noconv() const throw();
int length(stateT&, const externT* from, const externT* end,

size_t max) const;
int max_length() const throw();

static locale::id id;

431

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.1.5 Class template codecvt 22 Localization library

protected:
˜codecvt(); // virtual
virtual result do_out(stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_limit, externT*& to_next) const;
virtual result do_in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_limit, internT*& to_next) const;
virtual result do_unshift(stateT& state,

externT* to, externT* to_limit, externT*& to_next) const;
virtual int do_encoding() const throw();
virtual bool do_always_noconv() const throw();
virtual int do_length(stateT&, const externT* from,

const externT* end, size_t max) const;
virtual int do_max_length() const throw();

};
}

1 The class codecvt<internT,externT,stateT> is for use when converting from one codeset to
another, such as from wide characters to multibyte characters, between wide character encodings such as
Unicode and EUC.

2 The stateT argument selects the pair of codesets being mapped between.

3 The instantiations required in the Table 51 (22.1.1.1.1), namely
codecvt<wchar_t,char,mbstate_t> and codecvt<char,char,mbstate_t>, convert the
implementation-defined native character set. codecvt<char,char,mbstate_t> implements a
degenerate conversion; it does not convert at all. codecvt<wchar_t,char,mbstate_t> converts
between the native character sets for tiny and wide characters. Instantiations on mbstate_t perform con-
version between encodings known to the library implementor. Other encodings can be converted by spe-
cializing on a user-defined stateT type. The stateT object can contain any state that is useful to com-
municate to or from the specialized do_in or do_out members.

[lib.locale.codecvt.members] 22.2.1.5.1 codecvt members

result out(stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,

externT* to, externT* to_limit, externT*& to_next) const;

1 Returns: do_out(state, from, from_end, from_next, to,to_limit, to_next)

result unshift(stateT& state,
externT* to, externT* to_limit, externT*& to_next) const;

2 Returns: do_unshift(state, to, to_limit, to_next)

result in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_limit, internT*& to_next) const;

3 Returns: do_in(state, from,from_end,from_next, to,to_limit,to_next)

int encoding() const throw();

4 Returns: do_encoding()

432

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.1.5.1 codecvt members

bool always_noconv() const throw();

5 Returns: do_always_noconv()

int length(stateT& state, const externT* from, const externT* from_end,
size_t max) const;

6 Returns: do_length(state, from,from_end,max)

int max_length() const throw();

7 Returns: do_max_length()

[lib.locale.codecvt.virtuals] 22.2.1.5.2 codecvt virtual functions

result do_out(stateT& state,
const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_limit, externT*& to_next) const;

result do_in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_limit, internT*& to_next) const;

1 Preconditions: (from<=from_end && to<=to_end) well-defined and true; state initialized,
if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the
sequence.

2 Effects: Translates characters in the source range [from,from_end), placing the results in sequential
positions starting at destination to. Converts no more than (from_end-from) source elements, and
stores no more than (to_limit-to) destination elements.
Stops if it encounters a character it cannot convert. It always leaves the from_next and to_next
pointers pointing one beyond the last element successfully converted. If returns noconv, internT
and externT are the same type and the converted sequence is identical to the input sequence [from,
from_next). to_next is set equal to to, the value of state is unchanged, and there are no
changes to the values in [to, to_limit).

3 Notes: Its operations on state are unspecified.
[Note: This argument can be used, for example, to maintain shift state, to specify conversion options
(such as count only), or to identify a cache of seek offsets. —end note]

4 Returns: An enumeration value, as summarized in Table 53:

Table 53—convert result values
_ ___

Value Meaning_ __ ___
ok completed the conversion
partial not all source characters converted
error encountered a character in [from,from_end) that it could

not convert
noconv internT and externT are the same type, and input

sequence is identical to converted sequence_ ___ 



















A return value of partial, if (from_next==from_end), indicates that either the destination
sequence has not absorbed all the available destination elements, or that additional source elements are
needed before another destination element can be produced.

433

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.1.5.2 codecvt virtual functions 22 Localization library

result do_unshift(stateT& state,
externT* to, externT* to_limit, externT*& to_next) const;

5 Effects Places characters starting at to that should be appended to terminate a sequence when the current
stateT is given by state.226) The instantiations required in Table 51 (22.1.1.1.1), namely
codecvt<wchar_t,char,mbstate_t> and codecvt<char,char,mbstate_t>, store no
characters. Stores no more than (to_limit-to) destination elements. It always leaves the
to_next pointer pointing one beyond the last element successfully stored.

6 Returns An enumeration value, as summarized in Table 54:

Table 54—convert result values
_ ___

Value Meaning_ __ ___
ok completed the sequence
partial more characters need to be supplied to complete termination
error state has invalid value.
noconv no termination is needed for this state_type_ ___ 














codecvt<char,char,mbstate_t>, returns noconv.

int do_encoding() const throw();

7 Returns: -1 if the encoding of the externT sequence is state-dependent; else the constant number of
externT characters needed to produce an internal character; or 0 if this number is not a constant227).

bool do_always_noconv() const throw();

8 Returns: true if do_in() and do_out() return noconv for all valid argument values.
codecvt<char,char,mbstate_t> returns true.

int do_length(stateT& state, const externT* from, const externT* from_end,
size_t max) const;

9 Preconditions: (from<=from_end) well-defined and true; state initialized, if at the beginning of
a sequence, or else equal to the result of converting the preceding characters in the sequence.

9a Effects: The effect on the state argument is “as if” it called do_in(state, from, from_end,
from, to, to+max, to) for to pointing to a buffer of at least max elements.

10 Returns: (from_next-from) where from_next is the largest value in the range
[from,from_end] such that the sequence of values in the range [from,from_next) represents
max or fewer valid complete characters of type internT. The instantiations required in Table 51
(22.1.1.1.1), namely codecvt<wchar_t, char, mbstate_t> and codecvt<char, char,
mbstate_t>, return the lesser of max and (from_end-from).

int do_max_length() const throw();

11 Returns: The maximum value that do_length(state, from, from_end, 1) can return for any
valid range [from, from_end) and stateT value state. The specialization codecvt<char,
char, mbstate_t>::do_max_length() returns 1.

226) Typically these will be characters to return the state to stateT()
227) If encoding() yields -1, then more than max_length() externT elements may be consumed when producing a single internT charac-
ter, and additional externT elements may appear at the end of a sequence after those that yield the final internT character.

434

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.1.5.2 codecvt virtual functions

[lib.locale.codecvt.byname] 22.2.1.6 Class template codecvt_byname

namespace std {
template <class internT, class externT, class stateT>
class codecvt_byname : public codecvt<internT, externT, stateT> {
public:
explicit codecvt_byname(const char*, size_t refs = 0);

protected:
˜codecvt_byname(); // virtual
virtual result do_out(stateT& state,

const internT* from, const internT* from_end, const internT*& from_next,
externT* to, externT* to_limit, externT*& to_next) const;

virtual result do_in(stateT& state,
const externT* from, const externT* from_end, const externT*& from_next,

internT* to, internT* to_limit, internT*& to_next) const;
virtual result do_unshift(stateT& state,

externT* to, externT* to_limit, externT*& to_next) const;
virtual int do_encoding() const throw();
virtual bool do_always_noconv() const throw();
virtual int do_length(stateT&, const externT* from,

const externT* end, size_t max) const;
virtual result do_unshift(stateT& state,

externT* to, externT* to_limit, externT*& to_next) const;
virtual int do_max_length() const throw();
};

}

[lib.category.numeric] 22.2.2 The numeric category

1 The classes num_get<> and num_put<> handle numeric formatting and parsing. Virtual functions are
provided for several numeric types. Implementations may (but are not required to) delegate extraction of
smaller types to extractors for larger types.228)

2 All specifications of member functions for num_put and num_get in the subclauses of 22.2.2 only apply to
the instantiations required in Tables 51 and 52 (22.1.1.1.1), namely num_get<char>,
num_get<wchar_t>, num_get<C,InputIterator>, num_put<char>, num_put<wchar_t>,
and num_put<C,OutputIterator>. These instantiations refer to the ios_base& argument for for-
matting specifications (22.2), and to its imbued locale for the numpunct<> facet to identify all numeric
punctuation preferences, and also for the ctype<> facet to perform character classification.

3 Extractor and inserter members of the standard iostreams use num_get<> and num_put<> member
functions for formatting and parsing numeric values (27.6.1.2.1, 27.6.2.5.1).

[lib.locale.num.get] 22.2.2.1 Class template num_get

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class num_get : public locale::facet {
public:
typedef charT char_type;
typedef InputIterator iter_type;

explicit num_get(size_t refs = 0);

228) Parsing "-1" correctly into (e.g.) an unsigned short requires that the corresponding member get() at least extract the
sign before delegating.

435

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.2.1 Class template num_get 22 Localization library

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, bool& v) const;

iter_type get(iter_type in, iter_type end, ios_base& ,
ios_base::iostate& err, long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned short& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned int& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, unsigned long& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, float& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, long double& v) const;

iter_type get(iter_type in, iter_type end, ios_base&,
ios_base::iostate& err, void*& v) const;

static locale::id id;

protected:
˜num_get(); // virtual
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, bool& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned short& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned int& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, unsigned long& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, float& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, double& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, long double& v) const;
virtual iter_type do_get(iter_type, iter_type, ios_base&,

ios_base::iostate& err, void*& v) const;
};

}

1 The facet num_get is used to parse numeric values from an input sequence such as an istream.

436

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.2.1 Class template num_get

[lib.facet.num.get.members] 22.2.2.1.1 num_get members

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, short& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Returns: do_get(in, end, str, err, val).

[lib.facet.num.get.virtuals] 22.2.2.1.2 num_get virtual functions

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned short& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned int& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, unsigned long& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, float& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, long double& val) const;

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, void*& val) const;

1 Effects: Reads characters from in, interpreting them according to str.flags(), use_facet<
ctype<charT> >(loc), and use_facet< numpunct<charT> >(loc), where loc is
str.getloc(). If an error occurs, val is unchanged; otherwise it is set to the resulting value.

2 The details of this operation occur in three stages

— Stage 1: Determine a conversion specifier

— Stage 2: Extract characters from in and determine a corresponding char value for the format expected
by the conversion specification determined in stage 1.

— Stage 3: Store results
The details of the stages are presented below.

3 Stage 1: The function initializes local variables via

fmtflags flags = str.flags();
fmtflags basefield = (flags & ios_base::basefield);
fmtflags uppercase = (flags & ios_base::uppercase);
fmtflags boolalpha = (flags & ios_base::boolalpha);

437

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.2.1.2 num_get virtual functions 22 Localization library

4 For conversion to an integral type, the function determines the integral conversion specifier as indicated
in Table 55. The table is ordered. That is, the first line whose condition is true applies.

Table 55—Integer conversions
_ ___

State stdio equivalent_ __ ___
basefield == oct %o_ ___
basefield == hex %X_ ___
basefield == 0 %i_ __ ___
signed integral type %d_ ___
unsigned integral type %u_ ___ 


















5 For conversions to a floating type the specifier is %g.
6 For conversions to void* the specifier is %p.
7 A length specifier is added to the conversion specification, if needed, as indicated in Table 56.

Table 56—Length Modifier

type length modifier__
short h___________________________________
unsigned short h___________________________________
long l___________________________________
unsigned long l___________________________________
double l___________________________________
long double L___________________________________ 






















8 Stage 2: If in==end then stage 2 terminates. Otherwise a charT is taken from in and local variables
are initialized as if by

char_type ct = *in ;
char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atoms];
if (ct == use_facet<numpunct<charT> >(loc).decimal_point())

c = ’.’;
bool discard =

(ct == use_facet<numpunct<charT> >(loc).thousands_sep()
&&

use_facet<numpunct<charT> >(loc).grouping().length() != 0);

where the values src and atoms are defined as if by:

static const char src[] = "0123456789abcdefABCDEF+-";
char_type atoms[sizeof(src)];
use_facet<ctype<charT> >(loc).widen(src, src + sizeof(src), atoms);

for this value of loc.
9 If discard is true then the position of the character is remembered, but the character is otherwise

ignored. If it is not discarded, then a check is made to determine if c is allowed as the next character of
an input field of the conversion specifier returned by stage 1. If so it is accumulated.

10 If the character is either discarded or accumulated then in is advanced by ++in and processing returns
to the beginning of stage 2.

11 Stage 3: The result of stage 2 processing can be one of

— A sequence of chars has been accumulated in stage 2 that is converted (according to the rules of
scanf) to a value of the type of val. This value is stored in val and ios_base::goodbit is
stored in err.

438

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.2.1.2 num_get virtual functions

— The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure.
ios_base::failbit is assigned to err.

12 Digit grouping is checked. That is, the positions of discarded separators is examined for consistency with
use_facet<numpunct<charT> >(loc).grouping(). If they are not consistent then
ios_base::failbit is assigned to err.

13 In any case, if stage 2 processing was terminated by the test for in==end then
err|=ios_base::eofbit is performed.

iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;

14 Effects: If (str.flags()&ios_base::boolalpha)==0 then input proceeds as it would for a
long except that if a value is being stored into val, the value is determined according to the follow-
ing: If the value to be stored is 0 then false is stored. If the value is 1 then true is stored. Other-
wise err|=ios_base::failbit is performed and no value is stored.

15 Otherwise target sequences are determined “as if” by calling the members falsename() and
truename() of the facet obtained by use_facet<numpunct<charT> >(str.getloc()). Suc-
cessive characters in the range [in,end) (see 23.1.1) are obtained and matched against corresponding
positions in the target sequences only as necessary to identify a unique match. The input iterator in is com-
pared to end only when necessary to obtain a character. If and only if a target sequence is uniquely
matched, val is set to the corresponding value.

16 The in iterator is always left pointing one position beyond the last character successfully matched. If val
is set, then err is set to str.goodbit; or to str.eofbit if, when seeking another character to match,
it is found that (in == end). If val is not set, then err is set to str.failbit; or to
(str.failbit|str.eofbit) if the reason for the failure was that (in == end). [Example: For
targets true: "a" and false: "abb", the input sequence "a" yields val == true and err ==
str.eofbit; the input sequence "abc" yields err = str.failbit, with in ending at the ’c’
element. For targets true: "1" and false: "0", the input sequence "1" yields val == true and
err == str.goodbit. For empty targets (""), any input sequence yields err ==
str.failbit. —end example]

17 Returns: in.

[lib.locale.nm.put] 22.2.2.2 Class template num_put

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class num_put : public locale::facet {
public:
typedef charT char_type;
typedef OutputIterator iter_type;

explicit num_put(size_t refs = 0);

iter_type put(iter_type s, ios_base& f, char_type fill, bool v) const;
iter_type put(iter_type s, ios_base& f, char_type fill, long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

unsigned long v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

long double v) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

const void* v) const;

439

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.2.2 Class template num_put 22 Localization library

static locale::id id;

protected:
˜num_put(); // virtual
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

bool v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

long v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

unsigned long) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

double v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

long double v) const;
virtual iter_type do_put(iter_type, ios_base&, char_type fill,

const void* v) const;
};

}

1 The facet num_put is used to format numeric values to a character sequence such as an ostream.

[lib.facet.num.put.members] 22.2.2.2.1 num_put members

iter_type put(iter_type out, ios_base& str, char_type fill,
bool val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
long val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
unsigned long val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
double val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
long double val) const;

iter_type put(iter_type out, ios_base& str, char_type fill,
const void* val) const;

1 Returns: do_put(out, str, fill, val).

[lib.facet.num.put.virtuals] 22.2.2.2.2 num_put virtual functions

iter_type do_put(iter_type out, ios_base& str, char_type fill,
bool val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
long val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
unsigned long val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
double val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
long double val) const;

iter_type do_put(iter_type out, ios_base& str, char_type fill,
const void* val) const;

1 Effects: Writes characters to the sequence out, formatting val as desired. In the following description, a
local variable initialized with

locale loc = str.getloc();

2 The details of this operation occur in several stages:

— Stage 1: Determine a printf conversion specifier spec and determining the characters that would be

440

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.2.2.2 num_put virtual functions

printed by printf(27.8.2) given this conversion specifier for

printf(spec, val)

assuming that the current locale is the "C" locale.

— Stage 2: Adjust the representation by converting each char determined by stage 1 to a charT using a
conversion and values returned by members of use_facet< numpunct<charT>
>(str.getloc())

— Stage 3: Determine where padding is required.

— Stage 4: Insert the sequence into the out.
3 Detailed descriptions of each stage follow.
4 Returns: out.

5 Stage 1: The first action of stage 1 is to determine a conversion specifier. The tables that describe this
determination use the following local variables

fmtflags flags = str.flags() ;
fmtflags basefield = (flags & (ios_base::basefield));
fmtflags uppercase = (flags & (ios_base::uppercase));
fmtflags floatfield = (flags & (ios_base::floatfield));
fmtflags showpos = (flags & (ios_base::showpos));
fmtflags showbase = (flags & (ios_base::showbase));

6 All tables used in describing stage 1 are ordered. That is, the first line whose condition is true applies.
A line without a condition is the default behavior when none of the earlier lines apply.

7 For conversion from an integral type other than a character type, the function determines the integral
conversion specifier as indicated in Table 57.

Table 57—Integer conversions
__

State stdio equivalent__
basefield == ios_base::oct %o__
(basefield == ios_base::hex) && !uppercase %x__
(basefield == ios_base::hex) %X__
for a signed integral type %d__
for an unsigned integral type %u__ 


















8 For conversion from a floating-point type, the function determines the floating-point conversion speci-
fier as indicated in Table 58:

Table 58—Floating-point conversions
__

State stdio equivalent__
floatfield == ios_base::fixed %f__
floatfield == ios_base::scientific && !uppercase %e__
floatfield == ios_base::scientific %E__
!uppercase %g__
otherwise %G__ 


















9 For conversions from an integral or floating type a length modifier is added to the conversion specifier
as indicated in Table 59.

441

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.2.2.2 num_put virtual functions 22 Localization library

Table 59—Length modifier
_ _________________________________

type length modifier_ __________________________________ _________________________________
long l_ _________________________________
unsigned long l_ _________________________________
long double L_ _________________________________
otherwise none_ _________________________________ 
















10 The conversion specifier has the following optional additional qualifiers prepended as indicated in
Table 60:

Table 60—Numeric conversions
_ ___

Type(s) State stdio equivalent_ __ ___
flags & showpos +
flags & showbase #

an integral type
_ ___

flags & showpos +
a floating-point type

flags & showpoint #_ ___ 













11 For conversion from a floating-point type, if (flags & fixed) != 0 or if str.precision()
> 0, then str.precision() is specified in the conversion specification.

12 For conversion from void* the specifier is %p.
13 The representations at the end of stage 1 consists of the char’s that would be printed by a call of

printf(s, val) where s is the conversion specifier determined above.

14 Stage 2: Any character c other than a decimal point(.) is converted to a charT via
use_facet<ctype<charT> >(loc).widen(c)

15 A local variable punct is initialized via

numpunct<charT> punct = use_facet< numpunct<charT> >(str.getloc())

16 For integral types, punct.thousands_sep() characters are inserted into the sequence as deter-
mined by the value returned by punct.do_grouping() using the method described in 22.2.3.1.2

17 Decimal point characters(.) are replaced by punct.decimal_point()

18 Stage 3: A local variable is initialized as

fmtflags adjustfield= (flags & (ios_base::adjustfield));

19 The location of any padding229) is determined according to Table 61:

229) The conversion specification #o generates a leading 0 which is not a padding character.

442

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.2.2.2 num_put virtual functions

Table 61—Fill padding
_ __

State Location_ ___ __
adjustfield == ios_base::left pad after_ __
adjustfield == ios_base::right pad before_ __

pad after the signadjustfield == internal and a
sign occurs in the representation_ __

pad after x or Xadjustfield == internal and rep-
resentation after stage 1 began with 0x or 0X_ __
otherwise pad before_ __ 
























20 If str.width() is nonzero and the number of charT’s in the sequence after stage 2 is less than
str.width(), then enough fill characters are added to the sequence at the position indicated for
padding to bring the length of the sequence to str.width().

21 str.width(0) is called.

22 Stage 4: The sequence of charT’s at the end of stage 3 are output via

*out++ = c

iter_type put(iter_type out, ios_base& str, char_type fill,
bool val) const;

23 Effects: If (str.flags()&ios_base::boolalpha)==0 then do

out = do_put(out, str, fill, (int)val)

Otherwise do

const numpunct<charT>& np = use_facet<numpunct<charT> >(loc);
string_type s = val ? np.truename() : np.falsename();

and then insert the characters of s into out. out.

[lib.facet.numpunct] 22.2.3 The numeric punctuation facet

[lib.locale.numpunct] 22.2.3.1 Class template numpunct

namespace std {
template <class charT>
class numpunct : public locale::facet {
public:
typedef charT char_type;
typedef basic_string<charT> string_type;

explicit numpunct(size_t refs = 0);

char_type decimal_point() const;
char_type thousands_sep() const;
string grouping() const;
string_type truename() const;
string_type falsename() const;

static locale::id id;

443

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.3.1 Class template numpunct 22 Localization library

protected:
˜numpunct(); // virtual
virtual char_type do_decimal_point() const;
virtual char_type do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const; // for bool
virtual string_type do_falsename() const; // for bool

};
}

1 numpunct<> specifies numeric punctuation. The instantiations required in Table 51 (22.1.1.1.1), namely
numpunct<wchar_t> and numpunct<char>, provide classic “C” numeric formats, i.e. they contain
information equivalent to that contained in the “C” locale or their wide character counterparts as if obtained
by a call to widen.

2 The syntax for number formats is as follows, where digit represents the radix set specified by the
fmtflags argument value, whitespace is as determined by the facet ctype<charT> (22.2.1.1), and
thousands-sep and decimal-point are the results of corresponding numpunct<charT> mem-
bers. Integer values have the format:

integer ::= [sign] units
sign ::= plusminus [whitespace]
plusminus ::= ’+’ | ’-’
units ::= digits [thousands-sep units]
digits ::= digit [digits]

and floating-point values have:

floatval ::= [sign] units [decimal-point [digits]] [e [sign] digits] |
[sign] decimal-point digits [e [sign] digits]

e ::= ’e’ | ’E’

where the number of digits between thousands-seps is as specified by do_grouping(). For pars-
ing, if the digits portion contains no thousands-separators, no grouping constraint is applied.

[lib.facet.numpunct.members] 22.2.3.1.1 numpunct members

char_type decimal_point() const;

1 Returns: do_decimal_point()

char_type thousands_sep() const;

2 Returns: do_thousands_sep()

string grouping() const;

3 Returns: do_grouping()

string_type truename() const;
string_type falsename() const;

4 Returns: do_truename() or do_falsename(), respectively.

444

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.3.1.1 numpunct members

[lib.facet.numpunct.virtuals] 22.2.3.1.2 numpunct virtual functions

char_type do_decimal_point() const;

1 Returns: A character for use as the decimal radix separator. The required instantiations return ’.’ or
L’.’.

char_type do_thousands_sep() const;

2 Returns: A character for use as the digit group separator. The required instantiations return ’,’ or L’,’.

string do_grouping() const;

3 Returns: A basic_string<char> vec used as a vector of integer values, in which each element vec[i]
represents the number of digits230) in the group at position i, starting with position 0 as the rightmost
group. If vec.size() <= i, the number is the same as group (i-1); if (i<0 || vec[i]<=0
|| vec[i]==CHAR_MAX), the size of the digit group is unlimited.
The required instantiations return the empty string, indicating no grouping.

string_type do_truename() const;
string_type do_falsename() const;

4 Returns: A string representing the name of the boolean value true or false, respectively.
In the base class implementation these names are "true" and "false", or L"true" and
L"false".

[lib.locale.numpunct.byname] 22.2.3.2 Class template numpunct_byname

namespace std {
template <class charT>
class numpunct_byname : public numpunct<charT> {

// this class is specialized for char and wchar_t.
public:

typedef charT char_type;
typedef basic_string<charT> string_type;
explicit numpunct_byname(const char*, size_t refs = 0);

protected:
˜numpunct_byname(); // virtual
virtual char_type do_decimal_point() const;
virtual char_type do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_truename() const; // for bool
virtual string_type do_falsename() const; // for bool

};
}

[lib.category.collate] 22.2.4 The collate category

[lib.locale.collate] 22.2.4.1 Class template collate

namespace std {
template <class charT>
class collate : public locale::facet {
public:
typedef charT char_type;
typedef basic_string<charT> string_type;

230) Thus, the string "\003" specifies groups of 3 digits each, and "3" probably indicates groups of 51 (!) digits each, because 51 is
the ASCII value of "3".

445

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.4.1 Class template collate 22 Localization library

explicit collate(size_t refs = 0);

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

string_type transform(const charT* low, const charT* high) const;
long hash(const charT* low, const charT* high) const;

static locale::id id;

protected:
˜collate(); // virtual
virtual int do_compare(const charT* low1, const charT* high1,

const charT* low2, const charT* high2) const;
virtual string_type do_transform

(const charT* low, const charT* high) const;
virtual long do_hash (const charT* low, const charT* high) const;

};
}

1 The class collate<charT> provides features for use in the collation (comparison) and hashing of
strings. A locale member function template, operator(), uses the collate facet to allow a locale to act
directly as the predicate argument for standard algorithms (clause 25) and containers operating on strings.
The instantiations required in Table 51 (22.1.1.1.1), namely collate<char> and
collate<wchar_t>, apply lexicographic ordering (25.3.8).

2 Each function compares a string of characters *p in the range [low,high).

[lib.locale.collate.members] 22.2.4.1.1 collate members

int compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: do_compare(low1, high1, low2, high2)

string_type transform(const charT* low, const charT* high) const;

2 Returns: do_transform(low, high)

long hash(const charT* low, const charT* high) const;

3 Returns: do_hash(low, high)

[lib.locale.collate.virtuals] 22.2.4.1.2 collate virtual functions

int do_compare(const charT* low1, const charT* high1,
const charT* low2, const charT* high2) const;

1 Returns: 1 if the first string is greater than the second, -1 if less, zero otherwise. The instantiations
required in the Table 51 (22.1.1.1.1), namely collate<char> and collate<wchar_t>, imple-
ment a lexicographical comparison (25.3.8).

string_type do_transform(const charT* low, const charT* high) const;

2 Returns: A basic_string<charT> value that, compared lexicographically with the result of calling
transform() on another string, yields the same result as calling do_compare() on the same two
strings.231)

231) This function is useful when one string is being compared to many other strings.

446

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.4.1.2 collate virtual functions

long do_hash(const charT* low, const charT* high) const;

3 Returns: An integer value equal to the result of calling hash() on any other string for which
do_compare() returns 0 (equal) when passed the two strings. [Note: The probability that the result
equals that for another string which does not compare equal should be very small, approaching
(1.0/numeric_limits<unsigned long>::max()). —end note]

[lib.locale.collate.byname] 22.2.4.2 Class template collate_byname

namespace std {
template <class charT>
class collate_byname : public collate<charT> {
public:
typedef basic_string<charT> string_type;
explicit collate_byname(const char*, size_t refs = 0);

protected:
˜collate_byname(); // virtual
virtual int do_compare(const charT* low1, const charT* high1,

const charT* low2, const charT* high2) const;
virtual string_type do_transform

(const charT* low, const charT* high) const;
virtual long do_hash (const charT* low, const charT* high) const;

};
}

[lib.category.time] 22.2.5 The time category

1 Templates time_get<charT,InputIterator> and time_put<charT,OutputIterator>
provide date and time formatting and parsing. All specifications of member functions for time_put and
time_get in the subclauses of 22.2.5 only apply to the instantiations required in Tables 51 and 52
(22.1.1.1.1). Their members use their ios_base&, ios_base::iostate&, and fill arguments as
described in (22.2), and the ctype<> facet, to determine formatting details.

[lib.locale.time.get] 22.2.5.1 Class template time_get

namespace std {
class time_base {
public:
enum dateorder { no_order, dmy, mdy, ymd, ydm };

};

template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get : public locale::facet, public time_base {
public:

typedef charT char_type;
typedef InputIterator iter_type;

explicit time_get(size_t refs = 0);

447

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.5.1 Class template time_get 22 Localization library

dateorder date_order() const { return do_date_order(); }
iter_type get_time(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_date(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_weekday(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_monthname(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;
iter_type get_year(iter_type s, iter_type end, ios_base& f,

ios_base::iostate& err, tm* t) const;

static locale::id id;

protected:
˜time_get(); // virtual
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;
};

}

1 time_get is used to parse a character sequence, extracting components of a time or date into a struct
tm record. Each get member parses a format as produced by a corresponding format specifier to
time_put<>::put. If the sequence being parsed matches the correct format, the corresponding mem-
bers of the struct tm argument are set to the values used to produce the sequence; otherwise either an
error is reported or unspecified values are assigned.232)

[lib.locale.time.get.members] 22.2.5.1.1 time_get members

dateorder date_order() const;

1 Returns: do_date_order()

iter_type get_time(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

2 Returns: do_get_time(s, end, str, err, t)

iter_type get_date(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

3 Returns: do_get_date(s, end, str, err, t)

232) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated formats
can be parsed reliably. This allows parsers to be aggressive about interpreting user variations on standard formats.

448

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.5.1.1 time_get members

iter_type get_weekday(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

iter_type get_monthname(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

4 Returns: do_get_weekday(s, end, str, err, t) or do_get_monthname(s, end,
str, err, t)

iter_type get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

5 Returns: do_get_year(s, end, str, err, t)

[lib.locale.time.get.virtuals] 22.2.5.1.2 time_get virtual functions

dateorder do_date_order() const;

1 Returns: An enumeration value indicating the preferred order of components for those date formats that
are composed of day, month, and year.233) Returns no_order if the date format specified by ’x’ con-
tains other variable components (e.g. Julian day, week number, week day).

iter_type do_get_time(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

2 Effects: Reads characters starting at s until it has extracted those struct tm members, and remaining
format characters, used by time_put<>::put to produce the format specified by ’X’, or until it
encounters an error or end of sequence.

3 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid
time.

iter_type do_get_date(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

4 Effects: Reads characters starting at s until it has extracted those struct tm members, and remaining
format characters, used by time_put<>::put to produce the format specified by ’x’, or until it
encounters an error.

5 Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid
date.

iter_type do_get_weekday(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

iter_type do_get_monthname(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

6 Effects: Reads characters starting at s until it has extracted the (perhaps abbreviated) name of a weekday
or month. If it finds an abbreviation that is followed by characters that could match a full name, it con-
tinues reading until it matches the full name or fails. It sets the appropriate struct tm member
accordingly.

7 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid name.

iter_type do_get_year(iter_type s, iter_type end, ios_base& str,
ios_base::iostate& err, tm* t) const;

8 Effects: Reads characters starting at s until it has extracted an unambiguous year identifier. It is
implementation-defined whether two-digit year numbers are accepted, and (if so) what century they are
assumed to lie in. Sets the t->tm_year member accordingly.

233) This function is intended as a convenience only, for common formats, and may return no_order in valid locales.

449

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.5.1.2 time_get virtual functions 22 Localization library

9 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid year
identifier.

[lib.locale.time.get.byname] 22.2.5.2 Class template time_get_byname

namespace std {
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get_byname : public time_get<charT, InputIterator> {
public:
typedef time_base::dateorder dateorder;
typedef InputIterator iter_type;

explicit time_get_byname(const char*, size_t refs = 0);
protected:
˜time_get_byname(); // virtual
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&,

ios_base::iostate& err, tm* t) const;

virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&,
ios_base::iostate& err, tm* t) const;

virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&,
ios_base::iostate& err, tm* t) const;

virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&,
ios_base::iostate& err, tm* t) const;

virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&,
ios_base::iostate& err, tm* t) const;

};
}

[lib.locale.time.put] 22.2.5.3 Class template time_put

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put : public locale::facet {
public:
typedef charT char_type;
typedef OutputIterator iter_type;

explicit time_put(size_t refs = 0);

// the following is implemented in terms of other member functions.
iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb,

const charT* pattern, const charT* pat_end) const;
iter_type put(iter_type s, ios_base& f, char_type fill,

const tm* tmb, char format, char modifier = 0) const;

static locale::id id;

protected:
˜time_put(); // virtual
virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t,

char format, char modifier) const;
};

}

450

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.5.3.1 time_put members

[lib.locale.time.put.members] 22.2.5.3.1 time_put members

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
const charT* pattern, const charT* pat_end) const;

iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
char format, char modifier = 0) const;

1 Effects: The first form steps through the sequence from pattern to pat_end, identifying characters
that are part of a format sequence. Each character that is not part of a format sequence is written to s
immediately, and each format sequence, as it is identified, results in a call to do_put; thus, format ele-
ments and other characters are interleaved in the output in the order in which they appear in the pattern.
Format sequences are identified by converting each character c to a char value as if by
ct.narrow(c, 0), where ct is a reference to ctype<charT> obtained from str.getloc().
The first character of each sequence is equal to ’%’, followed by an optional modifier character
mod234) and a format specifier character spec as defined for the function strftime. If no modifier
character is present, mod is zero. For each valid format sequence identified, calls do_put(s, str,
fill, t, spec, mod).

2 The second form calls do_put(s, str, fill, t, format, modifier).

2a [Note: The fill argument may be used in the implementation-defined formats, or by derivations. A space
character is a reasonable default for this argument. —end note]

3 Returns: An iterator pointing immediately after the last character produced.

[lib.locale.time.put.virtuals] 22.2.5.3.2 time_put virtual functions

iter_type do_put(iter_type s, ios_base&, char_type fill, const tm* t,
char format, char modifier) const;

1 Effects: Formats the contents of the parameter t into characters placed on the output sequence s. Format-
ting is controlled by the parameters format and modifier, interpreted identically as the format
specifiers in the string argument to the standard library function strftime().235) except that the
sequence of characters produced for those specifiers that are described as depending on the C locale are
instead implementation-defined.236)

2 Returns: An iterator pointing immediately after the last character produced.

[lib.locale.time.put.byname] 22.2.5.4 Class template time_put_byname

namespace std {
template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
class time_put_byname : public time_put<charT, OutputIterator>
{
public:
typedef charT char_type;
typedef OutputIterator iter_type;

explicit time_put_byname(const char*, size_t refs = 0);
protected:
˜time_put_byname(); // virtual
virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t,

char format, char modifier) const;
};

}

234) Although the C programming language defines no modifiers, most vendors do.
235) Interpretation of the modifier argument is implementation-defined, but should follow POSIX conventions.
236) Implementations are encouraged to refer to other standards (such as POSIX) for these definitions.

451

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.6 The monetary category 22 Localization library

[lib.category.monetary] 22.2.6 The monetary category

1 These templates handle monetary formats. A template parameter indicates whether local or international
monetary formats are to be used.

2 All specifications of member functions for money_put and money_get in the subclauses of 22.2.6 only
apply to the instantiations required in Tables 51 and 52 (22.1.1.1.1). Their members use their
ios_base&, ios_base::iostate&, and fill arguments as described in (22.2), and the
moneypunct<> and ctype<> facets, to determine formatting details.

[lib.locale.money.get] 22.2.6.1 Class template money_get

namespace std {
template <class charT,

class InputIterator = istreambuf_iterator<charT> >
class money_get : public locale::facet {
public:

typedef charT char_type;
typedef InputIterator iter_type;
typedef basic_string<charT> string_type;

explicit money_get(size_t refs = 0);

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
long double& units) const;

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
string_type& digits) const;

static locale::id id;

protected:
˜money_get(); // virtual
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, long double& units) const;
virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,

ios_base::iostate& err, string_type& digits) const;
};

}

[lib.locale.money.get.members] 22.2.6.1.1 money_get members

iter_type get(iter_type s, iter_type end, bool intl,
ios_base& f, ios_base::iostate& err,
long double& quant) const;

iter_type get(s, iter_type end, bool intl, ios_base&f,
ios_base::iostate& err, string_type& quant) const;

1 Returns: do_get(s, end, intl, f, err, quant)

[lib.locale.money.get.virtuals] 22.2.6.1.2 money_get virtual functions

iter_type do_get(iter_type s, iter_type end, bool intl,
ios_base& str, ios_base::iostate& err,
long double& units) const;

iter_type do_get(iter_type s, iter_type end, bool intl,
ios_base& str, ios_base::iostate& err,
string_type& digits) const;

452

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.6.1.2 money_get virtual functions

1 Effects: Reads characters from s to parse and construct a monetary value according to the format specified
by a moneypunct<charT, Intl> facet reference mp and the character mapping specified by a
ctype<charT> facet reference ct obtained from the locale returned by str.getloc(), and
str.flags(). If a valid sequence is recognized, does not change err; otherwise, sets err to
(err|str.failbit), or (err|str.failbit|str.eofbit) if no more characters are avail-
able, and does not change units or digits. Uses the pattern returned by mp.neg_format() to
parse all values. The result is returned as an integral value stored in units or as a sequence of digits
possibly preceded by a minus sign (as produced by ct.widen(c) where c is ’-’ or in the range
from ’0’ through ’9’, inclusive) stored in digits. [Example: The sequence $1,056.23 in a com-
mon United States locale would yield, for units, 105623, or, for digits, "105623".
—end example] If mp.grouping() indicates that no thousands separators are permitted, any such
characters are not read, and parsing is terminated at the point where they first appear. Otherwise, thou-
sands separators are optional; if present, they are checked for correct placement only after all format
components have been read.

2 Where space or none appears in the format pattern, except at the end, optional white space (as recog-
nized by ct.is) is consumed after any required space. If (str.flags() & str.showbase) is
false, the currency symbol is optional and is consumed only if other characters are needed to complete the
format; otherwise, the currency symbol is required.

3 If the first character (if any) in the string pos returned by mp.positive_sign() or the string neg
returned by mp.negative_sign() is recognized in the position indicated by sign in the format pat-
tern, it is consumed and any remaining characters in the string are required after all the other format compo-
nents. [Example: If showbase is off, then for a neg value of "()" and a currency symbol of "L", in
"(100 L)" the "L" is consumed; but if neg is "-", the "L" in "-100 L" is not consumed.] If pos
or neg is empty, the sign component is optional, and if no sign is detected, the result is given the sign that
corresponds to the source of the empty string. Otherwise, the character in the indicated position must
match the first character of pos or neg, and the result is given the corresponding sign. If the first character
of pos is equal to the first character of neg, or if both strings are empty, the result is given a positive sign.

4 Digits in the numeric monetary component are extracted and placed in digits, or into a character buffer
buf1 for conversion to produce a value for units, in the order in which they appear, preceded by a minus
sign if and only if the result is negative. The value units is produced as if by237)

for (int i = 0; i < n; ++i)
buf2[i] = src[find(atoms, atoms+sizeof(src), buf1[i]) - atoms];

buf2[n] = 0;
sscanf(buf2, "%Lf", &units);

where n is the number of characters placed in buf1, buf2 is a character buffer, and the values src and
atoms are defined as if by

static const char src[] = "0123456789-";
charT atoms[sizeof(src)];
ct.widen(src, src + sizeof(src) - 1, atoms);

5 Returns: An iterator pointing immediately beyond the last character recognized as part of a valid monetary
quantity.

237) The semantics here are different from ct.narrow.

453

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.6.1.2 money_get virtual functions 22 Localization library

[lib.locale.money.put] 22.2.6.2 Class templatemoney_put

namespace std {
template <class charT,

class OutputIterator = ostreambuf_iterator<charT> >
class money_put : public locale::facet {
public:

typedef charT char_type;
typedef OutputIterator iter_type;
typedef basic_string<charT> string_type;

explicit money_put(size_t refs = 0);

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, long double units) const;

iter_type put(iter_type s, bool intl, ios_base& f,
char_type fill, const string_type& digits) const;

static locale::id id;

protected:
˜money_put(); // virtual
virtual iter_type

do_put(iter_type, bool, ios_base&, char_type fill,
long double units) const;

virtual iter_type
do_put(iter_type, bool, ios_base&, char_type fill,

const string_type& digits) const;
};

}

[lib.locale.money.put.members] 22.2.6.2.1 money_put members

iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
long double quant) const;

iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
const string_type& quant) const;

1 Returns: do_put(s, intl, f, loc, quant)

[lib.locale.money.put.virtuals] 22.2.6.2.2 money_put virtual functions

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, long double units) const;

iter_type do_put(iter_type s, bool intl, ios_base& str,
char_type fill, const string_type& digits) const;

1 Effects: Writes characters to s according to the format specified by a moneypunct<charT, Intl>
facet reference mp and the character mapping specified by a ctype<charT> facet reference ct
obtained from the locale returned by str.getloc(), and str.flags(). The argument units is
transformed into a sequence of wide characters as if by

ct.widen(buf1, buf1 + sprintf(buf1, "%.01f", units), buf2)

for character buffers buf1 and buf2. If the first character in digits or buf2 is equal to
ct.widen(’-’), then the pattern used for formatting is the result of mp.neg_format(); other-
wise the pattern is the result of mp.pos_format(). Digit characters are written, interspersed with
any thousands separators and decimal point specified by the format, in the order they appear (after the
optional leading minus sign) in digits or buf2. In digits, only the optional leading minus sign
and the immediately subsequent digit characters (as classified according to ct) are used; any trailing
characters (including digits appearing after a non-digit character) are ignored. Calls str.width(0).

454

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.6.2.2 money_put virtual functions

2 Notes: The currency symbol is generated if and only if (str.flags() & str.showbase) is
nonzero. If the number of characters generated for the specified format is less than the value returned
by str.width() on entry to the function, then copies of fill are inserted as necessary to pad to the
specified width. For the value af equal to (str.flags() & str.adjustfield), if (af ==
str.internal) is true, the fill characters are placed where none or space appears in the format-
ting pattern; otherwise if (af == str.left) is true, they are placed after the other characters; oth-
erwise, they are placed before the other characters. [Note: It is possible, with some combinations of for-
mat patterns and flag values, to produce output that cannot be parsed using num_get<>::get.
—end note]

3 Returns: An iterator pointing immediately after the last character produced.

[lib.locale.moneypunct] 22.2.6.3 Class template moneypunct

namespace std {
class money_base {
public:
enum part { none, space, symbol, sign, value };
struct pattern { char field[4]; };

};

template <class charT, bool International = false>
class moneypunct : public locale::facet, public money_base {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit moneypunct(size_t refs = 0);

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

static locale::id id;
static const bool intl = International;

protected:
˜moneypunct(); // virtual
virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

1 The moneypunct<> facet defines monetary formatting parameters used by money_get<> and
money_put<>. A monetary format is a sequence of four components, specified by a pattern value p,
such that the part value static_cast<part>(p.field[i]) determines the ith component of the
format238) In the field member of a pattern object, each value symbol, sign, value, and either

238) An array of char, rather than an array of part, is specified for pattern::field purely for efficiency.

455

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.6.3 Class template moneypunct 22 Localization library

space or none appears exactly once. The value none, if present, is not first; the value space, if pre-
sent, is neither first nor last.

2 Where none or space appears, white space is permitted in the format, except where none appears at the
end, in which case no white space is permitted. The value space indicates that at least one space is
required at that position. Where symbol appears, the sequence of characters returned by
curr_symbol() is permitted, and can be required. Where sign appears, the first (if any) of the
sequence of characters returned by positive_sign() or negative_sign() (respectively as the
monetary value is non-negative or negative) is required. Any remaining characters of the sign sequence are
required after all other format components. Where value appears, the absolute numeric monetary value is
required.

3 The format of the numeric monetary value is a decimal number:

value ::= units [decimal-point [digits]] |
decimal-point digits

if frac_digits() returns a positive value, or

value ::= units

otherwise. The symbol decimal-point indicates the character returned by decimal_point(). The
other symbols are defined as follows:

units ::= digits [thousands-sep units]
digits ::= adigit [digits]

In the syntax specification, the symbol adigit is any of the values ct.widen(c) for c in the range
’0’ through ’9’, inclusive, and ct is a reference of type const ctype<charT>& obtained as
described in the definitions of money_get<> and money_put<>. The symbol thousands-sep is
the character returned by thousands_sep(). The space character used is the value ct.widen(’ ’).
White space characters are those characters c for which ci.is(space, c) returns true. The number
of digits required after the decimal point (if any) is exactly the value returned by frac_digits().

4 The placement of thousands-separator characters (if any) is determined by the value returned by
grouping(), defined identically as the member numpunct<>::do_grouping().

[lib.locale.moneypunct.members] 22.2.6.3.1 moneypunct members

charT decimal_point() const;
charT thousands_sep() const;
string grouping() const;
string_type curr_symbol() const;
string_type positive_sign() const;
string_type negative_sign() const;
int frac_digits() const;
pattern pos_format() const;
pattern neg_format() const;

1 Each of these functions F returns the result of calling the corresponding virtual member function do_F().

[lib.locale.moneypunct.virtuals] 22.2.6.3.2 moneypunct virtual functions

charT do_decimal_point() const;

1 Returns: The radix separator to use in case do_frac_digits() is greater than zero.239)

239) In common U.S. locales this is ’.’.

456

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.6.3.2 moneypunct virtual functions

charT do_thousands_sep() const;

2 Returns: The digit group separator to use in case do_grouping() specifies a digit grouping pattern.240)

string do_grouping() const;

3 Returns: A pattern defined identically as the result of numpunct<charT>::do_grouping().241)

string_type do_curr_symbol() const;

4 Returns: A string to use as the currency identifier symbol.242)

string_type do_positive_sign() const;
string_type do_negative_sign() const;

5 Returns: do_positive_sign() returns the string to use to indicate a positive monetary value;243)

do_negative_sign() returns the string to use to indicate a negative value.

int do_frac_digits() const;

6 Returns: The number of digits after the decimal radix separator, if any.244)

pattern do_pos_format() const;
pattern do_neg_format() const;

7 Returns: The instantiations required in Table 51 (22.1.1.1.1), namely moneypunct<char>,
moneypunct<wchar_t>, moneypunct<char,true>, and moneypunct<wchar_t,true>,
return an object of type pattern initialized to { symbol, sign, none, value }.245)

[lib.locale.moneypunct.byname] 22.2.6.4 Class template moneypunct_byname

namespace std {
template <class charT, bool Intl = false>
class moneypunct_byname : public moneypunct<charT, Intl> {
public:
typedef money_base::pattern pattern;
typedef basic_string<charT> string_type;

explicit moneypunct_byname(const char*, size_t refs = 0);
protected:
˜moneypunct_byname(); // virtual
virtual charT do_decimal_point() const;
virtual charT do_thousands_sep() const;
virtual string do_grouping() const;
virtual string_type do_curr_symbol() const;
virtual string_type do_positive_sign() const;
virtual string_type do_negative_sign() const;
virtual int do_frac_digits() const;
virtual pattern do_pos_format() const;
virtual pattern do_neg_format() const;

};
}

240) In common U.S. locales this is ’,’.
241) This is most commonly the value "\003" (not "3").
242) For international instantiations (second template parameter true) this is always four characters long, usually three letters and a
space.
243) This is usually the empty string.
244) In common U.S. locales, this is 2.
245) Note that the international symbol returned by do_curr_sym() usually contains a space, itself; for example, "USD ".

457

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.7 The message retrieval category 22 Localization library

[lib.category.messages] 22.2.7 The message retrieval category

1 Class messages<charT> implements retrieval of strings from message catalogs.

[lib.locale.messages] 22.2.7.1 Class template messages

namespace std {
class messages_base {
public:
typedef int catalog;

};

template <class charT>
class messages : public locale::facet, public messages_base {
public:

typedef charT char_type;
typedef basic_string<charT> string_type;

explicit messages(size_t refs = 0);

catalog open(const basic_string<char>& fn, const locale&) const;
string_type get(catalog c, int set, int msgid,

const string_type& dfault) const;
void close(catalog c) const;

static locale::id id;

protected:
˜messages(); // virtual
virtual catalog do_open(const basic_string<char>&, const locale&) const;
virtual string_type do_get(catalog, int set, int msgid,

const string_type& dfault) const;
virtual void do_close(catalog) const;

};
}

1 Values of type messages_base::catalog usable as arguments to members get and close can be
obtained only by calling member open.

[lib.locale.messages.members] 22.2.7.1.1 messages members

catalog open(const basic_string<char>& name, const locale& loc) const;

1 Returns: do_open(name, loc).

string_type get(catalog cat, int set, int msgid,
const string_type& dfault) const;

2 Returns: do_get(cat, set, msgid, dfault).

void close(catalog cat) const;

3 Effects: Calls do_close(cat).

458

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.7.1.1 messages members

[lib.locale.messages.virtuals] 22.2.7.1.2 messages virtual functions

catalog do_open(const basic_string<char>& name,
const locale& loc) const;

1 Returns: A value that may be passed to get() to retrieve a message, from the message catalog identified
by the string name according to an implementation-defined mapping. The result can be used until it is
passed to close().
Returns a value less than 0 if no such catalog can be opened.

2 Notes: The locale argument loc is used for character set code conversion when retrieving messages, if
needed.

string_type do_get(catalog cat, int set, int msgid,
const string_type& dfault) const;

3 Requires: A catalog cat obtained from open() and not yet closed.
4 Returns: A message identified by arguments set, msgid, and dfault, according to an

implementation-defined mapping. If no such message can be found, returns dfault.

void do_close(catalog cat) const;

5 Requires: A catalog cat obtained from open() and not yet closed.
6 Effects: Releases unspecified resources associated with cat.
7 Notes: The limit on such resources, if any, is implementation-defined.

[lib.locale.messages.byname] 22.2.7.2 Class template messages_byname

namespace std {
template <class charT>
class messages_byname : public messages<charT> {
public:
typedef messages_base::catalog catalog;
typedef basic_string<charT> string_type;

explicit messages_byname(const char*, size_t refs = 0);
protected:
˜messages_byname(); // virtual
virtual catalog do_open(const basic_string<char>&, const locale&) const;
virtual string_type do_get(catalog, int set, int msgid,

const string_type& dfault) const;
virtual void do_close(catalog) const;

};
}

[lib.facets.examples] 22.2.8 Program-defined facets

1 A C + + program may define facets to be added to a locale and used identically as the built-in facets. To cre-
ate a new facet interface, C + + programs simply derive from locale::facet a class containing a static
member: static locale::id id.

2 [Note: The locale member function templates verify its type and storage class. —end note]

3 [Note: This paragraph is intentionally empty. —end note]

4 [Example: Traditional global localization is still easy:

459

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.8 Program-defined facets 22 Localization library

#include <iostream>
#include <locale>
int main(int argc, char** argv)
{

using namespace std;
locale::global(locale("")); // set the global locale

// imbue it on all the std streams
cin.imbue(locale());
cout.imbue(locale());
cerr.imbue(locale());
wcin.imbue(locale());
wcout.imbue(locale());
wcerr.imbue(locale());

return MyObject(argc, argv).doit();
}

—end example]

5 [Example: Greater flexibility is possible:

#include <iostream>
#include <locale>
int main()
{
using namespace std;
cin.imbue(locale("")); // the user’s preferred locale
cout.imbue(locale::classic());
double f;
while (cin >> f) cout << f << endl;
return (cin.fail() != 0);

}

In a European locale, with input 3.456,78, output is 3456.78. —end example]

6 This can be important even for simple programs, which may need to write a data file in a fixed format,
regardless of a user’s preference.

7 [Example: Here is an example of the use of locales in a library interface.

// file: Date.h
#include <iosfwd>
#include <string>
#include <locale>

...
class Date {

...
public:
Date(unsigned day, unsigned month, unsigned year);
std::string asString(const std::locale& = std::locale());

};
istream& operator>>(istream& s, Date& d);
ostream& operator<<(ostream& s, Date d);
...

This example illustrates two architectural uses of class locale.

8 The first is as a default argument in Date::asString(), where the default is the global (presumably
user-preferred) locale.

9 The second is in the operators << and >>, where a locale “hitchhikes” on another object, in this case a
stream, to the point where it is needed.

460

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.8 Program-defined facets

// file: Date.C
#include "Date" // includes <ctime>
#include <sstream>
std::string Date::asString(const std::locale& l)
{

using namespace std;
ostringstream s; s.imbue(l);
s << *this; return s.str();

}

std::istream& operator>>(std::istream& s, Date& d)
{

using namespace std;
istream::sentry cerberos(s);
if (cerberos) {

ios_base::iostate err = goodbit;
struct tm t;
use_facet< time_get<char> >(s.getloc()).get_date(s, 0, s, err, &t);
if (!err) d = Date(t.tm_day, t.tm_mon + 1, t.tm_year + 1900);
s.setstate(err);

}
return s;

}

—end example]

10 A locale object may be extended with a new facet simply by constructing it with an instance of a class
derived from locale::facet. The only member a C + + program must define is the static member id,
which identifies your class interface as a new facet.

11 [Example: Classifying Japanese characters:

// file: <jctype>
#include <locale>
namespace My {
using namespace std;
class JCtype : public locale::facet {
public:

static locale::id id; // required for use as a new locale facet
bool is_kanji (wchar_t c) const;
JCtype() {}

protected:
˜JCtype() {}

};
}

461

ISO/IEC 14882:2003(E)  ISO/IEC

22.2.8 Program-defined facets 22 Localization library

// file: filt.C
#include <iostream>
#include <locale>
#include "jctype" // above
std::locale::id My::JCtype::id; // the static JCtype member declared above.

int main()
{

using namespace std;
typedef ctype<wchar_t> wctype;
locale loc(locale(""), // the user’s preferred locale ...

new My::JCtype); // and a new feature ...
wchar_t c = use_facet<wctype>(loc).widen(’!’);
if (!use_facet<My::JCtype>(loc).is_kanji(c))

cout << "no it isn’t!" << endl;
return 0;

}

12 The new facet is used exactly like the built-in facets. —end example]

13 [Example: Replacing an existing facet is even easier. Here we do not define a member id because we are
reusing the numpunct<charT> facet interface:

// file: my_bool.C
#include <iostream>
#include <locale>
#include <string>
namespace My {
using namespace std;
typedef numpunct_byname<char> cnumpunct;
class BoolNames : public cnumpunct {
protected:
string do_truename() const { return "Oui Oui!"; }
string do_falsename() const { return "Mais Non!"; }
˜BoolNames() {}
public:

BoolNames(const char* name) : cnumpunct(name) {}
};

}

int main(int argc, char** argv)
{

using namespace std;
// make the user’s preferred locale, except for...
locale loc(locale(""), new My::BoolNames(""));
cout.imbue(loc);
cout << boolalpha << "Any arguments today? " << (argc > 1) << endl;
return 0;

}

—end example]

462

 ISO/IEC ISO/IEC 14882:2003(E)

22 Localization library 22.2.8 Program-defined facets

[lib.c.locales] 22.3 C Library Locales

1 Header <clocale> (Table 62):

Table 62—Header <clocale> synopsis
_ ___

Type Name(s)_ ___
Macros:

LC_ALL LC_COLLATE LC_CTYPE

LC_MONETARY LC_NUMERIC LC_TIME

NULL_ ___
Struct: lconv_ ___
Functions: localeconv setlocale_ ___ 




















2 The contents are the same as the Standard C library header <locale.h>.

SEE ALSO: ISO C clause 7.4.

463

ISO/IEC 14882:2003(E)  ISO/IEC

464

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23 Containers library

23 Containers library [lib.containers]

1 This clause describes components that C + + programs may use to organize collections of information.

2 The following subclauses describe container requirements, and components for sequences and associative
containers, as summarized in Table 63:

Table 63—Containers library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
23.1 Requirements_ ____________________________________

<deque>
<list>
<queue>
<stack>

23.2 Sequences

<vector>_ ____________________________________
<map>

23.3 Associative containers
<set>

23.3.5 bitset <bitset>_ ____________________________________ 



























[lib.container.requirements] 23.1 Container requirements

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this clause are stated solely in terms of the number of operations on
the contained objects. [Example: the copy constructor of type vector <vector<int> > has linear
complexity, even though the complexity of copying each contained vector<int> is itself linear.]

3 The type of objects stored in these components must meet the requirements of CopyConstructible
types (20.1.3), and the additional requirements of Assignable types.

4 In Table 64, T is the type used to instantiate the container, t is a value of T, and u is a value of (possibly
const) T.

Table 64—Assignable requirements
_ __
expression return type post-condition_ ___ __
t = u T& t is equivalent to u_ __ 








5 In Tables 65 and 66, X denotes a container class containing objects of type T, a and b denote values of type
X, u denotes an identifier and r denotes a value of X&.

465

ISO/IEC 14882:2003(E)  ISO/IEC

23.1 Container requirements 23 Containers library

Table 65—Container requirements
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
X::value_type T T is Assignable compile time_ ___
X::reference lvalue of T compile time_ ___
X::const_reference const lvalue of T compile time_ ___
X::iterator iterator type pointing to T compile time any iterator category except

output iterator.
convertible to
X::const_iterator._ ___

X::const_iterator compile time iterator type pointing to
const T

any iterator category except
output iterator._ ___

X::difference_type signed integral type compile time is identical to the difference
type of X::iterator and
X::const_iterator_ ___

X::size_type unsigned integral type compile timesize_type can represent
any non-negative value of
difference_type_ ___

X u; post: u.size() == 0. constant_ ___
X(); X().size() == 0. constant_ ___
X(a); a == X(a). linear_ ___
X u(a); post: u == a. linear
X u = a; Equivalent to: X u; u = a;_ ___
(&a)->˜X(); void linear note: the destructor is applied

to every element of a; all the
memory is deallocated._ ___

a.begin(); iterator; constant
const_iterator

for constant a_ ___
a.end(); iterator; constant

const_iterator

for constant a_ ___
a == b convertible to bool == is an equivalence relation. linear

a.size()==b.size()

&& equal(a.begin(),

a.end(), b.begin())_ ___
a != b convertible to bool Equivalent to: !(a == b) linear_ ___
a.swap(b); void swap(a,b) (Note A)_ ___ 
































































































466

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.1 Container requirements

Table 65—Container requirements (continued)
_ ___

operational assertion/note
expression return type

semantics pre/post-condition
complexity

_ __ ___
r = a X& post: r == a. linear_ ___
a.size() size_type a.end()-a.begin() (Note A)_ ___
a.max_size() size_type (Note A)size() of the largest

possible container._ ___
a.empty() convertible to bool a.size() == 0 constant_ ___
a < b convertible to bool linearlexicographical_compare

(a.begin(),
a.end(),
b.begin(),
b.end())

pre: < is defined for
values of T. < is a
total ordering rela-
tion.

_ ___
a > b convertible to bool b < a linear_ ___
a <= b convertible to bool !(a > b) linear_ ___
a >= b convertible to bool !(a < b) linear_ ___ 








































Notes: the algorithms swap(), equal() and lexicographical_compare() are defined in clause
25. Those entries marked ‘‘(Note A)’’ should have constant complexity.

6 The member function size() returns the number of elements in the container. Its semantics is defined by
the rules of constructors, inserts, and erases.

7 begin() returns an iterator referring to the first element in the container. end() returns an iterator
which is the past-the-end value for the container. If the container is empty, then begin() == end();

8 Copy constructors for all container types defined in this clause copy an allocator argument from their
respective first parameters. All other constructors for these container types take an Allocator& argu-
ment (20.1.5), an allocator whose value type is the same as the container’s value type. A copy of this argu-
ment is used for any memory allocation performed, by these constructors and by all member functions, dur-
ing the lifetime of each container object. In all container types defined in this clause, the member
get_allocator() returns a copy of the Allocator object used to construct the container.

9 If the iterator type of a container belongs to the bidirectional or random access iterator categories (24.1), the
container is called reversible and satisfies the additional requirements in Table 66:

Table 66—Reversible container requirements
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
iterator type pointing to T compile timeX::reverse_

iterator
reverse_iterator <itera-
tor>_ ___

compile timeX::const_
reverse_
iterator

iterator type pointing to const
T

reverse_iterator
<const_iterator>

_ ___
a.rbegin() reverse_iterator(end()) constantreverse_iterator;

const_reverse_iterator
for constant a_ ___

a.rend() reverse_iterator(begin()) constantreverse_iterator;
const_reverse_iterator
for constant a_ ___ 


































467

ISO/IEC 14882:2003(E)  ISO/IEC

23.1 Container requirements 23 Containers library

10 Unless otherwise specified (see 23.2.1.3 and 23.2.4.3) all container types defined in this clause meet the
following additional requirements:

— if an exception is thrown by an insert() function while inserting a single element, that function has
no effects.

— if an exception is thrown by a push_back() or push_front() function, that function has no
effects.

— no erase(), pop_back() or pop_front() function throws an exception.

— no copy constructor or assignment operator of a returned iterator throws an exception.

— no swap() function throws an exception unless that exception is thrown by the copy constructor or
assignment operator of the container’s Compare object (if any; see 23.1.2).

— no swap() function invalidates any references, pointers, or iterators referring to the elements of the
containers being swapped.

11 Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking
a container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

[lib.sequence.reqmts] 23.1.1 Sequences

1 A sequence is a kind of container that organizes a finite set of objects, all of the same type, into a strictly
linear arrangement. The library provides three basic kinds of sequence containers: vector, list, and
deque. It also provides container adaptors that make it easy to construct abstract data types, such as
stacks or queues, out of the basic sequence kinds (or out of other kinds of sequences that the user might
define).

2 vector, list, and deque offer the programmer different complexity trade-offs and should be used
accordingly. vector is the type of sequence that should be used by default. list should be used when
there are frequent insertions and deletions from the middle of the sequence. deque is the data structure of
choice when most insertions and deletions take place at the beginning or at the end of the sequence.

3 In Tables 67 and 68, X denotes a sequence class, a denotes a value of X, i and j denote iterators satisfying
input iterator requirements, [i, j) denotes a valid range, n denotes a value of X::size_type, p
denotes a valid iterator to a, q denotes a valid dereferenceable iterator to a, [q1, q2) denotes a valid
range in a, and t denotes a value of X::value_type.

4 The complexities of the expressions are sequence dependent.

468

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.1.1 Sequences

Table 67—Sequence requirements (in addition to container)
_ ___

assertion/note
expression return type

pre/post-condition_ __ ___
X(n, t) post: size() == n.
X a(n, t); constructs a sequence with n copies of t._ ___
X(i, j) post: size() == distance between i and j.
X a(i, j); constructs a sequence equal to the range [i,j)._ ___
a.insert(p,t) iterator inserts a copy of t before p._ ___
a.insert(p,n,t) void inserts n copies of t before p._ ___
a.insert(p,i,j) void pre: i,j are not iterators into a.

inserts copies of elements in [i,j) before p._ ___
a.erase(q) iterator erases the element pointed to by q._ ___
a.erase(q1,q2) iterator erases the elements in the range [q1,q2)._ ___
a.clear() void erase(begin(), end())

post: size() == 0._ ___ 





































5 iterator and const_iterator types for sequences must be at least of the forward iterator category.

6 The iterator returned from a.insert(p,t) points to the copy of t inserted into a.

7 The iterator returned from a.erase(q) points to the element immediately following q prior to the ele-
ment being erased. If no such element exists, a.end() is returned.

8 The iterator returned by a.erase(q1,q2) points to the element pointed to by q2 prior to any elements
being erased. If no such element exists, a.end() is returned.

9 For every sequence defined in this clause and in clause 21:

— the constructor

template <class InputIterator>
X(InputIterator f, InputIterator l, const Allocator& a = Allocator())

shall have the same effect as:

X(static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l),
a)

if InputIterator is an integral type.

— the member functions in the forms:

template <class InputIterator> // such as insert()
rt fx1(iterator p, InputIterator f, InputIterator l);

template <class InputIterator> // such as append(), assign()
rt fx2(InputIterator f, InputIterator l);

template <class InputIterator> // such as replace()
rt fx3(iterator i1, iterator i2, InputIterator f, InputIterator l);

shall have the same effect, respectively, as:

469

ISO/IEC 14882:2003(E)  ISO/IEC

23.1.1 Sequences 23 Containers library

fx1(p,
static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l));

fx2(static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l));

fx3(i1, i2,
static_cast<typename X::size_type>(f),
static_cast<typename X::value_type>(l));

if InputIterator is an integral type.

10 [Note: This follows directly from the requirements in the Iterator Requirements Table. Integral types can-
not be iterators, so, if n1 and n2 are values of an integral type N, the expression X(n1, n2) cannot pos-
sibly be interpreted as construction from a range of iterators. It must be taken to mean the first constructor
in the Iterator Requirements Table, not the second one. If there is no conversion from N to
X::value_type, then this is not a valid expression at all.

11 One way that sequence implementors can satisfy this requirement is to specialize the member template for
every integral type. Less cumbersome implementation techniques also exist. —end note] [Example:

list<int> x;
...
vector<int> y(x.begin(), x.end()); // Construct a vector

// from a range of iterators.
vector<int> z(100, 1); // Construct a vector of 100

// elements, all initialized
// to 1. The arguments are
// not interpreted as iterators.

z.insert(z.begin(), x.begin(), x.end());// Insert a range of
// iterators.

z.insert(z.begin(), 20, 0); // Insert 20 copies of the
// number 0.

—end example]

12 Table 68 lists sequence operations that are provided for some types of sequential containers but not others.
An implementation shall provide these operations for all container types shown in the ‘‘container’’ column,
and shall implement them so as to take amortized constant time.

470

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.1.1 Sequences

Table 68—Optional sequence operations
_ __

operational
expression return type

semantics
container

_ ___ __
a.front() *a.begin() vector, list, dequereference;

const_reference
for constant a_ __

a.back() *--a.end() vector, list, dequereference;
const_reference
for constant a_ __

a.push_front(x) void a.insert(a.begin(),x) list, deque_ __
a.push_back(x) void a.insert(a.end(),x) vector, list, deque_ __
a.pop_front() void a.erase(a.begin()) list, deque_ __
a.pop_back() void a.erase(--a.end()) vector, list, deque_ __
a[n] *(a.begin() + n) vector, dequereference;

const_reference
for constant a_ __

a.at(n) *(a.begin() + n) vector, dequereference;
const_reference
for constant a_ __ 
















































13 The member function at() provides bounds-checked access to container elements. at() throws
out_of_range if n >= a.size().

[lib.associative.reqmts] 23.1.2 Associative containers

1 Associative containers provide an ability for fast retrieval of data based on keys. The library provides four
basic kinds of associative containers: set, multiset, map and multimap.

2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict
weak ordering (25.3) on elements of Key. In addition, map and multimap associate an arbitrary type T
with the Key. The object of type Compare is called the comparison object of a container. This compari-
son object may be a pointer to function or an object of a type with an appropriate function call operator.

3 The phrase ‘‘equivalence of keys’’ means the equivalence relation imposed by the comparison and not the
operator== on keys. That is, two keys k1 and k2 are considered to be equivalent if for the comparison
object comp, comp(k1, k2) == false && comp(k2, k1) == false.

4 An associative container supports unique keys if it may contain at most one element for each key. Other-
wise, it supports equivalent keys. The set and map classes support unique keys; the multiset and
multimap classes support equivalent keys.

5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to
pair<const Key, T>.

6 iterator of an associative container is of the bidirectional iterator category.

7 In Table 69, X is an associative container class, a is a value of X, a_uniq is a value of X when X supports
unique keys, and a_eq is a value of X when X supports multiple keys, i and j satisfy input iterator
requirements and refer to elements of value_type, [i, j) is a valid range, p is a valid iterator to a, q
is a valid dereferenceable iterator to a, [q1, q2) is a valid range in a, t is a value of X::value_type,
k is a value of X::key_type and c is a value of type X::key_compare.

471

ISO/IEC 14882:2003(E)  ISO/IEC

23.1.2 Associative containers 23 Containers library

Table 69—Associative container requirements (in addition to container)
_ ___

assertion/note
expression return type

pre/post-condition
complexity

_ __ ___
X::key_type Key Key is Assignable compile time_ ___
X::key_compare Compare defaults to less<key_type> compile time_ ___

compile timeX::
value_compare

a binary predi-
cate type

is the same as key_compare for set
and multiset; is an ordering relation
on pairs induced by the first component
(i.e. Key) for map and multimap._ ___

X(c) constructs an empty container; constant
X a(c); uses c as a comparison object_ ___
X() constructs an empty container; constant
X a; uses Compare() as a comparison object_ ___
X(i,j,c);
X a(i,j,c);

constructs an empty container and inserts
elements from the range [i, j) into it;
uses c as a comparison object

NlogN in general (N is
the distance from i to
j);
linear if [i, j) is
sorted with
value_comp()_ ___

X(i, j) same as above same as above, but uses Compare() as
a comparison object.

X a(i, j);_ ___
a.key_comp() X::key_compare constant returns the comparison object out of

which a was constructed._ ___
a.value_comp() constantX::

value_compare
returns an object of value_compare
constructed out of the comparison object_ ___

logarithmica_uniq.
insert(t)

pair<iterator,
bool>

inserts t if and only if there is no element
in the container with key equivalent to
the key of t. The bool component of
the returned pair indicates whether the
insertion takes place and the iterator
component of the pair points to the ele-
ment with key equivalent to the key of t._ ___

a_eq.insert(t) iterator logarithmic inserts t and returns the iterator pointing
to the newly inserted element._ ___ 




















































































472

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.1.2 Associative containers

Table 69—Associative container requirements
_ __

assertion/note
expression return type

pre/post-condition
complexity

_ ___ __
a.insert(p,t) iterator inserts t if and only if there is no

element with key equivalent to the
key of t in containers with unique
keys; always inserts t in contain-
ers with equivalent keys. always
returns the iterator pointing to the
element with key equivalent to the
key of t. iterator p is a hint point-
ing to where the insert should start
to search.

logarithmic in general,
but amortized constant
if t is inserted right
after p.

_ __
a.insert(i,j) void pre: i,j are not iterators into a.

inserts each element from the
range [i, j) if and only if there
is no element with key equivalent
to the key of that element in con-
tainers with unique keys; always
inserts that element in containers
with equivalent keys.

Nlog(size()+N) (N
is the distance from i
to j) in general;
linear if [i, j) is
sorted according to
value_comp()

_ __
a.erase(k) size_type erases all the elements in the con-

tainer with key equivalent to k.
returns the number of erased ele-
ments.

log(size()) +
count(k)

_ __
a.erase(q) void erases the element pointed to by q. amortized constant_ __
a.erase(q1,q2) void erases all the elements in the range

[q1, q2).
log(size())+ N
where N is the distance
from q1 to q2._ __

a.clear() void erase(a.begin(),
a.end())
post: size == 0

Linear in size().

_ __
a.find(k) logarithmiciterator;

const_iterator
for constant a

returns an iterator pointing to an
element with the key equivalent to
k, or a.end() if such an element
is not found._ __

a.count(k) size_type returns the number of elements
with key equivalent to k

log(size()) +
count(k)_ __

a.lower_bound(k) logarithmiciterator;
const_iterator
for constant a

returns an iterator pointing to the
first element with key not less
than k._ __

a.upper_bound(k) logarithmiciterator;
const_iterator
for constant a

returns an iterator pointing to the
first element with key greater than
k._ __

a.equal_range(k) logarithmicpair<iterator,
iterator>; pair<
const_iterator,
const_iterator>
for constant a

equivalent to make_pair(
a.lower_bound(k),
a.upper_bound(k)).

_ __ 

















































































































8 The insert members shall not affect the validity of iterators and references to the container, and the erase
members shall invalidate only iterators and references to the erased elements.

473

ISO/IEC 14882:2003(E)  ISO/IEC

23.1.2 Associative containers 23 Containers library

9 The fundamental property of iterators of associative containers is that they iterate through the containers in
the non-descending order of keys where non-descending is defined by the comparison that was used to con-
struct them. For any two dereferenceable iterators i and j such that distance from i to j is positive,

value_comp(*j, *i) == false

10 For associative containers with unique keys the stronger condition holds,

value_comp(*i, *j) != false.

11 When an associative container is constructed by passing a comparison object the container shall not store a
pointer or reference to the passed object, even if that object is passed by reference. When an associative
container is copied, either through a copy constructor or an assignment operator, the target container shall
then use the comparison object from the container being copied, as if that comparison object had been
passed to the target container in its constructor.

[lib.sequences] 23.2 Sequences

1 Headers <deque>, <list>, <queue>, <stack>, and <vector>.

Header <deque> synopsis

namespace std {
template <class T, class Allocator = allocator<T> > class deque;
template <class T, class Allocator>
bool operator==

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator<

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator!=

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator>

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator>=

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator<=

(const deque<T,Allocator>& x, const deque<T,Allocator>& y);
template <class T, class Allocator>
void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);

}

474

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2 Sequences

Header <list> synopsis

namespace std {
template <class T, class Allocator = allocator<T> > class list;
template <class T, class Allocator>
bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
void swap(list<T,Allocator>& x, list<T,Allocator>& y);

}

Header <queue> synopsis

namespace std {
template <class T, class Container = deque<T> > class queue;
template <class T, class Container>
bool operator==(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator< (const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator!=(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator> (const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator>=(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator<=(const queue<T, Container>& x,

const queue<T, Container>& y);

template <class T, class Container = vector<T>,
class Compare = less<typename Container::value_type> >

class priority_queue;
}

475

ISO/IEC 14882:2003(E)  ISO/IEC

23.2 Sequences 23 Containers library

Header <stack> synopsis

namespace std {
template <class T, class Container = deque<T> > class stack;
template <class T, class Container>
bool operator==(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator< (const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator!=(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator> (const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator>=(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator<=(const stack<T, Container>& x,

const stack<T, Container>& y);
}

Header <vector> synopsis

namespace std {
template <class T, class Allocator = allocator<T> > class vector;
template <class T, class Allocator>
bool operator==(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator< (const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator!=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator> (const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator>=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator<=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);

476

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2 Sequences

template <class Allocator> class vector<bool,Allocator>;
template <class Allocator>

bool operator==(const vector<bool,Allocator>& x,
const vector<bool,Allocator>& y);

template <class Allocator>
bool operator< (const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator!=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator> (const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator>=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator<=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y);

}

[lib.deque] 23.2.1 Class template deque

1 A deque is a kind of sequence that, like a vector (23.2.4), supports random access iterators. In addition,
it supports constant time insert and erase operations at the beginning or the end; insert and erase in the mid-
dle take linear time. That is, a deque is especially optimized for pushing and popping elements at the
beginning and end. As with vectors, storage management is handled automatically.

2 A deque satisfies all of the requirements of a container and of a reversible container (given in tables in
23.1) and of a sequence, including the optional sequence requirements (23.1.1). Descriptions are provided
here only for operations on deque that are not described in one of these tables or for operations where
there is additional semantic information.

namespace std {
template <class T, class Allocator = allocator<T> >
class deque {
public:
// types:
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type; // See 23.1
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

477

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.1 Class template deque 23 Containers library

// 23.2.1.1 construct/copy/destroy:
explicit deque(const Allocator& = Allocator());
explicit deque(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

deque(InputIterator first, InputIterator last,
const Allocator& = Allocator());

deque(const deque<T,Allocator>& x);
˜deque();
deque<T,Allocator>& operator=(const deque<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.2.1.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
bool empty() const;

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
reference at(size_type n);
const_reference at(size_type n) const;
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.1.3 modifiers:
void push_front(const T& x);
void push_back(const T& x);

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert (iterator position,
InputIterator first, InputIterator last);

void pop_front();
void pop_back();

iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(deque<T,Allocator>&);
void clear();

};

478

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.1 Class template deque

template <class T, class Allocator>
bool operator==(const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator< (const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator!=(const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator> (const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator>=(const deque<T,Allocator>& x,

const deque<T,Allocator>& y);
template <class T, class Allocator>
bool operator<=(const deque<T,Allocator>& x,

const deque<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
}

[lib.deque.cons] 23.2.1.1 deque constructors, copy, and assignment

explicit deque(const Allocator& = Allocator());

1 Effects: Constructs an empty deque, using the specified allocator.
2 Complexity: Constant.

explicit deque(size_type n, const T& value = T(),
const Allocator& = Allocator());

3 Effects: Constructs a deque with n copies of value, using the specified allocator.
4 Complexity: Linear in n.

template <class InputIterator>
deque(InputIterator first, InputIterator last,

const Allocator& = Allocator());

5 Effects: Constructs a deque equal to the the range [first, last), using the specified allocator.
6 Complexity: Makes distance(first, last) calls to the copy constructor of T.

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

7 Effects:

erase(begin(), end());
insert(begin(), first, last);

246) This footnote is intentionally empty.

479

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.1.1 deque constructors, copy, and assignment 23 Containers library

void assign(size_type n, const T& t);

8 Effects:

erase(begin(), end());
insert(begin(), n, t);

[lib.deque.capacity] 23.2.1.2 deque capacity

void resize(size_type sz, T c = T());

1 Effects:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size())
erase(begin()+sz, end());

else
; // do nothing

[lib.deque.modifiers] 23.2.1.3 deque modifiers

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position,
InputIterator first, InputIterator last);

1 Effects: An insert in the middle of the deque invalidates all the iterators and references to elements of the
deque. An insert at either end of the deque invalidates all the iterators to the deque, but has no effect on
the validity of references to elements of the deque.

2 Notes: If an exception is thrown other than by the copy constructor or assignment operator of T there are
no effects.

3 Complexity: In the worst case, inserting a single element into a deque takes time linear in the minimum of
the distance from the insertion point to the beginning of the deque and the distance from the insertion
point to the end of the deque. Inserting a single element either at the beginning or end of a deque
always takes constant time and causes a single call to the copy constructor of T.

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

4 Effects: An erase in the middle of the deque invalidates all the iterators and references to elements of the
deque. An erase at either end of the deque invalidates only the iterators and the references to the erased
elements.

5 Complexity: The number of calls to the destructor is the same as the number of elements erased, but the
number of the calls to the assignment operator is at most equal to the minimum of the number of ele-
ments before the erased elements and the number of elements after the erased elements.

6 Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator of T.

[lib.deque.special] 23.2.1.4 deque specialized algorithms

template <class T, class Allocator>
void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);

1 Effects:

x.swap(y);

480

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.2 Class template list

[lib.list] 23.2.2 Class template list

1 A list is a kind of sequence that supports bidirectional iterators and allows constant time insert and erase
operations anywhere within the sequence, with storage management handled automatically. Unlike vectors
(23.2.4) and deques (23.2.1), fast random access to list elements is not supported, but many algorithms only
need sequential access anyway.

2 A list satisfies all of the requirements of a container and of a reversible container (given in two tables in
23.1) and of a sequence, including most of the the optional sequence requirements (23.1.1). The exceptions
are the operator[] and at member functions, which are not provided.247) Descriptions are provided
here only for operations on list that are not described in one of these tables or for operations where there
is additional semantic information.

namespace std {
template <class T, class Allocator = allocator<T> >
class list {
public:
// types:
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.2.2.1 construct/copy/destroy:
explicit list(const Allocator& = Allocator());
explicit list(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

list(InputIterator first, InputIterator last,
const Allocator& = Allocator());

list(const list<T,Allocator>& x);
˜list();
list<T,Allocator>& operator=(const list<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

247) These member functions are only provided by containers whose iterators are random access iterators.

481

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.2 Class template list 23 Containers library

// 23.2.2.2 capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());

// element access:
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// 23.2.2.3 modifiers:
void push_front(const T& x);
void pop_front();
void push_back(const T& x);
void pop_back();

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position, InputIterator first,
InputIterator last);

iterator erase(iterator position);
iterator erase(iterator position, iterator last);
void swap(list<T,Allocator>&);
void clear();

// 23.2.2.4 list operations:
void splice(iterator position, list<T,Allocator>& x);
void splice(iterator position, list<T,Allocator>& x, iterator i);
void splice(iterator position, list<T,Allocator>& x, iterator first,

iterator last);

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

void unique();
template <class BinaryPredicate>

void unique(BinaryPredicate binary_pred);

void merge(list<T,Allocator>& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);

void sort();
template <class Compare> void sort(Compare comp);

void reverse();
};

482

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.2 Class template list

template <class T, class Allocator>
bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y);

template <class T, class Allocator>
bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(list<T,Allocator>& x, list<T,Allocator>& y);
}

[lib.list.cons] 23.2.2.1 list constructors, copy, and assignment

explicit list(const Allocator& = Allocator());

1 Effects: Constructs an empty list, using the specified allocator.
2 Complexity: Constant.

explicit list(size_type n, const T& value = T(),
const Allocator& = Allocator());

3 Effects: Constructs a list with n copies of value, using the specified allocator.
4 Complexity: Linear in n.

template <class InputIterator>
list(InputIterator first, InputIterator last,

const Allocator& = Allocator());

5 Effects: Constructs a list equal to the range [first, last).
6 Complexity: Linear in first - last.

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

7 Effects:

erase(begin(), end());
insert(begin(), first, last);

void assign(size_type n, const T& t);

8 Effects:

erase(begin(), end());
insert(begin(), n, t);

483

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.2.1 list constructors, copy, and assignment 23 Containers library

[lib.list.capacity] 23.2.2.2 list capacity

void resize(size_type sz, T c = T());

1 Effects:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size()) {
iterator i = begin();
advance(i, sz);
erase(i, end());

}
else

; // do nothing

[lib.list.modifiers] 23.2.2.3 list modifiers

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position, InputIterator first,
InputIterator last);

void push_front(const T& x);
void push_back(const T& x);

1 Notes: Does not affect the validity of iterators and references. If an exception is thrown there are no
effects.

2 Complexity: Insertion of a single element into a list takes constant time and exactly one call to the copy
constructor of T. Insertion of multiple elements into a list is linear in the number of elements inserted,
and the number of calls to the copy constructor of T is exactly equal to the number of elements inserted.

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

void pop_front();
void pop_back();
void clear();

3 Effects: Invalidates only the iterators and references to the erased elements.
4 Throws: Nothing.
5 Complexity: Erasing a single element is a constant time operation with a single call to the destructor of T.

Erasing a range in a list is linear time in the size of the range and the number of calls to the destructor of
type T is exactly equal to the size of the range.

[lib.list.ops] 23.2.2.4 list operations

1 Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifi-
cally for them.

2 list provides three splice operations that destructively move elements from one list to another.

484

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.2.4 list operations

void splice(iterator position, list<T,Allocator>& x);

3 Requires: &x != this.
4 Effects: Inserts the contents of x before position and x becomes empty. Invalidates all iterators and

references to the list x.
5 Throws: Nothing
6 Complexity: Constant time.

void splice(iterator position, list<T,Allocator>& x, iterator i);

7 Effects: Inserts an element pointed to by i from list x before position and removes the element from x.
The result is unchanged if position == i or position == ++i. Invalidates only the iterators
and references to the spliced element.

8 Throws: Nothing
9 Requires: i is a valid dereferenceable iterator of x.
10 Complexity: Constant time.

void splice(iterator position, list<T,Allocator>& x, iterator first,
iterator last);

11 Effects: Inserts elements in the range [first, last) before position and removes the elements
from x.

12 Requires: [first, last) is a valid range in x. The result is undefined if position is an iterator in
the range [first, last). Invalidates only the iterators and references to the spliced elements.

13 Throws: Nothing
14 Complexity: Constant time if &x == this; otherwise, linear time.

void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);

15 Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions
hold: *i == value, pred(*i) != false.

16 Throws: Nothing unless an exception is thrown by *i == value or pred(*i) != false.
17 Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in

the original list.
18 Complexity: Exactly size() applications of the corresponding predicate.

void unique();
template <class BinaryPredicate> void unique(BinaryPredicate binary_pred);

19 Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by
the iterator i in the range [first + 1, last) for which *i == *(i-1) (for the version of
unique with no arguments) or pred(*i, *(i - 1)) (for the version of unique with a predicate
argument) holds.

20 Throws: Nothing unless an exception in thrown by *i == *(i-1) or pred(*i, *(i - 1))
21 Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applica-

tions of the corresponding predicate, otherwise no applications of the predicate.

void merge(list<T,Allocator>& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);

22 Requires: comp defines a strict weak ordering (25.3), and the list and the argument list are both sorted
according to this ordering.

23 Effects: Merges the argument list into the list.
24 Notes: Stable: for equivalent elements in the two lists, the elements from the list always precede the ele-

ments from the argument list. x is empty after the merge.

485

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.2.4 list operations 23 Containers library

25 Complexity: At most size() + x.size() - 1 comparisons. If an exception is thrown other than
by a comparison there are no effects.

void reverse();

26 Effects: Reverses the order of the elements in the list.
27 Throws: Nothing.
28 Complexity: Linear time.

void sort();
template <class Compare> void sort(Compare comp);

29 Requires: operator< (for the first version) or comp (for the second version) defines a strict weak
ordering (25.3).

30 Effects: Sorts the list according to the operator< or a Compare function object.
31 Notes: Stable: the relative order of the equivalent elements is preserved. If an exception is thrown the

order of the elements in the list is indeterminate.
32 Complexity: Approximately NlogN comparisons, where N == size().

[lib.list.special] 23.2.2.5 list specialized algorithms

template <class T, class Allocator>
void swap(list<T,Allocator>& x, list<T,Allocator>& y);

1 Effects:

x.swap(y);

[lib.container.adaptors] 23.2.3 Container adaptors

1 The container adaptors each take a Container template parameter, and each constructor takes a Container
reference argument. This container is copied into the Container member of each adaptor.

[lib.queue] 23.2.3.1 Class template queue

1 Any sequence supporting operations front(), back(), push_back() and pop_front() can be
used to instantiate queue. In particular, list (23.2.2) and deque (23.2.1) can be used.

namespace std {
template <class T, class Container = deque<T> >
class queue {
public:
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

public:
explicit queue(const Container& = Container());

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& front() { return c.front(); }
const value_type& front() const { return c.front(); }
value_type& back() { return c.back(); }
const value_type& back() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_front(); }

};

486

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.3.1 Class template queue

template <class T, class Container>
bool operator==(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator< (const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator!=(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator> (const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator>=(const queue<T, Container>& x,

const queue<T, Container>& y);
template <class T, class Container>
bool operator<=(const queue<T, Container>& x,

const queue<T, Container>& y);
}

operator==

2 Returns: x.c == y.c.

operator<

3 Returns: x.c < y.c.

[lib.priority.queue] 23.2.3.2 Class template priority_queue

1 Any sequence with random access iterator and supporting operations front(), push_back() and
pop_back() can be used to instantiate priority_queue. In particular, vector (23.2.4) and deque
(23.2.1) can be used. Instantiating priority_queue also involves supplying a function or function
object for making priority comparisons; the library assumes that the function or function object defines a
strict weak ordering (25.3).

namespace std {
template <class T, class Container = vector<T>,

class Compare = less<typename Container::value_type> >
class priority_queue {
public:

typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;
Compare comp;

public:
explicit priority_queue(const Compare& x = Compare(),

const Container& = Container());
template <class InputIterator>

priority_queue(InputIterator first, InputIterator last,
const Compare& x = Compare(),
const Container& = Container());

487

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.3.2 Class template priority_queue 23 Containers library

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
const value_type& top() const { return c.front(); }
void push(const value_type& x);
void pop();

};
// no equality is provided

}

[lib.priqueue.cons] 23.2.3.2.1 priority_queue constructors

priority_queue(const Compare& x = Compare(),
const Container& y = Container());

1 Requires: x defines a strict weak ordering (25.3).
2 Effects: Initializes comp with x and c with y; calls make_heap(c.begin(), c.end(), comp).

template <class InputIterator>
priority_queue(InputIterator first, InputIterator last,

const Compare& x = Compare(),
const Container& y = Container());

3 Requires: x defines a strict weak ordering (25.3).
4 Effects: Initializes c with y and comp with x; calls c.insert(c.end(), first, last); and

finally calls make_heap(c.begin(), c.end(), comp).

[lib.priqueue.members] 23.2.3.2.2 priority_queue members

void push(const value_type& x);

1 Effects:

c.push_back(x);
push_heap(c.begin(), c.end(), comp);

void pop();

2 Effects:

pop_heap(c.begin(), c.end(), comp);
c.pop_back();

[lib.stack] 23.2.3.3 Class template stack

1 Any sequence supporting operations back(), push_back() and pop_back() can be used to instanti-
ate stack. In particular, vector (23.2.4), list (23.2.2) and deque (23.2.1) can be used.

namespace std {
template <class T, class Container = deque<T> >
class stack {
public:
typedef typename Container::value_type value_type;
typedef typename Container::size_type size_type;
typedef Container container_type;

protected:
Container c;

488

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.3.3 Class template stack

public:
explicit stack(const Container& = Container());

bool empty() const { return c.empty(); }
size_type size() const { return c.size(); }
value_type& top() { return c.back(); }
const value_type& top() const { return c.back(); }
void push(const value_type& x) { c.push_back(x); }
void pop() { c.pop_back(); }

};

template <class T, class Container>
bool operator==(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator< (const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator!=(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator> (const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator>=(const stack<T, Container>& x,

const stack<T, Container>& y);
template <class T, class Container>
bool operator<=(const stack<T, Container>& x,

const stack<T, Container>& y);
}

[lib.vector] 23.2.4 Class template vector

1 A vector is a kind of sequence that supports random access iterators. In addition, it supports (amortized)
constant time insert and erase operations at the end; insert and erase in the middle take linear time. Storage
management is handled automatically, though hints can be given to improve efficiency. The elements of a
vector are stored contiguously, meaning that if v is a vector<T, Allocator> where T is some type
other than bool, then it obeys the identity &v[n] == &v[0] + n for all 0 <= n < v.size().

2 A vector satisfies all of the requirements of a container and of a reversible container (given in two tables
in 23.1) and of a sequence, including most of the optional sequence requirements (23.1.1). The exceptions
are the push_front and pop_front member functions, which are not provided. Descriptions are pro-
vided here only for operations on vector that are not described in one of these tables or for operations
where there is additional semantic information.

489

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.4 Class template vector 23 Containers library

namespace std {
template <class T, class Allocator = allocator<T> >
class vector {
public:

// types:
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef T value_type;
typedef Allocator allocator_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.2.4.1 construct/copy/destroy:
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<T,Allocator>& x);
˜vector();
vector<T,Allocator>& operator=(const vector<T,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& u);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// 23.2.4.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
size_type capacity() const;
bool empty() const;
void reserve(size_type n);

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

490

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.4 Class template vector

// 23.2.4.3 modifiers:
void push_back(const T& x);
void pop_back();
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position,
InputIterator first, InputIterator last);

iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(vector<T,Allocator>&);
void clear();

};

template <class T, class Allocator>
bool operator==(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator< (const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator!=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator> (const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator>=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);
template <class T, class Allocator>
bool operator<=(const vector<T,Allocator>& x,

const vector<T,Allocator>& y);

// specialized algorithms:
template <class T, class Allocator>

void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);
}

[lib.vector.cons] 23.2.4.1 vector constructors, copy, and assignment

vector(const Allocator& = Allocator());
explicit vector(size_type n, const T& value = T(),

const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<T,Allocator>& x);

1 Complexity: The constructor template <class InputIterator> vector(InputIterator
first, InputIterator last) makes only N calls to the copy constructor of T (where N is the
distance between first and last) and no reallocations if iterators first and last are of forward, bidi-
rectional, or random access categories. It makes order N calls to the copy constructor of T and order
logN reallocations if they are just input iterators.

491

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.4.1 vector constructors, copy, and assignment 23 Containers library

template <class InputIterator>
void assign(InputIterator first, InputIterator last);

2 Effects:

erase(begin(), end());
insert(begin(), first, last);

void assign(size_type n, const T& t);

3 Effects:

erase(begin(), end());
insert(begin(), n, t);

[lib.vector.capacity] 23.2.4.2 vector capacity

size_type capacity() const;

1 Returns: The total number of elements that the vector can hold without requiring reallocation.

void reserve(size_type n);

2 Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage
allocation accordingly. After reserve(), capacity() is greater or equal to the argument of
reserve if reallocation happens; and equal to the previous value of capacity() otherwise. Reallo-
cation happens at this point if and only if the current capacity is less than the argument of reserve().

3 Complexity: It does not change the size of the sequence and takes at most linear time in the size of the
sequence.

4 Throws: length_error if n > max_size().248)

5 Notes: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the
sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to
reserve() until the time when an insertion would make the size of the vector greater than the size
specified in the most recent call to reserve().

void resize(size_type sz, T c = T());

6 Effects:

if (sz > size())
insert(end(), sz-size(), c);

else if (sz < size())
erase(begin()+sz, end());

else
; // do nothing

[lib.vector.modifiers] 23.2.4.3 vector modifiers

iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>

void insert(iterator position, InputIterator first, InputIterator last);

1 Notes: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all
the iterators and references before the insertion point remain valid. If an exception is thrown other than
by the copy constructor or assignment operator of T there are no effects.

248) reserve() uses Allocator::allocate() which may throw an appropriate exception.

492

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.4.3 vector modifiers

2 Complexity: If first and last are forward iterators, bidirectional iterators, or random access iterators,
the complexity is linear in the number of elements in the range [first, last) plus the distance to
the end of the vector. If they are input iterators, the complexity is proportional to the number of ele-
ments in the range [first, last) times the distance to the end of the vector.

iterator erase(iterator position);
iterator erase(iterator first, iterator last);

3 Effects: Invalidates all the iterators and references after the point of the erase.
4 Complexity: The destructor of T is called the number of times equal to the number of the elements erased,

but the assignment operator of T is called the number of times equal to the number of elements in the
vector after the erased elements.

5 Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator of T.

[lib.vector.special] 23.2.4.4 vector specialized algorithms

template <class T, class Allocator>
void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);

1 Effects:

x.swap(y);

[lib.vector.bool] 23.2.5 Class vector<bool>

1 To optimize space allocation, a specialization of vector for bool elements is provided:

namespace std {
template <class Allocator> class vector<bool, Allocator> {
public:
// types:
typedef bool const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef bool value_type;
typedef Allocator allocator_type;
typedef implementation defined pointer;
typedef implementation defined const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// bit reference:
class reference {
friend class vector;
reference();
public:
˜reference();
operator bool() const;
reference& operator=(const bool x);
reference& operator=(const reference& x);
void flip(); // flips the bit

};

493

ISO/IEC 14882:2003(E)  ISO/IEC

23.2.5 Class vector<bool> 23 Containers library

// construct/copy/destroy:
explicit vector(const Allocator& = Allocator());
explicit vector(size_type n, const bool& value = bool(),

const Allocator& = Allocator());
template <class InputIterator>

vector(InputIterator first, InputIterator last,
const Allocator& = Allocator());

vector(const vector<bool,Allocator>& x);
˜vector();
vector<bool,Allocator>& operator=(const vector<bool,Allocator>& x);
template <class InputIterator>

void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, bool c = false);
size_type capacity() const;
bool empty() const;
void reserve(size_type n);

// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;

// modifiers:
void push_back(const bool& x);
void pop_back();
iterator insert(iterator position, const bool& x);
void insert (iterator position, size_type n, const bool& x);
template <class InputIterator>

void insert(iterator position,
InputIterator first, InputIterator last);

iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void swap(vector<bool,Allocator>&);
static void swap(reference x, reference y);
void flip(); // flips all bits
void clear();

};

494

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.2.5 Class vector<bool>

template <class Allocator>
bool operator==(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator< (const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator!=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator> (const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator>=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);
template <class Allocator>
bool operator<=(const vector<bool,Allocator>& x,

const vector<bool,Allocator>& y);

// specialized algorithms:
template <class Allocator>

void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y);
}

2 reference is a class that simulates the behavior of references of a single bit in vector<bool>.

[lib.associative] 23.3 Associative containers

1 Headers <map> and <set>:

Header <map> synopsis

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class map;

template <class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator< (const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator!=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator> (const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator>=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator<=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
void swap(map<Key,T,Compare,Allocator>& x,

map<Key,T,Compare,Allocator>& y);

495

ISO/IEC 14882:2003(E)  ISO/IEC

23.3 Associative containers 23 Containers library

template <class Key, class T, class Compare = less<Key>,
class Allocator = allocator<pair<const Key, T> > >

class multimap;
template <class Key, class T, class Compare, class Allocator>

bool operator==(const multimap<Key,T,Compare,Allocator>& x,
const multimap<Key,T,Compare,Allocator>& y);

template <class Key, class T, class Compare, class Allocator>
bool operator< (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator!=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator> (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator>=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator<=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
void swap(multimap<Key,T,Compare,Allocator>& x,

multimap<Key,T,Compare,Allocator>& y);
}

Header <set> synopsis

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class set;

template <class Key, class Compare, class Allocator>
bool operator==(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator< (const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator!=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator> (const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator>=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator<=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>& x,

set<Key,Compare,Allocator>& y);

496

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3 Associative containers

template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class multiset;
template <class Key, class Compare, class Allocator>

bool operator==(const multiset<Key,Compare,Allocator>& x,
const multiset<Key,Compare,Allocator>& y);

template <class Key, class Compare, class Allocator>
bool operator< (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator!=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator> (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator>=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator<=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
void swap(multiset<Key,Compare,Allocator>& x,

multiset<Key,Compare,Allocator>& y);
}

[lib.map] 23.3.1 Class template map

1 A map is a kind of associative container that supports unique keys (contains at most one of each key value)
and provides for fast retrieval of values of another type T based on the keys. The map class supports bidi-
rectional iterators.

2 A map satisfies all of the requirements of a container and of a reversible container (23.1) and of an associa-
tive container (23.1.2). A map also provides most operations described in (23.1.2) for unique keys. This
means that a map supports the a_uniq operations in (23.1.2) but not the a_eq operations. For a
map<Key,T> the key_type is Key and the value_type is pair<const Key,T>. Descriptions
are provided here only for operations on map that are not described in one of those tables or for operations
where there is additional semantic information.

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class map {
public:

// types:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

497

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.1 Class template map 23 Containers library

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class map;
protected:

Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// 23.3.1.1 construct/copy/destroy:
explicit map(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

map(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

map(const map<Key,T,Compare,Allocator>& x);
˜map();
map<Key,T,Compare,Allocator>&

operator=(const map<Key,T,Compare,Allocator>& x);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// 23.3.1.2 element access:
T& operator[](const key_type& x);

// modifiers:
pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(map<Key,T,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

498

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.1 Class template map

// 23.3.1.3 map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator>
equal_range(const key_type& x);

pair<const_iterator,const_iterator>
equal_range(const key_type& x) const;

};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator< (const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator!=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator> (const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator>=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator<=(const map<Key,T,Compare,Allocator>& x,

const map<Key,T,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>

void swap(map<Key,T,Compare,Allocator>& x,
map<Key,T,Compare,Allocator>& y);

}

[lib.map.cons] 23.3.1.1 map constructors, copy, and assignment

explicit map(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty map using the specified comparison object and allocator.
2 Complexity: Constant.

template <class InputIterator>
map(InputIterator first, InputIterator last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty map using the specified comparison object and allocator, and inserts ele-
ments from the range [first, last).

4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N
log N, where N is last - first.

499

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.1.2 map element access 23 Containers library

[lib.map.access] 23.3.1.2 map element access

T& operator[](const key_type& x);

1 Returns: (*((insert(make_pair(x, T()))).first)).second.

[lib.map.ops] 23.3.1.3 map operations

iterator find(const key_type& x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type &x) const;

pair<iterator, iterator>
equal_range(const_key_type &x);

pair<const_iterator, const_iterator>
equal_range(const key_type& x) const;

1 The find, lower_bound, upper_bound and equal_range member functions each have two ver-
sions, one const and the other non-const. In each case the behavior of the two functions is identical except
that the const version returns a const_iterator and the non-const version an iterator (23.1.2).

[lib.map.special] 23.3.1.4 map specialized algorithms

template <class Key, class T, class Compare, class Allocator>
void swap(map<Key,T,Compare,Allocator>& x,

map<Key,T,Compare,Allocator>& y);

1 Effects:

x.swap(y);

[lib.multimap] 23.3.2 Class template multimap

1 A multimap is a kind of associative container that supports equivalent keys (possibly containing multiple
copies of the same key value) and provides for fast retrieval of values of another type T based on the keys.
The multimap class supports bidirectional iterators.

2 A multimap satisfies all of the requirements of a container and of a reversible container (23.1) and of an
associative container (23.1.2). A multimap also provides most operations described in (23.1.2) for equal
keys. This means that a multimap supports the a_eq operations in (23.1.2) but not the a_uniq opera-
tions. For a multimap<Key,T> the key_type is Key and the value_type is pair<const
Key,T>. Descriptions are provided here only for operations on multimap that are not described in one
of those tables or for operations where there is additional semantic information.

500

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.2 Class template multimap

namespace std {
template <class Key, class T, class Compare = less<Key>,

class Allocator = allocator<pair<const Key, T> > >
class multimap {
public:

// types:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key,T> value_type;
typedef Compare key_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

class value_compare
: public binary_function<value_type,value_type,bool> {

friend class multimap;
protected:

Compare comp;
value_compare(Compare c) : comp(c) {}

public:
bool operator()(const value_type& x, const value_type& y) const {

return comp(x.first, y.first);
}

};

// construct/copy/destroy:
explicit multimap(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

multimap(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());

multimap(const multimap<Key,T,Compare,Allocator>& x);
˜multimap();
multimap<Key,T,Compare,Allocator>&

operator=(const multimap<Key,T,Compare,Allocator>& x);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

501

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.2 Class template multimap 23 Containers library

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
iterator insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(multimap<Key,T,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// map operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;

pair<iterator,iterator>
equal_range(const key_type& x);

pair<const_iterator,const_iterator>
equal_range(const key_type& x) const;

};

template <class Key, class T, class Compare, class Allocator>
bool operator==(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator< (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator!=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator> (const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator>=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
bool operator<=(const multimap<Key,T,Compare,Allocator>& x,

const multimap<Key,T,Compare,Allocator>& y);

502

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.2 Class template multimap

// specialized algorithms:
template <class Key, class T, class Compare, class Allocator>

void swap(multimap<Key,T,Compare,Allocator>& x,
multimap<Key,T,Compare,Allocator>& y);

}

[lib.multimap.cons] 23.3.2.1 multimap constructors

explicit multimap(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty multimap using the specified comparison object and allocator.
2 Complexity: Constant.

template <class InputIterator>
multimap(InputIterator first, InputIterator last,

const Compare& comp = Compare(),
const Allocator& = Allocator()0;

3 Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts
elements from the range [first, last).

4 Complexity: Linear in N if the range [first, last). is already sorted using comp and otherwise N
log N, where N is last - first.

[lib.multimap.ops] 23.3.2.2 multimap operations

iterator find(const key_type &x);
const_iterator find(const key_type& x) const;

iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;

pair<iterator, iterator>
equal_range(const key_type& x);

pair<const_iterator, const_iterator>
equal_range(const_key_type& x) const;

1 The find, lower_bound, upper_bound, and equal_range member functions each have two ver-
sions, one const and one non-const. In each case the behavior of the two versions is identical except that
the const version returns a const_iterator and the non-const version an iterator (23.1.2).

[lib.multimap.special] 23.3.2.3 multimap specialized algorithms

template <class Key, class T, class Compare, class Allocator>
void swap(multimap<Key,T,Compare,Allocator>& x,

multimap<Key,T,Compare,Allocator>& y);

1 Effects:

x.swap(y);

[lib.set] 23.3.3 Class template set

1 A set is a kind of associative container that supports unique keys (contains at most one of each key value)
and provides for fast retrieval of the keys themselves. Class set supports bidirectional iterators.

503

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.3 Class template set 23 Containers library

2 A set satisfies all of the requirements of a container and of a reversible container (23.1), and of an associa-
tive container (23.1.2). A set also provides most operations described in (23.1.2) for unique keys. This
means that a set supports the a_uniq operations in (23.1.2) but not the a_eq operations. For a
set<Key> both the key_type and value_type are Key. Descriptions are provided here only for
operations on set that are not described in one of these tables and for operations where there is additional
semantic information.

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class set {
public:

// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

// 23.3.3.1 construct/copy/destroy:
explicit set(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

set(InputIterator first, InputIterator last,
const Compare& comp = Compare(), const Allocator& = Allocator());

set(const set<Key,Compare,Allocator>& x);
˜set();
set<Key,Compare,Allocator>& operator=

(const set<Key,Compare,Allocator>& x);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

504

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.3 Class template set

// modifiers:
pair<iterator,bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(set<Key,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// set operations:
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x) const;

};

template <class Key, class Compare, class Allocator>
bool operator==(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator< (const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator!=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator> (const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator>=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator<=(const set<Key,Compare,Allocator>& x,

const set<Key,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class Compare, class Allocator>

void swap(set<Key,Compare,Allocator>& x,
set<Key,Compare,Allocator>& y);

}

[lib.set.cons] 23.3.3.1 set constructors, copy, and assignment

explicit set(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty set using the specified comparison objects and allocator.
2 Complexity: Constant.

505

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.3.1 set constructors, copy, and assignment 23 Containers library

template <class InputIterator>
set(InputIterator first, last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty set using the specified comparison object and allocator, and inserts ele-
ments from the range [first, last).

4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N
log N, where N is last - first.

[lib.set.special] 23.3.3.2 set specialized algorithms

template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>& x,

set<Key,Compare,Allocator>& y);

1 Effects:

x.swap(y);

[lib.multiset] 23.3.4 Class template multiset

1 A multiset is a kind of associative container that supports equivalent keys (possibly contains multiple
copies of the same key value) and provides for fast retrieval of the keys themselves. Class multiset sup-
ports bidirectional iterators.

2 A multiset satisfies all of the requirements of a container and of a reversible container (23.1), and of an
associative container (23.1.2). multiset also provides most operations described in (23.1.2) for dupli-
cate keys. This means that a multiset supports the a_eq operations in (23.1.2) but not the a_uniq
operations. For a multiset<Key> both the key_type and value_type are Key. Descriptions are
provided here only for operations on multiset that are not described in one of these tables and for opera-
tions where there is additional semantic information.

namespace std {
template <class Key, class Compare = less<Key>,

class Allocator = allocator<Key> >
class multiset {
public:

// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation defined iterator; // See 23.1
typedef implementation defined const_iterator; // See 23.1
typedef implementation defined size_type; // See 23.1
typedef implementation defined difference_type;// See 23.1
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

506

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.4 Class template multiset

// construct/copy/destroy:
explicit multiset(const Compare& comp = Compare(),

const Allocator& = Allocator());
template <class InputIterator>

multiset(InputIterator first, InputIterator last,
const Compare& comp = Compare(),
const Allocator& = Allocator());

multiset(const multiset<Key,Compare,Allocator>& x);
˜multiset();
multiset<Key,Compare,Allocator>&

operator=(const multiset<Key,Compare,Allocator>& x);
allocator_type get_allocator() const;

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;

// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;

// modifiers:
iterator insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>

void insert(InputIterator first, InputIterator last);

void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void swap(multiset<Key,Compare,Allocator>&);
void clear();

// observers:
key_compare key_comp() const;
value_compare value_comp() const;

// set operations:
iterator find(const key_type& x) const;
size_type count(const key_type& x) const;

iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x) const;

};

507

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.4 Class template multiset 23 Containers library

template <class Key, class Compare, class Allocator>
bool operator==(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator< (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator!=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator> (const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator>=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
bool operator<=(const multiset<Key,Compare,Allocator>& x,

const multiset<Key,Compare,Allocator>& y);

// specialized algorithms:
template <class Key, class Compare, class Allocator>

void swap(multiset<Key,Compare,Allocator>& x,
multiset<Key,Compare,Allocator>& y);

}

[lib.multiset.cons] 23.3.4.1 multiset constructors

explicit multiset(const Compare& comp = Compare(),
const Allocator& = Allocator());

1 Effects: Constructs an empty set using the specified comparison object and allocator.
2 Complexity: Constant.

template <class InputIterator>
multiset(InputIterator first, last,

const Compare& comp = Compare(), const Allocator& = Allocator());

3 Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts
elements from the range [first, last).

4 Complexity: Linear in N if the range [first, last) is already sorted using comp and otherwise N
log N, where N is last - first.

[lib.multiset.special] 23.3.4.2 multiset specialized algorithms

template <class Key, class Compare, class Allocator>
void swap(multiset<Key,Compare,Allocator>& x,

multiset<Key,Compare,Allocator>& y);

1 Effects:

x.swap(y);

508

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.4.2 multiset specialized algorithms

[lib.template.bitset] 23.3.5 Class template bitset

Header <bitset> synopsis

#include <cstddef> // for size_t
#include <string>
#include <stdexcept> // for invalid_argument,

// out_of_range, overflow_error
#include <iosfwd> // for istream, ostream
namespace std {

template <size_t N> class bitset;

// 23.3.5.3 bitset operations:
template <size_t N>

bitset<N> operator&(const bitset<N>&, const bitset<N>&);
template <size_t N>

bitset<N> operator|(const bitset<N>&, const bitset<N>&);
template <size_t N>

bitset<N> operatorˆ(const bitset<N>&, const bitset<N>&);
template <class charT, class traits, size_t N>

basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

template <class charT, class traits, size_t N>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);

}

1 The header <bitset> defines a class template and several related functions for representing and manipu-
lating fixed-size sequences of bits.

namespace std {
template<size_t N> class bitset {
public:
// bit reference:
class reference {

friend class bitset;
reference();

public:
˜reference();
reference& operator=(bool x); // for b[i] = x;
reference& operator=(const reference&); // for b[i] = b[j];
bool operator˜() const; // flips the bit
operator bool() const; // for x = b[i];
reference& flip(); // for b[i].flip();

};

// 23.3.5.1 constructors:
bitset();
bitset(unsigned long val);
template<class charT, class traits, class Allocator>

explicit bitset(
const basic_string<charT,traits,Allocator>& str,
typename basic_string<charT,traits,Allocator>::size_type pos = 0,
typename basic_string<charT,traits,Allocator>::size_type n =
basic_string<charT,traits,Allocator>::npos);

509

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.5 Class template bitset 23 Containers library

// 23.3.5.2 bitset operations:
bitset<N>& operator&=(const bitset<N>& rhs);
bitset<N>& operator|=(const bitset<N>& rhs);
bitset<N>& operatorˆ=(const bitset<N>& rhs);
bitset<N>& operator<<=(size_t pos);
bitset<N>& operator>>=(size_t pos);
bitset<N>& set();
bitset<N>& set(size_t pos, int val = true);
bitset<N>& reset();
bitset<N>& reset(size_t pos);
bitset<N> operator˜() const;
bitset<N>& flip();
bitset<N>& flip(size_t pos);

// element access:
bool operator[](size_t pos) const; // for b[i];
reference operator[](size_t pos); // for b[i];

unsigned long to_ulong() const;
template <class charT, class traits, class Allocator>

basic_string<charT, traits, Allocator> to_string() const;
size_t count() const;
size_t size() const;
bool operator==(const bitset<N>& rhs) const;
bool operator!=(const bitset<N>& rhs) const;
bool test(size_t pos) const;
bool any() const;
bool none() const;
bitset<N> operator<<(size_t pos) const;
bitset<N> operator>>(size_t pos) const;

};
}

2 The template class bitset<N> describes an object that can store a sequence consisting of a fixed number
of bits, N.

3 Each bit represents either the value zero (reset) or one (set). To toggle a bit is to change the value zero to
one, or the value one to zero. Each bit has a non-negative position pos. When converting between an
object of class bitset<N> and a value of some integral type, bit position pos corresponds to the bit
value 1 << pos. The integral value corresponding to two or more bits is the sum of their bit values.

4 The functions described in this subclause can report three kinds of errors, each associated with a distinct
exception:

— an invalid-argument error is associated with exceptions of type invalid_argument (19.1.3);

— an out-of-range error is associated with exceptions of type out_of_range (19.1.5);

— an overflow error is associated with exceptions of type overflow_error (19.1.8).

[lib.bitset.cons] 23.3.5.1 bitset constructors

bitset();

1 Effects: Constructs an object of class bitset<N>, initializing all bits to zero.

510

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.5.1 bitset constructors

bitset(unsigned long val);

2 Effects: Constructs an object of class bitset<N>, initializing the first M bit positions to the correspond-
ing bit values in val. M is the smaller of N and the value CHAR_BIT * sizeof (unsigned
long).249)

If M < N, remaining bit positions are initialized to zero.

template <class charT, class traits, class Allocator>
explicit
bitset(const basic_string<charT, traits, Allocator>& str,

typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n =

basic_string<charT, traits, Allocator>::npos);

3 Requires: pos <= str.size().
4 Throws: out_of_range if pos > str.size().
5 Effects: Determines the effective length rlen of the initializing string as the smaller of n and

str.size() - pos.
The function then throws invalid_argument if any of the rlen characters in str beginning at
position pos is other than 0 or 1.
Otherwise, the function constructs an object of class bitset<N>, initializing the first M bit positions to
values determined from the corresponding characters in the string str. M is the smaller of N and rlen.

6 An element of the constructed string has value zero if the corresponding character in str, beginning at
position pos, is 0. Otherwise, the element has the value one. Character position pos + M - 1 corre-
sponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit posi-
tions.

7 If M < N, remaining bit positions are initialized to zero.

[lib.bitset.members] 23.3.5.2 bitset members

bitset<N>& operator&=(const bitset<N>& rhs);

1 Effects: Clears each bit in *this for which the corresponding bit in rhs is clear, and leaves all other bits
unchanged.

2 Returns: *this.

bitset<N>& operator|=(const bitset<N>& rhs);

3 Effects: Sets each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits
unchanged.

4 Returns: *this.

bitset<N>& operatorˆ=(const bitset<N>& rhs);

5 Effects: Toggles each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits
unchanged.

6 Returns: *this.

bitset<N>& operator<<=(size_t pos);

7 Effects: Replaces each bit at position I in *this with a value determined as follows:

— If I < pos, the new value is zero;

— If I >= pos, the new value is the previous value of the bit at position I - pos.

249) The macro CHAR_BIT is defined in <climits> (18.2).

511

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.5.2 bitset members 23 Containers library

8 Returns: *this.

bitset<N>& operator>>=(size_t pos);

9 Effects: Replaces each bit at position I in *this with a value determined as follows:

— If pos >= N - I, the new value is zero;

— If pos < N - I, the new value is the previous value of the bit at position I + pos.
10 Returns: *this.

bitset<N>& set();

11 Effects: Sets all bits in *this.
12 Returns: *this.

bitset<N>& set(size_t pos, int val = 1);

13 Requires: pos is valid
14 Throws: out_of_range if pos does not correspond to a valid bit position.
15 Effects: Stores a new value in the bit at position pos in *this. If val is nonzero, the stored value is

one, otherwise it is zero.
16 Returns: *this.

bitset<N>& reset();

17 Effects: Resets all bits in *this.
18 Returns: *this.

bitset<N>& reset(size_t pos);

19 Requires: pos is valid
20 Throws: out_of_range if pos does not correspond to a valid bit position.
21 Effects: Resets the bit at position pos in *this.
22 Returns: *this.

bitset<N> operator˜() const;

23 Effects: Constructs an object x of class bitset<N> and initializes it with *this.
24 Returns: x.flip().

bitset<N>& flip();

25 Effects: Toggles all bits in *this.
26 Returns: *this.

bitset<N>& flip(size_t pos);

27 Requires: pos is valid
28 Throws: out_of_range if pos does not correspond to a valid bit position.
29 Effects: Toggles the bit at position pos in *this.
30 Returns: *this.

unsigned long to_ulong() const;

31 Throws: overflow_error if the integral value x corresponding to the bits in *this cannot be repre-
sented as type unsigned long.

32 Returns: x.

512

 ISO/IEC ISO/IEC 14882:2003(E)

23 Containers library 23.3.5.2 bitset members

template <class charT, class traits, class Allocator>
basic_string<charT, traits, Allocator> to_string() const;

33 Effects: Constructs a string object of the appropriate type and initializes it to a string of length N charac-
ters. Each character is determined by the value of its corresponding bit position in *this. Character
position N - 1 corresponds to bit position zero. Subsequent decreasing character positions correspond
to increasing bit positions. Bit value zero becomes the character 0, bit value one becomes the character
1.

34 Returns: The created object.

size_t count() const;

35 Returns: A count of the number of bits set in *this.

size_t size() const;

36 Returns: N.

bool operator==(const bitset<N>& rhs) const;

37 Returns: A nonzero value if the value of each bit in *this equals the value of the corresponding bit in
rhs.

bool operator!=(const bitset<N>& rhs) const;

38 Returns: A nonzero value if !(*this == rhs).

bool test(size_t pos) const;

39 Requires: pos is valid
40 Throws: out_of_range if pos does not correspond to a valid bit position.
41 Returns: true if the bit at position pos in *this has the value one.

bool any() const;

42 Returns: true if any bit in *this is one.

bool none() const;

43 Returns: true if no bit in *this is one.

bitset<N> operator<<(size_t pos) const;

44 Returns: bitset<N>(*this) <<= pos.

bitset<N> operator>>(size_t pos) const;

45 Returns: bitset<N>(*this) >>= pos.

bool operator[](size_t pos) const;

46 Requires: pos is valid.
47 Throws: nothing.
48 Returns: test(pos).

bitset<N>::reference operator[](size_t pos);

49 Requires: pos is valid.
50 Throws: nothing.
51 Returns: An object of type bitset<N>::reference such that (*this)[pos] == this-

>test(pos), and such that (*this)[pos] = val is equivalent to this->set(pos, val).

513

ISO/IEC 14882:2003(E)  ISO/IEC

23.3.5.3 bitset operators 23 Containers library

[lib.bitset.operators] 23.3.5.3 bitset operators

bitset<N> operator&(const bitset<N>& lhs, const bitset<N>& rhs);

1 Returns: bitset<N>(lhs) &= rhs.

bitset<N> operator|(const bitset<N>& lhs, const bitset<N>& rhs);

2 Returns: bitset<N>(lhs) |= rhs.

bitset<N> operatorˆ(const bitset<N>& lhs, const bitset<N>& rhs);

3 Returns: bitset<N>(lhs) ˆ= rhs.

template <class charT, class traits, size_t N>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, bitset<N>& x);

4 A formatted input function (27.6.1.2).
5 Effects: Extracts up to N (single-byte) characters from is. Stores these characters in a temporary object

str of type string, then evaluates the expression x = bitset<N>(str). Characters are
extracted and stored until any of the following occurs:

— N characters have been extracted and stored;

— end-of-file occurs on the input sequence;

— the next input character is neither 0 or 1 (in which case the input character is not extracted).

6 If no characters are stored in str, calls is.setstate(ios::failbit) (which may throw
ios_base::failure (27.4.4.3).

7 Returns: is.

template <class charT, class traits, size_t N>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& os, const bitset<N>& x);

8 Returns: os << x.template to_string<charT,traits,allocator<charT> >()
(27.6.2.5).

514

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library [lib.iterators]

1 This clause describes components that C + + programs may use to perform iterations over containers (clause
23), streams (27.6), and stream buffers (27.5).

2 The following subclauses describe iterator requirements, and components for iterator primitives, predefined
iterators, and stream iterators, as summarized in Table 70:

Table 70—Iterators library summary
_ ____________________________________

Subclause Header(s)_ _____________________________________ ____________________________________
24.1 Requirements_ ____________________________________
24.3 Iterator primitives
24.4 Predefined iterators
24.5 Stream iterators

<iterator>

_ ____________________________________ 













[lib.iterator.requirements] 24.1 Iterator requirements

1 Iterators are a generalization of pointers that allow a C + + program to work with different data structures
(containers) in a uniform manner. To be able to construct template algorithms that work correctly and effi-
ciently on different types of data structures, the library formalizes not just the interfaces but also the seman-
tics and complexity assumptions of iterators. All iterators i support the expression *i, resulting in a value
of some class, enumeration, or built-in type T, called the value type of the iterator. All iterators i for which
the expression (*i).m is well-defined, support the expression i->m with the same semantics as (*i).m.
For every iterator type X for which equality is defined, there is a corresponding signed integral type called
the difference type of the iterator.

2 Since iterators are an abstraction of pointers, their semantics is a generalization of most of the semantics of
pointers in C + +. This ensures that every function template that takes iterators works as well with regular
pointers. This International Standard defines five categories of iterators, according to the operations
defined on them: input iterators, output iterators, forward iterators, bidirectional iterators and random
access iterators, as shown in Table 71.

Table 71—Relations among iterator categories
_ __
Random access → Bidirectional → Forward → Input

→ Output_ __ 





3 Forward iterators satisfy all the requirements of the input and output iterators and can be used whenever
either kind is specified; Bidirectional iterators also satisfy all the requirements of the forward iterators and
can be used whenever a forward iterator is specified; Random access iterators also satisfy all the require-
ments of bidirectional iterators and can be used whenever a bidirectional iterator is specified.

4 Besides its category, a forward, bidirectional, or random access iterator can also be mutable or constant
depending on whether the result of the expression *i behaves as a reference or as a reference to a constant.
Constant iterators do not satisfy the requirements for output iterators, and the result of the expression *i
(for constant iterator i) cannot be used in an expression where an lvalue is required.

5 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of
the array, so for any iterator type there is an iterator value that points past the last element of a correspond-
ing container. These values are called past-the-end values. Values of an iterator i for which the expression

515

ISO/IEC 14882:2003(E)  ISO/IEC

24.1 Iterator requirements 24 Iterators library

*i is defined are called dereferenceable. The library never assumes that past-the-end values are derefer-
enceable. Iterators can also have singular values that are not associated with any container. [Example:
After the declaration of an uninitialized pointer x (as with int* x;), x must always be assumed to have a
singular value of a pointer.] Results of most expressions are undefined for singular values; the only excep-
tion is an assignment of a non-singular value to an iterator that holds a singular value. In this case the sin-
gular value is overwritten the same way as any other value. Dereferenceable values are always non-
singular.

6 An iterator j is called reachable from an iterator i if and only if there is a finite sequence of applications of
the expression ++i that makes i == j. If j is reachable from i, they refer to the same container.

7 Most of the library’s algorithmic templates that operate on data structures have interfaces that use ranges.
A range is a pair of iterators that designate the beginning and end of the computation. A range [i, i) is
an empty range; in general, a range [i, j) refers to the elements in the data structure starting with the
one pointed to by i and up to but not including the one pointed to by j. Range [i, j) is valid if and
only if j is reachable from i. The result of the application of functions in the library to invalid ranges is
undefined.

8 All the categories of iterators require only those functions that are realizable for a given category in con-
stant time (amortized). Therefore, requirement tables for the iterators do not have a complexity column.

9 In the following sections, a and b denote values of X, n denotes a value of the difference type Distance,
u, tmp, and m denote identifiers, r denotes a value of X&, t denotes a value of value type T.

[lib.input.iterators] 24.1.1 Input iterators

1 A class or a built-in type X satisfies the requirements of an input iterator for the value type T if the follow-
ing expressions are valid, where U is the type of any specified member of type T, as shown in Table 72.

2 In Table 72, the term the domain of == is used in the ordinary mathematical sense to denote the set of val-
ues over which == is (required to be) defined. This set can change over time. Each algorithm places addi-
tional requirements on the domain of == for the iterator values it uses. These requirements can be inferred
from the uses that algorithm makes of == and !=. [Example: the call find(a,b,x) is defined only if the
value of a has the property p defined as follows: b has property p and a value i has property p if (*i==x)
or if (*i!=x and ++i has property p).]

516

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.1.1 Input iterators

Table 72—Input iterator requirements
_ ___

operation type semantics, pre/post-conditions_ __ ___
X u(a); X post: u is a copy of a

A destructor is assumed to be present and accessible._ ___
u = a; X& result: u

post: u is a copy of a_ ___
a == b convertible to bool == is an equivalence relation over its domain._ ___
a != b convertible to bool bool(a==b) != bool(a!=b) over the domain of ==_ ___
*a convertible to T pre: a is dereferenceable.

If a==b and (a,b) is in the domain of ==
then *a is equivalent to *b._ ___

a->m pre: (*a).m is well-defined
Equivalent to (*a).m_ ___

++r X& pre: r is dereferenceable.
post: r is dereferenceable or r is past-the-end.
post: any copies of the previous value of r are no longer
required either to be dereferenceable or to be in the domain
of ==._ ___

(void)r++ equivalent to (void)++r_ ___
*r++ T { T tmp = *r; ++r; return tmp; }_ ___ 




















































3 [Note: For input iterators, a == b does not imply ++a == ++b. (Equality does not guarantee the substi-
tution property or referential transparency.) Algorithms on input iterators should never attempt to pass
through the same iterator twice. They should be single pass algorithms. Value type T is not required to be
an Assignable type (23.1). These algorithms can be used with istreams as the source of the input data
through the istream_iterator class.]

[lib.output.iterators] 24.1.2 Output iterators

1 A class or a built-in type X satisfies the requirements of an output iterator if X is an Assignable type (23.1)
and also the following expressions are valid, as shown in Table 73:

Table 73—Output iterator requirements
_ ___

operational assertion/note
expression return type

semantics pre/post-condition_ __ ___
X(a) a = t is equivalent to

X(a) = t.
note: a destructor is assumed._ ___

X u(a);

X u = a;_ ___
*a = t result is not used_ ___
++r X& &r == &++r._ ___
r++ convertible to

const X&
{ X tmp = r;
++r;
return tmp; }_ ___

*r++ = t result is not used_ ___ 



































517

ISO/IEC 14882:2003(E)  ISO/IEC

24.1.2 Output iterators 24 Iterators library

2 [Note: The only valid use of an operator* is on the left side of the assignment statement. Assignment
through the same value of the iterator happens only once. Algorithms on output iterators should never
attempt to pass through the same iterator twice. They should be single pass algorithms. Equality and
inequality might not be defined. Algorithms that take output iterators can be used with ostreams as the des-
tination for placing data through the ostream_iterator class as well as with insert iterators and insert
pointers. —end note]

[lib.forward.iterators] 24.1.3 Forward iterators

1 A class or a built-in type X satisfies the requirements of a forward iterator if the following expressions are
valid, as shown in Table 74:

Table 74—Forward iterator requirements
_ ___

operational assertion/note
expression return type

semantics pre/post-condition_ __ ___
X u; note: u might have a singular

value.
note: a destructor is assumed._ ___

X() note: X() might be singular._ ___
X(a) a == X(a)._ ___
X u(a); X u; u = a; post: u == a.
X u = a;_ ___
a == b convertible to bool == is an equivalence relation._ ___
a != b convertible to bool !(a == b)_ ___
r = a X& post: r == a._ ___
*a T& pre: a is dereferenceable.

a == b implies *a == *b.
If X is mutable, *a = t is valid._ ___

a->m U& (*a).m pre: (*a).m is well-defined._ ___
++r X& pre: r is dereferenceable.

post: r is dereferenceable or r is
past-the-end.
r == s and r is dereference-
able implies ++r == ++s.
&r == &++r._ ___

r++ convertible to
const X&

{ X tmp = r;
++r;
return tmp; }_ ___

*r++ T&_ ___ 



































































— If a and b are equal, then either a and b are both dereferenceable or else neither is dereferenceable.

— If a and b are both dereferenceable, then a == b if and only if *a and *b are the same object.

2 [Note: The condition that a == b implies ++a == ++b (which is not true for input and output iterators)
and the removal of the restrictions on the number of the assignments through the iterator (which applies to
output iterators) allows the use of multi-pass one-directional algorithms with forward iterators.
—end note]

518

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.1.4 Bidirectional iterators

[lib.bidirectional.iterators] 24.1.4 Bidirectional iterators

1 A class or a built-in type X satisfies the requirements of a bidirectional iterator if, in addition to satisfying
the requirements for forward iterators, the following expressions are valid as shown in Table 75:

Table 75—Bidirectional iterator requirements (in addition to forward iterator)
__

operational assertion/note
expression return type

semantics pre/post-condition__
--r X& pre: there exists s such

that r == ++s.
post: s is dereferenceable.
--(++r) == r.
--r == --s implies r
== s.
&r == &--r.__

r-- convertible to
const X&

{ X tmp = r;
--r;
return tmp; }__

*r-- convertible to T__ 

































2 [Note: Bidirectional iterators allow algorithms to move iterators backward as well as forward. —end note]

[lib.random.access.iterators] 24.1.5 Random access iterators

1 A class or a built-in type X satisfies the requirements of a random access iterator if, in addition to satisfying
the requirements for bidirectional iterators, the following expressions are valid as shown in Table 76:

519

ISO/IEC 14882:2003(E)  ISO/IEC

24.1.5 Random access iterators 24 Iterators library

Table 76—Random access iterator requirements (in addition to bidirectional iterator)
_ __

operational assertion/note
expression return type

semantics pre/post-condition_ ___ __
r += n X& { Distance m =

n;
if (m >= 0)
while (m--)

++r;
else
while (m++)

--r;
return r; }_ __

a + n { X tmp = a;
return tmp +=

n; }

n + a

X a + n == n + a.

_ __
r -= n X& return r += -n;_ __
a - n X { X tmp = a;

return tmp -=
n; }_ __

b - a Distance (a<b)?
distance(a,b):
-distance(b,a)

pre: there exists a value n
of Distance such that a
+ n == b. b == a +
(b - a)._ __

a[n] convertible to T *(a + n)_ __
a < b convertible to bool b - a > 0 < is a total ordering relation_ __
a > b convertible to bool b < a > is a total ordering relation

opposite to <._ __
a >= b convertible to bool !(a < b)_ __
a <= b convertible to bool !(a > b)_ __ 










































































[lib.iterator.synopsis] 24.2 Header <iterator> synopsis

namespace std {
// 24.3, primitives:
template<class Iterator> struct iterator_traits;
template<class T> struct iterator_traits<T*>;

template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T&> struct iterator;

struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag: public input_iterator_tag {};
struct bidirectional_iterator_tag: public forward_iterator_tag {};
struct random_access_iterator_tag: public bidirectional_iterator_tag {};

520

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.2 Header <iterator> synopsis

// 24.3.4, iterator operations:
template <class InputIterator, class Distance>

void advance(InputIterator& i, Distance n);
template <class InputIterator>

typename iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last);

// 24.4, predefined iterators:
template <class Iterator> class reverse_iterator;

template <class Iterator>
bool operator==(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator!=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator>(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator>=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
typename reverse_iterator<Iterator>::difference_type operator-(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
reverse_iterator<Iterator>

operator+(
typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

template <class Container> class back_insert_iterator;
template <class Container>

back_insert_iterator<Container> back_inserter(Container& x);

template <class Container> class front_insert_iterator;
template <class Container>

front_insert_iterator<Container> front_inserter(Container& x);

template <class Container> class insert_iterator;
template <class Container, class Iterator>

insert_iterator<Container> inserter(Container& x, Iterator i);

521

ISO/IEC 14882:2003(E)  ISO/IEC

24.2 Header <iterator> synopsis 24 Iterators library

// 24.5, stream iterators:
template <class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator;
template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);
template <class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);

template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator;

template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator;

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);
template <class charT, class traits>

bool operator!=(const istreambuf_iterator<charT,traits>& a,
const istreambuf_iterator<charT,traits>& b);

template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator;

}

[lib.iterator.primitives] 24.3 Iterator primitives

1 To simplify the task of defining iterators, the library provides several classes and functions:

[lib.iterator.traits] 24.3.1 Iterator traits

1 To implement algorithms only in terms of iterators, it is often necessary to determine the value and differ-
ence types that correspond to a particular iterator type. Accordingly, it is required that if Iterator is the
type of an iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::iterator_category

be defined as the iterator’s difference type, value type and iterator category, respectively. In the case of an
output iterator, the types

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type

are both defined as void.

2 The template iterator_traits<Iterator> is defined as

template<class Iterator> struct iterator_traits {
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
typedef typename Iterator::iterator_category iterator_category;

};

It is specialized for pointers as

522

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.3.1 Iterator traits

template<class T> struct iterator_traits<T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef random_access_iterator_tag iterator_category;

};

and for pointers to const as

template<class T> struct iterator_traits<const T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef const T* pointer;
typedef const T& reference;
typedef random_access_iterator_tag iterator_category;

};

[Note: If there is an additional pointer type _ _far such that the difference of two _ _far is of type
long, an implementation may define

template<class T> struct iterator_traits<T _ _far*> {
typedef long difference_type;
typedef T value_type;
typedef T _ _far* pointer;
typedef T _ _far& reference;
typedef random_access_iterator_tag iterator_category;

};

—end note]

3 [Example: To implement a generic reverse function, a C + + program can do the following:

template <class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last) {

typename iterator_traits<BidirectionalIterator>::difference_type n =
distance(first, last);

--n;
while(n > 0) {

typename iterator_traits<BidirectionalIterator>::value_type
tmp = *first;

*first++ = *--last;
*last = tmp;
n -= 2;

}
}

—end example]

[lib.iterator.basic] 24.3.2 Basic iterator

1 The iterator template may be used as a base class to ease the definition of required types for new itera-
tors.

523

ISO/IEC 14882:2003(E)  ISO/IEC

24.3.2 Basic iterator 24 Iterators library

namespace std {
template<class Category, class T, class Distance = ptrdiff_t,

class Pointer = T*, class Reference = T&>
struct iterator {

typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;

};
}

[lib.std.iterator.tags] 24.3.3 Standard iterator tags

1 It is often desirable for a function template specialization to find out what is the most specific category of
its iterator argument, so that the function can select the most efficient algorithm at compile time. To facili-
tate this, the library introduces category tag classes which are used as compile time tags for algorithm
selection. They are: input_iterator_tag, output_iterator_tag,
forward_iterator_tag, bidirectional_iterator_tag and
random_access_iterator_tag. For every iterator of type Iterator,
iterator_traits<Iterator>::iterator_category must be defined to be the most specific
category tag that describes the iterator’s behavior.

namespace std {
struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag: public input_iterator_tag {};
struct bidirectional_iterator_tag: public forward_iterator_tag {};
struct random_access_iterator_tag: public bidirectional_iterator_tag {};

}

2 [Example: For a program-defined iterator BinaryTreeIterator, it could be included into the bidirec-
tional iterator category by specializing the iterator_traits template:

template<class T> struct iterator_traits<BinaryTreeIterator<T> > {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef bidirectional_iterator_tag iterator_category;

};

Typically, however, it would be easier to derive BinaryTreeIterator<T> from
iterator<bidirectional_iterator_tag,T,ptrdiff_t,T*,T&>. —end example]

3 [Example: If evolve() is well defined for bidirectional iterators, but can be implemented more efficiently
for random access iterators, then the implementation is as follows:

template <class BidirectionalIterator>
inline void
evolve(BidirectionalIterator first, BidirectionalIterator last) {
evolve(first, last,
typename iterator_traits<BidirectionalIterator>::iterator_category());

}

template <class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,

bidirectional_iterator_tag) {
// ... more generic, but less efficient algorithm

}

524

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.3.3 Standard iterator tags

template <class RandomAccessIterator>
void evolve(RandomAccessIterator first, RandomAccessIterator last,

random_access_iterator_tag) {
// ... more efficient, but less generic algorithm

}

—end example]

4 [Example: If a C + + program wants to define a bidirectional iterator for some data structure containing
double and such that it works on a large memory model of the implementation, it can do so with:

class MyIterator :
public iterator<bidirectional_iterator_tag, double, long, T*, T&> {

// code implementing ++, etc.
};

5 Then there is no need to specialize the iterator_traits template. —end example]

[lib.iterator.operations] 24.3.4 Iterator operations

1 Since only random access iterators provide + and - operators, the library provides two function templates
advance and distance. These function templates use + and - for random access iterators (and are,
therefore, constant time for them); for input, forward and bidirectional iterators they use ++ to provide lin-
ear time implementations.

template <class InputIterator, class Distance>
void advance(InputIterator& i, Distance n);

2 Requires: n may be negative only for random access and bidirectional iterators.
3 Effects: Increments (or decrements for negative n) iterator reference i by n.

template<class InputIterator>
typename iterator_traits<InputIterator>::difference_type

distance(InputIterator first, InputIterator last);

4 Effects: Returns the number of increments or decrements needed to get from first to last.
5 Requires: last must be reachable from first.

[lib.predef.iterators] 24.4 Predefined iterators

[lib.reverse.iterators] 24.4.1 Reverse iterators

1 Bidirectional and random access iterators have corresponding reverse iterator adaptors that iterate through
the data structure in the opposite direction. They have the same signatures as the corresponding iterators.
The fundamental relation between a reverse iterator and its corresponding iterator i is established by the
identity: &*(reverse_iterator(i)) == &*(i - 1).

2 This mapping is dictated by the fact that while there is always a pointer past the end of an array, there might
not be a valid pointer before the beginning of an array.

525

ISO/IEC 14882:2003(E)  ISO/IEC

24.4.1 Reverse iterators 24 Iterators library

[lib.reverse.iterator] 24.4.1.1 Class template reverse_iterator

namespace std {
template <class Iterator>
class reverse_iterator : public

iterator<typename iterator_traits<Iterator>::iterator_category,
typename iterator_traits<Iterator>::value_type,
typename iterator_traits<Iterator>::difference_type,
typename iterator_traits<Iterator>::pointer,
typename iterator_traits<Iterator>::reference> {

protected:
Iterator current;

public:
typedef Iterator

iterator_type;
typedef typename iterator_traits<Iterator>::difference_type

difference_type;
typedef typename iterator_traits<Iterator>::reference

reference;
typedef typename iterator_traits<Iterator>::pointer

pointer;

reverse_iterator();
explicit reverse_iterator(Iterator x);
template <class U> reverse_iterator(const reverse_iterator<U>& u);

Iterator base() const; // explicit
reference operator*() const;
pointer operator->() const;

reverse_iterator& operator++();
reverse_iterator operator++(int);
reverse_iterator& operator--();
reverse_iterator operator--(int);

reverse_iterator operator+ (difference_type n) const;
reverse_iterator& operator+=(difference_type n);
reverse_iterator operator- (difference_type n) const;
reverse_iterator& operator-=(difference_type n);
reference operator[](difference_type n) const;

};

template <class Iterator>
bool operator==(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator!=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator>(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

526

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.4.1.1 Class template reverse_iterator

template <class Iterator>
bool operator>=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
bool operator<=(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
typename reverse_iterator<Iterator>::difference_type operator-(

const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

template <class Iterator>
reverse_iterator<Iterator> operator+(

typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

}

[lib.reverse.iter.requirements] 24.4.1.2 reverse_iterator requirements

1 The template parameter Iterator shall meet all the requirements of a Bidirectional Iterator (24.1.4).

2 Additionally, Iterator shall meet the requirements of a Random Access Iterator (24.1.5) if any of the
members operator+ (24.4.1.3.7), operator- (24.4.1.3.9), operator+= (24.4.1.3.8), operator-=
(24.4.1.3.10), operator[] (24.4.1.3.11), or the global operators operator< (24.4.1.3.13),
operator> (24.4.1.3.15), operator<= (24.4.1.3.17), operator>= (24.4.1.3.16), operator-
(24.4.1.3.18) or operator+ (24.4.1.3.19). is referenced in a way that requires instantiation (14.7.1).

[lib.reverse.iter.ops] 24.4.1.3 reverse_iterator operations

[lib.reverse.iter.cons] 24.4.1.3.1 reverse_iterator constructor

explicit reverse_iterator(Iterator x);

1 Effects: Initializes current with x.

template <class U> reverse_iterator(const reverse_iterator<U> &u);

2 Effects: Initializes current with u.current.

[lib.reverse.iter.conv] 24.4.1.3.2 Conversion

Iterator base() const; // explicit

1 Returns: current

[lib.reverse.iter.op.star] 24.4.1.3.3 operator*

reference operator*() const;

1 Effects:

Iterator tmp = current;
return *--tmp;

527

ISO/IEC 14882:2003(E)  ISO/IEC

24.4.1.3.4 operator-> 24 Iterators library

[lib.reverse.iter.opref] 24.4.1.3.4 operator->

pointer operator->() const;

1 Effects:

return &(operator*());

[lib.reverse.iter.op++] 24.4.1.3.5 operator++

reverse_iterator& operator++();

1 Effects: --current;
2 Returns: *this

reverse_iterator operator++(int);

3 Effects:

reverse_iterator tmp = *this;
--current;
return tmp;

[lib.reverse.iter.op--] 24.4.1.3.6 operator--

reverse_iterator& operator--();

1 Effects: ++current
2 Returns: *this

reverse_iterator operator--(int);

3 Effects:

reverse_iterator tmp = *this;
++current;
return tmp;

[lib.reverse.iter.op+] 24.4.1.3.7 operator+

reverse_iterator
operator+(typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: reverse_iterator(current-n)

[lib.reverse.iter.op+=] 24.4.1.3.8 operator+=

reverse_iterator&
operator+=(typename reverse_iterator<Iterator>::difference_type n);

1 Effects: current -= n;
2 Returns: *this

528

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.4.1.3.8 operator+=

[lib.reverse.iter.op-] 24.4.1.3.9 operator-

reverse_iterator
operator-(typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: reverse_iterator(current+n)

[lib.reverse.iter.op-=] 24.4.1.3.10 operator-=

reverse_iterator&
operator-=(typename reverse_iterator<Iterator>::difference_type n);

1 Effects: current += n;
2 Returns: *this

[lib.reverse.iter.opindex] 24.4.1.3.11 operator[]

reference
operator[](typename reverse_iterator<Iterator>::difference_type n) const;

1 Returns: current[-n-1]

[lib.reverse.iter.op==] 24.4.1.3.12 operator==

template <class Iterator>
bool operator==(
const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current == y.current

[lib.reverse.iter.op<] 24.4.1.3.13 operator<

template <class Iterator>
bool operator<(
const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current > y.current

[lib.reverse.iter.op!=] 24.4.1.3.14 operator!=

template <class Iterator>
bool operator!=(
const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current != y.current

[lib.reverse.iter.op>] 24.4.1.3.15 operator>

template <class Iterator>
bool operator>(
const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current < y.current

529

ISO/IEC 14882:2003(E)  ISO/IEC

24.4.1.3.16 operator>= 24 Iterators library

[lib.reverse.iter.op>=] 24.4.1.3.16 operator>=

template <class Iterator>
bool operator>=(
const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current <= y.current

[lib.reverse.iter.op<=] 24.4.1.3.17 operator<=

template <class Iterator>
bool operator<=(
const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: x.current >= y.current

[lib.reverse.iter.opdiff] 24.4.1.3.18 operator-

template <class Iterator>
typename reverse_iterator<Iterator>::difference_type operator-(
const reverse_iterator<Iterator>& x,
const reverse_iterator<Iterator>& y);

1 Returns: y.current - x.current

[lib.reverse.iter.opsum] 24.4.1.3.19 operator+

template <class Iterator>
reverse_iterator<Iterator> operator+(
typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>& x);

1 Returns: reverse_iterator<Iterator> (x.current - n)

[lib.insert.iterators] 24.4.2 Insert iterators

1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator
adaptors, called insert iterators, are provided in the library. With regular iterator classes,

while (first != last) *result++ = *first++;

2 causes a range [first, last) to be copied into a range starting with result. The same code with
result being an insert iterator will insert corresponding elements into the container. This device allows
all of the copying algorithms in the library to work in the insert mode instead of the regular overwrite
mode.

3 An insert iterator is constructed from a container and possibly one of its iterators pointing to where inser-
tion takes place if it is neither at the beginning nor at the end of the container. Insert iterators satisfy the
requirements of output iterators. operator* returns the insert iterator itself. The assignment
operator=(const T& x) is defined on insert iterators to allow writing into them, it inserts x right
before where the insert iterator is pointing. In other words, an insert iterator is like a cursor pointing into
the container where the insertion takes place. back_insert_iterator inserts elements at the end of a
container, front_insert_iterator inserts elements at the beginning of a container, and
insert_iterator inserts elements where the iterator points to in a container. back_inserter,
front_inserter, and inserter are three functions making the insert iterators out of a container.

530

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.4.2.1 Class template back_insert_iterator

[lib.back.insert.iterator] 24.4.2.1 Class template back_insert_iterator

namespace std {
template <class Container>
class back_insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;

public:
typedef Container container_type;
explicit back_insert_iterator(Container& x);
back_insert_iterator<Container>&

operator=(typename Container::const_reference value);

back_insert_iterator<Container>& operator*();
back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

};

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

}

[lib.back.insert.iter.ops] 24.4.2.2 back_insert_iterator operations

[lib.back.insert.iter.cons] 24.4.2.2.1 back_insert_iterator constructor

explicit back_insert_iterator(Container& x);

1 Effects: Initializes container with &x.

[lib.back.insert.iter.op=] 24.4.2.2.2 back_insert_iterator::operator=

back_insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects: container->push_back(value);
2 Returns: *this.

[lib.back.insert.iter.op*] 24.4.2.2.3 back_insert_iterator::operator*

back_insert_iterator<Container>& operator*();

1 Returns: *this.

[lib.back.insert.iter.op++] 24.4.2.2.4 back_insert_iterator::operator++

back_insert_iterator<Container>& operator++();
back_insert_iterator<Container> operator++(int);

1 Returns: *this.

531

ISO/IEC 14882:2003(E)  ISO/IEC

24.4.2.2.4 back_insert_iterator::operator++ 24 Iterators library

[lib.back.inserter] 24.4.2.2.5 back_inserter

template <class Container>
back_insert_iterator<Container> back_inserter(Container& x);

1 Returns: back_insert_iterator<Container>(x).

[lib.front.insert.iterator] 24.4.2.3 Class template front_insert_iterator

namespace std {
template <class Container>
class front_insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;

public:
typedef Container container_type;
explicit front_insert_iterator(Container& x);
front_insert_iterator<Container>&

operator=(typename Container::const_reference value);

front_insert_iterator<Container>& operator*();
front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

};

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

}

[lib.front.insert.iter.ops] 24.4.2.4 front_insert_iterator operations

[lib.front.insert.iter.cons] 24.4.2.4.1 front_insert_iterator constructor

explicit front_insert_iterator(Container& x);

1 Effects: Initializes container with &x.

[lib.front.insert.iter.op=] 24.4.2.4.2 front_insert_iterator::operator=

front_insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects: container->push_front(value);
2 Returns: *this.

[lib.front.insert.iter.op*] 24.4.2.4.3 front_insert_iterator::operator*

front_insert_iterator<Container>& operator*();

1 Returns: *this.

532

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.4.2.4.3 front_insert_iterator::operator*

[lib.front.insert.iter.op++] 24.4.2.4.4 front_insert_iterator::operator++

front_insert_iterator<Container>& operator++();
front_insert_iterator<Container> operator++(int);

1 Returns: *this.

[lib.front.inserter] 24.4.2.4.5 front_inserter

template <class Container>
front_insert_iterator<Container> front_inserter(Container& x);

1 Returns: front_insert_iterator<Container>(x).

[lib.insert.iterator] 24.4.2.5 Class template insert_iterator

namespace std {
template <class Container>
class insert_iterator :

public iterator<output_iterator_tag,void,void,void,void> {
protected:

Container* container;
typename Container::iterator iter;

public:
typedef Container container_type;
insert_iterator(Container& x, typename Container::iterator i);
insert_iterator<Container>&

operator=(typename Container::const_reference value);

insert_iterator<Container>& operator*();
insert_iterator<Container>& operator++();
insert_iterator<Container>& operator++(int);

};

template <class Container, class Iterator>
insert_iterator<Container> inserter(Container& x, Iterator i);

}

[lib.insert.iter.ops] 24.4.2.6 insert_iterator operations

[lib.insert.iter.cons] 24.4.2.6.1 insert_iterator constructor

insert_iterator(Container& x, typename Container::iterator i);

1 Effects: Initializes container with &x and iter with i.

[lib.insert.iter.op=] 24.4.2.6.2 insert_iterator::operator=

insert_iterator<Container>&
operator=(typename Container::const_reference value);

1 Effects:

iter = container->insert(iter, value);
++iter;

2 Returns: *this.

533

ISO/IEC 14882:2003(E)  ISO/IEC

24.4.2.6.3 insert_iterator::operator* 24 Iterators library

[lib.insert.iter.op*] 24.4.2.6.3 insert_iterator::operator*

insert_iterator<Container>& operator*();

1 Returns: *this.

[lib.insert.iter.op++] 24.4.2.6.4 insert_iterator::operator++

insert_iterator<Container>& operator++();
insert_iterator<Container>& operator++(int);

1 Returns: *this.

[lib.inserter] 24.4.2.6.5 inserter

template <class Container, class Inserter>
insert_iterator<Container> inserter(Container& x, Inserter i);

1 Returns: insert_iterator<Container>(x,typename Container::iterator(i)).

[lib.stream.iterators] 24.5 Stream iterators

1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate
iterator-like class templates are provided.

2 [Example:

partial_sum_copy(istream_iterator<double, char>(cin),
istream_iterator<double, char>(),
ostream_iterator<double, char>(cout, "\n"));

reads a file containing floating point numbers from cin, and prints the partial sums onto cout.
—end example]

[lib.istream.iterator] 24.5.1 Class template istream_iterator

1 istream_iterator reads (using operator>>) successive elements from the input stream for which
it was constructed. After it is constructed, and every time ++ is used, the iterator reads and stores a value of
T. If the end of stream is reached (operator void*() on the stream returns false), the iterator
becomes equal to the end-of-stream iterator value. The constructor with no arguments
istream_iterator() always constructs an end of stream input iterator object, which is the only legiti-
mate iterator to be used for the end condition. The result of operator* on an end of stream is not
defined. For any other iterator value a const T& is returned. The result of operator-> on an end of
stream is not defined. For any other iterator value a const T* is returned. It is impossible to store things
into istream iterators. The main peculiarity of the istream iterators is the fact that ++ operators are not
equality preserving, that is, i == j does not guarantee at all that ++i == ++j. Every time ++ is used a
new value is read.

2 The practical consequence of this fact is that istream iterators can be used only for one-pass algorithms,
which actually makes perfect sense, since for multi-pass algorithms it is always more appropriate to use in-
memory data structures.

3 Two end-of-stream iterators are always equal. An end-of-stream iterator is not equal to a non-end-of-
stream iterator. Two non-end-of-stream iterators are equal when they are constructed from the same
stream.

534

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.5.1 Class template istream_iterator

namespace std {
template <class T, class charT = char, class traits = char_traits<charT>,

class Distance = ptrdiff_t>
class istream_iterator:
public iterator<input_iterator_tag, T, Distance, const T*, const T&> {

public:
typedef charT char_type;
typedef traits traits_type;
typedef basic_istream<charT,traits> istream_type;
istream_iterator();
istream_iterator(istream_type& s);
istream_iterator(const istream_iterator<T,charT,traits,Distance>& x);

˜istream_iterator();

const T& operator*() const;
const T* operator->() const;
istream_iterator<T,charT,traits,Distance>& operator++();
istream_iterator<T,charT,traits,Distance> operator++(int);

private:
//basic_istream<charT,traits>* in_stream; exposition only
//T value; exposition only

};

template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);
template <class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T,charT,traits,Distance>& x,

const istream_iterator<T,charT,traits,Distance>& y);
}

[lib.istream.iterator.cons] 24.5.1.1 istream_iterator constructors and destructor

istream_iterator();

1 Effects: Constructs the end-of-stream iterator.

istream_iterator(istream_type& s);

2 Effects: Initializes in_stream with s. value may be initialized during construction or the first time it is
referenced.

istream_iterator(const istream_iterator<T,charT,traits,Distance>& x);

3 Effects: Constructs a copy of x.

˜istream_iterator();

4 Effects: The iterator is destroyed.

[lib.istream.iterator.ops] 24.5.1.2 istream_iterator operations

const T& operator*() const;

1 Returns: value

535

ISO/IEC 14882:2003(E)  ISO/IEC

24.5.1.2 istream_iterator operations 24 Iterators library

const T* operator->() const;

2 Returns: &(operator*())

istream_iterator<T,charT,traits,Distance>& operator++();

3 Effects: *in_stream >> value
4 Returns: *this

istream_iterator<T,charT,traits,Distance>& operator++(int);

5 Effects:

istream_iterator<T,charT,traits,Distance> tmp = *this;
*in_stream >> value;
return (tmp);

template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance> &x,

const istream_iterator<T,charT,traits,Distance> &y);

6 Returns: (x.in_stream == y.in_stream)

[lib.ostream.iterator] 24.5.2 Class template ostream_iterator

1 ostream_iterator writes (using operator<<) successive elements onto the output stream from
which it was constructed. If it was constructed with char* as a constructor argument, this string, called a
delimiter string, is written to the stream after every T is written. It is not possible to get a value out of the
output iterator. Its only use is as an output iterator in situations like

while (first != last) *result++ = *first++;

2 ostream_iterator is defined as:

namespace std {
template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void> {

public:
typedef charT char_type;
typedef traits traits_type;
typedef basic_ostream<charT,traits> ostream_type;
ostream_iterator(ostream_type& s);
ostream_iterator(ostream_type& s, const charT* delimiter);
ostream_iterator(const ostream_iterator<T,charT,traits>& x);

˜ostream_iterator();
ostream_iterator<T,charT,traits>& operator=(const T& value);

ostream_iterator<T,charT,traits>& operator*();
ostream_iterator<T,charT,traits>& operator++();
ostream_iterator<T,charT,traits>& operator++(int);

private:
// basic_ostream<charT,traits>* out_stream; exposition only
// const char* delim; exposition only

};
}

536

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.5.2.1 ostream_iterator constructors and destructor

[lib.ostream.iterator.cons.des] 24.5.2.1 ostream_iterator constructors and destructor

ostream_iterator(ostream_type& s);

1 Effects: Initializes out_stream with s and delim with null.

ostream_iterator(ostream_type& s, const charT* delimiter);

2 Effects: Initializes out_stream with s and delim with delimiter.

ostream_iterator(const ostream_iterator& x);

3 Effects: Constructs a copy of x.

˜ostream_iterator();

4 Effects: The iterator is destroyed.

[lib.ostream.iterator.ops] 24.5.2.2 ostream_iterator operations

ostream_iterator& operator=(const T& value);

1 Effects:

*out_stream << value;
if(delim != 0) *out_stream << delim;
return (*this);

ostream_iterator& operator*();

2 Returns: *this

ostream_iterator& operator++();
ostream_iterator& operator++(int);

3 Returns: *this

[lib.istreambuf.iterator] 24.5.3 Class template istreambuf_iterator

namespace std {
template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator

: public iterator<input_iterator_tag, charT,
typename traits::off_type, charT*, charT&> {

public:
typedef charT char_type;
typedef traits traits_type;
typedef typename traits::int_type int_type;
typedef basic_streambuf<charT,traits> streambuf_type;
typedef basic_istream<charT,traits> istream_type;

class proxy; // exposition only

537

ISO/IEC 14882:2003(E)  ISO/IEC

24.5.3 Class template istreambuf_iterator 24 Iterators library

public:
istreambuf_iterator() throw();
istreambuf_iterator(istream_type& s) throw();
istreambuf_iterator(streambuf_type* s) throw();
istreambuf_iterator(const proxy& p) throw();
charT operator*() const;
istreambuf_iterator<charT,traits>& operator++();
proxy operator++(int);
bool equal(istreambuf_iterator& b) const;

private:
streambuf_type* sbuf_; exposition only

};

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);
}

1 The class template istreambuf_iterator reads successive characters from the streambuf for which
it was constructed. operator* provides access to the current input character, if any. Each time
operator++ is evaluated, the iterator advances to the next input character. If the end of stream is
reached (streambuf_type::sgetc() returns traits::eof()), the iterator becomes equal to the end of
stream iterator value. The default constructor istreambuf_iterator() and the constructor
istreambuf_iterator(0) both construct an end of stream iterator object suitable for use as an end-
of-range.

2 The result of operator*() on an end of stream is undefined. For any other iterator value a
char_type value is returned. It is impossible to assign a character via an input iterator.

3 Note that in the input iterators, ++ operators are not equality preserving, that is, i == j does not guaran-
tee at all that ++i == ++j. Every time ++ is evaluated a new value is used.

4 The practical consequence of this fact is that an istreambuf_iterator object can be used only for
one-pass algorithms. Two end of stream iterators are always equal. An end of stream iterator is not equal
to a non-end of stream iterator.

[lib.istreambuf.iterator::proxy] 24.5.3.1 Class template istreambuf_iterator::proxy

namespace std {
template <class charT, class traits = char_traits<charT> >
class istreambuf_iterator<charT, traits>::proxy {
charT keep_;
basic_streambuf<charT,traits>* sbuf_;
proxy(charT c,

basic_streambuf<charT,traits>* sbuf);
: keep_(c), sbuf_(sbuf) {}

public:
charT operator*() { return keep_; }

};
}

1 Class istreambuf_iterator<charT,traits>::proxy is for exposition only. An implementa-
tion is permitted to provide equivalent functionality without providing a class with this name. Class
istreambuf_iterator<charT,traits>::proxy provides a temporary placeholder as the return
value of the post-increment operator (operator++). It keeps the character pointed to by the previous
value of the iterator for some possible future access to get the character.

538

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.5.3.2 istreambuf_iterator constructors

[lib.istreambuf.iterator.cons] 24.5.3.2 istreambuf_iterator constructors

istreambuf_iterator() throw();

1 Effects: Constructs the end-of-stream iterator.

istreambuf_iterator(basic_istream<charT,traits>& s) throw();
istreambuf_iterator(basic_streambuf<charT,traits>* s) throw();

2 Effects: Constructs an istreambuf_iterator<> that uses the basic_streambuf<> object
*(s.rdbuf()), or *s, respectively. Constructs an end-of-stream iterator if s.rdbuf() is null.

istreambuf_iterator(const proxy& p) throw();

3 Effects: Constructs a istreambuf_iterator<> that uses the basic_streambuf<> object pointed
to by the proxy object’s constructor argument p.

[lib.istreambuf.iterator::op*] 24.5.3.3 istreambuf_iterator::operator*

charT operator*() const

1 Returns: The character obtained via the streambuf member sbuf_->sgetc().

[lib.istreambuf.iterator::op++] 24.5.3.4 istreambuf_iterator::operator++

istreambuf_iterator<charT,traits>&
istreambuf_iterator<charT,traits>::operator++();

1 Effects: sbuf_->sbumpc().
2 Returns: *this.

proxy istreambuf_iterator<charT,traits>::operator++(int);

3 Returns: proxy(sbuf_->sbumpc(), sbuf_).

[lib.istreambuf.iterator::equal] 24.5.3.5 istreambuf_iterator::equal

bool equal(istreambuf_iterator<charT,traits>& b) const;

1 Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream, regardless
of what streambuf object they use.

[lib.istreambuf.iterator::op==] 24.5.3.6 operator==

template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

1 Returns: a.equal(b).

[lib.istreambuf.iterator::op!=] 24.5.3.7 operator!=

template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>& a,

const istreambuf_iterator<charT,traits>& b);

1 Returns: !a.equal(b).

539

ISO/IEC 14882:2003(E)  ISO/IEC

24.5.4 Class template ostreambuf_iterator 24 Iterators library

[lib.ostreambuf.iterator] 24.5.4 Class template ostreambuf_iterator

namespace std {
template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator:
public iterator<output_iterator_tag, void, void, void, void> {

public:
typedef charT char_type;
typedef traits traits_type;
typedef basic_streambuf<charT,traits> streambuf_type;
typedef basic_ostream<charT,traits> ostream_type;

public:
ostreambuf_iterator(ostream_type& s) throw();
ostreambuf_iterator(streambuf_type* s) throw();
ostreambuf_iterator& operator=(charT c);

ostreambuf_iterator& operator*();
ostreambuf_iterator& operator++();
ostreambuf_iterator& operator++(int);
bool failed() const throw();

private:
streambuf_type* sbuf_; exposition only

};
}

1 The class template ostreambuf_iterator writes successive characters onto the output stream from
which it was constructed. It is not possible to get a character value out of the output iterator.

[lib.ostreambuf.iter.cons] 24.5.4.1 ostreambuf_iterator constructors

ostreambuf_iterator(ostream_type& s) throw();

1 Requires: s.rdbuf() is not null.
2 Effects: : sbuf_(s.rdbuf()) {}

ostreambuf_iterator(streambuf_type* s) throw();

2a Requires: s is not null.
3 Effects: : sbuf_(s) {}

[lib.ostreambuf.iter.ops] 24.5.4.2 ostreambuf_iterator operations

ostreambuf_iterator<charT,traits>&
operator=(charT c);

1 Effects: If failed() yields false, calls sbuf_->sputc(c); otherwise has no effect.
2 Returns: *this.

ostreambuf_iterator<charT,traits>& operator*();

3 Returns: *this.

540

 ISO/IEC ISO/IEC 14882:2003(E)

24 Iterators library 24.5.4.2 ostreambuf_iterator operations

ostreambuf_iterator<charT,traits>& operator++();
ostreambuf_iterator<charT,traits>& operator++(int);

4 Returns: *this.

bool failed() const throw();

5 Returns: true if in any prior use of member operator=, the call to sbuf_->sputc() returned
traits::eof(); or false otherwise.

541

ISO/IEC 14882:2003(E)  ISO/IEC

542

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25 Algorithms library

25 Algorithms library [lib.algorithms]

1 This clause describes components that C + + programs may use to perform algorithmic operations on contain-
ers (clause 23) and other sequences.

2 The following subclauses describe components for non-modifying sequence operation, modifying sequence
operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Table
77:

Table 77—Algorithms library summary
_ ___

Subclause Header(s)_ __ ___
25.1 Non-modifying sequence operations
25.2 Mutating sequence operations
25.3 Sorting and related operations

<algorithm>

_ ___
25.4 C library algorithms <cstdlib>_ ___ 














Header <algorithm> synopsis

namespace std {
// 25.1, non-modifying sequence operations:
template<class InputIterator, class Function>

Function for_each(InputIterator first, InputIterator last, Function f);
template<class InputIterator, class T>

InputIterator find(InputIterator first, InputIterator last,
const T& value);

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>
ForwardIterator1

find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

543

ISO/IEC 14882:2003(E)  ISO/IEC

25 Algorithms library 25 Algorithms library

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first,

ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>

ForwardIterator adjacent_find(ForwardIterator first,
ForwardIterator last, BinaryPredicate pred);

template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type

count(InputIterator first, InputIterator last, const T& value);
template<class InputIterator, class Predicate>

typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, Predicate pred);

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);

template
<class InputIterator1, class InputIterator2, class BinaryPredicate>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);
template
<class InputIterator1, class InputIterator2, class BinaryPredicate>
bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search

(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1 search
(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,

BinaryPredicate pred);
template<class ForwardIterator, class Size, class T>

ForwardIterator search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value);

template
<class ForwardIterator, class Size, class T, class BinaryPredicate>
ForwardIterator1 search_n(ForwardIterator first, ForwardIterator last,

Size count, const T& value,
BinaryPredicate pred);

544

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25 Algorithms library

// 25.2, modifying sequence operations:
// 25.2.1, copy:
template<class InputIterator, class OutputIterator>

OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2

copy_backward
(BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);

// 25.2.2, swap:
template<class T> void swap(T& a, T& b);
template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator2 swap_ranges(ForwardIterator1 first1,
ForwardIterator1 last1, ForwardIterator2 first2);

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

template<class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator transform(InputIterator first, InputIterator last,

OutputIterator result, UnaryOperation op);
template<class InputIterator1, class InputIterator2, class OutputIterator,

class BinaryOperation>
OutputIterator transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

template<class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value);
template<class ForwardIterator, class Predicate, class T>

void replace_if(ForwardIterator first, ForwardIterator last,
Predicate pred, const T& new_value);

template<class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result,
const T& old_value, const T& new_value);

template<class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(Iterator first, Iterator last,

OutputIterator result,
Predicate pred, const T& new_value);

template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value);

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first, Size n, const T& value);

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,

Generator gen);
template<class OutputIterator, class Size, class Generator>

void generate_n(OutputIterator first, Size n, Generator gen);

545

ISO/IEC 14882:2003(E)  ISO/IEC

25 Algorithms library 25 Algorithms library

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ForwardIterator, class Predicate>

ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
Predicate pred);

template<class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first, InputIterator last,

OutputIterator result, const T& value);
template<class InputIterator, class OutputIterator, class Predicate>

OutputIterator remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);
template<class InputIterator, class OutputIterator>

OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result);

template<class InputIterator, class OutputIterator, class BinaryPredicate>
OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate pred);

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);

template<class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first,

BidirectionalIterator last,
OutputIterator result);

template<class ForwardIterator>
void rotate(ForwardIterator first, ForwardIterator middle,

ForwardIterator last);
template<class ForwardIterator, class OutputIterator>

OutputIterator rotate_copy
(ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last);
template<class RandomAccessIterator, class RandomNumberGenerator>

void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last,
RandomNumberGenerator& rand);

// 25.2.12, partitions:
template<class BidirectionalIterator, class Predicate>

BidirectionalIterator partition(BidirectionalIterator first,
BidirectionalIterator last,
Predicate pred);

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first,

BidirectionalIterator last,
Predicate pred);

546

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25 Algorithms library

// 25.3, sorting and related operations:
// 25.3.1, sorting:
template<class RandomAccessIterator>

void sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last, Compare comp);

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator

partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

// 25.3.3, binary search:
template<class ForwardIterator, class T>

ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

template<class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ForwardIterator, class T, class Compare>

ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

547

ISO/IEC 14882:2003(E)  ISO/IEC

25 Algorithms library 25 Algorithms library

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& value);
template<class ForwardIterator, class T, class Compare>

bool binary_search(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

// 25.3.4, merge:
template<class InputIterator1, class InputIterator2, class OutputIterator>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

// 25.3.5, set operations:
template<class InputIterator1, class InputIterator2>

bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes

(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

548

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25 Algorithms library

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_intersection

(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_intersection
(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_difference

(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator set_difference
(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator

set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>

OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

// 25.3.6, heap operations:
template<class RandomAccessIterator>

void push_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>

void push_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

549

ISO/IEC 14882:2003(E)  ISO/IEC

25 Algorithms library 25 Algorithms library

// 25.3.7, minimum and maximum:
template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);
template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);

template<class ForwardIterator>
ForwardIterator min_element

(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>

ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
Compare comp);

template<class ForwardIterator>
ForwardIterator max_element

(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>

ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
Compare comp);

template<class InputIterator1, class InputIterator2>
bool lexicographical_compare

(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare

(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);

// 25.3.9, permutations
template<class BidirectionalIterator>

bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);
template<class BidirectionalIterator>

bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);
}

3 All of the algorithms are separated from the particular implementations of data structures and are parame-
terized by iterator types. Because of this, they can work with program-defined data structures, as long as
these data structures have iterator types satisfying the assumptions on the algorithms.

4 Throughout this clause, the names of template parameters are used to express type requirements. If an
algorithm’s template parameter is InputIterator, InputIterator1, or InputIterator2, the
actual template argument shall satisfy the requirements of an input iterator (24.1.1). If an algorithm’s tem-
plate parameter is OutputIterator, OutputIterator1, or OutputIterator2, the actual tem-
plate argument shall satisfy the requirements of an output iterator (24.1.2). If an algorithm’s template
parameter is ForwardIterator, ForwardIterator1, or ForwardIterator2, the actual tem-
plate argument shall satisfy the requirements of a forward iterator (24.1.3). If an algorithm’s template
parameter is BidirectionalIterator, BidirectionalIterator1, or
BidirectionalIterator2, the actual template argument shall satisfy the requirements of a bidirec-
tional iterator (24.1.4). If an algorithm’s template parameter is RandomAccessIterator,

550

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25 Algorithms library

RandomAccessIterator1, or RandomAccessIterator2, the actual template argument shall sat-
isfy the requirements of a random-access iterator (24.1.5).

5 If an algorithm’s Effects section says that a value pointed to by any iterator passed as an argument is modi-
fied, then that algorithm has an additional type requirement: The type of that argument shall satisfy the
requirements of a mutable iterator (24.1). [Note: this requirement does not affect arguments that are
declared as OutputIterator, OutputIterator1, or OutputIterator2, because output iterators
must always be mutable. —end note]

6 Both in-place and copying versions are provided for certain algorithms.250) When such a version is pro-
vided for algorithm it is called algorithm_copy. Algorithms that take predicates end with the suffix _if
(which follows the suffix _copy).

7 The Predicate parameter is used whenever an algorithm expects a function object that when applied to
the result of dereferencing the corresponding iterator returns a value testable as true. In other words, if an
algorithm takes Predicate pred as its argument and first as its iterator argument, it should work
correctly in the construct if (pred(*first)){...}. The function object pred shall not apply any
non-constant function through the dereferenced iterator. This function object may be a pointer to function,
or an object of a type with an appropriate function call operator.

8 The BinaryPredicate parameter is used whenever an algorithm expects a function object that when
applied to the result of dereferencing two corresponding iterators or to dereferencing an iterator and type T
when T is part of the signature returns a value testable as true. In other words, if an algorithm takes
BinaryPredicate binary_pred as its argument and first1 and first2 as its iterator argu-
ments, it should work correctly in the construct if (binary_pred(*first1, *first2)){...}.
BinaryPredicate always takes the first iterator type as its first argument, that is, in those cases when T
value is part of the signature, it should work correctly in the context of if
(binary_pred(*first1, value)){...}. binary_pred shall not apply any non-constant
function through the dereferenced iterators.

9 In the description of the algorithms operators + and - are used for some of the iterator categories for which
they do not have to be defined. In these cases the semantics of a+n is the same as that of

{ X tmp = a;
advance(tmp, n);
return tmp;

}

and that of b-a is the same as of

return distance(a, b);

[lib.alg.nonmodifying] 25.1 Non-modifying sequence operations

[lib.alg.foreach] 25.1.1 For each

template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f);

1 Effects: Applies f to the result of dereferencing every iterator in the range [first, last), starting
from first and proceeding to last - 1.

2 Returns: f.
3 Complexity: Applies f exactly last - first times.

250) The decision whether to include a copying version was usually based on complexity considerations. When the cost of doing the
operation dominates the cost of copy, the copying version is not included. For example, sort_copy is not included because the cost
of sorting is much more significant, and users might as well do copy followed by sort.

551

ISO/IEC 14882:2003(E)  ISO/IEC

25.1.1 For each 25 Algorithms library

4 Notes: If f returns a result, the result is ignored.

[lib.alg.find] 25.1.2 Find

template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,

const T& value);

template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,

Predicate pred);

1 Requires: Type T is EqualityComparable (20.1.1).
2 Returns: The first iterator i in the range [first, last) for which the following corresponding condi-

tions hold: *i == value, pred(*i) != false. Returns last if no such iterator is found.
3 Complexity: At most last - first applications of the corresponding predicate.

[lib.alg.find.end] 25.1.3 Find End

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Effects: Finds a subsequence of equal values in a sequence.
2 Returns: The last iterator i in the range [first1, last1 - (last2-first2)) such that for any

non-negative integer n < (last2-first2), the following corresponding conditions hold: *(i+n)
== *(first2+n), pred(*(i+n),*(first2+n)) != false. Returns last1 if no such
iterator is found.

3 Complexity: At most (last2 - first2) * (last1 - first1 - (last2 - first2) +
1) applications of the corresponding predicate.

[lib.alg.find.first.of] 25.1.4 Find First

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Effects: Finds an element that matches one of a set of values.
2 Returns: The first iterator i in the range [first1, last1) such that for some iterator j in the range

[first2, last2) the following conditions hold: *i == *j, pred(*i,*j) != false.
Returns last1 if no such iterator is found.

3 Complexity: At most (last1-first1) * (last2-first2) applications of the corresponding
predicate.

552

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.1.5 Adjacent find

[lib.alg.adjacent.find] 25.1.5 Adjacent find

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);

1 Returns: The first iterator i such that both i and i + 1 are in the range [first, last) for which
the following corresponding conditions hold: *i == *(i + 1), pred(*i, *(i + 1)) !=
false. Returns last if no such iterator is found.

2 Complexity: Exactly find(first, last, value) - first applications of the corresponding
predicate.

[lib.alg.count] 25.1.6 Count

template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type

count(InputIterator first, InputIterator last, const T& value);

template<class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type

count_if(InputIterator first, InputIterator last, Predicate pred);

1 Requires: Type T is EqualityComparable (20.1.1) .
2 Effects: Returns the number of iterators i in the range [first, last) for which the following corre-

sponding conditions hold: *i == value, pred(*i) != false.
3 Complexity: Exactly last - first applications of the corresponding predicate.

[lib.mismatch] 25.1.7 Mismatch

template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, BinaryPredicate pred);

1 Returns: A pair of iterators i and j such that j == first2 + (i - first1) and i is the first iter-
ator in the range [first1, last1) for which the following corresponding conditions hold:

!(*i == *(first2 + (i - first1)))
pred(*i, *(first2 + (i - first1))) == false

Returns the pair last1 and first2 + (last1 - first1) if such an iterator i is not found.
2 Complexity: At most last1 - first1 applications of the corresponding predicate.

553

ISO/IEC 14882:2003(E)  ISO/IEC

25.1.7 Mismatch 25 Algorithms library

[lib.alg.equal] 25.1.8 Equal

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2);

template<class InputIterator1, class InputIterator2,
class BinaryPredicate>

bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

1 Returns: true if for every iterator i in the range [first1, last1) the following corresponding con-
ditions hold: *i == *(first2 + (i - first1)), pred(*i, *(first2 + (i -
first1))) != false. Otherwise, returns false.

2 Complexity: At most last1 - first1 applications of the corresponding predicate.

[lib.alg.search] 25.1.9 Search

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>

ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

1 Effects: Finds a subsequence of equal values in a sequence.
2 Returns: The first iterator i in the range [first1, last1 - (last2 - first2)) such that for

any non-negative integer n less than last2 - first2 the following corresponding conditions hold:
*(i + n) == *(first2 + n), pred(*(i + n), *(first2 + n)) != false.
Returns last1 if no such iterator is found.

3 Complexity: At most (last1 - first1) * (last2 - first2) applications of the correspond-
ing predicate.

template<class ForwardIterator, class Size, class T>
ForwardIterator
search_n(ForwardIterator first, ForwardIterator last, Size count,

const T& value);

template<class ForwardIterator, class Size, class T,
class BinaryPredicate>

ForwardIterator
search_n(ForwardIterator first, ForwardIterator last, Size count,

const T& value, BinaryPredicate pred);

4 Requires: Type T is EqualityComparable (20.1.1), type Size is convertible to integral type (4.7,
12.3).

5 Effects: Finds a subsequence of equal values in a sequence.
6 Returns: The first iterator i in the range [first, last - count) such that for any non-negative

integer n less than count the following corresponding conditions hold: *(i + n) == value,
pred(*(i + n),value) != false. Returns last if no such iterator is found.

7 Complexity: At most (last1 - first1) * count applications of the corresponding predicate.

554

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.2 Mutating sequence operations

[lib.alg.modifying.operations] 25.2 Mutating sequence operations

[lib.alg.copy] 25.2.1 Copy

template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator result);

1 Effects: Copies elements in the range [first, last) into the range [result, result + (last
- first)) starting from first and proceeding to last. For each non-negative integer n <
(last-first), performs *(result + n) = *(first + n).

2 Returns: result + (last - first).
3 Requires: result shall not be in the range [first, last).
4 Complexity: Exactly last - first assignments.

template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2
copy_backward(BidirectionalIterator1 first,

BidirectionalIterator1 last,
BidirectionalIterator2 result);

5 Effects: Copies elements in the range [first, last) into the range [result - (last -
first), result) starting from last - 1 and proceeding to first . 251) For each positive inte-
ger n <= (last - first), performs *(result - n) = *(last - n).

6 Requires: result shall not be in the range [first, last).
7 Returns: result - (last - first).
8 Complexity: Exactly last - first assignments.

[lib.alg.swap] 25.2.2 Swap

template<class T> void swap(T& a, T& b);

1 Requires: Type T is CopyConstructible (20.1.3) and Assignable (23.1).
2 Effects: Exchanges values stored in two locations.

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator2
swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2);

3 Effects: For each non-negative integer n < (last1 - first1) performs: swap(*(first1 +
n), *(first2 + n)).

4 Requires: The two ranges [first1, last1) and [first2, first2 + (last1 - first1))
shall not overlap.

5 Returns: first2 + (last1 - first1).
6 Complexity: Exactly last1 - first1 swaps.

template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

7 Effects: Exchanges the values pointed to by the two iterators a and b.

251) copy_backward (_lib.copy.backward_) should be used instead of copy when last is in the range [result - (last -
first), result).

555

ISO/IEC 14882:2003(E)  ISO/IEC

25.2.3 Transform 25 Algorithms library

[lib.alg.transform] 25.2.3 Transform

template<class InputIterator, class OutputIterator,
class UnaryOperation>

OutputIterator
transform(InputIterator first, InputIterator last,

OutputIterator result, UnaryOperation op);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>

OutputIterator
transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

1 Effects: Assigns through every iterator i in the range [result, result + (last1 - first1))
a new corresponding value equal to op(*(first1 + (i - result)) or
binary_op(*(first1 + (i - result), *(first2 + (i - result))).

2 Requires: op and binary_op shall not have any side effects.
3 Returns: result + (last1 - first1).
4 Complexity: Exactly last1 - first1 applications of op or binary_op
5 Notes: result may be equal to first in case of unary transform, or to first1 or first2 in case of

binary transform.

[lib.alg.replace] 25.2.4 Replace

template<class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,

const T& old_value, const T& new_value);

template<class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first, ForwardIterator last,

Predicate pred, const T& new_value);

1 Requires: Type T is Assignable (23.1) (and, for replace(), EqualityComparable (20.1.1)).
2 Effects: Substitutes elements referred by the iterator i in the range [first, last) with new_value,

when the following corresponding conditions hold: *i == old_value, pred(*i) != false.
3 Complexity: Exactly last - first applications of the corresponding predicate.

template<class InputIterator, class OutputIterator, class T>
OutputIterator
replace_copy(InputIterator first, InputIterator last,

OutputIterator result,
const T& old_value, const T& new_value);

template<class Iterator, class OutputIterator, class Predicate, class T>
OutputIterator

replace_copy_if(Iterator first, Iterator last,
OutputIterator result,
Predicate pred, const T& new_value);

4 Requires: Type T is Assignable (23.1) (and, for replace_copy(), EqualityComparable
(20.1.1). The ranges [first, last) and [result, result + (last - first)) shall
not overlap.

5 Effects: Assigns to every iterator i in the range [result, result + (last - first)) either
new_value or *(first + (i - result)) depending on whether the following corresponding
conditions hold:
(first + (i - result)) == old_value, pred((first + (i - result))) !=
false.

556

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.2.4 Replace

6 Returns: result + (last - first).
7 Complexity: Exactly last - first applications of the corresponding predicate.

[lib.alg.fill] 25.2.5 Fill

template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value);

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first, Size n, const T& value);

1 Requires: Type T is Assignable (23.1), Size is convertible to an integral type (4.7, 12.3).
2 Effects: Assigns value through all the iterators in the range [first, last)or [first, first +

n).
3 Complexity: Exactly last - first (or n) assignments.

[lib.alg.generate] 25.2.6 Generate

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,

Generator gen);

template<class OutputIterator, class Size, class Generator>
void generate_n(OutputIterator first, Size n, Generator gen);

1 Effects: Invokes the function object gen and assigns the return value of gen though all the iterators in the
range [first, last) or [first, first + n).

2 Requires: gen takes no arguments, Size is convertible to an integral type (4.7, 12.3).
3 Complexity: Exactly last - first (or n) invocations of gen and assignments.

[lib.alg.remove] 25.2.7 Remove

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

Predicate pred);

1 Requires: Type T is EqualityComparable (20.1.1).
2 Effects: Eliminates all the elements referred to by iterator i in the range [first, last) for which the

following corresponding conditions hold: *i == value, pred(*i) != false.
3 Returns: The end of the resulting range.
4 Notes: Stable: the relative order of the elements that are not removed is the same as their relative order in

the original range.
5 Complexity: Exactly last - first applications of the corresponding predicate.

template<class InputIterator, class OutputIterator, class T>
OutputIterator
remove_copy(InputIterator first, InputIterator last,

OutputIterator result, const T& value);

template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator

remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

557

ISO/IEC 14882:2003(E)  ISO/IEC

25.2.7 Remove 25 Algorithms library

6 Requires: Type T is EqualityComparable (20.1.1). The ranges [first, last) and [result,
result+(last-first)) shall not overlap.

7 Effects: Copies all the elements referred to by the iterator i in the range [first, last) for which the
following corresponding conditions do not hold: *i == value, pred(*i) != false.

8 Returns: The end of the resulting range.
9 Complexity: Exactly last - first applications of the corresponding predicate.
10 Notes: Stable: the relative order of the elements in the resulting range is the same as their relative order in

the original range.

[lib.alg.unique] 25.2.8 Unique

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);

1 Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by
the iterator i in the range [first, last) for which the following corresponding conditions hold:
*i == *(i - 1) or pred(*i, *(i - 1)) != false

2 Returns: The end of the resulting range.
3 Complexity: If the range (last - first) is not empty, exactly (last - first) - 1 applica-

tions of the corresponding predicate, otherwise no applications of the predicate.

template<class InputIterator, class OutputIterator>
OutputIterator
unique_copy(InputIterator first, InputIterator last,

OutputIterator result);

template<class InputIterator, class OutputIterator,
class BinaryPredicate>

OutputIterator
unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate pred);

4 Requires: The ranges [first, last) and [result, result+(last-first)) shall not over-
lap.

5 Effects: Copies only the first element from every consecutive group of equal elements referred to by the
iterator i in the range [first, last) for which the following corresponding conditions hold: *i
== *(i - 1) or pred(*i, *(i - 1)) != false

6 Returns: The end of the resulting range.
7 Complexity: Exactly last - first applications of the corresponding predicate.

[lib.alg.reverse] 25.2.9 Reverse

template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);

1 Effects: For each non-negative integer i <= (last - first)/2, applies iter_swap to all pairs of
iterators first + i, (last - i) - 1.

2 Complexity: Exactly (last - first)/2 swaps.

558

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.2.9 Reverse

template<class BidirectionalIterator, class OutputIterator>
OutputIterator

reverse_copy(BidirectionalIterator first,
BidirectionalIterator last, OutputIterator result);

3 Effects: Copies the range [first, last) to the range [result, result + (last -
first)) such that for any non-negative integer i < (last - first) the following assignment
takes place: *(result + (last - first) - i) = *(first + i)

4 Requires: The ranges [first, last) and [result, result + (last - first)) shall not
overlap.

5 Returns: result + (last - first).
6 Complexity: Exactly last - first assignments.

[lib.alg.rotate] 25.2.10 Rotate

template<class ForwardIterator>
void rotate(ForwardIterator first, ForwardIterator middle,

ForwardIterator last);

1 Effects: For each non-negative integer i < (last - first), places the element from the position
first + i into position first + (i + (last - middle)) % (last - first).

2 Notes: This is a left rotate.
3 Requires: [first, middle) and [middle, last) are valid ranges.
4 Complexity: At most last - first swaps.

template<class ForwardIterator, class OutputIterator>
OutputIterator
rotate_copy(ForwardIterator first, ForwardIterator middle,

ForwardIterator last, OutputIterator result);

5 Effects: Copies the range [first, last) to the range [result, result + (last -
first)) such that for each non-negative integer i < (last - first) the following assignment
takes place: *(result + i) = *(first + (i + (middle - first)) % (last -
first))

6 Returns: result + (last - first).
7 Requires The ranges [first, last) and [result, result + (last - first)) shall not

overlap.
8 Complexity: Exactly last - first assignments.

[lib.alg.random.shuffle] 25.2.11 Random shuffle

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last);

template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last,
RandomNumberGenerator& rand);

1 Effects: Shuffles the elements in the range [first, last) with uniform distribution.
2 Complexity: Exactly (last - first) - 1 swaps.
3 Notes: random_shuffle() can take a particular random number generating function object rand

such that if n is an argument for rand, with a positive value, that has type
iterator_traits<RandomAccessIterator>::difference_type, then rand(n)
returns a randomly chosen value, which lies in the interval [0, n), and which has a type that is con-
vertible to iterator_traits<RandomAccessIterator>::difference_type.

559

ISO/IEC 14882:2003(E)  ISO/IEC

25.2.11 Random shuffle 25 Algorithms library

[lib.alg.partitions] 25.2.12 Partitions

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator
partition(BidirectionalIterator first,

BidirectionalIterator last, Predicate pred);

1 Effects: Places all the elements in the range [first, last) that satisfy pred before all the elements
that do not satisfy it.

2 Returns: An iterator i such that for any iterator j in the range [first, i), pred(*j) != false,
and for any iterator k in the range [i, last), pred(*j) == false.

3 Complexity: At most (last - first)/2 swaps. Exactly last - first applications of the predi-
cate are done.

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator
stable_partition(BidirectionalIterator first,

BidirectionalIterator last, Predicate pred);

4 Effects: Places all the elements in the range [first, last) that satisfy pred before all the elements
that do not satisfy it.

5 Returns: An iterator i such that for any iterator j in the range [first, i), pred(*j) != false,
and for any iterator k in the range [i, last), pred(*j) == false. The relative order of the
elements in both groups is preserved.

6 Complexity: At most (last - first) * log(last - first) swaps, but only linear number of
swaps if there is enough extra memory. Exactly last - first applications of the predicate.

[lib.alg.sorting] 25.3 Sorting and related operations

1 All the operations in 25.3 have two versions: one that takes a function object of type Compare and one
that uses an operator<.

2 Compare is used as a function object which returns true if the first argument is less than the second, and
false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is
assumed that comp will not apply any non-constant function through the dereferenced iterator.

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is,
comp(*i, *j) != false defaults to *i < *j != false. For the algorithms to work correctly,
comp has to induce a strict weak ordering on the values.

4 The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term
weak to requirements that are not as strong as those for a total ordering, but stronger than those for a partial
ordering. If we define equiv(a, b) as !comp(a, b) && !comp(b, a), then the requirements
are that comp and equiv both be transitive relations:

— comp(a, b) && comp(b, c) implies comp(a, c)

— equiv(a, b) && equiv(b, c) implies equiv(a, c) [Note: Under these conditions, it can
be shown that

— equiv is an equivalence relation

— comp induces a well-defined relation on the equivalence classes determined by equiv

— The induced relation is a strict total ordering. —end note]

5 A sequence is sorted with respect to a comparator comp if for any iterator i pointing to the sequence and
any non-negative integer n such that i + n is a valid iterator pointing to an element of the sequence,
comp(*(i + n), *i) == false.

6 In the descriptions of the functions that deal with ordering relationships we frequently use a notion of
equivalence to describe concepts such as stability. The equivalence to which we refer is not necessarily an

560

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.3 Sorting and related operations

operator==, but an equivalence relation induced by the strict weak ordering. That is, two elements a
and b are considered equivalent if and only if !(a < b) && !(b < a).

[lib.alg.sort] 25.3.1 Sorting

[lib.sort] 25.3.1.1 sort

template<class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Sorts the elements in the range [first, last).
2 Complexity: Approximately N log N (where N == last - first) comparisons on the average.252)

[lib.stable.sort] 25.3.1.2 stable_sort

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Sorts the elements in the range [first, last).
2 Complexity: It does at most N(log N)2 (where N == last - first) comparisons; if enough extra

memory is available, it is N log N.
3 Notes: Stable: the relative order of the equivalent elements is preserved.

[lib.partial.sort] 25.3.1.3 partial_sort

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp);

1 Effects: Places the first middle - first sorted elements from the range [first, last) into the
range [first, middle). The rest of the elements in the range [middle, last) are placed in
an unspecified order.

2 Complexity: It takes approximately (last - first) * log(middle - first) comparisons.

252) If the worst case behavior is important stable_sort() (25.3.1.2) or partial_sort() (25.3.1.3) should be used.

561

ISO/IEC 14882:2003(E)  ISO/IEC

25.3.1.3 partial_sort 25 Algorithms library

[lib.partial.sort.copy] 25.3.1.4 partial_sort_copy

template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last);

template<class InputIterator, class RandomAccessIterator,
class Compare>

RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

1 Effects: Places the first min(last - first, result_last - result_first) sorted ele-
ments into the range [result_first, result_first + min(last - first,
result_last - result_first)).

2 Returns: The smaller of: result_last or result_first + (last - first)
3 Complexity: Approximately (last - first) * log(min(last - first, result_last

- result_first)) comparisons.

[lib.alg.nth.element] 25.3.2 Nth element

template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);

1 After nth_element the element in the position pointed to by nth is the element that would be in that
position if the whole range were sorted. Also for any iterator i in the range [first, nth) and any iter-
ator j in the range [nth, last) it holds that: !(*i > *j) or comp(*j, *i) == false.

2 Complexity: Linear on average.

[lib.alg.binary.search] 25.3.3 Binary search

1 All of the algorithms in this section are versions of binary search and assume that the sequence being
searched is in order according to the implied or explicit comparison function. They work on non-random
access iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators.
They are especially appropriate for random access iterators, because these algorithms do a logarithmic num-
ber of steps through the data structure. For non-random access iterators they execute a linear number of
steps.

[lib.lower.bound] 25.3.3.1 lower_bound

template<class ForwardIterator, class T>
ForwardIterator
lower_bound(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

562

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.3.3.1 lower_bound

1 Requires: Type T is LessThanComparable (20.1.2).
2 Effects: Finds the first position into which value can be inserted without violating the ordering.
3 Returns: The furthermost iterator i in the range [first, last] such that for any iterator j in the

range [first, i) the following corresponding conditions hold: *j < value or comp(*j,
value) != false

4 Complexity: At most log(last - first) + 1 comparisons.

[lib.upper.bound] 25.3.3.2 upper_bound

template<class ForwardIterator, class T>
ForwardIterator
upper_bound(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
ForwardIterator

upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);

1 Requires: Type T is LessThanComparable (20.1.2).
2 Effects: Finds the furthermost position into which value can be inserted without violating the ordering.
3 Returns: The furthermost iterator i in the range [first, last) such that for any iterator j in the

range [first, i) the following corresponding conditions hold: !(value < *j) or
comp(value, *j) == false

4 Complexity: At most log(last - first) + 1 comparisons.

[lib.equal.range] 25.3.3.3 equal_range

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first,

ForwardIterator last, const T& value);

template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,
ForwardIterator last, const T& value,
Compare comp);

1 Requires: Type T is LessThanComparable (20.1.2).
2 Effects: Finds the largest subrange [i, j) such that the value can be inserted at any iterator k in it with-

out violating the ordering. k satisfies the corresponding conditions: !(*k < value) &&
!(value < *k) or comp(*k, value) == false && comp(value, *k) == false.

3 Complexity: At most 2 * log(last - first) + 1 comparisons.

[lib.binary.search] 25.3.3.4 binary_search

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

1 Requires: Type T is LessThanComparable (20.1.2).
2 Returns: true if there is an iterator i in the range [first, last) that satisfies the corresponding

conditions: !(*i < value) && !(value < *i) or comp(*i, value) == false &&
comp(value, *i) == false.

563

ISO/IEC 14882:2003(E)  ISO/IEC

25.3.3.4 binary_search 25 Algorithms library

3 Complexity: At most log(last - first) + 2 comparisons.

[lib.alg.merge] 25.3.4 Merge

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Merges two sorted ranges [first1, last1) and [first2, last2) into the range
[result, result + (last1 - first1) + (last2 - first2)).

2 The resulting range shall not overlap with either of the original ranges. The list will be sorted in non-
decreasing order according to the ordering defined by comp; that is, for every iterator i in [first,
last) other than first, the condition *i < *(i - 1) or comp(*i, *(i - 1)) will be false.

3 Returns: result + (last1 - first1) + (last2 - first2).
4 Complexity: At most (last1 - first1) + (last2 - first2) - 1 comparisons.
5 Notes: Stable: for equivalent elements in the two ranges, the elements from the first range always precede

the elements from the second.

template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

6 Effects: Merges two sorted consecutive ranges [first, middle) and [middle, last), putting
the result of the merge into the range [first, last). The resulting range will be in non-decreasing
order; that is, for every iterator i in [first, last) other than first, the condition *i < *(i -
1) or, respectively, comp(*i, *(i - 1)) will be false.

7 Complexity: When enough additional memory is available, (last - first) - 1 comparisons. If no
additional memory is available, an algorithm with complexity N log N (where N is equal to last -
first) may be used.

8 Notes: Stable: for equivalent elements in the two ranges, the elements from the first range always precede
the elements from the second.

[lib.alg.set.operations] 25.3.5 Set operations on sorted structures

1 This section defines all the basic set operations on sorted structures. They also work with multisets
(23.3.4) containing multiple copies of equivalent elements. The semantics of the set operations are general-
ized to multisets in a standard way by defining union() to contain the maximum number of occur-
rences of every element, intersection() to contain the minimum, and so on.

564

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.3.5.1 includes

[lib.includes] 25.3.5.1 includes

template<class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
Compare comp);

1 Returns: true if every element in the range [first2, last2) is contained in the range [first1,
last1). Returns false otherwise.

2 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.set.union] 25.3.5.2 set_union

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Constructs a sorted union of the elements from the two ranges; that is, the set of elements that are
present in one or both of the ranges.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.
4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
5 Notes: Stable: if an element is present in both ranges, the one from the first range is copied.

[lib.set.intersection] 25.3.5.3 set_intersection

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements
that are present in both of the ranges.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.

565

ISO/IEC 14882:2003(E)  ISO/IEC

25.3.5.3 set_intersection 25 Algorithms library

4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
5 Notes: Stable, that is, if an element is present in both ranges, the one from the first range is copied.

[lib.set.difference] 25.3.5.4 set_difference

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Copies the elements of the range [first1, last1) which are not present in the range
[first2, last2) to the range beginning at result. The elements in the constructed range are
sorted.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.
4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.set.symmetric.difference] 25.3.5.5 set_symmetric_difference

template<class InputIterator1, class InputIterator2,
class OutputIterator>

OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result);

template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>

OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

1 Effects: Copies the elements of the range [first1, last1) which are not present in the range
[first2, last2), and the elements of the range [first2, last2) which are not present in
the range [first1, last1) to the range beginning at result. The elements in the constructed
range are sorted.

2 Requires: The resulting range shall not overlap with either of the original ranges.
3 Returns: The end of the constructed range.
4 Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.

[lib.alg.heap.operations] 25.3.6 Heap operations

1 A heap is a particular organization of elements in a range between two random access iterators [a, b).
Its two key properties are:

(1) There is no element greater than *a in the range and

(2) *a may be removed by pop_heap(), or a new element added by push_heap(), in O(log N) time.

566

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.3.6 Heap operations

2 These properties make heaps useful as priority queues.

3 make_heap() converts a range into a heap and sort_heap() turns a heap into a sorted sequence.

[lib.push.heap] 25.3.6.1 push_heap

template<class RandomAccessIterator>
void push_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Requires: The range [first, last - 1) shall be a valid heap.
2 Effects: Places the value in the location last - 1 into the resulting heap [first, last).
3 Complexity: At most log(last - first) comparisons.

[lib.pop.heap] 25.3.6.2 pop_heap

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Requires: The range [first, last) shall be a valid heap.
2 Effects: Swaps the value in the location first with the value in the location last - 1 and makes

[first, last - 1) into a heap.
3 Complexity: At most 2 * log(last - first) comparisons.

[lib.make.heap] 25.3.6.3 make_heap

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Constructs a heap out of the range [first, last).
2 Complexity: At most 3 * (last - first) comparisons.

[lib.sort.heap] 25.3.6.4 sort_heap

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

1 Effects: Sorts elements in the heap [first, last).
2 Complexity: At most N log N comparisons (where N == last - first).
3 Notes: Not stable.

567

ISO/IEC 14882:2003(E)  ISO/IEC

25.3.7 Minimum and maximum 25 Algorithms library

[lib.alg.min.max] 25.3.7 Minimum and maximum

template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);

1 Requires: Type T is LessThanComparable (20.1.2) and CopyConstructible (20.1.3).
2 Returns: The smaller value.
3 Notes: Returns the first argument when the arguments are equivalent.

template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);

4 Requires: Type T is LessThanComparable (20.1.2) and CopyConstructible (20.1.3).
5 Returns: The larger value.
6 Notes: Returns the first argument when the arguments are equivalent.

template<class ForwardIterator>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Compare comp);

7 Returns: The first iterator i in the range [first, last) such that for any iterator j in the range
[first, last) the following corresponding conditions hold: !(*j < *i) or comp(*j, *i)
== false. Returns last if first == last.

8 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding compar-
isons.

template<class ForwardIterator>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Compare comp);

9 Returns: The first iterator i in the range [first, last) such that for any iterator j in the range
[first, last) the following corresponding conditions hold: !(*i < *j) or comp(*i, *j)
== false. Returns last if first == last.

10 Complexity: Exactly max((last - first) - 1, 0) applications of the corresponding compar-
isons.

[lib.alg.lex.comparison] 25.3.8 Lexicographical comparison

template<class InputIterator1, class InputIterator2>
bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

template<class InputIterator1, class InputIterator2, class Compare>
bool

lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);

1 Returns: true if the sequence of elements defined by the range [first1, last1) is lexicographi-
cally less than the sequence of elements defined by the range [first2, last2).
Returns false otherwise.

568

 ISO/IEC ISO/IEC 14882:2003(E)

25 Algorithms library 25.3.8 Lexicographical comparison

2 Complexity: At most 2*min((last1 - first1), (last2 - first2)) applications of the
corresponding comparison.

3 Notes: If two sequences have the same number of elements and their corresponding elements are equiva-
lent, then neither sequence is lexicographically less than the other. If one sequence is a prefix of the
other, then the shorter sequence is lexicographically less than the longer sequence. Otherwise, the lexi-
cographical comparison of the sequences yields the same result as the comparison of the first corre-
sponding pair of elements that are not equivalent.

for (; first1 != last1 && first2 != last2 ; ++first1, ++first2) {
if (*first1 < *first2) return true;
if (*first2 < *first1) return false;

}
return first1 == last1 && first2 != last2;

[lib.alg.permutation.generators] 25.3.9 Permutation generators

template<class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

1 Effects: Takes a sequence defined by the range [first, last) and transforms it into the next permu-
tation. The next permutation is found by assuming that the set of all permutations is lexicographically
sorted with respect to operator< or comp. If such a permutation exists, it returns true. Otherwise,
it transforms the sequence into the smallest permutation, that is, the ascendingly sorted one, and returns
false.

2 Complexity: At most (last - first)/2 swaps.

template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last, Compare comp);

3 Effects: Takes a sequence defined by the range [first, last) and transforms it into the previous per-
mutation. The previous permutation is found by assuming that the set of all permutations is lexico-
graphically sorted with respect to operator< or comp.

4 Returns: true if such a permutation exists. Otherwise, it transforms the sequence into the largest permu-
tation, that is, the descendingly sorted one, and returns false.

5 Complexity: At most (last - first)/2 swaps.

[lib.alg.c.library] 25.4 C library algorithms

1 Header <cstdlib> (partial, Table 78):

Table 78—Header <cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Functions: bsearch qsort_ ______________________________ 








2 The contents are the same as the Standard C library header <stdlib.h> with the following exceptions:

569

ISO/IEC 14882:2003(E)  ISO/IEC

25.4 C library algorithms 25 Algorithms library

3 The function signature:

bsearch(const void *, const void *, size_t, size_t,
int (*)(const void *, const void *));

is replaced by the two declarations:

extern "C" void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

extern "C++" void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

both of which have the same behavior as the original declaration.

4 The function signature:

qsort(void *, size_t, size_t,
int (*)(const void *, const void *));

is replaced by the two declarations:

extern "C" void qsort(void* base, size_t nmemb, size_t size,
int (*compar)(const void*, const void*));

extern "C++" void qsort(void* base, size_t nmemb, size_t size,
int (*compar)(const void*, const void*));

[Note: Because the function argument compar() may throw an exception, bsearch() and qsort()
are allowed to propagate the exception (17.4.4.8). —end note]

SEE ALSO: ISO C subclause 7.10.5.

570

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library [lib.numerics]

1 This clause describes components that C + + programs may use to perform seminumerical operations.

2 The following subclauses describe components for complex number types, numeric (n-at-a-time) arrays,
generalized numeric algorithms, and facilities included from the ISO C library, as summarized in Table 79:

Table 79—Numerics library summary
_ __

Subclause Header(s)_ ___ __
26.1 Requirements_ __
26.2 Complex numbers <complex>_ __
26.3 Numeric arrays <valarray>_ __
26.4 Generalized numeric operations <numeric>_ __

<cmath>
26.5 C library

<cstdlib>_ __ 



















[lib.numeric.requirements] 26.1 Numeric type requirements

1 The complex and valarray components are parameterized by the type of information they contain and
manipulate. A C + + program shall instantiate these components only with a type T that satisfies the follow-
ing requirements:253)

— T is not an abstract class (it has no pure virtual member functions);

— T is not a reference type;

— T is not cv-qualified;

— If T is a class, it has a public default constructor;

— If T is a class, it has a public copy constructor with the signature T::T(const T&)

— If T is a class, it has a public destructor;

— If T is a class, it has a public assignment operator whose signature is either
T& T::operator=(const T&) or T& T::operator=(T)

— If T is a class, its assignment operator, copy and default constructors, and destructor shall correspond to
each other in the following sense: Initialization of raw storage using the default constructor, followed by
assignment, is semantically equivalent to initialization of raw storage using the copy constructor.
Destruction of an object, followed by initialization of its raw storage using the copy constructor, is
semantically equivalent to assignment to the original object.
[Note: This rule states that there shall not be any subtle differences in the semantics of initialization ver-
sus assignment. This gives an implementation considerable flexibility in how arrays are initialized.
[Example: An implementation is allowed to initialize a valarray by allocating storage using the new
operator (which implies a call to the default constructor for each element) and then assigning each ele-
ment its value. Or the implementation can allocate raw storage and use the copy constructor to initialize
each element. —end example]
If the distinction between initialization and assignment is important for a class, or if it fails to satisfy
any of the other conditions listed above, the programmer should use vector (23.2.4) instead of

253) In other words, value types. These include built-in arithmetic types, pointers, the library class complex, and instantiations of
valarray for value types.

571

ISO/IEC 14882:2003(E)  ISO/IEC

26.1 Numeric type requirements 26 Numerics library

valarray for that class; —end note]

— If T is a class, it does not overload unary operator&.

2 If any operation on T throws an exception the effects are undefined.

3 In addition, many member and related functions of valarray<T> can be successfully instantiated and
will exhibit well-defined behavior if and only if T satisfies additional requirements specified for each such
member or related function.

4 [Example: It is valid to instantiate valarray<complex>, but operator>() will not be successfully
instantiated for valarray<complex> operands, since complex does not have any ordering operators.
—end example]

[lib.complex.numbers] 26.2 Complex numbers

1 The header <complex> defines a class template, and numerous functions for representing and manipulat-
ing complex numbers.

2 The effect of instantiating the template complex for any type other than float, double or long double is
unspecified.

3 If the result of a function is not mathematically defined or not in the range of representable values for its
type, the behavior is undefined.

[lib.complex.synopsis] 26.2.1 Header <complex> synopsis

namespace std {
template<class T> class complex;
template<> class complex<float>;
template<> class complex<double>;
template<> class complex<long double>;

// 26.2.6 operators:
template<class T>

complex<T> operator+(const complex<T>&, const complex<T>&);
template<class T> complex<T> operator+(const complex<T>&, const T&);
template<class T> complex<T> operator+(const T&, const complex<T>&);

template<class T> complex<T> operator-
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator-(const complex<T>&, const T&);
template<class T> complex<T> operator-(const T&, const complex<T>&);

template<class T> complex<T> operator*
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator*(const complex<T>&, const T&);
template<class T> complex<T> operator*(const T&, const complex<T>&);

template<class T> complex<T> operator/
(const complex<T>&, const complex<T>&);

template<class T> complex<T> operator/(const complex<T>&, const T&);
template<class T> complex<T> operator/(const T&, const complex<T>&);

template<class T> complex<T> operator+(const complex<T>&);
template<class T> complex<T> operator-(const complex<T>&);

template<class T> bool operator==
(const complex<T>&, const complex<T>&);

template<class T> bool operator==(const complex<T>&, const T&);
template<class T> bool operator==(const T&, const complex<T>&);

572

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.2.1 Header <complex> synopsis

template<class T> bool operator!=(const complex<T>&, const complex<T>&);
template<class T> bool operator!=(const complex<T>&, const T&);
template<class T> bool operator!=(const T&, const complex<T>&);

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>&, complex<T>&);

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>&, const complex<T>&);

// 26.2.7 values:

template<class T> T real(const complex<T>&);
template<class T> T imag(const complex<T>&);

template<class T> T abs(const complex<T>&);
template<class T> T arg(const complex<T>&);
template<class T> T norm(const complex<T>&);

template<class T> complex<T> conj(const complex<T>&);
template<class T> complex<T> polar(const T& rho, const T& theta = 0);

// 26.2.8 transcendentals:
template<class T> complex<T> cos (const complex<T>&);
template<class T> complex<T> cosh (const complex<T>&);
template<class T> complex<T> exp (const complex<T>&);
template<class T> complex<T> log (const complex<T>&);
template<class T> complex<T> log10(const complex<T>&);

template<class T> complex<T> pow(const complex<T>&, int);
template<class T> complex<T> pow(const complex<T>&, const T&);
template<class T> complex<T> pow(const complex<T>&, const complex<T>&);
template<class T> complex<T> pow(const T&, const complex<T>&);

template<class T> complex<T> sin (const complex<T>&);
template<class T> complex<T> sinh (const complex<T>&);
template<class T> complex<T> sqrt (const complex<T>&);
template<class T> complex<T> tan (const complex<T>&);
template<class T> complex<T> tanh (const complex<T>&);

}

[lib.complex] 26.2.2 Class template complex

namespace std {
template<class T>
class complex {
public:
typedef T value_type;

complex(const T& re = T(), const T& im = T());
complex(const complex&);
template<class X> complex(const complex<X>&);

573

ISO/IEC 14882:2003(E)  ISO/IEC

26.2.2 Class template complex 26 Numerics library

T real() const;
T imag() const;

complex<T>& operator= (const T&);
complex<T>& operator+=(const T&);
complex<T>& operator-=(const T&);
complex<T>& operator*=(const T&);
complex<T>& operator/=(const T&);

complex& operator=(const complex&);
template<class X> complex<T>& operator= (const complex<X>&);
template<class X> complex<T>& operator+=(const complex<X>&);
template<class X> complex<T>& operator-=(const complex<X>&);
template<class X> complex<T>& operator*=(const complex<X>&);
template<class X> complex<T>& operator/=(const complex<X>&);

};

}

1 The class complex describes an object that can store the Cartesian components, real() and imag(), of
a complex number.

[lib.complex.special] 26.2.3 complex specializations

template<> class complex<float> {
public:
typedef float value_type;

complex(float re = 0.0f, float im = 0.0f);
explicit complex(const complex<double>&);
explicit complex(const complex<long double>&);

float real() const;
float imag() const;

complex<float>& operator= (float);
complex<float>& operator+=(float);
complex<float>& operator-=(float);
complex<float>& operator*=(float);
complex<float>& operator/=(float);

complex<float>& operator=(const complex<float>&);
template<class X> complex<float>& operator= (const complex<X>&);
template<class X> complex<float>& operator+=(const complex<X>&);
template<class X> complex<float>& operator-=(const complex<X>&);
template<class X> complex<float>& operator*=(const complex<X>&);
template<class X> complex<float>& operator/=(const complex<X>&);

};

template<> class complex<double> {
public:

typedef double value_type;

complex(double re = 0.0, double im = 0.0);
complex(const complex<float>&);
explicit complex(const complex<long double>&);

574

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.2.3 complex specializations

double real() const;
double imag() const;

complex<double>& operator= (double);
complex<double>& operator+=(double);
complex<double>& operator-=(double);
complex<double>& operator*=(double);
complex<double>& operator/=(double);

complex<double>& operator=(const complex<double>&);
template<class X> complex<double>& operator= (const complex<X>&);
template<class X> complex<double>& operator+=(const complex<X>&);
template<class X> complex<double>& operator-=(const complex<X>&);
template<class X> complex<double>& operator*=(const complex<X>&);
template<class X> complex<double>& operator/=(const complex<X>&);

};

template<> class complex<long double> {
public:

typedef long double value_type;

complex(long double re = 0.0L, long double im = 0.0L);
complex(const complex<float>&);
complex(const complex<double>&);

long double real() const;
long double imag() const;

complex<long double>& operator=(const complex<long double>&);
complex<long double>& operator= (long double);
complex<long double>& operator+=(long double);
complex<long double>& operator-=(long double);
complex<long double>& operator*=(long double);
complex<long double>& operator/=(long double);

template<class X> complex<long double>& operator= (const complex<X>&);
template<class X> complex<long double>& operator+=(const complex<X>&);
template<class X> complex<long double>& operator-=(const complex<X>&);
template<class X> complex<long double>& operator*=(const complex<X>&);
template<class X> complex<long double>& operator/=(const complex<X>&);

};

[lib.complex.members] 26.2.4 complex member functions

template<class T> complex(const T& re = T(), const T& im = T());

1 Effects: Constructs an object of class complex.
2 Postcondition: real() == re && imag() == im.

[lib.complex.member.ops] 26.2.5 complex member operators

template <class T> complex<T>& operator+=(const T& rhs);

1 Effects: Adds the scalar value rhs to the real part of the complex value *this and stores the result in the
real part of *this, leaving the imaginary part unchanged.

2 Returns: *this.

575

ISO/IEC 14882:2003(E)  ISO/IEC

26.2.5 complex member operators 26 Numerics library

template <class T> complex<T>& operator-=(const T& rhs);

3 Effects: Subtracts the scalar value rhs from the real part of the complex value *this and stores the
result in the real part of *this, leaving the imaginary part unchanged.

4 Returns: *this.

template <class T> complex<T>& operator*=(const T& rhs);

5 Effects: Multiplies the scalar value rhs by the complex value *this and stores the result in *this.
6 Returns: *this.

template <class T> complex<T>& operator/=(const T& rhs);

7 Effects: Divides the scalar value rhs into the complex value *this and stores the result in *this.
8 Returns: *this.

template<class T> complex<T>& operator+=(const complex<T>& rhs);

9 Effects: Adds the complex value rhs to the complex value *this and stores the sum in *this.
10 Returns: *this.

template<class T> complex<T>& operator-=(const complex<T>& rhs);

11 Effects: Subtracts the complex value rhs from the complex value *this and stores the difference in
*this.

12 Returns: *this.

template<class T> complex<T>& operator*=(const complex<T>& rhs);

13 Effects: Multiplies the complex value rhs by the complex value *this and stores the product in *this.
14 Returns: *this.

template<class T> complex<T>& operator/=(const complex<T>& rhs);

15 Effects: Divides the complex value rhs into the complex value *this and stores the quotient in *this.
16 Returns: *this.

[lib.complex.ops] 26.2.6 complex non-member operations

template<class T> complex<T> operator+(const complex<T>& lhs);

1 Notes: unary operator.
2 Returns: complex<T>(lhs).

template<class T>
complex<T> operator+(const complex<T>& lhs, const complex<T>& rhs);

template<class T> complex<T> operator+(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator+(const T& lhs, const complex<T>& rhs);

3 Returns: complex<T>(lhs) += rhs.

template<class T> complex<T> operator-(const complex<T>& lhs);

4 Notes: unary operator.
5 Returns: complex<T>(-lhs.real(),-lhs.imag()).

576

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.2.6 complex non-member operations

template<class T>
complex<T> operator-(const complex<T>& lhs, const complex<T>& rhs);

template<class T> complex<T> operator-(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator-(const T& lhs, const complex<T>& rhs);

6 Returns: complex<T>(lhs) -= rhs.

template<class T>
complex<T> operator*(const complex<T>& lhs, const complex<T>& rhs);

template<class T> complex<T> operator*(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator*(const T& lhs, const complex<T>& rhs);

7 Returns: complex<T>(lhs) *= rhs.

template<class T>
complex<T> operator/(const complex<T>& lhs, const complex<T>& rhs);

template<class T> complex<T> operator/(const complex<T>& lhs, const T& rhs);
template<class T> complex<T> operator/(const T& lhs, const complex<T>& rhs);

8 Returns: complex<T>(lhs) /= rhs.

template<class T>
bool operator==(const complex<T>& lhs, const complex<T>& rhs);

template<class T> bool operator==(const complex<T>& lhs, const T& rhs);
template<class T> bool operator==(const T& lhs, const complex<T>& rhs);

9 Returns: lhs.real() == rhs.real() && lhs.imag() == rhs.imag().
10 Notes: The imaginary part is assumed to be T(), or 0.0, for the T arguments.

template<class T>
bool operator!=(const complex<T>& lhs, const complex<T>& rhs);

template<class T> bool operator!=(const complex<T>& lhs, const T& rhs);
template<class T> bool operator!=(const T& lhs, const complex<T>& rhs);

11 Returns: rhs.real() != lhs.real() || rhs.imag() != lhs.imag().

template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& x);

12 Effects: Extracts a complex number x of the form: u, (u), or (u,v), where u is the real part and v is the
imaginary part (27.6.1.2).

13 Requires: The input values be convertible to T.
If bad input is encountered, calls is.setstate(ios::failbit) (which may throw
ios::failure (27.4.4.3).

14 Returns: is.
14a Notes: This extraction is performed as a series of simpler extractions. Therefore, the skipping of white-

space is specified to be the same for each of the simpler extractions.

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x);

15 Effects: inserts the complex number x onto the stream o as if it were implemented as follows:

577

ISO/IEC 14882:2003(E)  ISO/IEC

26.2.6 complex non-member operations 26 Numerics library

template<class T, class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT, traits>& o, const complex<T>& x)
{

basic_ostringstream<charT, traits> s;
s.flags(o.flags());
s.imbue(o.getloc());
s.precision(o.precision());
s << ’(’ << x.real() << "," << x.imag() << ’)’;
return o << s.str();

}

[lib.complex.value.ops] 26.2.7 complex value operations

template<class T> T real(const complex<T>& x);

1 Returns: x.real().

template<class T> T imag(const complex<T>& x);

2 Returns: x.imag().

template<class T> T abs(const complex<T>& x);

3 Returns: the magnitude of x.

template<class T> T arg(const complex<T>& x);

4 Returns: the phase angle of x, or atan2(imag(x), real(x)).

template<class T> T norm(const complex<T>& x);

5 Returns: the squared magnitude of x.

template<class T> complex<T> conj(const complex<T>& x);

6 Returns: the complex conjugate of x.

template<class T> complex<T> polar(const T& rho, const T& theta = 0);

7 Returns: the complex value corresponding to a complex number whose magnitude is rho and whose
phase angle is theta.

[lib.complex.transcendentals] 26.2.8 complex transcendentals

template<class T> complex<T> cos(const complex<T>& x);

1 Returns: the complex cosine of x.

template<class T> complex<T> cosh(const complex<T>& x);

2 Returns: the complex hyperbolic cosine of x.

template<class T> complex<T> exp(const complex<T>& x);

3 Returns: the complex base e exponential of x.

578

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.2.8 complex transcendentals

template<class T> complex<T> log(const complex<T>& x);

4 Notes: the branch cuts are along the negative real axis.
5 Returns: the complex natural (base e) logarithm of x, in the range of a strip mathematically unbounded

along the real axis and in the interval [-i times pi, i times pi] along the imaginary axis. When x is a
negative real number, imag(log(x)) is pi.

template<class T> complex<T> log10(const complex<T>& x);

6 Notes: the branch cuts are along the negative real axis.
7 Returns: the complex common (base 10)logarithm of x, defined as log(x)/log(10).

template<class T> complex<T> pow(const complex<T>& x, int y);
template<class T>

complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow (const complex<T>& x, const T& y);
template<class T> complex<T> pow (const T& x, const complex<T>& y);

8 Notes: the branch cuts are along the negative real axis.
9 Returns: the complex power of base x raised to the y–th power, defined as exp(y*log(x)). The value

returned for pow(0,0) is implementation-defined.

template<class T> complex<T> sin (const complex<T>& x);

10 Returns: the complex sine of x.

template<class T> complex<T> sinh (const complex<T>& x);

11 Returns: the complex hyperbolic sine of x.

template<class T> complex<T> sqrt (const complex<T>& x);

12 Notes: the branch cuts are along the negative real axis.
13 Returns: the complex square root of x, in the range of the right half-plane. If the argument is a negative

real number, the value returned lies on the positive imaginary axis.

template<class T> complex<T> tan (const complex<T>& x);

14 Returns: the complex tangent of x.

template<class T> complex<T> tanh (const complex<T>& x);

15 Returns: the complex hyperbolic tangent of x.

[lib.numarray] 26.3 Numeric arrays

[lib.valarray.synopsis] 26.3.1 Header <valarray> synopsis

namespace std {
template<class T> class valarray; // An array of type T
class slice; // a BLAS-like slice out of an array
template<class T> class slice_array;
class gslice; // a generalized slice out of an array
template<class T> class gslice_array;
template<class T> class mask_array; // a masked array
template<class T> class indirect_array; // an indirected array

template<class T> valarray<T> operator*
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);

579

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.1 Header <valarray> synopsis 26 Numerics library

template<class T> valarray<T> operator/
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);

template<class T> valarray<T> operator%
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);

template<class T> valarray<T> operator+
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);

template<class T> valarray<T> operator-
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);

template<class T> valarray<T> operatorˆ
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operatorˆ (const valarray<T>&, const T&);
template<class T> valarray<T> operatorˆ (const T&, const valarray<T>&);

template<class T> valarray<T> operator&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);

template<class T> valarray<T> operator|
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);

template<class T> valarray<T> operator<<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);

template<class T> valarray<T> operator>>
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);

template<class T> valarray<bool> operator&&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);

template<class T> valarray<bool> operator||
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);

580

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.1 Header <valarray> synopsis

template<class T>
valarray<bool> operator==(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);

template<class T>
valarray<bool> operator< (const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T>

valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T>

valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);

template<class T> valarray<T> atan2
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);

template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);

template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow(const valarray<T>&, const T&);
template<class T> valarray<T> pow(const T&, const valarray<T>&);

template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

}

1 The header <valarray> defines five class templates (valarray, slice_array, gslice_array,
mask_array, and indirect_array), two classes (slice and gslice), and a series of related func-
tion templates for representing and manipulating arrays of values.

2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations
on these classes to be optimized.

581

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.1 Header <valarray> synopsis 26 Numerics library

3 Any function returning a valarray<T> is permitted to return an object of another type, provided all the
const member functions of valarray<T> are also applicable to this type. This return type shall not add
more than two levels of template nesting over the most deeply nested argument type.254)

4 Implementations introducing such replacement types shall provide additional functions and operators as
follows:

— for every function taking a const valarray<T>&, identical functions taking the replacement types
shall be added;

— for every function taking two const valarray<T>& arguments, identical functions taking every
combination of const valarray<T>& and replacement types shall be added.

5 In particular, an implementation shall allow a valarray<T> to be constructed from such replacement
types and shall allow assignments and computed assignments of such types to valarray<T>,
slice_array<T>, gslice_array<T>, mask_array<T> and indirect_array<T> objects.

6 These library functions are permitted to throw a bad_alloc (18.4.2.1) exception if there are not sufficient
resources available to carry out the operation. Note that the exception is not mandated.

[lib.template.valarray] 26.3.2 Class template valarray

namespace std {
template<class T> class valarray {
public:
typedef T value_type;

// 26.3.2.1 construct/destroy:
valarray();
explicit valarray(size_t);
valarray(const T&, size_t);
valarray(const T*, size_t);
valarray(const valarray&);
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

˜valarray();

// 26.3.2.2 assignment:
valarray<T>& operator=(const valarray<T>&);
valarray<T>& operator=(const T&);
valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

// 26.3.2.3 element access:
T operator[](size_t) const;
T& operator[](size_t);

254) Clause B recommends a minimum number of recursively nested template instantiations. This requirement thus indirectly sug-
gests a minimum allowable complexity for valarray expressions.

582

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.2 Class template valarray

// 26.3.2.4 subset operations:
valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

// 26.3.2.5 unary operators:
valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator˜() const;
valarray<bool> operator!() const;

// 26.3.2.6 computed assignment:
valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operatorˆ= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operatorˆ= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

// 26.3.2.7 member functions:
size_t size() const;

T sum() const;
T min() const;
T max() const;

valarray<T> shift (int) const;
valarray<T> cshift(int) const;
valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;
void resize(size_t sz, T c = T());

};
}

1 The class template valarray<T> is a one-dimensional smart array, with elements numbered sequentially
from zero. It is a representation of the mathematical concept of an ordered set of values. The illusion of
higher dimensionality may be produced by the familiar idiom of computed indices, together with the pow-
erful subsetting capabilities provided by the generalized subscript operators.255)

255) The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities and the

583

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.2 Class template valarray 26 Numerics library

2 An implementation is permitted to qualify any of the functions declared in <valarray> as inline.

[lib.valarray.cons] 26.3.2.1 valarray constructors

valarray();

1 Effects: Constructs an object of class valarray<T>,256) which has zero length until it is passed into a
library function as a modifiable lvalue or through a non-constant this pointer.257)

explicit valarray(size_t);

2 The array created by this constructor has a length equal to the value of the argument. The elements of the
array are constructed using the default constructor for the instantiating type T.

valarray(const T&, size_t);

3 The array created by this constructor has a length equal to the second argument. The elements of the array
are initialized with the value of the first argument.

valarray(const T*, size_t);

4 The array created by this constructor has a length equal to the second argument n. The values of the ele-
ments of the array are initialized with the first n values pointed to by the first argument.258) If the value of
the second argument is greater than the number of values pointed to by the first argument, the behavior is
undefined.

valarray(const valarray<T>&);

5 The array created by this constructor has the same length as the argument array. The elements are initial-
ized with the values of the corresponding elements of the argument array.259)

valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);

6 These conversion constructors convert one of the four reference templates to a valarray.

˜valarray();

7 The destructor is applied to every element of *this; an implementation may return all allocated memory.

[lib.valarray.assign] 26.3.2.2 valarray assignment

proliferation of temporaries. Thus, the valarray template is neither a matrix class nor a field class. However, it is a very useful
building block for designing such classes.
256) For convenience, such objects are referred to as ‘‘arrays’’ throughout the remainder of 26.3.
257) This default constructor is essential, since arrays of valarray are likely to prove useful. There shall also be a way to change
the size of an array after initialization; this is supplied by the semantics of the resize member function.
258) This constructor is the preferred method for converting a C array to a valarray object.
259) This copy constructor creates a distinct array rather than an alias. Implementations in which arrays share storage are permitted,
but they shall implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.

584

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.2.2 valarray assignment

valarray<T>& operator=(const valarray<T>&);

1 Each element of the *this array is assigned the value of the corresponding element of the argument array.
The resulting behavior is undefined if the length of the argument array is not equal to the length of the
*this array.

valarray<T>& operator=(const T&);

2 The scalar assignment operator causes each element of the *this array to be assigned the value of the
argument.

valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);

3 These operators allow the results of a generalized subscripting operation to be assigned directly to a
valarray.

4 If the value of an element in the left hand side of a valarray assignment operator depends on the value of
another element in that left hand side, the resulting behavior is undefined.

[lib.valarray.access] 26.3.2.3 valarray element access

T operator[](size_t) const;
T& operator[](size_t);

1 When applied to a constant array, the subscript operator returns the value of the corresponding element of
the array. When applied to a non-constant array, the subscript operator returns a reference to the corre-
sponding element of the array.

2 Thus, the expression (a[i] = q, a[i]) == q evaluates as true for any non-constant
valarray<T> a, any T q, and for any size_t i such that the value of i is less than the length of a.

3 The expression &a[i+j] == &a[i] + j evaluates as true for all size_t i and size_t j such
that i+j is less than the length of the non-constant array a.

4 Likewise, the expression &a[i] != &b[j] evaluates as true for any two non-constant arrays a and b
and for any size_t i and size_t j such that i is less than the length of a and j is less than the length
of b. This property indicates an absence of aliasing and may be used to advantage by optimizing compil-
ers.260)

5 The reference returned by the subscript operator for a non-constant array is guaranteed to be valid until the
member function resize(size_t, T) (26.3.2.7) is called for that array or until the lifetime of that
array ends, whichever happens first.

6 If the subscript operator is invoked with a size_t argument whose value is not less than the length of the
array, the behavior is undefined.

[lib.valarray.sub] 26.3.2.4 valarray subset operations

260) Compilers may take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained from operator
new, and other techniques to generate efficient valarrays.

585

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.2.4 valarray subset operations 26 Numerics library

valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);

1 Each of these operations returns a subset of the array. The const-qualified versions return this subset as a
new valarray. The non-const versions return a class template object which has reference semantics to
the original array.

[lib.valarray.unary] 26.3.2.5 valarray unary operators

valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator˜() const;
valarray<bool> operator!() const;

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied
and for which the indicated operator returns a value which is of type T (bool for operator!) or which
may be unambiguously converted to type T (bool for operator!).

2 Each of these operators returns an array whose length is equal to the length of the array. Each element of
the returned array is initialized with the result of applying the indicated operator to the corresponding ele-
ment of the array.

[lib.valarray.cassign] 26.3.2.6 valarray computed assignment

valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operatorˆ= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be
applied. Each of these operators performs the indicated operation on each of its elements and the corre-
sponding element of the argument array.

2 The array is then returned by reference.

3 If the array and the argument array do not have the same length, the behavior is undefined. The appearance
of an array on the left hand side of a computed assignment does not invalidate references or pointers.

4 If the value of an element in the left hand side of a valarray computed assignment operator depends on the
value of another element in that left hand side, the resulting behavior is undefined.

586

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.2.6 valarray computed assignment

valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operatorˆ= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);

5 Each of these operators may only be instantiated for a type T to which the indicated operator can be
applied.

6 Each of these operators applies the indicated operation to each element of the array and the non-array argu-
ment.

7 The array is then returned by reference.

8 The appearance of an array on the left hand side of a computed assignment does not invalidate references or
pointers to the elements of the array.

[lib.valarray.members] 26.3.2.7 valarray member functions

size_t size() const;

1 This function returns the number of elements in the array.

T sum() const;

This function may only be instantiated for a type T to which operator+= can be applied. This function
returns the sum of all the elements of the array.

2 If the array has length 0, the behavior is undefined. If the array has length 1, sum() returns the value of
element 0. Otherwise, the returned value is calculated by applying operator+= to a copy of an element
of the array and all other elements of the array in an unspecified order.

T min() const;

3 This function returns the minimum value contained in *this. The value returned for an array of length 0
is undefined. For an array of length 1, the value of element 0 is returned. For all other array lengths, the
determination is made using operator<.

T max() const;

4 This function returns the maximum value contained in *this. The value returned for an array of length 0
is undefined. For an array of length 1, the value of element 0 is returned. For all other array lengths, the
determination is made using operator<.

valarray<T> shift(int n) const;

5 This function returns an object of class valarray<T> of length size(), each of whose elements I is
(*this)[I+n] if I+n is non-negative and less than size(), otherwise T(). Thus if element zero is
taken as the leftmost element, a positive value of n shifts the elements left n places, with zero fill.

6 [Example: If the argument has the value -2, the first two elements of the result will be constructed using the
default constructor; the third element of the result will be assigned the value of the first element of the argu-
ment; etc. —end example]

587

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.2.7 valarray member functions 26 Numerics library

valarray<T> cshift(int n) const;

7 This function returns an object of class valarray<T>, of length size(), each of whose elements I is
(*this)[(I+n)%size()]. Thus, if element zero is taken as the leftmost element, a positive value of n
shifts the elements circularly left n places.

valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T&)) const;

8 These functions return an array whose length is equal to the array. Each element of the returned array is
assigned the value returned by applying the argument function to the corresponding element of the array.

void resize(size_t sz, T c = T());

9 This member function changes the length of the *this array to sz and then assigns to each element the
value of the second argument. Resizing invalidates all pointers and references to elements in the array.

[lib.valarray.nonmembers] 26.3.3 valarray non-member operations

[lib.valarray.binary] 26.3.3.1 valarray binary operators

template<class T> valarray<T> operator*
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator/
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator%
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator+
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator-
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operatorˆ
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator|
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator<<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<T> operator>>
(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied
and for which the indicated operator returns a value which is of type T or which can be unambiguously con-
verted to type T.

2 Each of these operators returns an array whose length is equal to the lengths of the argument arrays. Each
element of the returned array is initialized with the result of applying the indicated operator to the corre-
sponding elements of the argument arrays.

3 If the argument arrays do not have the same length, the behavior is undefined.

588

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.3.1 valarray binary operators

template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);
template<class T> valarray<T> operatorˆ (const valarray<T>&, const T&);
template<class T> valarray<T> operatorˆ (const T&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied
and for which the indicated operator returns a value which is of type T or which can be unambiguously con-
verted to type T.

5 Each of these operators returns an array whose length is equal to the length of the array argument. Each
element of the returned array is initialized with the result of applying the indicated operator to the corre-
sponding element of the array argument and the non-array argument.

[lib.valarray.comparison] 26.3.3.2 valarray logical operators

template<class T> valarray<bool> operator==
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator!=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator<
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator>
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator<=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator>=
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator&&
(const valarray<T>&, const valarray<T>&);

template<class T> valarray<bool> operator||
(const valarray<T>&, const valarray<T>&);

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied
and for which the indicated operator returns a value which is of type bool or which can be unambiguously
converted to type bool.

2 Each of these operators returns a bool array whose length is equal to the length of the array arguments.
Each element of the returned array is initialized with the result of applying the indicated operator to the cor-
responding elements of the argument arrays.

3 If the two array arguments do not have the same length, the behavior is undefined.

589

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.3.2 valarray logical operators 26 Numerics library

template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);

4 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied
and for which the indicated operator returns a value which is of type bool or which can be unambiguously
converted to type bool.

5 Each of these operators returns a bool array whose length is equal to the length of the array argument.
Each element of the returned array is initialized with the result of applying the indicated operator to the cor-
responding element of the array and the non-array argument.

[lib.valarray.transcend] 26.3.3.3 valarray transcendentals

template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2

(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow

(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const T&);
template<class T> valarray<T> pow (const T&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);

1 Each of these functions may only be instantiated for a type T to which a unique function with the indicated
name can be applied. This function shall return a value which is of type T or which can be unambiguously
converted to type T.

[lib.class.slice] 26.3.4 Class slice

590

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.4 Class slice

namespace std {
class slice {
public:

slice();
slice(size_t, size_t, size_t);

size_t start() const;
size_t size() const;
size_t stride() const;

};
}

1 The slice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index,
a length, and a stride.261)

[lib.cons.slice] 26.3.4.1 slice constructors

slice();
slice(size_t start, size_t length, size_t stride);
slice(const slice&);

1 The default constructor for slice creates a slice which specifies no elements. A default constructor is
provided only to permit the declaration of arrays of slices. The constructor with arguments for a slice takes
a start, length, and stride parameter.

2 [Example: slice(3, 8, 2) constructs a slice which selects elements 3, 5, 7, ... 17 from an array.
—end example]

[lib.slice.access] 26.3.4.2 slice access functions

size_t start() const;
size_t size() const;
size_t stride() const;

1 These functions return the start, length, or stride specified by a slice object.

[lib.template.slice.array] 26.3.5 Class template slice_array

namespace std {
template <class T> class slice_array {
public:
typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

261) BLAS stands for Basic Linear Algebra Subprograms. C + + programs may instantiate this class. See, for example, Dongarra, Du
Croz, Duff, and Hammerling: A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS–P1–0888, Argonne
National Laboratory (USA), Mathematics and Computer Science Division, August, 1988.

591

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.5 Class template slice_array 26 Numerics library

void operator=(const T&);
˜slice_array();

private:
slice_array();
slice_array(const slice_array&);
slice_array& operator=(const slice_array&);

};
}

1 The slice_array template is a helper template used by the slice subscript operator

slice_array<T> valarray<T>::operator[](slice);

It has reference semantics to a subset of an array specified by a slice object.

2 [Example: The expression a[slice(1, 5, 3)] = b; has the effect of assigning the elements of b to
a slice of the elements in a. For the slice shown, the elements selected from a are 1, 4, ..., 13.
—end example]

3 [Note: C + + programs may not instantiate slice_array, since all its constructors are private. It is
intended purely as a helper class and should be transparent to the user. —end note]

[lib.cons.slice.arr] 26.3.5.1 slice_array constructors

slice_array();
slice_array(const slice_array&);

1 The slice_array template has no public constructors. These constructors are declared to be private.
These constructors need not be defined.

[lib.slice.arr.assign] 26.3.5.2 slice_array assignment

void operator=(const valarray<T>&) const;
slice_array& operator=(const slice_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which the slice_array object refers.

[lib.slice.arr.comp.assign] 26.3.5.3 slice_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of the valarray<T> object to which the slice_array
object refers.

592

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.5.4 slice_array fill function

[lib.slice.arr.fill] 26.3.5.4 slice_array fill function

void operator=(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the slice_array object refers.

[lib.class.gslice] 26.3.6 The gslice class

namespace std {
class gslice {
public:
gslice();
gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

};
}

1 This class represents a generalized slice out of an array. A gslice is defined by a starting offset (s), a set
of lengths (l j), and a set of strides (d j). The number of lengths shall equal the number of strides.

2 A gslice represents a mapping from a set of indices (i j), equal in number to the number of strides, to a
single index k. It is useful for building multidimensional array classes using the valarray template,
which is one-dimensional. The set of one-dimensional index values specified by a gslice are
k = s +

j
Σ i j d j where the multidimensional indices i j range in value from 0 to l i j −1.

3 [Example: The gslice specification

start = 3
length = {2, 4, 3}
stride = {19, 4, 1}

yields the sequence of one-dimensional indices

k =3 + (0 , 1) ×19 + (0 , 1 , 2 , 3) ×4 + (0 , 1 , 2) ×1

which are ordered as shown in the following table:

(i 0, i 1, i 2, k) =
(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 7),
(0, 1, 1, 8),
(0, 1, 2, 9),
(0, 2, 0, 11),
(0, 2, 1, 12),
(0, 2, 2, 13),
(0, 3, 0, 15),
(0, 3, 1, 16),
(0, 3, 2, 17),
(1, 0, 0, 22),
(1, 0, 1, 23),
...
(1, 3, 2, 36)

That is, the highest-ordered index turns fastest. —end example]

593

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.6 The gslice class 26 Numerics library

4 It is possible to have degenerate generalized slices in which an address is repeated.

5 [Example: If the stride parameters in the previous example are changed to {1, 1, 1}, the first few elements
of the resulting sequence of indices will be

(0, 0, 0, 3),
(0, 0, 1, 4),
(0, 0, 2, 5),
(0, 1, 0, 4),
(0, 1, 1, 5),
(0, 1, 2, 6),
...

—end example]

6 If a degenerate slice is used as the argument to the non-const version of operator[](const
gslice&), the resulting behavior is undefined.

[lib.gslice.cons] 26.3.6.1 gslice constructors

gslice();
gslice(size_t start, const valarray<size_t>& lengths,

const valarray<size_t>& strides);
gslice(const gslice&);

1 The default constructor creates a gslice which specifies no elements. The constructor with arguments
builds a gslice based on a specification of start, lengths, and strides, as explained in the previous section.

[lib.gslice.access] 26.3.6.2 gslice access functions

size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;

These access functions return the representation of the start, lengths, or strides specified for the gslice.

[lib.template.gslice.array] 26.3.7 Class template gslice_array

namespace std {
template <class T> class gslice_array {
public:
typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

594

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.7 Class template gslice_array

void operator=(const T&);
˜gslice_array();

private:
gslice_array();
gslice_array(const gslice_array&);
gslice_array& operator=(const gslice_array&);

};
}

1 This template is a helper template used by the slice subscript operator

gslice_array<T> valarray<T>::operator[](const gslice&);

It has reference semantics to a subset of an array specified by a gslice object.

2 Thus, the expression a[gslice(1, length, stride)] = b has the effect of assigning the ele-
ments of b to a generalized slice of the elements in a.

3 [Note: C + + programs may not instantiate gslice_array, since all its constructors are private. It is
intended purely as a helper class and should be transparent to the user. —end note]

[lib.gslice.array.cons] 26.3.7.1 gslice_array constructors

gslice_array();
gslice_array(const gslice_array&);

1 The gslice_array template has no public constructors. It declares the above constructors to be private.
These constructors need not be defined.

[lib.gslice.array.assign] 26.3.7.2 gslice_array assignment

void operator=(const valarray<T>&) const;
gslice_array& operator=(const gslice_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which the gslice_array refers.

[lib.gslice.array.comp.assign] 26.3.7.3 gslice_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of the valarray<T> object to which the gslice_array
object refers.

595

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.7.4 gslice_array fill function 26 Numerics library

[lib.gslice.array.fill] 26.3.7.4 gslice_array fill function

void operator=(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the gslice_array object refers.

[lib.template.mask.array] 26.3.8 Class template mask_array

namespace std {
template <class T> class mask_array {
public:
typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void operator=(const T&);
˜mask_array();

private:
mask_array();
mask_array(const mask_array&);
mask_array& operator=(const mask_array&);

};
}

1 This template is a helper template used by the mask subscript operator:
mask_array<T> valarray<T>::operator[](const valarray<bool>&).

It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression
a[mask] = b; has the effect of assigning the elements of b to the masked elements in a (those for
which the corresponding element in mask is true.)

2 [Note: C + + programs may not declare instances of mask_array, since all its constructors are private. It is
intended purely as a helper class, and should be transparent to the user. —end note]

[lib.mask.array.cons] 26.3.8.1 mask_array constructors

mask_array();
mask_array(const mask_array&);

1 The mask_array template has no public constructors. It declares the above constructors to be private.
These constructors need not be defined.

[lib.mask.array.assign] 26.3.8.2 mask_array assignment

596

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.8.2 mask_array assignment

void operator=(const valarray<T>&) const;
mask_array& operator=(const mask_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which it refers.

[lib.mask.array.comp.assign] 26.3.8.3 mask_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of the valarray<T> object to which the mask object refers.

[lib.mask.array.fill] 26.3.8.4 mask_array fill function

void operator=(const T&);

This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the mask_array object refers.

[lib.template.indirect.array] 26.3.9 Class template indirect_array

namespace std {
template <class T> class indirect_array {
public:
typedef T value_type;

void operator= (const valarray<T>&) const;
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

void operator=(const T&);
˜indirect_array();

private:
indirect_array();
indirect_array(const indirect_array&);
indirect_array& operator=(const indirect_array&);

};
}

597

ISO/IEC 14882:2003(E)  ISO/IEC

26.3.9 Class template indirect_array 26 Numerics library

1 This template is a helper template used by the indirect subscript operator
indirect_array<T> valarray<T>::operator[](const valarray<size_t>&).

It has reference semantics to a subset of an array specified by an indirect_array. Thus the expression
a[indirect] = b; has the effect of assigning the elements of b to the elements in a whose indices
appear in indirect.

2 [Note: C + + programs may not declare instances of indirect_array, since all its constructors are pri-
vate. It is intended purely as a helper class, and should be transparent to the user. —end note]

[lib.indirect.array.cons] 26.3.9.1 indirect_array constructors

indirect_array();
indirect_array(const indirect_array&);

The indirect_array template has no public constructors. The constructors listed above are private.
These constructors need not be defined.

[lib.indirect.array.assign] 26.3.9.2 indirect_array assignment

void operator=(const valarray<T>&) const;
indirect_array& operator=(const indirect_array&);

1 The second of these two assignment operators is declared private and need not be defined. The first has ref-
erence semantics, assigning the values of the argument array elements to selected elements of the
valarray<T> object to which it refers.

2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than
once, the behavior is undefined.

3 [Example:

int addr[] = {2, 3, 1, 4, 4};
valarray<size_t> indirect(addr, 5);
valarray<double> a(0., 10), b(1., 5);
a[indirect] = b;

results in undefined behavior since element 4 is specified twice in the indirection. —end example]

[lib.indirect.array.comp.assign] 26.3.9.3 indirect_array computed assignment

void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operatorˆ= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;

1 These computed assignments have reference semantics, applying the indicated operation to the elements of
the argument array and selected elements of the valarray<T> object to which the indirect_array
object refers.

2 If the indirect_array specifies an element in the valarray<T> object to which it refers more than
once, the behavior is undefined.

598

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.3.9.4 indirect_array fill function

[lib.indirect.array.fill] 26.3.9.4 indirect_array fill function

void operator=(const T&);

1 This function has reference semantics, assigning the value of its argument to the elements of the
valarray<T> object to which the indirect_array object refers.

[lib.numeric.ops] 26.4 Generalized numeric operations

Header <numeric> synopsis

namespace std {
template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init);

template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

template <class InputIterator, class OutputIterator>
OutputIterator partial_sum(InputIterator first,

InputIterator last,
OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryOperation>

OutputIterator partial_sum(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryOperation binary_op);

template <class InputIterator, class OutputIterator>
OutputIterator adjacent_difference(InputIterator first,

InputIterator last,
OutputIterator result);

template <class InputIterator, class OutputIterator,
class BinaryOperation>

OutputIterator adjacent_difference(InputIterator first,
InputIterator last,
OutputIterator result,
BinaryOperation binary_op);

}

1 The requirements on the types of algorithms’ arguments that are described in the introduction to clause 25
also apply to the following algorithms.

[lib.accumulate] 26.4.1 Accumulate

599

ISO/IEC 14882:2003(E)  ISO/IEC

26.4.1 Accumulate 26 Numerics library

template <class InputIterator, class T>
T accumulate(InputIterator first, InputIterator last, T init);

template <class InputIterator, class T, class BinaryOperation>
T accumulate(InputIterator first, InputIterator last, T init,

BinaryOperation binary_op);

1 Effects: Computes its result by initializing the accumulator acc with the initial value init and then mod-
ifies it with acc = acc + *i or acc = binary_op(acc, *i) for every iterator i in the range
[first, last) in order.262)

2 Requires: T must meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types.
binary_op shall not cause side effects.

[lib.inner.product] 26.4.2 Inner product

template <class InputIterator1, class InputIterator2, class T>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,

class BinaryOperation1, class BinaryOperation2>
T inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, T init,
BinaryOperation1 binary_op1,
BinaryOperation2 binary_op2);

1 Effects: Computes its result by initializing the accumulator acc with the initial value init and then mod-
ifying it with acc = acc + (*i1) * (*i2) or acc = binary_op1(acc,
binary_op2(*i1, *i2)) for every iterator i1 in the range [first, last) and iterator i2 in
the range [first2, first2 + (last - first)) in order.

2 Requires: T must meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types.
binary_op1 and binary_op2 shall not cause side effects.

[lib.partial.sum] 26.4.3 Partial sum

template <class InputIterator, class OutputIterator>
OutputIterator
partial_sum(InputIterator first, InputIterator last,

OutputIterator result);
template

<class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator

partial_sum(InputIterator first, InputIterator last,
OutputIterator result, BinaryOperation binary_op);

1 Effects: Assigns to every element referred to by iterator i in the range [result, result + (last
- first)) a value correspondingly equal to
((...(*first + *(first + 1)) + ...) + *(first + (i - result)))
or
binary_op(binary_op(..., binary_op(*first, *(first + 1)),...),
*(first + (i - result)))

2 Returns: result + (last - first).
3 Complexity: Exactly (last - first) - 1 applications of binary_op.
4 Requires: binary_op is expected not to have any side effects.
5 Notes: result may be equal to first.

262) accumulate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of defining
the result of reduction on an empty sequence by always requiring an initial value.

600

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.4.4 Adjacent difference

[lib.adjacent.difference] 26.4.4 Adjacent difference

template <class InputIterator, class OutputIterator>
OutputIterator
adjacent_difference(InputIterator first, InputIterator last,

OutputIterator result);
template

<class InputIterator, class OutputIterator, class BinaryOperation>
OutputIterator

adjacent_difference(InputIterator first, InputIterator last,
OutputIterator result,
BinaryOperation binary_op);

1 Effects: Assigns to every element referred to by iterator i in the range [result + 1, result +
(last - first)) a value correspondingly equal to
*(first + (i - result)) - *(first + (i - result) - 1)
or
binary_op(*(first + (i - result)), *(first + (i - result) - 1)).
result gets the value of *first.

2 Requires: binary_op shall not have any side effects.
3 Notes: result may be equal to first.
4 Returns: result + (last - first).
5 Complexity: Exactly (last - first) - 1 applications of binary_op.

[lib.c.math] 26.5 C Library

1 Tables 80 and 81 describe headers <cmath> and <cstdlib> (abs(), div(), rand(), srand()),
respectively.

Table 80—Header <cmath> synopsis

Type Name(s)___
Macro: HUGE_VAL___
Functions:
acos cos fmod modf tan

asin cosh frexp pow tanh

atan exp ldexp sin

atan2 fabs log sinh

ceil floor log10 sqrt___ 





















Table 81—Header <cstdlib> synopsis
_ ______________________________

Type Name(s)_ ______________________________
Macros: RAND_MAX_ ______________________________
Types: div_t ldiv_t_ ______________________________
Functions:
abs labs srand

div ldiv rand_ ______________________________ 

















2 The contents of these headers are the same as the Standard C library headers <math.h> and
<stdlib.h> respectively, with the following additions:

3 In addition to the int versions of certain math functions in <cstdlib>, C + + adds long overloaded ver-
sions of these functions, with the same semantics.

601

ISO/IEC 14882:2003(E)  ISO/IEC

26.5 C Library 26 Numerics library

4 The added signatures are:

long abs(long); // labs()
ldiv_t div(long, long); // ldiv()

5 In addition to the double versions of the math functions in <cmath>, C + + adds float and long
double overloaded versions of these functions, with the same semantics.

6 The added signatures are:

float abs (float);
float acos (float);
float asin (float);
float atan (float);
float atan2(float, float);
float ceil (float);
float cos (float);
float cosh (float);
float exp (float);
float fabs (float);
float floor(float);
float fmod (float, float);
float frexp(float, int*);
float ldexp(float, int);
float log (float);
float log10(float);
float modf (float, float*);
float pow (float, float);
float pow (float, int);
float sin (float);
float sinh (float);
float sqrt (float);
float tan (float);
float tanh (float);

double abs(double); // fabs()
double pow(double, int);

602

 ISO/IEC ISO/IEC 14882:2003(E)

26 Numerics library 26.5 C Library

long double abs (long double);
long double acos (long double);
long double asin (long double);
long double atan (long double);
long double atan2(long double, long double);
long double ceil (long double);
long double cos (long double);
long double cosh (long double);
long double exp (long double);
long double fabs (long double);
long double floor(long double);
long double fmod (long double, long double);
long double frexp(long double, int*);
long double ldexp(long double, int);
long double log (long double);
long double log10(long double);
long double modf (long double, long double*);
long double pow (long double, long double);
long double pow (long double, int);
long double sin (long double);
long double sinh (long double);
long double sqrt (long double);
long double tan (long double);
long double tanh (long double);

SEE ALSO: ISO C subclauses 7.5, 7.10.2, 7.10.6.

603

ISO/IEC 14882:2003(E)  ISO/IEC

604

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27 Input/output library

27 Input/output library [lib.input.output]

1 This clause describes components that C + + programs may use to perform input/output operations.

2 The following subclauses describe requirements for stream parameters, and components for forward decla-
rations of iostreams, predefined iostreams objects, base iostreams classes, stream buffering, stream format-
ting and manipulators, string streams, and file streams, as summarized in Table 82:

Table 82—Input/output library summary
_ ___

Subclause Header(s)_ __ ___
27.1 Requirements_ ___
27.2 Forward declarations <iosfwd>_ ___
27.3 Standard iostream objects <iostream>_ ___
27.4 Iostreams base classes <ios>_ ___
27.5 Stream buffers <streambuf>_ ___

<istream>
<ostream>27.6 Formatting and manipulators
<iomanip>_ ___
<sstream>

27.7 String streams
<cstdlib>_ ___
<fstream>
<cstdio>27.8 File streams
<cwchar>_ ___ 






































[lib.iostreams.requirements] 27.1 Iostreams requirements

[lib.iostream.limits.imbue] 27.1.1 Imbue Limitations
No function described in clause 27 except for ios_base::imbue causes any instance of
basic_ios::imbue or basic_streambuf::imbue to be called. If any user function called from a
function declared in clause 27 or as an overriding virtual function of any class declared in clause 27 calls
imbue, the behavior is undefined.

[lib.iostreams.limits.pos] 27.1.2 Positioning Type Limitations
The classes of clause 27 with template arguments charT and traits behave as described if
traits::pos_type and traits::off_type are streampos and streamoff respectively.
Except as noted explicitly below, their behavior when traits::pos_type and traits::off_type
are other types is implementation-defined.

[lib.iostream.forward] 27.2 Forward declarations

Header <iosfwd> synopsis

namespace std {
template<class charT> class char_traits;
template<> class char_traits<char>;
template<> class char_traits<wchar_t>;

template<class T> class allocator;

605

ISO/IEC 14882:2003(E)  ISO/IEC

27.2 Forward declarations 27 Input/output library

template <class charT, class traits = char_traits<charT> >
class basic_ios;

template <class charT, class traits = char_traits<charT> >
class basic_streambuf;

template <class charT, class traits = char_traits<charT> >
class basic_istream;

template <class charT, class traits = char_traits<charT> >
class basic_ostream;

template <class charT, class traits = char_traits<charT> >
class basic_iostream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringbuf;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_istringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_ostringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringstream;

template <class charT, class traits = char_traits<charT> >
class basic_filebuf;

template <class charT, class traits = char_traits<charT> >
class basic_ifstream;

template <class charT, class traits = char_traits<charT> >
class basic_ofstream;

template <class charT, class traits = char_traits<charT> >
class basic_fstream;

template <class charT, class traits = char_traits<charT> >
class istreambuf_iterator;

template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator;

typedef basic_ios<char> ios;
typedef basic_ios<wchar_t> wios;

typedef basic_streambuf<char> streambuf;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_iostream<char> iostream;

606

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.2 Forward declarations

typedef basic_stringbuf<char> stringbuf;
typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_stringstream<char> stringstream;

typedef basic_filebuf<char> filebuf;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_fstream<char> fstream;

typedef basic_streambuf<wchar_t> wstreambuf;
typedef basic_istream<wchar_t> wistream;
typedef basic_ostream<wchar_t> wostream;
typedef basic_iostream<wchar_t> wiostream;

typedef basic_stringbuf<wchar_t> wstringbuf;
typedef basic_istringstream<wchar_t> wistringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
typedef basic_stringstream<wchar_t> wstringstream;

typedef basic_filebuf<wchar_t> wfilebuf;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;
typedef basic_fstream<wchar_t> wfstream;

template <class state> class fpos;
typedef fpos<char_traits<char>::state_type> streampos;
typedef fpos<char_traits<wchar_t>::state_type> wstreampos;

}

1 Default template arguments are described as appearing both in <iosfwd> and in the synopsis of other
headers but it is well-formed to include both <iosfwd> and one or more of the other headers.263)

2 [Note: The class template specialization basic_ios<charT,traits> serves as a virtual base class for
the class templates basic_istream, basic_ostream, and class templates derived from them.
basic_iostream is a class template derived from both basic_istream<charT,traits> and
basic_ostream<charT,traits>.

3 The class template specialization basic_streambuf<charT,traits> serves as a base class for tem-
plate classes basic_stringbuf and basic_filebuf.

4 The class template specialization basic_istream<charT,traits> serves as a base class for tem-
plate classes basic_istringstream and basic_ifstream

5 The class template specialization basic_ostream<charT,traits> serves as a base class for tem-
plate classes basic_ostringstream and basic_ofstream

6 The class template specialization basic_iostream<charT,traits> serves as a base class for tem-
plate classes basic_stringstream and basic_fstream.

7 Other typedefs define instances of class templates specialized for char or wchar_t types.

8 Specializations of the class template fpos are used for specifying file position information.

9 The types streampos and wstreampos are used for positioning streams specialized on char and
wchar_t respectively.

263) It is the implementation’s responsibility to implement headers so that including <iosfwd> and other headers does not violate the
rules about multiple occurences of default arguments.

607

ISO/IEC 14882:2003(E)  ISO/IEC

27.2 Forward declarations 27 Input/output library

10 This synopsis suggests a circularity between streampos and char_traits<char>. An implementa-
tion can avoid this circularity by substituting equivalent types. One way to do this might be

template<class stateT> class fpos { ... }; // depends on nothing
typedef ... _STATE; // implementation private declaration of stateT

typedef fpos<_STATE> streampos;

template<> struct char_traits<char> {
typedef streampos

pos_type;
// ...

}

—end note]

[lib.iostream.objects] 27.3 Standard iostream objects

Header <iostream> synopsis

namespace std {
extern istream cin;
extern ostream cout;
extern ostream cerr;
extern ostream clog;

extern wistream wcin;
extern wostream wcout;
extern wostream wcerr;
extern wostream wclog;

}

1 The header <iostream> declares objects that associate objects with the standard C streams provided for
by the functions declared in <cstdio> (27.8.2).

2 Mixing operations on corresponding wide- and narrow-character streams follows the same semantics as
mixing such operations on FILEs, as specified in Amendment 1 of the ISO C standard. The objects are
constructed, and the associations are established at some time prior to or during first time an object of class
ios_base::Init is constructed, and in any case before the body of main begins execution.264) The
objects are not destroyed during program execution.265)

[lib.narrow.stream.objects] 27.3.1 Narrow stream objects

istream cin;

1 The object cin controls input from a stream buffer associated with the object stdin, declared in
<cstdio>.

2 After the object cin is initialized, cin.tie() returns &cout. Its state is otherwise the same as required
for basic_ios<char>::init (27.4.4.1).

264) If it is possible for them to do so, implementations are encouraged to initialize the objects earlier than required.
265) Constructors and destructors for static objects can access these objects to read input from stdin or write output to stdout or
stderr.

608

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.3.1 Narrow stream objects

ostream cout;

3 The object cout controls output to a stream buffer associated with the object stdout, declared in
<cstdio> (27.8.2).

ostream cerr;

4 The object cerr controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.8.2).

5 After the object cerr is initialized, cerr.flags() & unitbuf is nonzero. Its state is otherwise the
same as required for basic_ios<char>::init (27.4.4.1).

ostream clog;

6 The object clog controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.8.2).

[lib.wide.stream.objects] 27.3.2 Wide stream objects

wistream wcin;

1 The object wcin controls input from a stream buffer associated with the object stdin, declared in
<cstdio>.

2 After the object wcin is initialized, wcin.tie() returns &wcout. Its state is otherwise the same as
required for basic_ios<wchar_t>::init (27.4.4.1).

wostream wcout;

3 The object wcout controls output to a stream buffer associated with the object stdout, declared in
<cstdio> (27.8.2).

wostream wcerr;

4 The object wcerr controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.8.2).

5 After the object wcerr is initialized, wcerr.flags() & unitbuf is nonzero. Its state is otherwise
the same as required for basic_ios<wchar_t>::init (27.4.4.1).

wostream wclog;

6 The object wclog controls output to a stream buffer associated with the object stderr, declared in
<cstdio> (27.8.2).

609

ISO/IEC 14882:2003(E)  ISO/IEC

27.3.2 Wide stream objects 27 Input/output library

[lib.iostreams.base] 27.4 Iostreams base classes

Header <ios> synopsis

#include <iosfwd>

namespace std {
typedef OFF_T streamoff;
typedef SZ_T streamsize;
template <class stateT> class fpos;

class ios_base;
template <class charT, class traits = char_traits<charT> >

class basic_ios;

// 27.4.5, manipulators:
ios_base& boolalpha (ios_base& str);
ios_base& noboolalpha(ios_base& str);

ios_base& showbase (ios_base& str);
ios_base& noshowbase (ios_base& str);

ios_base& showpoint (ios_base& str);
ios_base& noshowpoint(ios_base& str);

ios_base& showpos (ios_base& str);
ios_base& noshowpos (ios_base& str);

ios_base& skipws (ios_base& str);
ios_base& noskipws (ios_base& str);

ios_base& uppercase (ios_base& str);
ios_base& nouppercase(ios_base& str);

ios_base& unitbuf (ios_base& str);
ios_base& nounitbuf (ios_base& str);

// 27.4.5.2 adjustfield:
ios_base& internal (ios_base& str);
ios_base& left (ios_base& str);
ios_base& right (ios_base& str);

// 27.4.5.3 basefield:
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);

// 27.4.5.4 floatfield:
ios_base& fixed (ios_base& str);
ios_base& scientific (ios_base& str);

}

[lib.stream.types] 27.4.1 Types

610

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.1 Types

typedef OFF_T streamoff;

1 The type streamoff is an implementation-defined type that satisfies the requirements of 27.4.3.2.

typedef SZ_T streamsize;

2 The type streamsize is a synonym for one of the signed basic integral types. It is used to represent the
number of characters transferred in an I/O operation, or the size of I/O buffers.266)

[lib.ios.base] 27.4.2 Class ios_base

namespace std {
class ios_base {
public:
class failure;

typedef T1 fmtflags;
static const fmtflags boolalpha;
static const fmtflags dec;
static const fmtflags fixed;
static const fmtflags hex;
static const fmtflags internal;
static const fmtflags left;
static const fmtflags oct;
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;

typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;

typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in;
static const openmode out;
static const openmode trunc;

typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;

266) streamsize is used in most places where ISO C would use size_t. Most of the uses of streamsize could use size_t,
except for the strstreambuf constructors, which require negative values. It should probably be the signed type corresponding to
size_t (which is what Posix.2 calls ssize_t).

611

ISO/IEC 14882:2003(E)  ISO/IEC

27.4.2 Class ios_base 27 Input/output library

class Init;

// 27.4.2.2 fmtflags state:
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl, fmtflags mask);
void unsetf(fmtflags mask);

streamsize precision() const;
streamsize precision(streamsize prec);
streamsize width() const;
streamsize width(streamsize wide);

// 27.4.2.3 locales:
locale imbue(const locale& loc);
locale getloc() const;

// 27.4.2.5 storage:
static int xalloc();
long& iword(int index);
void*& pword(int index);

// destructor
virtual ˜ios_base();

// 27.4.2.6 callbacks;
enum event { erase_event, imbue_event, copyfmt_event };
typedef void (*event_callback)(event, ios_base&, int index);
void register_callback(event_callback fn, int index);

static bool sync_with_stdio(bool sync = true);

protected:
ios_base();

private:
// static int index; exposition only
// long* iarray; exposition only
// void** parray; exposition only
private:
ios_base(const ios_base&);
ios_base& operator=(const ios_base&);

};
}

1 ios_base defines several member types:

— a class failure derived from exception;

— a class Init;

— three bitmask types, fmtflags, iostate, and openmode;

— an enumerated type, seekdir.

2 It maintains several kinds of data:

— state information that reflects the integrity of the stream buffer;

— control information that influences how to interpret (format) input sequences and how to generate (for-
mat) output sequences;

612

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.2 Class ios_base

— additional information that is stored by the program for its private use.

3 [Note: For the sake of exposition, the maintained data is presented here as:

— static int index, specifies the next available unique index for the integer or pointer arrays main-
tained for the private use of the program, initialized to an unspecified value;

— long* iarray, points to the first element of an arbitrary-length long array maintained for the pri-
vate use of the program;

— void** parray, points to the first element of an arbitrary-length pointer array maintained for the
private use of the program. —end note]

[lib.ios.types] 27.4.2.1 Types

[lib.ios::failure] 27.4.2.1.1 Class ios_base::failure

namespace std {
class ios_base::failure : public exception {
public:
explicit failure(const string& msg);
virtual ˜failure();
virtual const char* what() const throw();

};
}

1 The class failure defines the base class for the types of all objects thrown as exceptions, by functions in
the iostreams library, to report errors detected during stream buffer operations.

explicit failure(const string& msg);

2 Effects: Constructs an object of class failure.
3 Postcondition: strcmp(what(), msg.c_str()) == 0

const char* what() const;

4 Returns: The message msg with which the exception was created.

[lib.ios::fmtflags] 27.4.2.1.2 Type ios_base::fmtflags

typedef T1 fmtflags;

1 The type fmtflags is a bitmask type (17.3.2.1.2). Setting its elements has the effects indicated in Table
83:

613

ISO/IEC 14882:2003(E)  ISO/IEC

27.4.2.1.2 Type ios_base::fmtflags 27 Input/output library

Table 83—fmtflags effects
_ ___

Element Effect(s) if set_ __ ___
boolalpha insert and extract bool type in alphabetic format
dec converts integer input or generates integer output in decimal base
fixed generate floating-point output in fixed-point notation;
hex converts integer input or generates integer output in hexadecimal base;
internal adds fill characters at a designated internal point in certain generated output, or

identical to right if no such point is designated;
left adds fill characters on the right (final positions) of certain generated output;
oct converts integer input or generates integer output in octal base;
right adds fill characters on the left (initial positions) of certain generated output;
scientific generates floating-point output in scientific notation;
showbase generates a prefix indicating the numeric base of generated integer output;
showpoint generates a decimal-point character unconditionally in generated floating-point

output;
showpos generates a + sign in non-negative generated numeric output;
skipws skips leading white space before certain input operations;
unitbuf flushes output after each output operation;
uppercase replaces certain lowercase letters with their uppercase equivalents in generated

output._ ___ 















































2 Type fmtflags also defines the constants indicated in Table 84:

Table 84—fmtflags constants
_ ___

Constant Allowable values_ __ ___
adjustfield left | right | internal

basefield dec | oct | hex

floatfield scientific | fixed_ ___ 











[lib.ios::iostate] 27.4.2.1.3 Type ios_base::iostate

typedef T2 iostate;

1 The type iostate is a bitmask type (17.3.2.1.2) that contains the elements indicated in Table 85:

Table 85—iostate effects
_ ___

Element Effect(s) if set_ __ ___
badbit indicates a loss of integrity in an input or output sequence (such as an irrecover-

able read error from a file);
eofbit indicates that an input operation reached the end of an input sequence;
failbit indicates that an input operation failed to read the expected characters, or that an

output operation failed to generate the desired characters._ ___ 















2 Type iostate also defines the constant:

— goodbit, the value zero.

614

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.2.1.4 Type ios_base::openmode

[lib.ios::openmode] 27.4.2.1.4 Type ios_base::openmode

typedef T3 openmode;

1 The type openmode is a bitmask type (17.3.2.1.2). It contains the elements indicated in Table 86:

Table 86—openmode effects
_ ___

Element Effect(s) if set_ __ ___
app seek to end before each write
ate open and seek to end immediately after opening
binary perform input and output in binary mode (as opposed to text mode)
in open for input
out open for output
trunc truncate an existing stream when opening_ ___ 




















[lib.ios::seekdir] 27.4.2.1.5 Type ios_base::seekdir

typedef T4 seekdir;

1 The type seekdir is an enumerated type (17.3.2.1.1) that contains the elements indicated in Table 87:

Table 87—seekdir effects
_ __
Element Meaning_ ___ __
beg request a seek (for subsequent input or output) relative to the beginning of the stream
cur request a seek relative to the current position within the sequence
end request a seek relative to the current end of the sequence_ __ 












[lib.ios::Init] 27.4.2.1.6 Class ios_base::Init

namespace std {
class ios_base::Init {
public:
Init();

˜Init();
private:

// static int init_cnt; exposition only
};

}

1 The class Init describes an object whose construction ensures the construction of the eight objects
declared in <iostream> (27.3) that associate file stream buffers with the standard C streams provided for
by the functions declared in <cstdio> (27.8.2).

2 For the sake of exposition, the maintained data is presented here as:

— static int init_cnt, counts the number of constructor and destructor calls for class Init, ini-
tialized to zero.

615

ISO/IEC 14882:2003(E)  ISO/IEC

27.4.2.1.6 Class ios_base::Init 27 Input/output library

Init();

3 Effects: Constructs an object of class Init. If init_cnt is zero, the function stores the value one in
init_cnt, then constructs and initializes the objects cin, cout, cerr, clog (27.3.1), wcin,
wcout, wcerr, and wclog (27.3.2). In any case, the function then adds one to the value stored in
init_cnt.

˜Init();

4 Effects: Destroys an object of class Init. The function subtracts one from the value stored in
init_cnt and, if the resulting stored value is one, calls cout.flush(), cerr.flush(),
clog.flush(), wcout.flush(), wcerr.flush(), wclog.flush().

[lib.fmtflags.state] 27.4.2.2 ios_base fmtflags state functions

fmtflags flags() const;

1 Returns: The format control information for both input and output.

fmtflags flags(fmtflags fmtfl);

2 Postcondition: fmtfl == flags().
3 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl);

4 Effects: Sets fmtfl in flags().
5 Returns: The previous value of flags().

fmtflags setf(fmtflags fmtfl, fmtflags mask);

6 Effects: Clears mask in flags(), sets fmtfl & mask in flags().
7 Returns: The previous value of flags().

void unsetf(fmtflags mask);

8 Effects: Clears mask in flags().

streamsize precision() const;

9 Returns: The precision to generate on certain output conversions.

streamsize precision(streamsize prec);

10 Postcondition: prec == precision().
11 Returns: The previous value of precision().

streamsize width() const;

12 Returns: The minimum field width (number of characters) to generate on certain output conversions.

streamsize width(streamsize wide);

13 Postcondition: wide == width().
14 Returns: The previous value of width().

[lib.ios.base.locales] 27.4.2.3 ios_base locale functions

616

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.2.3 ios_base locale functions

locale imbue(const locale& loc);

1 Effects: Calls each registered callback pair (fn,index) (27.4.2.6) as
(*fn)(imbue_event,*this,index) at such a time that a call to ios_base::getloc()
from within fn returns the new locale value loc.

2 Returns: The previous value of getloc().
3 Postcondition: loc == getloc().

locale getloc() const;

4 Returns: If no locale has been imbued, a copy of the global C + + locale, locale(), in effect at the time of
construction. Otherwise, returns the imbued locale, to be used to perform locale-dependent input and
output operations.

[lib.ios.members.static] 27.4.2.4 ios_base static members

bool sync_with_stdio(bool sync = true);

1 Returns: true if the standard iostream objects (27.3) are synchronized and otherwise returns false.
The first time it is called, the function returns true.

2 Effects: If any input or output operation has occurred using the standard streams prior to the call, the effect
is implementation-defined. Otherwise, called with a false argument, it allows the standard streams to
operate independently of the standard C streams.

[lib.ios.base.storage] 27.4.2.5 ios_base storage functions

static int xalloc();

1 Returns: index ++.

long& iword(int idx);

2 Effects: If iarray is a null pointer, allocates an array of long of unspecified size and stores a pointer to
its first element in iarray. The function then extends the array pointed at by iarray as necessary to
include the element iarray[idx]. Each newly allocated element of the array is initialized to zero.
The reference returned is invalid after any other operations on the object.267) However, the value of the
storage referred to is retained, so that until the next call to copyfmt, calling iword with the same
index yields another reference to the same value. If the function fails268) and *this is a base sub-
object of a basic_ios<> object or sub-object, the effect is equivalent to calling
basic_ios<>::setstate(badbit) on the derived object (which may throw failure).

3 Returns: On success iarray[idx]. On failure, a valid long& initialized to 0.

void* & pword(int idx);

4 Effects: If parray is a null pointer, allocates an array of pointers to void of unspecified size and stores a
pointer to its first element in parray. The function then extends the array pointed at by parray as
necessary to include the element parray[idx]. Each newly allocated element of the array is initial-
ized to a null pointer. The reference returned is invalid after any other operations on the object. How-
ever, the value of the storage referred to is retained, so that until the next call to copyfmt, calling
pword with the same index yields another reference to the same value. If the function fails269) and
*this is a base sub-object of a basic_ios<> object or sub-object, the effect is equivalent to calling
basic_ios<>::setstate(badbit) on the derived object (which may throw failure).

267) An implementation is free to implement both the integer array pointed at by iarray and the pointer array pointed at by parray
as sparse data structures, possibly with a one-element cache for each.
268) for example, because it cannot allocate space.
269) for example, because it cannot allocate space.

617

ISO/IEC 14882:2003(E)  ISO/IEC

27.4.2.5 ios_base storage functions 27 Input/output library

5 Returns: On success parray[idx]. On failure a valid void*& initialized to 0.
6 Notes: After a subsequent call to pword(int) for the same object, the earlier return value may no longer

be valid.

[lib.ios.base.callback] 27.4.2.6 ios_base callbacks

void register_callback(event_callback fn, int index);

1 Effects: Registers the pair (fn,index) such that during calls to imbue() (27.4.2.3), copyfmt(), or
˜ios_base() (27.4.2.7), the function fn is called with argument index. Functions registered are
called when an event occurs, in opposite order of registration. Functions registered while a callback
function is active are not called until the next event.

2 Requires: The function fn shall not throw exceptions.
3 Notes: Identical pairs are not merged. A function registered twice will be called twice.

[lib.ios.base.cons] 27.4.2.7 ios_base constructors/destructors

ios_base();

1 Effects: Each ios_base member has an indeterminate value after construction. These members must be
initialized by calling basic_ios::init. If an ios_base object is destroyed before these initial-
izations have taken place, the behavior is undefined.

˜ios_base()

2 Effects: Destroys an object of class ios_base. Calls each registered callback pair (fn,index)
(27.4.2.6) as (*fn)(erase_event,*this,index) at such time that any ios_base member
function called from within fn has well defined results.

[lib.fpos] 27.4.3 Class template fpos

namespace std {
template <class stateT> class fpos {
public:
// 27.4.3.1 Members
stateT state() const;
void state(stateT);

private;
// stateT st; exposition only
};

}

[lib.fpos.members] 27.4.3.1 fpos Members

void state(stateT s);

1 Effects: Assign s to st.

stateT state();

2 Returns: Current value of st.

[lib.fpos.operations] 27.4.3.2 fpos requirements

1 Operations specified in Table 88 are permitted. In that table,

— P refers to an instance of fpos,

— p and q refer to an values of type P,

— O refers to type streamoff,

618

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.3.2 fpos requirements

— o refers to a value of type streamoff,

— sz refers to a value of type streamsize and

— i refers to a value of type int.

Table 88—Position type requirements
_ __

operational assertion/note
expression return type

semantics pre/post-condition_ ___ __
P(i) p == P(i)

note: a destructor is assumed._ __
P p(i);

P p = i; post: p == P(i)._ __
P(o) fpos converts from

offset_ __
O(p) OFF_T P(O(p)) == pconverts to

offset_ __
p == q convertible to bool == is an equivalence relation_ __
p != q convertible to bool !(p==q)_ __
q = p + o fpos + offset q-o == p
p += o_ __
q = p - o fpos - offset q+o == p
p -= o_ __
o = p - q OFF_T distance q+o == p_ __
streamsize(o) streamsize converts streamsize(O(sz)) == sz
O(sz) OFF_T converts streamsize(O(sz)) == sz_ __ 




















































[Note: Every implementation is required to supply overloaded operators on fpos objects to satisfy the
requirements of 27.4.3.2. It is unspecified whether these operators are members of fpos, global opera-
tors, or provided in some other way. —end note]

2 Stream operations that return a value of type traits::pos_type return P(O(-1)) as an invalid value
to signal an error. If this value is used as an argument to any istream, ostream, or
streambufmember that accepts a value of type traits::pos_type then the behavior of that function
is undefined.

[lib.ios] 27.4.4 Class template basic_ios

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ios : public ios_base {
public:

// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

619

ISO/IEC 14882:2003(E)  ISO/IEC

27.4.4 Class template basic_ios 27 Input/output library

operator void*() const;
bool operator!() const;
iostate rdstate() const;
void clear(iostate state = goodbit);
void setstate(iostate state);
bool good() const;
bool eof() const;
bool fail() const;
bool bad() const;

iostate exceptions() const;
void exceptions(iostate except);

// 27.4.4.1 Constructor/destructor:
explicit basic_ios(basic_streambuf<charT,traits>* sb);
virtual ˜basic_ios();

// 27.4.4.2 Members:
basic_ostream<charT,traits>* tie() const;
basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

basic_streambuf<charT,traits>* rdbuf() const;
basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

basic_ios& copyfmt(const basic_ios& rhs);

char_type fill() const;
char_type fill(char_type ch);

// 27.4.2.3 locales:
locale imbue(const locale& loc);

char narrow(char_type c, char dfault) const;
char_type widen(char c) const;

protected:
basic_ios();
void init(basic_streambuf<charT,traits>* sb);

private:
basic_ios(const basic_ios&); // not defined
basic_ios& operator=(const basic_ios&); // not defined

};
}

[lib.basic.ios.cons] 27.4.4.1 basic_ios constructors

explicit basic_ios(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of class basic_ios, assigning initial values to its member objects by call-
ing init(sb).

basic_ios();

2 Effects: Constructs an object of class basic_ios (27.4.2.7) leaving its member objects uninitialized.
The object must be initialized by calling its init member function. If it is destroyed before it has been
initialized the behavior is undefined.

620

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.4.1 basic_ios constructors

˜basic_ios();

2a Notes: The destructor does not destroy rdbuf().

void init(basic_streambuf<charT,traits>* sb);

3 Postconditions: The postconditions of this function are indicated in Table 89:

Table 89—basic_ios::init() effects
_ __

Element Value_ ___ __
rdbuf() sb
tie() 0
rdstate() goodbit if sb is not a null pointer, otherwise badbit.
exceptions() goodbit
flags() skipws | dec
width() 0
precision() 6
fill() widen(’ ’);
getloc() a copy of the value returned by locale()
iarray a null pointer
parray a null pointer_ __ 
































[lib.basic.ios.members] 27.4.4.2 Member functions

basic_ostream<charT,traits>* tie() const;

1 Returns: An output sequence that is tied to (synchronized with) the sequence controlled by the stream
buffer.

basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

2 Postcondition: tiestr == tie().
3 Returns: The previous value of tie().

basic_streambuf<charT,traits>* rdbuf() const;

4 Returns: A pointer to the streambuf associated with the stream.

basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);

5 Postcondition: sb == rdbuf().
6 Effects: Calls clear().
7 Returns: The previous value of rdbuf().

// 27.4.2.3 locales:
locale imbue(const locale& loc);

8 Effects: Calls ios_base::imbue(loc) (27.4.2.3) and if rdbuf()!=0 then
rdbuf()->pubimbue(loc) (27.5.2.2.1).

9 Returns: The prior value of ios_base::imbue().

621

ISO/IEC 14882:2003(E)  ISO/IEC

27.4.4.2 Member functions 27 Input/output library

char narrow(char_type c, char dfault) const;

10 Returns: use_facet< ctype<char_type> >(getloc()).narrow(c,dfault)

char_type widen(char c) const;

11 Returns: use_facet< ctype<char_type> >(getloc()).widen(c)

char_type fill() const;

12 Returns: The character used to pad (fill) an output conversion to the specified field width.

char_type fill(char_type fillch);

13 Postcondition: fillch == fill()
14 Returns: The previous value of fill().

basic_ios& copyfmt(const basic_ios& rhs);

15 Effects: Assigns to the member objects of *this the corresponding member objects of rhs, except that:

— rdstate() and rdbuf() are left unchanged;

— exceptions() is altered last by calling exceptions(rhs.except).

— The contents of arrays pointed at by pword and iword are copied not the pointers themselves.270)

16 If any newly stored pointer values in *this point at objects stored outside the object rhs, and those
objects are destroyed when rhs is destroyed, the newly stored pointer values are altered to point at newly
constructed copies of the objects.

17 Before copying any parts of rhs, calls each registered callback pair (fn,index) as
(*fn)(erase_event,*this,index). After all parts but exceptions() have been replaced,
calls each callback pair that was copied from rhs as (*fn)(copy_event,*this,index).

18 Notes: The second pass permits a copied pword value to be zeroed, or its referent deep copied or refer-
ence counted or have other special action taken.

19 Returns: *this.

[lib.iostate.flags] 27.4.4.3 basic_ios iostate flags functions

operator void*() const;

1 Returns: If fail() then a null pointer; otherwise some non-null pointer to indicate success.

bool operator!() const;

2 Returns: fail().

iostate rdstate() const;

3 Returns: The error state of the stream buffer.

void clear(iostate state = goodbit);

4 Postcondition: If rdbuf()!=0 then state == rdstate(); otherwise
rdstate()==state|ios_base::badbit.

5 Effects: If (rdstate() & exceptions()) == 0, returns. Otherwise, the function throws an
object fail of class basic_ios::failure (27.4.2.1.1), constructed with implementation-defined
argument values.

270) This suggests an infinite amount of copying, but the implementation can keep track of the maximum element of the arrays that is
non-zero.

622

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.4.3 basic_ios iostate flags functions

void setstate(iostate state);

6 Effects: Calls clear(rdstate() | state) (which may throw basic_ios::failure
(27.4.2.1.1)).

bool good() const;

7 Returns: rdstate() == 0

bool eof() const;

8 Returns: true if eofbit is set in rdstate().

bool fail() const;

9 Returns: true if failbit or badbit is set in rdstate().271)

bool bad() const;

10 Returns: true if badbit is set in rdstate().

iostate exceptions() const;

11 Returns: A mask that determines what elements set in rdstate() cause exceptions to be thrown.

void exceptions(iostate except);

12 Postcondition: except == exceptions().
13 Effects: Calls clear(rdstate()).

[lib.std.ios.manip] 27.4.5 ios_base manipulators

[lib.fmtflags.manip] 27.4.5.1 fmtflags manipulators

ios_base& boolalpha(ios_base& str);

1 Effects: Calls str.setf(ios_base::boolalpha).
2 Returns: str.

ios_base& noboolalpha(ios_base& str);

3 Effects: Calls str.unsetf(ios_base::boolalpha).
4 Returns: str.

ios_base& showbase(ios_base& str);

5 Effects: Calls str.setf(ios_base::showbase).
6 Returns: str.

ios_base& noshowbase(ios_base& str);

7 Effects: Calls str.unsetf(ios_base::showbase).
8 Returns: str.

271) Checking badbit also for fail() is historical practice.

623

ISO/IEC 14882:2003(E)  ISO/IEC

27.4.5.1 fmtflags manipulators 27 Input/output library

ios_base& showpoint(ios_base& str);

9 Effects: Calls str.setf(ios_base::showpoint).
10 Returns: str.

ios_base& noshowpoint(ios_base& str);

11 Effects: Calls str.unsetf(ios_base::showpoint).
12 Returns: str.

ios_base& showpos(ios_base& str);

13 Effects: Calls str.setf(ios_base::showpos).
14 Returns: str.

ios_base& noshowpos(ios_base& str);

15 Effects: Calls str.unsetf(ios_base::showpos).
16 Returns: str.

ios_base& skipws(ios_base& str);

17 Effects: Calls str.setf(ios_base::skipws).
18 Returns: str.

ios_base& noskipws(ios_base& str);

19 Effects: Calls str.unsetf(ios_base::skipws).
20 Returns: str.

ios_base& uppercase(ios_base& str);

21 Effects: Calls str.setf(ios_base::uppercase).
22 Returns: str.

ios_base& nouppercase(ios_base& str);

23 Effects: Calls str.unsetf(ios_base::uppercase).
24 Returns: str.

ios_base& unitbuf(ios_base& str);

25 Effects: Calls str.setf(ios_base::unitbuf).
26 Returns: str.

ios_base& nounitbuf(ios_base& str);

27 Effects: Calls str.unsetf(ios_base::unitbuf).
28 Returns: str.

[lib.adjustfield.manip] 27.4.5.2 adjustfield manipulators

ios_base& internal(ios_base& str);

1 Effects: Calls str.setf(ios_base::internal, ios_base::adjustfield).
2 Returns: str.

624

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.4.5.2 adjustfield manipulators

ios_base& left(ios_base& str);

3 Effects: Calls str.setf(ios_base::left, ios_base::adjustfield).
4 Returns: str.

ios_base& right(ios_base& str);

5 Effects: Calls str.setf(ios_base::right, ios_base::adjustfield).
6 Returns: str.

[lib.basefield.manip] 27.4.5.3 basefield manipulators

ios_base& dec(ios_base& str);

1 Effects: Calls str.setf(ios_base::dec, ios_base::basefield).
2 Returns: str.

ios_base& hex(ios_base& str);

3 Effects: Calls str.setf(ios_base::hex, ios_base::basefield).
4 Returns: str.

ios_base& oct(ios_base& str);

5 Effects: Calls str.setf(ios_base::oct, ios_base::basefield).
6 Returns: str.

[lib.floatfield.manip] 27.4.5.4 floatfield manipulators

ios_base& fixed(ios_base& str);

1 Effects: Calls str.setf(ios_base::fixed, ios_base::floatfield).
2 Returns: str.

ios_base& scientific(ios_base& str);

3 Effects: Calls str.setf(ios_base::scientific, ios_base::floatfield).
4 Returns: str.

[lib.stream.buffers] 27.5 Stream buffers

Header <streambuf> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_streambuf;

typedef basic_streambuf<char> streambuf;
typedef basic_streambuf<wchar_t> wstreambuf;

}

1 The header <streambuf> defines types that control input from and output to character sequences.

272) The function signature dec(ios_base&) can be called by the function signature basic_ostream&
stream::operator<<(ios_base& (*)(ios_base&)) to permit expressions of the form cout << dec to change the for-
mat flags stored in cout.

625

ISO/IEC 14882:2003(E)  ISO/IEC

27.5.1 Stream buffer requirements 27 Input/output library

[lib.streambuf.reqts] 27.5.1 Stream buffer requirements

1 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

— The controlled input sequence can be not readable.

— The controlled output sequence can be not writable.

— The controlled sequences can be associated with the contents of other representations for character
sequences, such as external files.

— The controlled sequences can support operations directly to or from associated sequences.

— The controlled sequences can impose limitations on how the program can read characters from a
sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream
position.

2 Each sequence is characterized by three pointers which, if non-null, all point into the same charT array
object. The array object represents, at any moment, a (sub)sequence of characters from the sequence.
Operations performed on a sequence alter the values stored in these pointers, perform reads and writes
directly to or from associated sequences, and alter ‘‘the stream position’’ and conversion state as needed to
maintain this subsequence relationship. The three pointers are:

— the beginning pointer, or lowest element address in the array (called xbeg here);

— the next pointer, or next element address that is a current candidate for reading or writing (called
xnext here);

— the end pointer, or first element address beyond the end of the array (called xend here).

3 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the
pointer names given immediately above:

— If xnext is not a null pointer, then xbeg and xend shall also be non-null pointers into the same
charT array, as described above; otherwise, xbeg and xend shall also be null.

— If xnext is not a null pointer and xnext < xend for an output sequence, then a write position is
available. In this case, *xnext shall be assignable as the next element to write (to put, or to store a
character value, into the sequence).

— If xnext is not a null pointer and xbeg < xnext for an input sequence, then a putback position is
available. In this case, xnext[-1] shall have a defined value and is the next (preceding) element to
store a character that is put back into the input sequence.

— If xnext is not a null pointer and xnext < xend for an input sequence, then a read position is avail-
able. In this case, *xnext shall have a defined value and is the next element to read (to get, or to
obtain a character value, from the sequence).

[lib.streambuf] 27.5.2 Class template basic_streambuf<charT,traits>

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

virtual ˜basic_streambuf();

626

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.5.2 Class template basic_streambuf<charT,traits>

// 27.5.2.2.1 locales:
locale pubimbue(const locale& loc);
locale getloc() const;

// 27.5.2.2.2 buffer and positioning:
basic_streambuf<char_type,traits>*

pubsetbuf(char_type* s, streamsize n);
pos_type pubseekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which =
ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp,
ios_base::openmode which =

ios_base::in | ios_base::out);
int pubsync();

// Get and put areas:
// 27.5.2.2.3 Get area:
streamsize in_avail();
int_type snextc();
int_type sbumpc();
int_type sgetc();
streamsize sgetn(char_type* s, streamsize n);

// 27.5.2.2.4 Putback:
int_type sputbackc(char_type c);
int_type sungetc();

// 27.5.2.2.5 Put area:
int_type sputc(char_type c);
streamsize sputn(const char_type* s, streamsize n);

protected:
basic_streambuf();

// 27.5.2.3.1 Get area:
char_type* eback() const;
char_type* gptr() const;
char_type* egptr() const;
void gbump(int n);
void setg(char_type* gbeg, char_type* gnext, char_type* gend);

// 27.5.2.3.2 Put area:
char_type* pbase() const;
char_type* pptr() const;
char_type* epptr() const;
void pbump(int n);
void setp(char_type* pbeg, char_type* pend);

// 27.5.2.4 virtual functions:
// 27.5.2.4.1 Locales:
virtual void imbue(const locale& loc);

627

ISO/IEC 14882:2003(E)  ISO/IEC

27.5.2 Class template basic_streambuf<charT,traits> 27 Input/output library

// 27.5.2.4.2 Buffer management and positioning:
virtual basic_streambuf<char_type,traits>*

setbuf(char_type* s, streamsize n);
virtual pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp,

ios_base::openmode which = ios_base::in | ios_base::out);
virtual int sync();

// 27.5.2.4.3 Get area:
virtual streamsize showmanyc();
virtual streamsize xsgetn(char_type* s, streamsize n);
virtual int_type underflow();
virtual int_type uflow();

// 27.5.2.4.4 Putback:
virtual int_type pbackfail(int_type c = traits::eof());

// 27.5.2.4.5 Put area:
virtual streamsize xsputn(const char_type* s, streamsize n);
virtual int_type overflow (int_type c = traits::eof());

};
}

1 The class template basic_streambuf<charT,traits> serves as an abstract base class for deriving
various stream buffers whose objects each control two character sequences:

— a character input sequence;

— a character output sequence.

2 [Note: This paragraph is intentionally empty. —end note]

3 [Note: This paragraph is intentionally empty. —end note]

[lib.streambuf.cons] 27.5.2.1 basic_streambuf constructors

basic_streambuf();

1 Effects: Constructs an object of class basic_streambuf<charT,traits> and initializes:273)

— all its pointer member objects to null pointers,

— the getloc() member to a copy the global locale, locale(), at the time of construction.
2 Notes: Once the getloc() member is initialized, results of calling locale member functions, and of

members of facets so obtained, can safely be cached until the next time the member imbue is called.

˜basic_streambuf();

3 Effects: None.

273) The default constructor is protected for class basic_streambuf to assure that only objects for classes derived from this class
may be constructed.

628

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.5.2.1 basic_streambuf constructors

[lib.streambuf.members] 27.5.2.2 basic_streambuf public member functions

[lib.streambuf.locales] 27.5.2.2.1 Locales

locale pubimbue(const locale& loc);

1 Postcondition: loc == getloc().
2 Effects: Calls imbue(loc).
3 Returns: Previous value of getloc().

locale getloc() const;

4 Returns: If pubimbue() has ever been called, then the last value of loc supplied, otherwise the current
global locale, locale(), in effect at the time of construction. If called after pubimbue() has been
called but before pubimbue has returned (i.e. from within the call of imbue()) then it returns the
previous value.

[lib.streambuf.buffer] 27.5.2.2.2 Buffer management and positioning

basic_streambuf<char_type,traits>* pubsetbuf(char_type* s, streamsize n);

1 Returns: setbuf(s,n).

pos_type pubseekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);

2 Returns: seekoff(off,way,which).

pos_type pubseekpos(pos_type sp,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Returns: seekpos(sp,which).

int pubsync();

4 Returns: sync().

[lib.streambuf.pub.get] 27.5.2.2.3 Get area

streamsize in_avail();

1 Returns: If a read position is available, returns egptr() - gptr(). Otherwise returns
showmanyc() (27.5.2.4.3).

int_type snextc();

2 Effects: Calls sbumpc().
3 Returns: if that function returns traits::eof(), returns traits::eof(). Otherwise, returns

sgetc().

int_type sbumpc();

4 Returns: If the input sequence read position is not available, returns uflow(). Otherwise, returns
traits::to_int_type(*gptr()) and increments the next pointer for the input sequence.

629

ISO/IEC 14882:2003(E)  ISO/IEC

27.5.2.2.3 Get area 27 Input/output library

int_type sgetc();

5 Returns: If the input sequence read position is not available, returns underflow(). Otherwise, returns
traits::to_int_type(*gptr()).

streamsize sgetn(char_type* s, streamsize n);

6 Returns: xsgetn(s,n).

[lib.streambuf.pub.pback] 27.5.2.2.4 Putback

int_type sputbackc(char_type c);

1 Returns: If the input sequence putback position is not available, or if traits::eq(c,gptr()[-1])
is false, returns pbackfail(traits::to_int_type(c)). Otherwise, decrements the next
pointer for the input sequence and returns traits::to_int_type(*gptr()).

int_type sungetc();

2 Returns: If the input sequence putback position is not available, returns pbackfail(). Otherwise,
decrements the next pointer for the input sequence and returns
traits::to_int_type(*gptr()).

[lib.streambuf.pub.put] 27.5.2.2.5 Put area

int_type sputc(char_type c);

1 Returns: If the output sequence write position is not available, returns
overflow(traits::to_int_type(c)). Otherwise, stores c at the next pointer for the output
sequence, increments the pointer, and returns traits::to_int_type(c).

streamsize sputn(const char_type* s, streamsize n);

2 Returns: xsputn(s,n).

[lib.streambuf.protected] 27.5.2.3 basic_streambuf protected member functions

[lib.streambuf.get.area] 27.5.2.3.1 Get area access

char_type* eback() const;

1 Returns: The beginning pointer for the input sequence.

char_type* gptr() const;

2 Returns: The next pointer for the input sequence.

char_type* egptr() const;

3 Returns: The end pointer for the input sequence.

void gbump(int n);

4 Effects: Adds n to the next pointer for the input sequence.

630

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.5.2.3.1 Get area access

void setg(char_type* gbeg, char_type* gnext, char_type* gend);

5 Postconditions: gbeg == eback(), gnext == gptr(), and gend == egptr().

[lib.streambuf.put.area] 27.5.2.3.2 Put area access

char_type* pbase() const;

1 Returns: The beginning pointer for the output sequence.

char_type* pptr() const;

2 Returns: The next pointer for the output sequence.

char_type* epptr() const;

3 Returns: The end pointer for the output sequence.

void pbump(int n);

4 Effects: Adds n to the next pointer for the output sequence.

void setp(char_type* pbeg, char_type* pend);

5 Postconditions: pbeg == pbase(), pbeg == pptr(), and pend == epptr().

[lib.streambuf.virtuals] 27.5.2.4 basic_streambuf virtual functions

[lib.streambuf.virt.locales] 27.5.2.4.1 Locales

void imbue(const locale&)

1 Effects: Change any translations based on locale.
2 Notes: Allows the derived class to be informed of changes in locale at the time they occur. Between invo-

cations of this function a class derived from streambuf can safely cache results of calls to locale func-
tions and to members of facets so obtained.

3 Default behavior: Does nothing.

[lib.streambuf.virt.buffer] 27.5.2.4.2 Buffer management and positioning

basic_streambuf* setbuf(char_type* s, streamsize n);

1 Effects: Performs an operation that is defined separately for each class derived from basic_streambuf
in this clause (27.7.1.3, 27.8.1.4).

2 Default behavior: Does nothing. Returns this.

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);

3 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined
separately for each class derived from basic_streambuf in this clause (27.7.1.3, 27.8.1.4).

4 Default behavior: Returns pos_type(off_type(-1)).

631

ISO/IEC 14882:2003(E)  ISO/IEC

27.5.2.4.2 Buffer management and positioning 27 Input/output library

pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out);

5 Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined
separately for each class derived from basic_streambuf in this clause (27.7.1, 27.8.1.1).

6 Default behavior: Returns pos_type(off_type(-1)).

int sync();

7 Effects: Synchronizes the controlled sequences with the arrays. That is, if pbase() is non-null the char-
acters between pbase() and pptr() are written to the controlled sequence. The pointers may then
be reset as appropriate.

8 Returns: -1 on failure. What constitutes failure is determined by each derived class (27.8.1.4).
9 Default behavior: Returns zero.

[lib.streambuf.virt.get] 27.5.2.4.3 Get area

streamsize showmanyc();274)

1 Returns: an estimate of the number of characters available in the sequence, or -1. If it returns a positive
value, then successive calls to underflow() will not return traits::eof() until at least that
number of characters have been extracted from the stream. If showmanyc() returns -1, then calls to
underflow() or uflow() will fail.275)

2 Default behavior: Returns zero.
3 Notes: Uses traits::eof().

streamsize xsgetn(char_type* s, streamsize n);

4 Effects: Assigns up to n characters to successive elements of the array whose first element is designated
by s. The characters assigned are read from the input sequence as if by repeated calls to sbumpc().
Assigning stops when either n characters have been assigned or a call to sbumpc() would return
traits::eof().

5 Returns: The number of characters assigned.276)

6 Notes: Uses traits::eof().

int_type underflow();

7 Notes: The public members of basic_streambuf call this virtual function only if gptr() is null or
gptr() >= egptr()

8 Returns: traits::to_int_type(c), where c is the first character of the pending sequence, without
moving the input sequence position past it. If the pending sequence is null then the function returns
traits::eof() to indicate failure.

9 The pending sequence of characters is defined as the concatenation of:

a) If gptr() is non- NULL, then the egptr() - gptr() characters starting at gptr(), otherwise
the empty sequence.

b) Some sequence (possibly empty) of characters read from the input sequence.

10 The result character is

a) If the pending sequence is non-empty, the first character of the sequence.

274) The morphemes of showmanyc are "es-how-many-see", not "show-manic".
275) underflow or uflow might fail by throwing an exception prematurely. The intention is not only that the calls will not return
eof() but that they will return ‘‘immediately.’’
276) Classes derived from basic_streambuf can provide more efficient ways to implement xsgetn() and xsputn() by over-
riding these definitions from the base class.

632

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.5.2.4.3 Get area

b) If the pending sequence is empty then the next character that would be read from the input sequence.

11 The backup sequence is defined as the concatenation of:

a) If eback() is null then empty,

b) Otherwise the gptr() - eback() characters beginning at eback().
12 Effects: The function sets up the gptr() and egptr() satisfying one of:

a) If the pending sequence is non-empty, egptr() is non-null and egptr() - gptr() characters
starting at gptr() are the characters in the pending sequence

b) If the pending sequence is empty, either gptr() is null or gptr() and egptr() are set to the same
non-NULL pointer.

13 If eback() and gptr() are non-null then the function is not constrained as to their contents, but the
‘‘usual backup condition’’ is that either:

a) If the backup sequence contains at least gptr() - eback() characters, then the gptr() -
eback() characters starting at eback() agree with the last gptr() - eback() characters of the
backup sequence.

b) Or the n characters starting at gptr() - n agree with the backup sequence (where n is the length of
the backup sequence)

14 Default behavior: Returns traits::eof().

int_type uflow();

15 Requires: The constraints are the same as for underflow(), except that the result character is trans-
ferred from the pending sequence to the backup sequence, and the pending sequence may not be empty
before the transfer.

16 Default behavior: Calls underflow(). If underflow() returns traits::eof(), returns
traits::eof(). Otherwise, returns the value of traits::to_int_type(*gptr()) and
increment the value of the next pointer for the input sequence.

17 Returns: traits::eof() to indicate failure.

[lib.streambuf.virt.pback] 27.5.2.4.4 Putback

int_type pbackfail(int_type c = traits::eof());

1 Notes: The public functions of basic_streambuf call this virtual function only when gptr() is null,
gptr() == eback(), or traits::eq(traits::to_char_type(c),gptr()[-1])
returns false. Other calls shall also satisfy that constraint.
The pending sequence is defined as for underflow(), with the modifications that

— If traits::eq_int_type(c,traits::eof()) returns true, then the input sequence is
backed up one character before the pending sequence is determined.

— If traits::eq_int_type(c,traits::eof()) return false, then c is prepended. Whether the
input sequence is backed up or modified in any other way is unspecified.

2 Postcondition: On return, the constraints of gptr(), eback(), and pptr() are the same as for
underflow().

3 Returns: traits::eof() to indicate failure. Failure may occur because the input sequence could not
be backed up, or if for some other reason the pointers could not be set consistent with the constraints.
pbackfail() is called only when put back has really failed.
Returns some value other than traits::eof() to indicate success.

4 Default behavior: Returns traits::eof().

633

ISO/IEC 14882:2003(E)  ISO/IEC

27.5.2.4.5 Put area 27 Input/output library

[lib.streambuf.virt.put] 27.5.2.4.5 Put area

streamsize xsputn(const char_type* s, streamsize n);

1 Effects: Writes up to n characters to the output sequence as if by repeated calls to sputc(c). The char-
acters written are obtained from successive elements of the array whose first element is designated by s.
Writing stops when either n characters have been written or a call to sputc(c) would return
traits::eof().

2 Returns: The number of characters written.

int_type overflow(int_type c = traits::eof());

3 Effects: Consumes some initial subsequence of the characters of the pending sequence. The pending
sequence is defined as the concatenation of

a) if pbase() is NULL then the empty sequence otherwise, pptr() - pbase() characters beginning
at pbase().

b) if traits::eq_int_type(c,traits::eof()) returns true, then the empty sequence other-
wise, the sequence consisting of c.

4 Notes: The member functions sputc() and sputn() call this function in case that no room can be
found in the put buffer enough to accomodate the argument character sequence.

5 Requires: Every overriding definition of this virtual function shall obey the following constraints:

1) The effect of consuming a character on the associated output sequence is specified277)

2) Let r be the number of characters in the pending sequence not consumed. If r is non-zero then
pbase() and pptr() must be set so that: pptr() - pbase() == r and the r characters start-
ing at pbase() are the associated output stream. In case r is zero (all characters of the pending
sequence have been consumed) then either pbase() is set to NULL, or pbase() and pptr() are
both set to the same non-NULL value.

3) The function may fail if either appending some character to the associated output stream fails or if it is
unable to establish pbase() and pptr() according to the above rules.

6 Returns: traits::eof() or throws an exception if the function fails.
Otherwise, returns some value other than traits::eof() to indicate success.278)

7 Default behavior: Returns traits::eof().

277) That is, for each class derived from an instance of basic_streambuf in this clause (27.7.1, 27.8.1.1), a specification of how
consuming a character effects the associated output sequence is given. There is no requirement on a program-defined class.
278) Typically, overflow returns c to indicate success, except when traits::eq_int_type(c,traits::eof()) returns
true, in which case it returns traits::not_eof(c).

634

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.5.2.4.5 Put area

[lib.iostream.format] 27.6 Formatting and manipulators

Header <istream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_istream;

typedef basic_istream<char> istream;
typedef basic_istream<wchar_t> wistream;

template <class charT, class traits = char_traits<charT> >
class basic_iostream;

typedef basic_iostream<char> iostream;
typedef basic_iostream<wchar_t> wiostream;

template <class charT, class traits>
basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);

}

Header <ostream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ostream;

typedef basic_ostream<char> ostream;
typedef basic_ostream<wchar_t> wostream;

template <class charT, class traits>
basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);

template <class charT, class traits>
basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);

template <class charT, class traits>
basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);

}

Header <iomanip> synopsis

namespace std {
// Types T1, T2, ... are unspecified implementation types
T1 resetiosflags(ios_base::fmtflags mask);
T2 setiosflags (ios_base::fmtflags mask);
T3 setbase(int base);
template<charT> T4 setfill(charT c);
T5 setprecision(int n);
T6 setw(int n);

}

635

ISO/IEC 14882:2003(E)  ISO/IEC

27.6 Formatting and manipulators 27 Input/output library

[lib.input.streams] 27.6.1 Input streams

1 The header <istream> defines two types and a function signature that control input from a stream buffer.

[lib.istream] 27.6.1.1 Class template basic_istream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_istream : virtual public basic_ios<charT,traits> {
public:
// Types (inherited from basic_ios (27.4.4)):

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.6.1.1.1 Constructor/destructor:
explicit basic_istream(basic_streambuf<charT,traits>* sb);
virtual ˜basic_istream();

// 27.6.1.1.2 Prefix/suffix:
class sentry;

// 27.6.1.2 Formatted input:
basic_istream<charT,traits>& operator>>

(basic_istream<charT,traits>& (*pf)(basic_istream<charT,traits>&));
basic_istream<charT,traits>& operator>>

(basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));
basic_istream<charT,traits>& operator>>

(ios_base& (*pf)(ios_base&));

basic_istream<charT,traits>& operator>>(bool& n);
basic_istream<charT,traits>& operator>>(short& n);
basic_istream<charT,traits>& operator>>(unsigned short& n);
basic_istream<charT,traits>& operator>>(int& n);
basic_istream<charT,traits>& operator>>(unsigned int& n);
basic_istream<charT,traits>& operator>>(long& n);
basic_istream<charT,traits>& operator>>(unsigned long& n);
basic_istream<charT,traits>& operator>>(float& f);
basic_istream<charT,traits>& operator>>(double& f);
basic_istream<charT,traits>& operator>>(long double& f);

basic_istream<charT,traits>& operator>>(void*& p);
basic_istream<charT,traits>& operator>>

(basic_streambuf<char_type,traits>* sb);

// 27.6.1.3 Unformatted input:
streamsize gcount() const;
int_type get();
basic_istream<charT,traits>& get(char_type& c);
basic_istream<charT,traits>& get(char_type* s, streamsize n);
basic_istream<charT,traits>& get(char_type* s, streamsize n,

char_type delim);
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);
basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb,

char_type delim);

basic_istream<charT,traits>& getline(char_type* s, streamsize n);
basic_istream<charT,traits>& getline(char_type* s, streamsize n,

char_type delim);

636

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.1.1 Class template basic_istream

basic_istream<charT,traits>& ignore
(streamsize n = 1, int_type delim = traits::eof());

int_type peek();
basic_istream<charT,traits>& read (char_type* s, streamsize n);
streamsize readsome(char_type* s, streamsize n);

basic_istream<charT,traits>& putback(char_type c);
basic_istream<charT,traits>& unget();
int sync();

pos_type tellg();
basic_istream<charT,traits>& seekg(pos_type);
basic_istream<charT,traits>& seekg(off_type, ios_base::seekdir);

};

// 27.6.1.2.3 character extraction templates:
template<class charT, class traits>

basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,
charT&);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,

unsigned char&);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
signed char&);

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,

charT*);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
unsigned char*);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,

signed char*);
}

1 The class basic_istream defines a number of member function signatures that assist in reading and
interpreting input from sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: the formatted input functions (or
extractors) and the unformatted input functions. Both groups of input functions are described as if they
obtain (or extract) input characters by calling rdbuf()->sbumpc() or rdbuf()->sgetc(). They
may use other public members of istream.

3 If rdbuf()->sbumpc() or rdbuf()->sgetc() returns traits::eof(), then the input function,
except as explicitly noted otherwise, completes its actions and does setstate(eofbit), which may
throw ios_base::failure (27.4.4.3), before returning.

4 If one of these called functions throws an exception, then unless explicitly noted otherwise, the input func-
tion sets badbit in error state. If badbit is on in exceptions(), the input function rethrows the
exception without completing its actions, otherwise it does not throw anything and proceeds as if the called
function had returned a failure indication.

637

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.1.1 Class template basic_istream 27 Input/output library

[lib.istream.cons] 27.6.1.1.1 basic_istream constructors

explicit basic_istream(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of class basic_istream, assigning initial values to the base class by call-
ing basic_ios::init(sb) (27.4.4.1).

2 Postcondition: gcount() == 0

virtual ˜basic_istream();

3 Effects: Destroys an object of class basic_istream.
4 Notes: Does not perform any operations of rdbuf().

[lib.istream::sentry] 27.6.1.1.2 Class basic_istream::sentry

namespace std {
template <class charT,class traits = char_traits<charT> >
class basic_istream<charT,traits>::sentry {
typedef traits traits_type;

// bool ok_; exposition only
public:
explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);
˜sentry();
operator bool() const { return ok_; }
private:
sentry(const sentry&); // not defined
sentry& operator=(const sentry&); // not defined

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);

2 Effects: If is.good() is true, prepares for formatted or unformatted input. First, if is.tie() is not
a null pointer, the function calls is.tie()->flush() to synchronize the output sequence with any
associated external C stream. Except that this call can be suppressed if the put area of is.tie() is
empty. Further an implementation is allowed to defer the call to flush until a call of
is->rdbuf()->underflow occurs. If no such call occurs before the sentry object is destroyed,
the call to flush may be eliminated
entirely.279) If noskipws is zero and is.flags() & ios_base::skipws is nonzero, the func-

tion extracts and discards each character as long as the next available input character c is a whitespace
character. If is.rdbuf()->sbumpc() or is.rdbuf()->sgetc() returns traits::eof(),
the function calls setstate(failbit | eofbit) (which may throw ios_base::failure).

3 Notes: The constructor explicit sentry(basic_istream<charT,traits>& is, bool
noskipws = false) uses the currently imbued locale in is , to determine whether the next input
character is whitespace or not.

4 To decide if the character c is a whitespace character, the constructor performs ‘‘as if’’ it executes the
following code fragment:

const ctype<charT>& ctype = use_facet<ctype<charT> >(is.getloc());
if (ctype.is(ctype.space,c)!=0)

// c is a whitespace character.

279) This will be possible only in functions that are part of the library. The semantics of the constructor used in user code is as speci-
fied.

638

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.1.1.2 Class basic_istream::sentry

5 If, after any preparation is completed, is.good() is true, ok_ != false otherwise, ok_ ==
false. During preparation, the constructor may call setstate(failbit) (which may throw
ios_base::failure (27.4.4.3))280)

6 [Note: This paragraph is intentionally empty. —end note]

˜sentry();

7 Effects: None.

operator bool() const;

8 Effects: Returns ok_.

[lib.istream.formatted] 27.6.1.2 Formatted input functions

[lib.istream.formatted.reqmts] 27.6.1.2.1 Common requirements

1 Each formatted input function begins execution by constructing an object of class sentry with the
noskipws (second) argument false. If the sentry object returns true, when converted to a value of
type bool, the function endeavors to obtain the requested input. If an exception is thrown during input
then ios::badbit is turned on281) in *this’s error state. If (exceptions()&badbit) != 0
then the exception is rethrown. In any case, the formatted input function destroys the sentry object. If
no exception has been thrown, it returns *this.

[lib.istream.formatted.arithmetic] 27.6.1.2.2 Arithmetic Extractors

operator>>(short& val);
operator>>(unsigned short& val);
operator>>(int& val);
operator>>(unsigned int& val);
operator>>(long& val);
operator>>(unsigned long& val);
operator>>(float& val);
operator>>(double& val);
operator>>(long double& val);
operator>>(bool& val);
operator>>(void*& val);

As in the case of the inserters, these extractors depend on the locale’s num_get<> (22.2.2.1) object to per-
form parsing the input stream data. These extractors behave as formatted input functions (as described in
27.6.1.2.1). After a sentry object is constructed, the conversion occurs as if performed by the following
code fragment:

typedef num_get< charT,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;
use_facet< numget >(loc).get(*this, 0, *this, err, val);
setstate(err);

In the above fragment, loc stands for the private member of the basic_ios class. [Note: The first argu-
ment provides an object of the istreambuf_iterator class which is an iterator pointed to an input
stream. It bypasses istreams and uses streambufs directly. —end note] Class locale relies on this type
as its interface to istream, so that it does not need to depend directly on istream.

280) The sentry constructor and destructor can also perform additional implementation-dependent operations.
281) This is done without causing an ios::failure to be thrown.

639

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.1.2.3 basic_istream::operator>> 27 Input/output library

[lib.istream::extractors] 27.6.1.2.3 basic_istream::operator>>

basic_istream<charT,traits>& operator>>
(basic_istream<charT,traits>& (*pf)(basic_istream<charT,traits>&))

0a Effects: None. This extractor does not behave as a formatted input function (as described in 27.6.1.2.1.)
1 Returns: pf(*this).282)

basic_istream<charT,traits>& operator>>
(basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));

2 Effects: Calls pf(*this). This extractor does not behave as a formatted input function (as described in
27.6.1.2.1).

3 Returns: *this.

basic_istream<charT,traits>& operator>>
(ios_base& (*pf)(ios_base&));

4 Effects: Calls pf(*this).283) This extractor does not behave as a formatted input function (as described
in 27.6.1.2.1).

5 Returns: *this.

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>& in,

charT* s);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,
unsigned char* s);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,

signed char* s);

6 Effects: Behaves like a formatted input member (as described in 27.6.1.2.1) of in. After a sentry
object is constructed, operator>> extracts characters and stores them into successive locations of an
array whose first element is designated by s. If width() is greater than zero, n is width(). Other-
wise n is the the number of elements of the largest array of char_type that can store a terminating
charT(). n is the maximum number of characters stored.

7 Characters are extracted and stored until any of the following occurs:

— n-1 characters are stored;

— end of file occurs on the input sequence;

— ct.is(ct.space,c) is true for the next available input character c, where ct is
use_facet<ctype<charT> >(in.getloc()).

Operator>> then stores a null byte (charT()) in the next position, which may be the first position if no
characters were extracted. operator>> then calls width(0).

8 If the function extracted no characters, it calls setstate(failbit), which may throw
ios_base::failure (27.4.4.3).

9 Returns: in.

282) See, for example, the function signature ws(basic_istream&) (27.6.1.4).
283) See, for example, the function signature dec(ios_base&) (27.4.5.3).

640

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.1.2.3 basic_istream::operator>>

template<class charT, class traits>
basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>& in,

charT& c);
template<class traits>

basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,
unsigned char& c);

template<class traits>
basic_istream<char,traits>& operator>>(basic_istream<char,traits>& in,

signed char& c);

10 Effects: Behaves like a formatted input member (as described in 27.6.1.2.1) of in. After a sentry
object is constructed a character is extracted from in, if one is available, and stored in c. Otherwise,
the function calls in.setstate(failbit).

11 Returns: in.

basic_istream<charT,traits>& operator>>
(basic_streambuf<charT,traits>* sb);

12 Effects: Behaves as a formatted input function (as described in 27.6.1.2.1). If sb is null, calls
setstate(failbit), which may throw ios_base::failure (27.4.4.3). After a sentry object
is constructed, extracts characters from *this and inserts them in the output sequence controlled by
sb. Characters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs (in which case the exception is caught).
13 If the function inserts no characters, it calls setstate(failbit), which may throw

ios_base::failure (27.4.4.3). If it inserted no characters because it caught an exception thrown
while extracting characters from sb and failbit is on in exceptions() (27.4.4.3), then the
caught exception is rethrown.

14 Returns: *this.

[lib.istream.unformatted] 27.6.1.3 Unformatted input functions

1 Each unformatted input function begins execution by constructing an object of class sentry with the
default argument noskipws (second) argument true. If the sentry object returns true, when con-
verted to a value of type bool, the function endeavors to obtain the requested input. If an exception is
thrown during input then ios::badbit is turned on284) in *this’s error state. (Exceptions thrown
from basic_ios<>::clear() are not caught or rethrown.) If (exceptions()&badbit) != 0
then the exception is rethrown. It also counts the number of characters extracted. If no exception has been
thrown it ends by storing the count in a member object and returning the value specified. In any event the
sentry object is destroyed before leaving the unformatted input function.

streamsize gcount() const;

1a Effects: None. This member function does not behave as an unformatted input function (as described in
27.6.1.3, paragraph 1).

2 Returns: The number of characters extracted by the last unformatted input member function called for the
object.

284) This is done without causing an ios::failure to be thrown.

641

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.1.3 Unformatted input functions 27 Input/output library

int_type get();

3 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, extracts a character c, if one is available. Otherwise, the function calls
setstate(failbit), which may throw ios_base::failure (27.4.4.3),

4 Returns: c if available, otherwise traits::eof().

basic_istream<charT,traits>& get(char_type& c);

5 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, extracts a character, if one is available, and assigns it to c.285) Otherwise, the func-
tion calls setstate(failbit) (which may throw ios_base::failure (27.4.4.3)).

6 Returns: *this.

basic_istream<charT,traits>& get(char_type* s, streamsize n,
char_type delim);

7 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, extracts characters and stores them into successive locations of an array whose first
element is designated by s.286) Characters are extracted and stored until any of the following occurs:

— n - 1 characters are stored;

— end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));

— c == delim for the next available input character c (in which case c is not extracted).

8 If the function stores no characters, it calls setstate(failbit) (which may throw
ios_base::failure (27.4.4.3)). In any case, it then stores a null character into the next successive
location of the array.

9 Returns: *this.

basic_istream<charT,traits>& get(char_type* s, streamsize n)

10 Effects: Calls get(s,n,widen(’\n’))
11 Returns: Value returned by the call.

basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb,
char_type delim);

12 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, extracts characters and inserts them in the output sequence controlled by sb. Char-
acters are extracted and inserted until any of the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— c == delim for the next available input character c (in which case c is not extracted);

— an exception occurs (in which case, the exception is caught but not rethrown).

13 If the function inserts no characters, it calls setstate(failbit), which may throw
ios_base::failure (27.4.4.3).

14 Returns: *this.

285) Note that this function is not overloaded on types signed char and unsigned char.
286) Note that this function is not overloaded on types signed char and unsigned char.

642

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.1.3 Unformatted input functions

basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);

15 Effects: Calls get(s,n,widen(’\n’))
16 Returns: Value returned by the call.

basic_istream<charT,traits>& getline(char_type* s, streamsize n,
char_type delim);

17 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, extracts characters and stores them into successive locations of an array whose first
element is designated by s.287) Characters are extracted and stored until one of the following occurs:

1) end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit));

2) c == delim for the next available input character c (in which case the input character is extracted but
not stored);288)

3) n - 1 characters are stored (in which case the function calls setstate(failbit)).

18 These conditions are tested in the order shown.289)

19 If the function extracts no characters, it calls setstate(failbit) (which may throw
ios_base::failure (27.4.4.3)).290)

20 In any case, it then stores a null character (using charT()) into the next successive location of the array.
21 Returns: *this.

22 [Example:

#include <iostream>

int main()
{
using namespace std;
const int line_buffer_size = 100;

char buffer[line_buffer_size];
int line_number = 0;
while (cin.getline(buffer, line_buffer_size, ’\n’) || cin.gcount()) {

int count = cin.gcount();
if (cin.eof())

cout << "Partial final line"; // cin.fail() is false
else if (cin.fail()) {

cout << "Partial long line";
cin.clear(cin.rdstate() & ˜ios::failbit);

} else {
count--; // Don’t include newline in count
cout << "Line " << ++line_number;

}
cout << " (" << count << " chars): " << buffer << endl;

}
}

—end example]

287) Note that this function is not overloaded on types signed char and unsigned char.
288) Since the final input character is ‘‘extracted,’’ it is counted in the gcount(), even though it is not stored.
289) This allows an input line which exactly fills the buffer, without setting failbit. This is different behavior than the historical
AT&T implementation.
290) This implies an empty input line will not cause failbit to be set.

643

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.1.3 Unformatted input functions 27 Input/output library

basic_istream<charT,traits>& getline(char_type* s, streamsize n);

23 Returns: getline(s,n,widen(’\n’))

basic_istream<charT,traits>&
ignore(streamsize n = 1, int_type delim = traits::eof());

24 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, extracts characters and discards them. Characters are extracted until any of the fol-
lowing occurs:

— if n != numeric_limits<streamsize>::max() (18.2.1), n characters are extracted

— end-of-file occurs on the input sequence (in which case the function calls setstate(eofbit),
which may throw ios_base::failure (27.4.4.3));

— c == delim for the next available input character c (in which case c is extracted).
25 Notes: The last condition will never occur if delim == traits::eof().
26 Returns: *this.

int_type peek();

26a Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, reads but does not extract the current input character.

27 Returns: traits::eof() if good() is false. Otherwise, returns rdbuf()->sgetc().

basic_istream<charT,traits>& read(char_type* s, streamsize n);

28 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, if !good() calls setstate(failbit) which may throw an exception, and
return. Otherwise extracts characters and stores them into successive locations of an array whose first
element is designated by s.291) Characters are extracted and stored until either of the following occurs:

— n characters are stored;

— end-of-file occurs on the input sequence (in which case the function calls
setstate(failbit|eofbit), which may throw ios_base::failure (27.4.4.3)).

29 Returns: *this.

streamsize readsome(char_type* s, streamsize n);

30 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, if !good() calls setstate(failbit) which may throw an exception, and
return. Otherwise extracts characters and stores them into successive locations of an array whose first
element is designated by s. If rdbuf()->in_avail() == -1, calls setstate(eofbit)
(which may throw ios_base::failure (27.4.4.3)), and extracts no characters;

— If rdbuf()->in_avail() == 0, extracts no characters

— If rdbuf()->in_avail() > 0, extracts min(rdbuf()->in_avail(),n)).
31 Returns: The number of characters extracted.

basic_istream<charT,traits>& putback(char_type c);

32 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, if !good() calls setstate(failbit) which may throw an exception, and
return. If rdbuf() is not null, calls rdbuf->sputbackc(). If rdbuf() is null, or if
sputbackc() returns traits::eof(), calls setstate(badbit) (which may throw
ios_base::failure (27.4.4.3)). [Note: this function extracts no characters, so the value returned

291) Note that this function is not overloaded on types signed char and unsigned char.

644

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.1.3 Unformatted input functions

by the next call to gcount() is 0. —end note]
33 Returns: *this.

basic_istream<charT,traits>& unget();

34 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After construct-
ing a sentry object, if !good() calls setstate(failbit) which may throw an exception, and
return. If rdbuf() is not null, calls rdbuf()->sungetc(). If rdbuf() is null, or if
sungetc() returns traits::eof(), calls setstate(badbit) (which may throw
ios_base::failure (27.4.4.3)). [Note: this function extracts no characters, so the value returned
by the next call to gcount() is 0. —end note]

35 Returns: *this.

int sync();

36 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it
does not count the number of characters extracted and does not affect the value returned by subsequent
calls to gcount(). After constructing a sentry object, if rdbuf() is a null pointer, returns -1 . Oth-
erwise, calls rdbuf()->pubsync() and, if that function returns -1 calls setstate(badbit)
(which may throw ios_base::failure (27.4.4.3), and returns -1. Otherwise, returns zero.

pos_type tellg();

36a Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it
does not count the number of characters extracted and does not affect the value returned by subsequent
calls to gcount().

37 Returns: After constructing a sentry object, if fail() != false, returns pos_type(-1) to indicate
failure. Otherwise, returns rdbuf()->pubseekoff(0, cur, in).

basic_istream<charT,traits>& seekg(pos_type pos);

38 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it
does not count the number of characters extracted and does not affect the value returned by subsequent
calls to gcount(). After constructing a sentry object, if fail() != true, executes
rdbuf()->pubseekpos(pos). In case of failure, the function calls setstate(failbit)
(which may throw ios_base::failure).

39 Returns: *this.

basic_istream<charT,traits>& seekg(off_type& off, ios_base::seekdir dir);

40 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it
does not count the number of characters extracted and does not affect the value returned by subsequent
calls to gcount(). After constructing a sentry object, if fail() != true, executes
rdbuf()->pubseekoff(off, dir).

41 Returns: *this.

[lib.istream.manip] 27.6.1.4 Standard basic_istream manipulators

namespace std {
template <class charT, class traits>
basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);

}

1 Effects: Extracts characters as long as the next available character c is whitespace or until there are no
more characters in the sequence. Whitespace characters are distinguished with the same criterion as
used by sentry::sentry (27.6.1.1.2). If ws stops extracting characters because there are no more
available it sets eofbit, but not failbit.

645

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.1.4 Standard basic_istream manipulators 27 Input/output library

2 Returns: is.

[lib.iostreamclass] 27.6.1.5 Class template basic_iostream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_iostream :
public basic_istream<charT,traits>,
public basic_ostream<charT,traits> {

public:
// constructor/destructor
explicit basic_iostream(basic_streambuf<charT,traits>* sb);
virtual ˜basic_iostream();

};
}

1 The class basic_iostream inherits a number of functions that allow reading input and writing output to
sequences controlled by a stream buffer.

[lib.iostream.cons] 27.6.1.5.1 basic_iostream constructors

explicit basic_iostream(basic_streambuf<charT,traits>* sb);

1 Effects Constructs an object of class basic_iostream, assigning initial values to the base classes by
calling basic_istream<charT,traits>(sb) (27.6.1.1) and
basic_ostream<charT,traits>(sb) (27.6.2.1)

2 Postcondition: rdbuf()==sb and gcount()==0.

[lib.iostream.dest] 27.6.1.5.2 basic_iostream destructor

virtual ˜basic_iostream();

1 Effects: Destroys an object of class basic_iostream.
2 Notes: Does not perform any operations on rdbuf().

[lib.output.streams] 27.6.2 Output streams

1 The header <ostream> defines a type and several function signatures that control output to a stream
buffer.

[lib.ostream] 27.6.2.1 Class template basic_ostream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ostream : virtual public basic_ios<charT,traits> {
public:
// Types (inherited from basic_ios (27.4.4)):

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.6.2.2 Constructor/destructor:
explicit basic_ostream(basic_streambuf<char_type,traits>* sb);
virtual ˜basic_ostream();

// 27.6.2.3 Prefix/suffix:
class sentry;

646

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.2.1 Class template basic_ostream

// 27.6.2.5 Formatted output:
basic_ostream<charT,traits>& operator<<

(basic_ostream<charT,traits>& (*pf)(basic_ostream<charT,traits>&));
basic_ostream<charT,traits>& operator<<

(basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));
basic_ostream<charT,traits>& operator<<

(ios_base& (*pf)(ios_base&));

basic_ostream<charT,traits>& operator<<(bool n);
basic_ostream<charT,traits>& operator<<(short n);
basic_ostream<charT,traits>& operator<<(unsigned short n);
basic_ostream<charT,traits>& operator<<(int n);
basic_ostream<charT,traits>& operator<<(unsigned int n);
basic_ostream<charT,traits>& operator<<(long n);
basic_ostream<charT,traits>& operator<<(unsigned long n);
basic_ostream<charT,traits>& operator<<(float f);
basic_ostream<charT,traits>& operator<<(double f);
basic_ostream<charT,traits>& operator<<(long double f);

basic_ostream<charT,traits>& operator<<(const void* p);
basic_ostream<charT,traits>& operator<<

(basic_streambuf<char_type,traits>* sb);

// 27.6.2.6 Unformatted output:
basic_ostream<charT,traits>& put(char_type c);
basic_ostream<charT,traits>& write(const char_type* s, streamsize n);

basic_ostream<charT,traits>& flush();

// 27.6.2.4 seeks:
pos_type tellp();
basic_ostream<charT,traits>& seekp(pos_type);
basic_ostream<charT,traits>& seekp(off_type, ios_base::seekdir);

};

// 27.6.2.5.4 character inserters
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,

charT);
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,

char);
// specialization
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
char);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
signed char);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

unsigned char)

647

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.2.1 Class template basic_ostream 27 Input/output library

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,

const charT*);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
const char*);

// partial specializationss
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
const char*);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
const signed char*);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,

const unsigned char*);

}

1 The class basic_ostream defines a number of member function signatures that assist in formatting and
writing output to output sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: the formatted output functions (or
inserters) and the unformatted output functions. Both groups of output functions generate (or insert) output
characters by actions equivalent to calling rdbuf()->sputc(int_type). They may use other public
members of basic_ostream except that they do not invoke any virtual members of rdbuf() except
overflow().

3 If one of these called functions throws an exception, then unless explicitly noted otherwise the output func-
tion set badbit in error state. If badbit is on in exceptions(), the output function rethrows the
exception without completing its actions, otherwise it does not throw anything and treat as an error.

[lib.ostream.cons] 27.6.2.2 basic_ostream constructors

explicit basic_ostream(basic_streambuf<charT,traits>* sb);

1 Effects: Constructs an object of class basic_ostream, assigning initial values to the base class by call-
ing basic_ios<charT,traits>::init(sb) (27.4.4.1).

2 Postcondition: rdbuf() == sb.

virtual ˜basic_ostream();

3 Effects: Destroys an object of class basic_ostream.
4 Notes: Does not perform any operations on rdbuf().

[lib.ostream::sentry] 27.6.2.3 Class basic_ostream::sentry

648

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.2.3 Class basic_ostream::sentry

namespace std {
template <class charT,class traits = char_traits<charT> >
class basic_ostream<charT,traits>::sentry {

// bool ok_; exposition only
public:
explicit sentry(basic_ostream<charT,traits>& os);
˜sentry();
operator bool() const { return ok_; }
private:
sentry(const sentry&); // not defined
sentry& operator=(const sentry&); // not defined

};
}

1 The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

explicit sentry(basic_ostream<charT,traits>& os);

2 If os.good() is nonzero, prepares for formatted or unformatted output. If os.tie() is not a null
pointer, calls os.tie()->flush().292)

3 If, after any preparation is completed, os.good() is true, ok_ == true otherwise, ok_ ==
false. During preparation, the constructor may call setstate(failbit) (which may throw
ios_base::failure (27.4.4.3))293)

˜sentry();

4 If ((os.flags() & ios_base::unitbuf) && !uncaught_exception()) is true, calls
os.flush().

operator bool();

5 Effects: Returns ok_.

[lib.ostream.seeks] 27.6.2.4 basic_ostream seek members

pos_type tellp();

1 Returns: if fail() != false, returns pos_type(-1) to indicate failure. Otherwise, returns
rdbuf()->pubseekoff(0, cur, out).

basic_ostream<charT,traits>& seekp(pos_type& pos);

2 Effects: If fail() != true, executes rdbuf()->pubseekpos(pos). In case of failure, the func-
tion calls setstate(failbit) (which may throw ios_base::failure).

3 Returns: *this.

basic_ostream<charT,traits>& seekp(off_type& off, ios_base::seekdir dir);

4 Effects: If fail() != true, executes rdbuf()->pubseekoff(off, dir).
5 Returns: *this.

292) The call os.tie()->flush() does not necessarily occur if the function can determine that no synchronization is necessary.
293) The sentry constructor and destructor can also perform additional implementation-dependent operations.

649

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.2.5 Formatted output functions 27 Input/output library

[lib.ostream.formatted] 27.6.2.5 Formatted output functions

[lib.ostream.formatted.reqmts] 27.6.2.5.1 Common requirements

1 Each formatted output function begins execution by constructing an object of class sentry. If this object
returns true when converted to a value of type bool, the function endeavors to generate the requested
output. If the generation fails, then the formatted output function does setstate(ios::failbit),
which might throw an exception. If an exception is thrown during output, then ios::badbit is turned
on294) in *this’s error state. If (exceptions()&badbit) != 0 then the exception is rethrown.
Whether or not an exception is thrown, the sentry object is destroyed before leaving the formatted output
function. If no exception is thrown, the result of the formattted output function is *this.

2 The descriptions of the individual formatted output operations describe how they perform output and do not
mention the sentry object.

[lib.ostream.inserters.arithmetic] 27.6.2.5.2 Arithmetic Inserters

operator<<(bool val);
operator<<(short val);
operator<<(unsigned short val);
operator<<(int val);
operator<<(unsigned int val);
operator<<(long val);
operator<<(unsigned long val);
operator<<(float val);
operator<<(double val);
operator<<(long double val);
operator<<(const void* val);

1 Effects: The classes num_get<> and num_put<> handle locale-dependent numeric formatting and
parsing. These inserter functions use the imbued locale value to perform numeric formatting. These
inserters behave as formatted output functions (as described in 27.6.2.5.1). After the sentry object is
constructed, the conversion occurs as if it performed the following code fragment:

bool failed =
use_facet< num_put<charT,ostreambuf_iterator<charT,traits> > >(getloc()).

put(*this, *this, fill(), val). failed();

The first argument provides an object of the ostreambuf_iterator<> class which is an iterator
for class basic_ostream<>. It bypasses ostreams and uses streambufs directly. Class locale
relies on these types as its interface to iostreams, since for flexibility it has been abstracted away from
direct dependence on ostream. The second parameter is a reference to the base subobject of type
ios_base. It provides formatting specifications such as field width, and a locale from which to obtain
other facets. If failed is true then does setstate(badbit), which may throw an exception,
and returns.

2 Returns: *this.

[lib.ostream.inserters] 27.6.2.5.3 basic_ostream::operator<<

basic_ostream<charT,traits>& operator<<
(basic_ostream<charT,traits>& (*pf)(basic_ostream<charT,traits>&))

0a Effects: None. Does not behave as a formatted output function (as described in 27.6.2.5.1).
1 Returns: pf(*this).295)

294) without causing an ios::failure to be thrown.
295) See, for example, the function signature endl(basic_ostream&) (27.6.2.7) .

650

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.2.5.3 basic_ostream::operator<<

basic_ostream<charT,traits>& operator<<
(basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&))

2 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described in
27.6.2.5.1).

3 Returns: *this.296)

basic_ostream<charT,traits>& operator<<
(ios_base& (*pf)(ios_base&))

4 Effects: Calls pf(*this). This inserter does not behave as a formatted output function (as described in
27.6.2.5.1).

5 Returns: *this.

basic_ostream<charT,traits>& operator<<
(basic_streambuf<charT,traits>* sb);

6 Effects: Behaves as a formatted output function (as described in 27.6.2.5.1). After the sentry object is con-
structed, if sb is null calls setstate(badbit) (which may throw ios_base::failure).

7 Gets characters from sb and inserts them in *this. Characters are read from sb and inserted until any of
the following occurs:

— end-of-file occurs on the input sequence;

— inserting in the output sequence fails (in which case the character to be inserted is not extracted);

— an exception occurs while getting a character from sb.

8 If the function inserts no characters, it calls setstate(failbit) (which may throw
ios_base::failure (27.4.4.3)). If an exception was thrown while extracting a character, the function
set failbit in error state, and if failbit is on in exceptions() the caught exception is rethrown.

9 Returns: *this.

[lib.ostream.inserters.character] 27.6.2.5.4 Character inserter function templates

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,

charT c);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,
char c);

// specialization
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
char c);

// signed and unsigned
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
signed char c);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,

unsigned char c);

1 Effects: Behaves like a formatted inserter (as described in 27.6.2.5.1) of out. After a sentry object is
constructed it inserts characters. In case c has type char and the character type of the stream is not
char, then the character to be inserted is out.widen(c); otherwise the character is c297). Padding
is determined as described in 22.2.2.2.2. width(0) is called. The insertion character and any

296) See, for example, the function signature dec(ios_base&) (27.4.5.3).
297) In case the insertion is into a char stream, widen(c) will usually be c.

651

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.2.5.4 Character inserter function templates 27 Input/output library

required padding are inserted into out.
2 Returns: out

template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,

const charT* s);
template<class charT, class traits>

basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>& out,
const char* s);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,

const char* s);
template<class traits>

basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
const signed char* s);

template<class traits>
basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,

const unsigned char* s);

3 Requires: s is non-null.
4 Effects: Behaves like an formatted inserter (as described in 27.6.2.5.1) of out. After a sentry object is

constructed it inserts characters. The number of characters starting at s to be inserted is
traits::length(s). Padding is determined as described in 22.2.2.2.2. The
traits::length(s) characters starting at s are widened using out.widen (27.4.4.2). The
widened characters and any required padding are inserted into out. Calls width(0).

5 Returns: out

[lib.ostream.unformatted] 27.6.2.6 Unformatted output functions

1 Each unformatted output function begins execution by constructing an object of class sentry. If this
object returns true, while converting to a value of type bool, the function endeavors to generate the
requested output. If an exception is thrown during output, then ios::badbit is turned on297a) in
*this’s error state. If (exceptions() & badbit) != 0 then the exception is rethrown. In any
case, the unformatted output function ends by destroying the sentry object, then, if no exception was
thrown, returning the value specified for the unformatted output function.

basic_ostream<charT,traits>& put(char_type c);

2 Effects: Behaves as an unformatted output function (as described in 27.6.2.6, paragraph 1). After con-
structing a sentry object, inserts the character c, if possible.298)

3 Otherwise, calls setstate(badbit) (which may throw ios_base::failure (27.4.4.3)).
4 Returns: *this.

basic_ostream& write(const char_type* s, streamsize n);

5 Effects: Behaves as an unformatted output function (as described in 27.6.2.6, paragraph 1). After con-
structing a sentry object, obtains characters to insert from successive locations of an array whose first
element is designated by s.299) Characters are inserted until either of the following occurs:

— n characters are inserted;

— inserting in the output sequence fails (in which case the function calls setstate(badbit), which
may throw ios_base::failure (27.4.4.3)).

297a) without causing an ios::failure to be thrown.
298) Note that this function is not overloaded on types signed char and unsigned char.
299) Note that this function is not overloaded on types signed char and unsigned char.

652

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.2.6 Unformatted output functions

6 Returns: *this.

basic_ostream& flush();

7 If rdbuf() is not a null pointer, calls rdbuf()->pubsync(). If that function returns -1 calls
setstate(badbit) (which may throw ios_base::failure (27.4.4.3)). Does not behave as an
unformatted output function (as described in 27.6.2.6, paragraph 1).

8 Returns: *this.

[lib.ostream.manip] 27.6.2.7 Standard basic_ostream manipulators

namespace std {
template <class charT, class traits>
basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);

}

1 Effects: Calls os.put(os.widen(’\n’)), then os.flush().
2 Returns: os.300)

namespace std {
template <class charT, class traits>
basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);

}

3 Effects: Inserts a null character into the output sequence: calls os.put(charT()).
4 Returns: os.

namespace std {
template <class charT, class traits>
basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);

}

5 Effects: Calls os.flush().
6 Returns: os.

[lib.std.manip] 27.6.3 Standard manipulators

1 The header <iomanip> defines a type and several related functions that use this type to provide extractors
and inserters that alter information maintained by class ios_base and its derived classes.

2 The type designated smanip in each of the following function descriptions is implementation-specified and
may be different for each function.

smanip resetiosflags(ios_base::fmtflags mask);

3 Returns: An object s of unspecified type such that if out is an (instance of) basic_ostream then the
expression out<<s behaves as if f(s) were called, and if in is an (instance of) basic_istream
then the expression in>>s behaves as if f(s) were called. Where f can be defined as:301)

300) The effect of executing cout << endl is to insert a newline character in the output sequence controlled by cout, then syn-
chronize it with any external file with which it might be associated.
301) The expression cin >> resetiosflags(ios_base::skipws) clears ios_base::skipws in the format flags stored
in the istream object cin (the same as cin >> noskipws), and the expression cout <<
resetiosflags(ios_base::showbase) clears ios_base::showbase in the format flags stored in the ostream object
cout (the same as cout << noshowbase).

653

ISO/IEC 14882:2003(E)  ISO/IEC

27.6.3 Standard manipulators 27 Input/output library

ios_base& f(ios_base& str, ios_base::fmtflags mask)
{

// reset specified flags
str.setf(ios_base::fmtflags(0), mask);
return str;

}

The expression out<<s has type ostream& and value out. The expression in>>s has type
istream& and value in.

smanip setiosflags(ios_base::fmtflags mask);

4 Returns: An object s of unspecified type such that if out is an (instance of) basic_ostream then the
expression out<<s behaves as if f(s) were called, in is an (instance of) basic_istream then the
expression in>>s behaves as if f(s) were called. Where f can be defined as:

ios_base& f(ios_base& str, ios_base::fmtflags mask)
{

// set specified flags
str.setf(mask);
return str;

}

The expression out<<s has type ostream& and value out. The expression in>>s has type
istream& and value in.

smanip setbase(int base);

5 Returns: An object s of unspecified type such that if out is an (instance of) basic_ostream then the
expression out<<s behaves as if f(s) were called, in is an (instance of) basic_istream then the
expression in>>s behaves as if f(s) were called. Where f can be defined as:

ios_base& f(ios_base& str, int base)
{

// set basefield
str.setf(base == 8 ? ios_base::oct :

base == 10 ? ios_base::dec :
base == 16 ? ios_base::hex :

ios_base::fmtflags(0), ios_base::basefield);
return str;

}

The expression out<<s has type ostream& and value out. The expression in>>s has type
istream& and value in.

smanip setfill(char_type c);

6 Returns: An object s of unspecified type such that if out is (or is derived from)
basic_ostream<charT,traits> and c has type charT then the expression out<<s behaves
as if f(s) were called, where f can be defined as:

template<class charT, class traits>
basic_ios<charT,traits>& f(basic_ios<charT,traits>& str, charT c)
{

// set fill character
str.fill(c);
return str;

}

The expression out<<s has type ostream& and value out.

654

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.6.3 Standard manipulators

smanip setprecision(int n);

7 Returns: An object s of unspecified type such that if out is an (instance of) basic_ostream then the
expression out<<s behaves as if f(s) were called, in is an (instance of) basic_istream then the
expression in>>s behaves as if f(s) were called. Where f can be defined as:

ios_base& f(ios_base& str, int n)
{

// set precision
str.precision(n);
return str;

}

The expression out<<s has type ostream& and value out. The expression in>>s has type
istream& and value in.

smanip setw(int n);

8 Returns: An object s of unspecified type such that if out is an (instance of) basic_ostream then the
expression out<<s behaves as if f(s) were called, in is an (instance of) basic_istream then the
expression in>>s behaves as if f(s) were called. Where f can be defined as:

ios_base& f(ios_base& str, int n)
{

// set width
str.width(n);
return str;

}

The expression out<<s has type ostream& and value out. The expression in>>s has type
istream& and value in.

[lib.string.streams] 27.7 String-based streams

1 The header <sstream> defines four class templates and six types, that associate stream buffers with
objects of class basic_string, as described in 21.2.

655

ISO/IEC 14882:2003(E)  ISO/IEC

27.7 String-based streams 27 Input/output library

Header <sstream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringbuf;

typedef basic_stringbuf<char> stringbuf;
typedef basic_stringbuf<wchar_t> wstringbuf;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_istringstream;

typedef basic_istringstream<char> istringstream;
typedef basic_istringstream<wchar_t> wistringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_ostringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_ostringstream<wchar_t> wostringstream;

template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_stringstream;
typedef basic_stringstream<char> stringstream;
typedef basic_stringstream<wchar_t> wstringstream;

}

[lib.stringbuf] 27.7.1 Class template basic_stringbuf

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringbuf : public basic_streambuf<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.7.1.1 Constructors:
explicit basic_stringbuf(ios_base::openmode which

= ios_base::in | ios_base::out);
explicit basic_stringbuf

(const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

// 27.7.1.2 Get and set:
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

656

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.7.1 Class template basic_stringbuf

protected:
// 27.7.1.3 Overridden virtual functions:
virtual int_type underflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());
virtual basic_streambuf<charT,traits>* setbuf(charT*, streamsize);

virtual pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out);

private:
// ios_base::openmode mode; exposition only
};

}

1 The class basic_stringbuf is derived from basic_streambuf to associate possibly the input
sequence and possibly the output sequence with a sequence of arbitrary characters. The sequence can be
initialized from, or made available as, an object of class basic_string.

2 For the sake of exposition, the maintained data is presented here as:

— ios_base::openmode mode, has in set if the input sequence can be read, and out set if the out-
put sequence can be written.

[lib.stringbuf.cons] 27.7.1.1 basic_stringbuf constructors

explicit basic_stringbuf(ios_base::openmode which =
ios_base::in | ios_base::out);

1 Effects: Constructs an object of class basic_stringbuf, initializing the base class with
basic_streambuf() (27.5.2.1), and initializing mode with which.

2 Notes: The function allocates no array object.

explicit basic_stringbuf(const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::in | ios_base::out);

3 Effects: Constructs an object of class basic_stringbuf, initializing the base class with
basic_streambuf() (27.5.2.1), and initializing mode with which. Then copies the content of
str into the basic_stringbuf underlying character sequence and initializes the input and output
sequences according to which. If which & ios_base::out is true, initializes the output
sequence with the underlying sequence. If which & ios_base::in is true, initializes the input
sequence with the underlying sequence.

4 Postconditions: str() == str.

[lib.stringbuf.members] 27.7.1.2 Member functions

basic_string<charT,traits,Allocator> str() const;

1 Returns: A basic_string object whose content is equal to the basic_stringbuf underlying char-
acter sequence. If the buffer is only created in input mode, the underlying character sequence is equal to
the input sequence; otherwise, it is equal to the output sequence. In case of an empty underlying charac-
ter sequence, the function returns basic_string<charT,traits,Allocator>().

657

ISO/IEC 14882:2003(E)  ISO/IEC

27.7.1.2 Member functions 27 Input/output library

void str(const basic_string<charT,traits,Allocator>& s);

2 Effects: If the basic_stringbuf’s underlying character sequence is not empty, deallocates it. Then
copies the content of s into the basic_stringbuf underlying character sequence and initializes the
input and output sequences according to the mode stored when creating the basic_stringbuf
object. If (mode&ios_base::out) is true, then initializes the output sequence with the underly-
ing sequence. If (mode&ios_base::in) is true, then initializes the input sequence with the
underlying sequence.

3 Postcondition: str() == s.

[lib.stringbuf.virtuals] 27.7.1.3 Overridden virtual functions

int_type underflow();

1 Returns: If the input sequence has a read position available, returns
traits::to_int_type(*gptr()).
Otherwise, returns traits::eof().

int_type pbackfail(int_type c = traits::eof());

2 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if the input sequence has a
putback position available, and if traits::eq(to_char_type(c),gptr()[-1]) returns
true, assigns gptr() - 1 to gptr().
Returns: c.

— If traits::eq_int_type(c,traits::eof()) returns false and if the input sequence has a
putback position available, and if mode & ios_base::out is nonzero, assigns c to *--gptr().
Returns: c.

— If traits::eq_int_type(c,traits::eof()) returns true and if the input sequence has a
putback position available, assigns gptr() - 1 to gptr().
Returns: traits::not_eof(c).

3 Returns: traits::eof() to indicate failure.
4 Notes: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

int_type overflow(int_type c = traits::eof());

5 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if either the output
sequence has a write position available or the function makes a write position available (as described
below), the function calls sputc(c).
Signals success by returning c.

— If traits::eq_int_type(c,traits::eof()) returns true, there is no character to append.
Signals success by returning a value other than traits::eof().

6 Notes: The function can alter the number of write positions available as a result of any call.
7 Returns: traits::eof() to indicate failure.

8 9 Notes: The function can make a write position available only if (mode & ios_base::out) != 0.
To make a write position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elements to hold the current array object (if any), plus at least one additional write
position. If (mode & ios_base::in) != 0, the function alters the read end pointer egptr()
to point just past the new write position (as does the write end pointer epptr()).

658

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.7.1.3 Overridden virtual functions

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);

10 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table
90:

Table 90—seekoff positioning
_ ___

Conditions Result_ __ ___
(which & basic_ios::in) != 0 positions the input sequence_ ___
(which & basic_ios::out) != 0 positions the output sequence_ ___

positions both the input and the output sequences(which & (basic_ios::in |
basic_ios::out)) ==
(basic_ios::in |
basic_ios::out))
and way == either
basic_ios::beg or
basic_ios::end_ ___
Otherwise the positioning operation fails._ ___ 






























11 For a sequence to be positioned, if its next pointer (either gptr() or pptr()) is a null pointer, the posi-
tioning operation fails. Otherwise, the function determines newoff as indicated in Table 91:

Table 91—newoff values
_ __

Condition newoff Value_ ___ __
way == basic_ios::beg 0_ __
way == basic_ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg)._ __
way == basic_ios::end the end pointer minus the begin-

ning pointer (xend - xbeg)_ __ 

















12 _ If (newoff + off) < 0, or (xend - xbeg) < (newoff + off), the positioning operation
fails. Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.

13 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type),
that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the return value is
pos_type(off_type(-1)).

pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

14 Effects: Alters the stream position within the controlled sequences, if possible, to correspond to the stream
position stored in sp (as described below).

— If (which & basic_ios::in) != 0, positions the input sequence.

— If (which & basic_ios::out) != 0, positions the output sequence.

— If sp is an invalid stream position, or if the function positions neither sequence, the positioning opera-
tion fails. If sp has not been obtained by a previous successful call to one of the positioning functions(
seekoff, seekpos, tellg, tellp) the effect is undefined.

659

ISO/IEC 14882:2003(E)  ISO/IEC

27.7.1.3 Overridden virtual functions 27 Input/output library

15 Returns: sp to indicate success, or pos_type(off_type(-1)) to indicate failure.

basic_streambuf<charT,traits>* setbuf(charT* s, streamsize n);

16 Effects: implementation-defined, except that setbuf(0,0) has no effect.
17 Returns: this.

[lib.istringstream] 27.7.2 Class template basic_istringstream

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_istringstream : public basic_istream<charT,traits> {
public:

typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.7.2.1 Constructors:
explicit basic_istringstream(ios_base::openmode which = ios_base::in);
explicit basic_istringstream(

const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::in);

// 27.7.2.2 Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

private:
// basic_stringbuf<charT,traits,Allocator> sb; exposition only
};

}

1 The class basic_istringstream<charT,traits,Allocator> supports reading objects of class
basic_string<charT,traits,Allocator>. It uses a
basic_stringbuf<charT,traits,Allocator> object to control the associated storage. For the
sake of exposition, the maintained data is presented here as:

— sb, the stringbuf object.

[lib.istringstream.cons] 27.7.2.1 basic_istringstream constructors

explicit basic_istringstream(ios_base::openmode which = ios_base::in);

1 Effects: Constructs an object of class basic_istringstream<charT,traits>, initializing the
base class with basic_istream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(which|ios_base::in)) (27.7.1.1).

explicit basic_istringstream(
const basic_string<charT,traits,allocator>& str,
ios_base::openmode which = ios_base::in);

2 Effects: Constructs an object of class basic_istringstream<charT,traits>, initializing the
base class with basic_istream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(str, which | ios_base::in))
(27.7.1.1).

660

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.7.2.2 Member functions

[lib.istringstream.members] 27.7.2.2 Member functions

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: (basic_stringbuf<charT,traits,Allocator>*)&sb.

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str().302)

void str(const basic_string<charT,traits,Allocator>& s);

3 Effects: Calls rdbuf()->str(s).

[lib.ostringstream] 27.7.3 Class basic_ostringstream

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_ostringstream : public basic_ostream<charT,traits> {
public:

// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.7.3.1 Constructors/destructor:
explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
explicit basic_ostringstream(

const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out);

// 27.7.3.2 Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& s);

private:
// basic_stringbuf<charT,traits,Allocator> sb; exposition only
};

}

1 The class basic_ostringstream<charT,traits,Allocator> supports writing objects of class
basic_string<charT,traits,Allocator>. It uses a basic_stringbuf object to control the
associated storage. For the sake of exposition, the maintained data is presented here as:

— sb, the stringbuf object.

302) rdbuf() is never NULL because it always returns the private object.

661

ISO/IEC 14882:2003(E)  ISO/IEC

27.7.3 Class basic_ostringstream 27 Input/output library

[lib.ostringstream.cons] 27.7.3.1 basic_ostringstream constructors

explicit basic_ostringstream(ios_base::openmode which = ios_base::out);

1 Effects: Constructs an object of class basic_ostringstream, initializing the base class with
basic_ostream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(which | ios_base::out))
(27.7.1.1).

explicit basic_ostringstream(
const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out);

2 Effects: Constructs an object of class basic_ostringstream<charT,traits>, initializing the
base class with basic_ostream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(str, which | ios_base::out))
(27.7.1.1).

[lib.ostringstream.members] 27.7.3.2 Member functions

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: (basic_stringbuf<charT,traits,Allocator>*)&sb.

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str().303)

void str(const basic_string<charT,traits,Allocator>& s);

3 Effects: Calls rdbuf()->str(s).

[lib.stringstream] 27.7.4 Class template basic_stringstream

namespace std {
template <class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT> >
class basic_stringstream

: public basic_iostream<charT,traits> {
public:

// Types
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// constructors/destructors
explicit basic_stringstream(

ios_base::openmode which = ios_base::out|ios_base::in);
explicit basic_stringstream(

const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out|ios_base::in);

303) rdbuf() is never NULL because it always returns the private object.

662

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.7.4 Class template basic_stringstream

// Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>& str);

private:
// basic_stringbuf<charT, traits> sb; exposition only

};
}

1 The class template basic_stringstream<charT,traits> supports reading and writing from
objects of class basic_string<charT,traits,Allocator>. It uses a
basic_stringbuf<charT,traits,Allocator> object to control the associated sequence. For
the sake of exposition, the maintained data is presented here as

— sb, the stringbuf object.

[lib.stringstream.cons] 27.7.5 basic_stringstream constructors

explicit basic_stringstream(
ios_base::openmode which = ios_base::out|ios_base::in);

1 Effects: Constructs an object of class basic_stringstream<charT,traits>, initializing the base
class with basic_iostream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(which).

explicit basic_stringstream(
const basic_string<charT,traits,Allocator>& str,
ios_base::openmode which = ios_base::out|ios_base::in);

2 Effects: Constructs an object of class basic_stringstream<charT,traits>, initializing the base
class with basic_iostream(&sb) and initializing sb with
basic_stringbuf<charT,traits,Allocator>(str,which).

[lib.stringstream.members] 27.7.6 Member functions

basic_stringbuf<charT,traits,Allocator>* rdbuf() const;

1 Returns: &sb

basic_string<charT,traits,Allocator> str() const;

2 Returns: rdbuf()->str().304)

void str(const basic_string<charT,traits,Allocator>& str);

3 Effects: Calls rdbuf()->str(str).

304) rdbuf() is never NULL because it always returns the private object.

663

ISO/IEC 14882:2003(E)  ISO/IEC

27.7.6 Member functions 27 Input/output library

[lib.file.streams] 27.8 File-based streams

[lib.fstreams] 27.8.1 File streams

1 The header <fstream> defines four class templates and six types that associate stream buffers with files
and assist reading and writing files.

Header <fstream> synopsis

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_filebuf;

typedef basic_filebuf<char> filebuf;
typedef basic_filebuf<wchar_t> wfilebuf;

template <class charT, class traits = char_traits<charT> >
class basic_ifstream;

typedef basic_ifstream<char> ifstream;
typedef basic_ifstream<wchar_t> wifstream;

template <class charT, class traits = char_traits<charT> >
class basic_ofstream;

typedef basic_ofstream<char> ofstream;
typedef basic_ofstream<wchar_t> wofstream;

template <class charT, class traits = char_traits<charT> >
class basic_fstream;

typedef basic_fstream<char> fstream;
typedef basic_fstream<wchar_t> wfstream;

}

2 In this subclause, the type name FILE refers to the type FILE defined in <cstdio> (27.8.2).305)

— File A File provides an external source/sink stream whose underlaid character type is char (byte).306)

— Multibyte character and Files A File provides byte sequences. So the streambuf (or its derived
classes) treats a file as the external source/sink byte sequence. In a large character set environment,
multibyte character sequences are held in files. In order to provide the contents of a file as wide charac-
ter sequences, wide-oriented filebuf, namely wfilebuf should convert wide character sequences.

[lib.filebuf] 27.8.1.1 Class template basic_filebuf

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.8.1.2 Constructors/destructor:
basic_filebuf();
virtual ˜basic_filebuf();

305) In C FILE must be a typedef. In C + + it may be a typedef or other type name.
306) A File is a sequence of multibyte characters. In order to provide the contents as a wide character sequence, filebuf should
convert between wide character sequences and multibyte character sequences.

664

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.8.1.1 Class template basic_filebuf

// 27.8.1.3 Members:
bool is_open() const;
basic_filebuf<charT,traits>* open

(const char* s, ios_base::openmode mode);
basic_filebuf<charT,traits>* close();

protected:
// 27.8.1.4 Overridden virtual functions:
virtual streamsize showmanyc();
virtual int_type underflow();
virtual int_type uflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());

virtual basic_streambuf<charT,traits>*
setbuf(char_type* s, streamsize n);

virtual pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which

= ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp, ios_base::openmode which

= ios_base::in | ios_base::out);
virtual int sync();
virtual void imbue(const locale& loc);

};
}

1 The class basic_filebuf<charT,traits> associates both the input sequence and the output
sequence with a file.

2 The restrictions on reading and writing a sequence controlled by an object of class
basic_filebuf<charT,traits> are the same as for reading and writing with the Standard C library
FILEs.

3 In particular:

— If the file is not open for reading the input sequence cannot be read.

— If the file is not open for writing the output sequence cannot be written.

— A joint file position is maintained for both the input sequence and the output sequence.

4 An instance of basic_filebuf behaves as described in 27.8.1.1 provided traits::pos_type is
fpos<traits::state_type>. Otherwise the behavior is undefined.

5 In order to support file I/O and multibyte/wide character conversion, conversions are performed using
members of a facet, referred to as a_codecvt in following sections, obtained ‘‘as if’’ by

codecvt<charT,char,typename traits::state_type> a_codecvt =
use_facet<codecvt<charT,char,typename traits::state_type> >(getloc());

[lib.filebuf.cons] 27.8.1.2 basic_filebuf constructors

basic_filebuf();

1 Effects: Constructs an object of class basic_filebuf<charT,traits>, initializing the base class
with basic_streambuf<charT,traits>() (27.5.2.1).

2 Postcondition: is_open() == false.

665

ISO/IEC 14882:2003(E)  ISO/IEC

27.8.1.2 basic_filebuf constructors 27 Input/output library

virtual ˜basic_filebuf();

3 Effects: Destroys an object of class basic_filebuf<charT,traits>. Calls close().

[lib.filebuf.members] 27.8.1.3 Member functions

bool is_open() const;

1 Returns: true if a previous call to open succeeded (returned a non-null value) and there has been no
intervening call to close.

basic_filebuf<charT,traits>* open(
const char* s,
ios_base::openmode mode);

2 Effects: If is_open() != false, returns a null pointer. Otherwise, initializes the filebuf as
required.
It then opens a file, if possible, whose name is the NTBS s (‘‘as if’’ by calling
std::fopen(s,modstr)).
The NTBS modstr is determined from mode & ˜ios_base::ate as indicated in Table 92:

Table 92—File open modes
_ __

ios_base Flag combination
binary in out trunc app

stdio equivalent
_ ___ __

+ "w"_ __
+ + "a"_ __
+ + "w"_ __

+ "r"_ __
+ + "r+"_ __
+ + + "w+"_ ___ __

+ + "wb"_ __
+ + + "ab"_ __
+ + + "wb"_ __
+ + "rb"_ __
+ + + "r+b"_ __
+ + + + "w+b"_ __ 








































If mode is not some combination of flags shown in the table then the open fails.

3 If the open operation succeeds and (mode & ios_base::ate) != 0, positions the file to the end
(‘‘as if’’ by calling std::fseek(file,0,SEEK_END)).307)

4 If the repositioning operation fails, calls close() and returns a null pointer to indicate failure.
5 Returns: this if successful, a null pointer otherwise.

307) The macro SEEK_END is defined, and the function signatures fopen(const char_type*, const char_type*) and
fseek(FILE*, long, int) are declared, in <cstdio> (27.8.2).

666

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.8.1.3 Member functions

basic_filebuf<charT,traits>* close();

6 Effects: If is_open() == false, returns a null pointer. If a put area exists, calls overflow(EOF)
to flush characters. If the last virtual member function called on *this (between underflow,
overflow, seekoff, and seekpos) was overflow then calls a_codecvt.unshift (possibly
several times) to determine a termination sequence, inserts those characters and calls
overflow(EOF) again. Finally it closes the file (‘‘as if’’ by calling std::fclose(file)).308) If
any of the calls to overflow or std::fclose fails then close fails.

7 Returns: this on success, a null pointer otherwise.
8 Postcondition: is_open() == false.

[lib.filebuf.virtuals] 27.8.1.4 Overridden virtual functions

streamsize showmanyc();

1 Effects: Behaves the same as basic_streambuf::showmanyc() (27.5.2.4).
2 Notes: An implementation might well provide an overriding definition for this function signature if it can

determine that more characters can be read from the input sequence.

int_type underflow();

3 Effects: Behaves according to the description of basic_streambuf<charT,traits>::
underflow(), with the specialization that a sequence of characters is read from the input sequence
‘‘as if’’ by reading from the associated file into an internal buffer (extern_buf) and then ‘‘as if’’
doing

char extern_buf[XSIZE];
char* extern_end;
charT intern_buf[ISIZE];
charT* intern_end;
codecvt_base::result r =

a_codecvt.in(st, extern_buf, extern_buf+XSIZE, extern_end,
intern_buf, intern_buf+ISIZE, intern_end);

This must be done in such a way that the class can recover the position (fpos_t) corresponding to
each character between intern_buf and intern_end. If the value of r indicates that
a_codecvt.in() ran out of space in intern_buf, retry with a larger intern_buf.

int_type uflow();

4 Effects: Behaves according to the description of basic_streambuf<charT,traits>::
uflow(), with the specialization that a sequence of characters is read from the input with the same
method as used by underflow.

int_type pbackfail(int_type c = traits::eof());

5 Effects: Puts back the character designated by c to the input sequence, if possible, in one of three ways:

— If traits::eq_int_type(c,traits::eof()) returns false and if the function makes a put-
back position available and if traits::eq(to_char_type(c),gptr()[-1]) returns true,
decrements the next pointer for the input sequence, gptr().
Returns: c.

— If traits::eq_int_type(c,traits::eof()) returns false and if the function makes a put-
back position available, and if the function is permitted to assign to the putback position, decrements the
next pointer for the input sequence, and stores c there.
Returns: c.

308) The function signature fclose(FILE*) is declared in <cstdio> (27.8.2).

667

ISO/IEC 14882:2003(E)  ISO/IEC

27.8.1.4 Overridden virtual functions 27 Input/output library

— If traits::eq_int_type(c,traits::eof()) returns true, and if either the input sequence
has a putback position available or the function makes a putback position available, decrements the next
pointer for the input sequence, gptr().
Returns: traits::not_eof(c).

6 Returns: traits::eof() to indicate failure.
7 Notes: If is_open() == false, the function always fails.

The function does not put back a character directly to the input sequence.
If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The
function can alter the number of putback positions available as a result of any call.

int_type overflow(int_type c = traits::eof());

8 Effects: Behaves according to the description of
basic_streambuf<charT,traits>::overflow(c), except that the behavior of ‘‘consuming
characters’’ is performed by first coverting ‘‘as if’’ by:

charT* b = pbase();
charT* p = pptr();
charT* end;
char xbuf[XSIZE];
char* xbuf_end;
codecvt_base::result r =

a_codecvt.out(st, b, p, end, xbuf, xbuf+XSIZE, xbuf_end);

and then

— If r == codecvt_base::error then fail.

— If r == codecvt_base::noconv then output characters from b up to (and not including) p.

— If r == codecvt_base::partial then output to the file characters from xbuf up to
xbuf_end, and repeat using characters from end to p. If output fails, fail (without repeating).

— Otherwise output from xbuf to xbuf_end, and fail if output fails. At this point if b != p and b
== end (buf isn’t large enough) then increase BSIZE and repeat from the beginning.

9 Returns: traits::not_eof(c) to indicate success, and traits::eof() to indicate failure. If
is_open() == false, the function always fails.

basic_streambuf* setbuf(char_type* s, streamsize n);

10 Effects: If setbuf(0,0) is called on a stream before any I/O has occured on that stream, the stream
becomes unbuffered. Otherwise the results are implementation-defined. "Unbuffered" means that
pbase() and pptr() always return null and output to the file should appear as soon as possible.

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);

11 Effects: Let width denote a_codecvt.encoding(). If is_open() == false, or off != 0
&& width <= 0, then the positioning operation fails. Otherwise, if way != basic_ios::cur
or off != 0, and if the last operation was output, then update the output sequence and write any
unshift sequence. Next, seek to the new position: if width > 0, call std::fseek(file, width
* off, whence), otherwise call std::fseek(file, 0, whence).

12 Notes: ‘‘The last operation was output’’ means either the last virtual operation was overflow or the put
buffer is non-empty. ‘‘Write any unshift sequence’’ means, if width if less than zero then call
a_codecvt.unshift(st, xbuf, xbuf+XSIZE, xbuf_end) and output the resulting
unshift sequence. The function determines one of three values for the argument whence, of type int,
as indicated in Table 93:

668

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.8.1.4 Overridden virtual functions

Table 93—seekoff effects
_ _____________________________________

way Value stdio Equivalent_ ______________________________________ _____________________________________
basic_ios::beg SEEK_SET

basic_ios::cur SEEK_CUR

basic_ios::end SEEK_END_ _____________________________________ 











13 Returns: a newly constructed pos_type object that stores the resultant stream position, if possible. If
the positioning operation fails, or if the object cannot represent the resultant stream position, returns
pos_type(off_type(-1)).

pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

Alters the file position, if possible, to correspond to the position stored in sp (as described below).

— if (which&ios_base::in)!=0, set the file position to sp, then update the input sequence

— if (which&ios_base::out)!=0, then update the output sequence, write any unshift sequence, and
set the file position to sp.

14 If sp is an invalid stream position, or if the function positions neither sequence, the positioning operation
fails. If sp has not been obtained by a previous successful call to one of the positioning functions
(seekoff or seekpos) on the same file the effects are undefined.

15 Returns: sp on success. Otherwise returns pos_type(off_type(-1)).

int sync();

16 Effects: If a put area exists, calls filebuf::overflow to write the characters to the file. If a get area
exists, the effect is implementation-defined.

void imbue(const locale& loc);

17 Precondition: If the file is not positioned at its beginning and the encoding of the current locale as deter-
mined by a_codecvt.encoding() is state-dependent (22.2.1.5.2) then that facet is the same as the
corresponding facet of loc.

18 Effects: Causes characters inserted or extracted after this call to be converted according to loc until
another call of imbue.

19 Note: This may require reconversion of previously converted characters. This in turn may require the
implementation to be able to reconstruct the original contents of the file.

[lib.ifstream] 27.8.1.5 Class template basic_ifstream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.8.1.6 Constructors:
basic_ifstream();
explicit basic_ifstream(const char* s,

ios_base::openmode mode = ios_base::in);

669

ISO/IEC 14882:2003(E)  ISO/IEC

27.8.1.5 Class template basic_ifstream 27 Input/output library

// 27.8.1.7 Members:
basic_filebuf<charT,traits>* rdbuf() const;

bool is_open();
void open(const char* s, ios_base::openmode mode = ios_base::in);
void close();

private:
// basic_filebuf<charT,traits> sb; exposition only

};
}

1 The class basic_ifstream<charT,traits> supports reading from named files. It uses a
basic_filebuf<charT,traits> object to control the associated sequence. For the sake of exposi-
tion, the maintained data is presented here as:

— sb, the filebuf object.

[lib.ifstream.cons] 27.8.1.6 basic_ifstream constructors

basic_ifstream();

1 Effects: Constructs an object of class basic_ifstream<charT,traits>, initializing the base class
with basic_istream(&sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.1.1.1, 27.8.1.2).

explicit basic_ifstream
(const char* s, ios_base::openmode mode = ios_base::in);

2 Effects: Constructs an object of class basic_ifstream, initializing the base class with
basic_istream(&sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.1.1.1, 27.8.1.2), then calls rdbuf()->open(s,mode|in).309) If that function returns a null
pointer, calls setstate(failbit), (which may throw ios_base::failure).

[lib.ifstream.members] 27.8.1.7 Member functions

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: (basic_filebuf<charT,traits>*)&sb.

bool is_open();

2 Returns: rdbuf()->is_open().310)

void open(const char* s, ios_base::openmode mode = ios_base::in);

3 Effects: Calls rdbuf()->open(s,mode|in). If that function returns a null pointer, calls
setstate(failbit) (which may throw ios_base::failure (27.4.4.3)).310a)

void close();

4 Effects: Calls rdbuf()->close() and, if that function returns false, calls setstate(failbit)
(which may throw ios_base::failure (27.4.4.3)).

309) rdbuf() is never NULL because it always returns the private object.
310) rdbuf() is never NULL because it always returns the private object.
310a) A successful open does not change the error state.

670

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.8.1.8 Class template basic_ofstream

[lib.ofstream] 27.8.1.8 Class template basic_ofstream

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// 27.8.1.9 Constructors:
basic_ofstream();
explicit basic_ofstream(const char* s,

ios_base::openmode mode
= ios_base::out);

// 27.8.1.10 Members:
basic_filebuf<charT,traits>* rdbuf() const;

bool is_open();
void open(const char* s, ios_base::openmode mode = ios_base::out);
void close();

private:
// basic_filebuf<charT,traits> sb; exposition only
};

}

1 The class basic_ofstream<charT,traits> supports writing to named files. It uses a
basic_filebuf<charT,traits> object to control the associated sequence. For the sake of exposi-
tion, the maintained data is presented here as:

— sb, the filebuf object.

[lib.ofstream.cons] 27.8.1.9 basic_ofstream constructors

basic_ofstream();

1 Effects: Constructs an object of class basic_ofstream<charT,traits>, initializing the base class
with basic_ostream(&sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.2.2, 27.8.1.2).

explicit basic_ofstream
(const char* s, ios_base::openmode mode = ios_base::out);

2 Effects: Constructs an object of class basic_ofstream<charT,traits>, initializing the base class
with basic_ostream(&sb) and initializing sb with basic_filebuf<charT,traits>())
(27.6.2.2, 27.8.1.2), then calls rdbuf()->open(s, mode|out).311) If that function returns a null
pointer, calls setstate(failbit), (which may throw ios_base::failure).

311) rdbuf() is never NULL because it always returns the private filebuf object.

671

ISO/IEC 14882:2003(E)  ISO/IEC

27.8.1.9 basic_ofstream constructors 27 Input/output library

[lib.ofstream.members] 27.8.1.10 Member functions

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: (basic_filebuf<charT,traits>*)&sb.

bool is_open();

2 Returns: rdbuf()->is_open().

void open(const char* s, ios_base::openmode mode = ios_base::out);

3 Effects: Calls rdbuf()->open(s,mode|out). If that function returns a null pointer, calls
setstate(failbit) (which may throw ios_base::failure (27.4.4.3)).311a)

void close();

4 Effects: Calls rdbuf()->close() and, if that function fails (returns a null pointer), calls
setstate(failbit) (which may throw ios_base::failure (27.4.4.3)).

[lib.fstream] 27.8.1.11 Class template basic_fstream

namespace std {
template <class charT, class traits=char_traits<charT> >
class basic_fstream
: public basic_iostream<charT,traits> {

public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;

// constructors/destructor
basic_fstream();
explicit basic_fstream(

const char* s,
ios_base::openmode mode = ios_base::in|ios_base::out);

// Members:
basic_filebuf<charT,traits>* rdbuf() const;
bool is_open();
void open(

const char* s,
ios_base::openmode mode = ios_base::in|ios_base::out);

void close();

private:
// basic_filebuf<charT,traits> sb; exposition only

};
}

1 The class template basic_fstream<charT,traits> supports reading and writing from named files.
It uses a basic_filebuf<charT,traits> object to control the associated sequences. For the sake
of exposition, the maintained data is presented here as:

— sb, the basic_filebuf object.

311a) A successful open does not change the error state.

672

 ISO/IEC ISO/IEC 14882:2003(E)

27 Input/output library 27.8.1.12 basic_fstream constructors

[lib.fstream.cons] 27.8.1.12 basic_fstream constructors

basic_fstream();

1 Effects: Constructs an object of class basic_fstream<charT,traits>, initializing the base class
with basic_iostream(&sb) and initializing sb with basic_filebuf<charT,traits>().

explicit basic_fstream(const char* s, ios_base::openmode mode);

2 Effects: Constructs an object of class basic_fstream<charT,traits>, initializing the base class
with basic_iostream(&sb) and initializing sb with basic_filebuf<charT,traits>().
Then calls rdbuf()->open(s,mode). If that function returns a null pointer, calls
setstate(failbit) (which may throw ios_base::failure).

[lib.fstream.members] 27.8.1.13 Member functions

basic_filebuf<charT,traits>* rdbuf() const;

1 Returns: &sb

bool is_open();

2 Returns: rdbuf()->is_open().

void open(const char* s, ios_base::openmode mode);

3 Effects: Calls rdbuf()->open(s,mode), If that function returns a null pointer, calls
setstate(failbit), (which may throw ios_base::failure). (27.4.4.3))

void close();

4 Effects: Calls rdbuf()->close() and, if that function returns false, calls
setstate(failbit)(27.4.4.3) (which may throw ios_base::failure).

[lib.c.files] 27.8.2 C Library files

1 Table 94 describes header <cstdio>.

Table 94—Header <cstdio> synopsis
_ ___

Type Name(s)_ ___
Macros:
BUFSIZ FOPEN_MAX SEEK_CUR TMP_MAX _IONBF stdout

EOF L_tmpnam SEEK_END _IOFBF stderr

FILENAME_MAX NULL <cstdio> SEEK_SET _IOLBF stdin_ ___
Types: FILE fpos_t size_t <cstdio>_ ___
Functions:
clearerr fgets fscanf gets rename tmpfile

fclose fopen fseek perror rewind tmpnam

feof fprintf fsetpos printf scanf ungetc

ferror fputc ftell putc setbuf vfprintf

fflush fputs fwrite putchar setvbuf vprintf

fgetc fread getc puts sprintf vsprintf

fgetpos freopen getchar remove sscanf_ ___ 



































SEE ALSO: ISO C subclause 7.9, Amendment 1 subclause 4.6.2.

673

ISO/IEC 14882:2003(E)  ISO/IEC

674

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A Grammar summary

Annex A [gram]
(informative)

Grammar summary

1 This summary of C + + syntax is intended to be an aid to comprehension. It is not an exact statement of the
language. In particular, the grammar described here accepts a superset of valid C + + constructs. Disam-
biguation rules (6.8, 7.1, 10.2) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless con-
structs.

[gram.key] A.1 Keywords

1 New context-dependent keywords are introduced into a program by typedef (7.1.3), namespace (7.3.1),
class (clause 9), enumeration (7.2), and template (clause 14) declarations.

typedef-name:
identifier

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-alias:
identifier

class-name:
identifier
template-id

enum-name:
identifier

template-name:
identifier

Note that a typedef-name naming a class is also a class-name (9.1).

[gram.lex] A.2 Lexical conventions

hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

675

ISO/IEC 14882:2003(E)  ISO/IEC

A.2 Lexical conventions Annex A Grammar summary

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above

token:
identifier
keyword
literal
operator
punctuator

header-name:
<h-char-sequence>
"q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

new-line and >

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

new-line and "

pp-number:
digit
. digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
universal-character-name
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

676

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.2 Lexical conventions

preprocessing-op-or-punc: one of
{ } [] # ## ()
<: :> <% %> %: %:%: ; : ...
new delete ? :: . .*
+ - * / % ˆ & | ˜
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
and and_eq bitand bitor compl not not_eq
or or_eq xor xor_eq

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal

integer-literal:
decimal-literal integer-suffixopt

octal-literal integer-suffixopt

hexadecimal-literal integer-suffixopt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal:
0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt

long-suffix unsigned-suffixopt

unsigned-suffix: one of
u U

long-suffix: one of
l L

677

ISO/IEC 14882:2003(E)  ISO/IEC

A.2 Lexical conventions Annex A Grammar summary

character-literal:
’c-char-sequence’
L’c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence
universal-character-name

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

floating-literal:
fractional-constant exponent-partopt floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence .

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

string-literal:
"s-char-sequenceopt"
L"s-char-sequenceopt"

678

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.2 Lexical conventions

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence
universal-character-name

boolean-literal:
false
true

[gram.basic] A.3 Basic concepts

translation-unit:
declaration-seqopt

[gram.expr] A.4 Expressions

primary-expression:
literal
this
(expression)
id-expression

id-expression:
unqualified-id
qualified-id

unqualified-id:
identifier
operator-function-id
conversion-function-id
˜ class-name
template-id

qualified-id:
::opt nested-name-specifier templateopt unqualified-id
:: identifier
:: operator-function-id
:: template-id

nested-name-specifier:
class-or-namespace-name :: nested-name-specifieropt

class-or-namespace-name :: template nested-name-specifier

class-or-namespace-name:
class-name
namespace-name

679

ISO/IEC 14882:2003(E)  ISO/IEC

A.4 Expressions Annex A Grammar summary

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listopt)
simple-type-specifier (expression-listopt)
typename ::opt nested-name-specifier identifier (expression-listopt)
typename ::opt nested-name-specifier templateopt template-id (expression-listopt)
postfix-expression . templateopt id-expression
postfix-expression -> templateopt id-expression
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
postfix-expression ++
postfix-expression --
dynamic_cast < type-id > (expression)
static_cast < type-id > (expression)
reinterpret_cast < type-id > (expression)
const_cast < type-id > (expression)
typeid (expression)
typeid (type-id)

expression-list:
assignment-expression
expression-list , assignment-expression

pseudo-destructor-name:
::opt nested-name-specifieropt type-name :: ˜ type-name
::opt nested-name-specifier template template-id :: ˜ type-name
::opt nested-name-specifieropt ˜ type-name

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
new-expression
delete-expression

unary-operator: one of
* & + - ! ˜

new-expression:
::opt new new-placementopt new-type-id new-initializeropt

::opt new new-placementopt (type-id) new-initializeropt

new-placement:
(expression-list)

new-type-id:
type-specifier-seq new-declaratoropt

new-declarator:
ptr-operator new-declaratoropt

direct-new-declarator

direct-new-declarator:
[expression]
direct-new-declarator [constant-expression]

680

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.4 Expressions

new-initializer:
(expression-listopt)

delete-expression:
::opt delete cast-expression
::opt delete [] cast-expression

cast-expression:
unary-expression
(type-id) cast-expression

pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression / pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

and-expression:
equality-expression
and-expression & equality-expression

exclusive-or-expression:
and-expression
exclusive-or-expression ˆ and-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression

681

ISO/IEC 14882:2003(E)  ISO/IEC

A.4 Expressions Annex A Grammar summary

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression

conditional-expression:
logical-or-expression
logical-or-expression ? expression : assignment-expression

assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression
throw-expression

assignment-operator: one of
= *= /= %= += -= >>= <<= &= ˆ= |=

expression:
assignment-expression
expression , assignment-expression

constant-expression:
conditional-expression

[gram.stmt.stmt] A.5 Statements

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

expression-statement:
expressionopt ;

compound-statement:
{ statement-seqopt }

statement-seq:
statement
statement-seq statement

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement

condition:
expression
type-specifier-seq declarator = assignment-expression

682

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.5 Statements

iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt ; expressionopt) statement

for-init-statement:
expression-statement
simple-declaration

jump-statement:
break ;
continue ;
return expressionopt ;
goto identifier ;

declaration-statement:
block-declaration

[gram.dcl.dcl] A.6 Declarations

declaration-seq:
declaration
declaration-seq declaration

declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive

simple-declaration:
decl-specifier-seqopt init-declarator-listopt ;

decl-specifier:
storage-class-specifier
type-specifier
function-specifier
friend
typedef

decl-specifier-seq:
decl-specifier-seqopt decl-specifier

storage-class-specifier:
auto
register
static
extern
mutable

683

ISO/IEC 14882:2003(E)  ISO/IEC

A.6 Declarations Annex A Grammar summary

function-specifier:
inline
virtual
explicit

typedef-name:
identifier

type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
cv-qualifier

simple-type-specifier:
::opt nested-name-specifieropt type-name
::opt nested-name-specifier template template-id
char
wchar_t
bool
short
int
long
signed
unsigned
float
double
void

type-name:
class-name
enum-name
typedef-name

elaborated-type-specifier:
class-key ::opt nested-name-specifieropt identifier
class-key ::opt nested-name-specifieropt templateopt template-id
enum ::opt nested-name-specifieropt identifier
typename ::opt nested-name-specifier identifier
typename ::opt nested-name-specifier templateopt template-id

enum-name:
identifier

enum-specifier:
enum identifieropt { enumerator-listopt }

enumerator-list:
enumerator-definition
enumerator-list , enumerator-definition

enumerator-definition:
enumerator
enumerator = constant-expression

enumerator:
identifier

684

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.6 Declarations

namespace-name:
original-namespace-name
namespace-alias

original-namespace-name:
identifier

namespace-definition:
named-namespace-definition
unnamed-namespace-definition

named-namespace-definition:
original-namespace-definition
extension-namespace-definition

original-namespace-definition:
namespace identifier { namespace-body }

extension-namespace-definition:
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition:
namespace { namespace-body }

namespace-body:
declaration-seqopt

namespace-alias:
identifier

namespace-alias-definition:
namespace identifier = qualified-namespace-specifier ;

qualified-namespace-specifier:
::opt nested-name-specifieropt namespace-name

using-declaration:
using typenameopt ::opt nested-name-specifier unqualified-id ;
using :: unqualified-id ;

using-directive:
using namespace ::opt nested-name-specifieropt namespace-name ;

asm-definition:
asm (string-literal) ;

linkage-specification:
extern string-literal { declaration-seqopt }
extern string-literal declaration

[gram.dcl.decl] A.7 Declarators

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator initializeropt

685

ISO/IEC 14882:2003(E)  ISO/IEC

A.7 Declarators Annex A Grammar summary

declarator:
direct-declarator
ptr-operator declarator

direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-seqopt

&
::opt nested-name-specifier * cv-qualifier-seqopt

cv-qualifier-seq:
cv-qualifier cv-qualifier-seqopt

cv-qualifier:
const
volatile

declarator-id:
id-expression
::opt nested-name-specifieropt type-name

type-id:
type-specifier-seq abstract-declaratoropt

type-specifier-seq:
type-specifier type-specifier-seqopt

abstract-declarator:
ptr-operator abstract-declaratoropt

direct-abstract-declarator

direct-abstract-declarator:
direct-abstract-declaratoropt

(parameter-declaration-clause) cv-qualifier-seqopt exception-specificationopt

direct-abstract-declaratoropt [constant-expressionopt]
(abstract-declarator)

parameter-declaration-clause:
parameter-declaration-listopt ...opt

parameter-declaration-list , ...

parameter-declaration-list:
parameter-declaration
parameter-declaration-list , parameter-declaration

parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator = assignment-expression
decl-specifier-seq abstract-declaratoropt

decl-specifier-seq abstract-declaratoropt = assignment-expression

686

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.7 Declarators

function-definition:
decl-specifier-seqopt declarator ctor-initializeropt function-body
decl-specifier-seqopt declarator function-try-block

function-body:
compound-statement

initializer:
= initializer-clause
(expression-list)

initializer-clause:
assignment-expression
{ initializer-list ,opt }
{ }

initializer-list:
initializer-clause
initializer-list , initializer-clause

[gram.class] A.8 Classes

class-name:
identifier
template-id

class-specifier:
class-head { member-specificationopt }

class-head:
class-key identifieropt base-clauseopt

class-key nested-name-specifier identifier base-clauseopt

class-key nested-name-specifieropt template-id base-clauseopt

class-key:
class
struct
union

member-specification:
member-declaration member-specificationopt

access-specifier : member-specificationopt

member-declaration:
decl-specifier-seqopt member-declarator-listopt ;
function-definition ;opt

::opt nested-name-specifier templateopt unqualified-id ;
using-declaration
template-declaration

member-declarator-list:
member-declarator
member-declarator-list , member-declarator

member-declarator:
declarator pure-specifieropt

declarator constant-initializeropt

identifieropt : constant-expression

687

ISO/IEC 14882:2003(E)  ISO/IEC

A.8 Classes Annex A Grammar summary

pure-specifier:
= 0

constant-initializer:
= constant-expression

[gram.class.derived] A.9 Derived classes

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier
base-specifier-list , base-specifier

base-specifier:
::opt nested-name-specifieropt class-name
virtual access-specifieropt ::opt nested-name-specifieropt class-name
access-specifier virtualopt ::opt nested-name-specifieropt class-name

access-specifier:
private
protected
public

[gram.special] A.10 Special member functions

conversion-function-id:
operator conversion-type-id

conversion-type-id:
type-specifier-seq conversion-declaratoropt

conversion-declarator:
ptr-operator conversion-declaratoropt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
mem-initializer-id (expression-listopt)

mem-initializer-id:
::opt nested-name-specifieropt class-name
identifier

[gram.over] A.11 Overloading

operator-function-id:
operator operator
operator operator < template-argument-listopt >

688

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.11 Overloading

operator: one of
new delete new[] delete[]
+ - * / % ˆ & | ˜
! = < > += -= *= /= %=
ˆ= &= |= << >> >>= <<= == !=
<= >= && || ++ -- , ->* ->
() []

[gram.temp] A.12 Templates

template-declaration:
exportopt template < template-parameter-list > declaration

template-parameter-list:
template-parameter
template-parameter-list , template-parameter

template-parameter:
type-parameter
parameter-declaration

type-parameter:
class identifieropt

class identifieropt = type-id
typename identifieropt

typename identifieropt = type-id
template < template-parameter-list > class identifieropt

template < template-parameter-list > class identifieropt = id-expression

template-id:
template-name < template-argument-listopt >

template-name:
identifier

template-argument-list:
template-argument
template-argument-list , template-argument

template-argument:
assignment-expression
type-id
id-expression

explicit-instantiation:
template declaration

explicit-specialization:
template < > declaration

[gram.except] A.13 Exception handling

try-block:
try compound-statement handler-seq

function-try-block:
try ctor-initializeropt function-body handler-seq

689

ISO/IEC 14882:2003(E)  ISO/IEC

A.13 Exception handling Annex A Grammar summary

handler-seq:
handler handler-seqopt

handler:
catch (exception-declaration) compound-statement

exception-declaration:
type-specifier-seq declarator
type-specifier-seq abstract-declarator
type-specifier-seq
...

throw-expression:
throw assignment-expressionopt

exception-specification:
throw (type-id-listopt)

type-id-list:
type-id
type-id-list , type-id

[gram.cpp] A.14 Preprocessing directives

preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt

ifdef identifier new-line groupopt

ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

690

 ISO/IEC ISO/IEC 14882:2003(E)

Annex A Grammar summary A.14 Preprocessing directives

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt) replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
the left-parenthesis character without preceding white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

691

ISO/IEC 14882:2003(E)  ISO/IEC

692

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

Annex B Implementation quantities B Implementation quantities

Annex B [limits]
(informative)

Implementation quantities

1 Because computers are finite, C + + implementations are inevitably limited in the size of the programs they
can successfully process. Every implementation shall document those limitations where known. This doc-
umentation may cite fixed limits where they exist, say how to compute variable limits as a function of
available resources, or say that fixed limits do not exist or are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number
following each quantity is recommended as the minimum for that quantity. However, these quantities are
only guidelines and do not determine compliance.

— Nesting levels of compound statements, iteration control structures, and selection control structures
[256].

— Nesting levels of conditional inclusion [256].

— Pointer, array, and function declarators (in any combination) modifying an arithmetic, structure, union,
or incomplete type in a declaration [256].

— Nesting levels of parenthesized expressions within a full expression [256].

— Number of characters in an internal identifier or macro name [1 024].

— Number of characters in an external identifier [1 024].

— External identifiers in one translation unit [65 536].

— Identifiers with block scope declared in one block [1 024].

— Macro identifiers simultaneously defined in one translation unit [65 536].

— Parameters in one function definition [256].

— Arguments in one function call [256].

— Parameters in one macro definition [256].

— Arguments in one macro invocation [256].

— Characters in one logical source line [65 536].

— Characters in a character string literal or wide string literal (after concatenation) [65 536].

— Size of an object [262 144].

— Nesting levels for #include files [256].

— Case labels for a switch statement (excluding those for any nested switch statements) [16 384].

— Data members in a single class, structure, or union [16 384].

— Enumeration constants in a single enumeration [4 096].

— Levels of nested class, structure, or union definitions in a single struct-declaration-list [256].

— Functions registered by atexit()[32].

— Direct and indirect base classes [16 384].

— Direct base classes for a single class [1 024].

693

ISO/IEC 14882:2003(E)  ISO/IEC

B Implementation quantities Annex B Implementation quantities

— Members declared in a single class [4 096].

— Final overriding virtual functions in a class, accessible or not [16 384].

— Direct and indirect virtual bases of a class [1 024].

— Static members of a class [1 024].

— Friend declarations in a class [4 096].

— Access control declarations in a class [4 096].

— Member initializers in a constructor definition [6 144].

— Scope qualifications of one identifier [256].

— Nested external specifications [1 024].

— Template arguments in a template declaration [1 024].

— Recursively nested template instantiations [17].

— Handlers per try block [256].

— Throw specifications on a single function declaration [256].

694

 ISO/IEC ISO/IEC 14882:2003(E)

Annex C [diff]
(informative)

Compatibility

[diff.iso] C.1 C + + and ISO C

1 The subclauses of this subclause list the differences between C + + and ISO C, by the chapters of this docu-
ment.

[diff.lex] C.1.1 Clause 2: lexical conventions

2.3

Change: C + + style comments (//) are added
A pair of slashes now introduce a one-line comment.
Rationale: This style of comments is a useful addition to the language.
Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression con-
taining a division operator followed immediately by a C-style comment will now be treated as a C + + style
comment. For example:

{
int a = 4;
int b = 8 //* divide by a*/ a;
+a;

}

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used: The token sequence //* probably occurs very seldom.

2.11

Change: New Keywords
New keywords are added to C + +; see 2.11.
Rationale: These keywords were added in order to implement the new semantics of C + +.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used
any of these keywords as identifiers are not valid C + + programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a
large collection of related programs takes more work.
How widely used: Common.

2.13.2

Change: Type of character literal is changed from int to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

int function(int i);
int function(char c);

function(’x’);

It is preferable that this call match the second version of function rather than the first.

695

ISO/IEC 14882:2003(E)  ISO/IEC

C.1.1 Clause 2: lexical conventions Annex C Compatibility

Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend
on

sizeof(’x’) == sizeof(int)

will not work the same as C + + programs.
Difficulty of converting: Simple.
How widely used: Programs which depend upon sizeof(’x’) are probably rare.

Subclause _lex.string:

Change: String literals made const
The type of a string literal is changed from “array of char” to “array of const char.” The type of a
wide string literal is changed from “array of wchar_t” to “array of const wchar_t.”
Rationale: This avoids calling an inappropriate overloaded function, which might expect to be able to
modify its argument.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Simple syntactic transformation, because string literals can be converted to
char*; (4.2). The most common cases are handled by a new but deprecated standard conversion:

char* p = "abc"; // valid in C, deprecated in C + +
char* q = expr ? "abc" : "de"; // valid in C, invalid in C + +

How widely used: Programs that have a legitimate reason to treat string literals as pointers to potentially
modifiable memory are probably rare.

[diff.basic] C.1.2 Clause 3: basic concepts

3.1

Change: C + + does not have “tentative definitions” as in C
E.g., at file scope,

int i;
int i;

is valid in C, invalid in C + +. This makes it impossible to define mutually referential file-local static objects,
if initializers are restricted to the syntactic forms of C. For example,

struct X { int i; struct X *next; };

static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. In C + +, the initializer for one of a set of mutually-
referential file-local static objects must invoke a function call to achieve the initialization.
How widely used: Seldom.

3.3

Change: A struct is a scope in C + +, not in C
Rationale: Class scope is crucial to C + +, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: C programs use struct extremely frequently, but the change is only noticeable when

696

 ISO/IEC ISO/IEC 14882:2003(E)

Annex C Compatibility C.1.2 Clause 3: basic concepts

struct, enumeration, or enumerator names are referred to outside the struct. The latter is probably
rare.

3.5 [also 7.1.5]

Change: A name of file scope that is explicitly declared const, and not explicitly declared extern, has
internal linkage, while in C it would have external linkage
Rationale: Because const objects can be used as compile-time values in C + +, this feature urges program-
mers to provide explicit initializer values for each const. This feature allows the user to put const
objects in header files that are included in many compilation units.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation
How widely used: Seldom

3.6

Change: Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature
Difficulty of converting: Trivial: create an intermediary function such as mymain(argc, argv).
How widely used: Seldom

3.9

Change: C allows “compatible types” in several places, C + + does not
For example, otherwise-identical struct types with different tag names are “compatible” in C but are dis-
tinctly different types in C + +.
Rationale: Stricter type checking is essential for C + +.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The “typesafe linkage” mechanism will find many, but
not all, of such problems. Those problems not found by typesafe linkage will continue to function properly,
according to the “layout compatibility rules” of this International Standard.
How widely used: Common.

4.10

Change: Converting void* to a pointer-to-object type requires casting

char a[10];
void *b=a;
void foo() {
char *c=b;
}

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. C + + will not.
Rationale: C + + tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. Violations will be diagnosed by the C + + translator. The fix
is to add a cast For example:

char *c = (char *) b;

How widely used: This is fairly widely used but it is good programming practice to add the cast when
assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not
used.

697

ISO/IEC 14882:2003(E)  ISO/IEC

C.1.2 Clause 3: basic concepts Annex C Compatibility

4.10

Change: Only pointers to non-const and non-volatile objects may be implicitly converted to void*
Rationale: This improves type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. A C program containing such an implicit conversion from
(e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an
explicit cast.
How widely used: Seldom.

[diff.expr] C.1.3 Clause 5: expressions

5.2.2

Change: Implicit declaration of functions is not allowed
Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was
labeled as “obsolescent” in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations
are fairly widespread commercially.
How widely used: Common.

5.3.3, 5.4

Change: Types must be declared in declarations, not in expressions
In C, a sizeof expression or cast expression may create a new type. For example,

p = (void*)(struct x {int i;} *)0;

declares a new type, struct x .
Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

5.16, 5.17, 5.18

Change: The result of a conditional expression, an assignment expression, or a comma expression may be
an lvalue
Rationale: C + + is an object-oriented language, placing relatively more emphasis on lvalues. For example,
functions may return lvalues.
Effect on original feature: Change to semantics of well-defined feature. Some C expressions that implic-
itly rely on lvalue-to-rvalue conversions will yield different results. For example,

char arr[100];
sizeof(0, arr)

yields 100 in C + + and sizeof(char*) in C.
Difficulty of converting: Programs must add explicit casts to the appropriate rvalue.
How widely used: Rare.

698

 ISO/IEC ISO/IEC 14882:2003(E)

Annex C Compatibility C.1.3 Clause 5: expressions

[diff.stat] C.1.4 Clause 6: statements

6.4.2, 6.6.4 (switch and goto statements)

Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across
entire block not entered)
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon
leaving the block. Allowing jump past initializers would require complicated run-time determination of
allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-
time rule, C + + assures that if an initialized variable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

6.6.3

Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a
value without actually returning a value
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of
class objects. If some flow paths execute a return without specifying any value, the implementation must
embody many more complications. Besides, promising to return a value of a given type, and then not
returning such a value, has always been recognized to be a questionable practice, tolerated only because
very-old C had no distinction between void functions and int functions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code,
e.g. zero.
How widely used: Seldom. For several years, many existing C implementations have produced warnings
in this case.

[diff.dcl] C.1.5 Clause 7: declarations

7.1.1

Change: In C + +, the static or extern specifiers can only be applied to names of objects or functions
Using these specifiers with type declarations is illegal in C + +. In C, these specifiers are ignored when used
on type declarations. Example:

static struct S { // valid C, invalid in C + +
int i;
// ...
};

Rationale: Storage class specifiers don’t have any meaning when associated with a type. In C + +, class
members can be defined with the static storage class specifier. Allowing storage class specifiers on
type declarations could render the code confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.

7.1.3

Change: A C + + typedef name must be different from any class type name declared in the same scope
(except if the typedef is a synonym of the class name with the same name). In C, a typedef name and a
struct tag name declared in the same scope can have the same name (because they have different name

699

ISO/IEC 14882:2003(E)  ISO/IEC

C.1.5 Clause 7: declarations Annex C Compatibility

spaces)
Example:

typedef struct name1 { /*...*/ } name1; // valid C and C + +
struct name { /*...*/ };
typedef int name; // valid C, invalid C + +

Rationale: For ease of use, C + + doesn’t require that a type name be prefixed with the keywords class,
struct or union when used in object declarations or type casts. Example:

class name { /*...*/ };
name i; // i has type class name

Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used: Seldom.

7.1.5 [see also 3.5]

Change: const objects must be initialized in C + + but can be left uninitialized in C
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

7.1.5 (type specifiers)

Change: Banning implicit int
In C + + a decl-specifier-seq must contain a type-specifier. In the following example, the left-hand column
presents valid C; the right-hand column presents equivalent C + +:

void f(const parm); void f(const int parm);
const n = 3; const int n = 3;
main() int main()

/* ... */ /* ... */

Rationale: In C + +, implicit int creates several opportunities for ambiguity between expressions involving
function-like casts and declarations. Explicit declaration is increasingly considered to be proper style.
Liaison with WG14 (C) indicated support for (at least) deprecating implicit int in the next revision of C.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. Could be automated.
How widely used: Common.

7.2

Change: C + + objects of enumeration type can only be assigned values of the same enumeration type. In C,
objects of enumeration type can be assigned values of any integral type
Example:

enum color { red, blue, green };
color c = 1; // valid C, invalid C + +

Rationale: The type-safe nature of C + +.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be
automatically corrected by applying an explicit cast.)
How widely used: Common.

700

 ISO/IEC ISO/IEC 14882:2003(E)

Annex C Compatibility C.1.5 Clause 7: declarations

7.2

Change: In C + +, the type of an enumerator is its enumeration. In C, the type of an enumerator is int.
Example:

enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C + +
/* and sizeof(int) is not necessary equal to sizeof(e) */

Rationale: In C + +, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom. The only time this affects existing C code is when the size of an enumerator is
taken. Taking the size of an enumerator is not a common C coding practice.

[diff.decl] C.1.6 Clause 8: declarators

8.3.5

Change: In C + +, a function declared with an empty parameter list takes no arguments.
In C, an empty parameter list means that the number and type of the function arguments are unknown"
Example:

int f(); // means int f(void) in C + +
// int f(unknown) in C

Rationale: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of
arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as
“obsolescent” in C.
Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declara-
tion style must be completed to become full prototype declarations. A program may need to be updated
further if different calls to the same (non-prototype) function have different numbers of arguments or if the
type of corresponding arguments differed.
How widely used: Common.

8.3.5 [see 5.3.3]

Change: In C + +, types may not be defined in return or parameter types. In C, these type definitions are
allowed
Example:

void f(struct S { int a; } arg) {} // valid C, invalid C + +
enum E { A, B, C } f() {} // valid C, invalid C + +

Rationale: When comparing types in different compilation units, C + + relies on name equivalence when C
relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list
would be in the scope of the function, the only legal calls in C + + would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in
header files.
How widely used: Seldom. This style of type definitions is seen as poor coding style.

8.4

701

ISO/IEC 14882:2003(E)  ISO/IEC

C.1.6 Clause 8: declarators Annex C Compatibility

Change: In C + +, the syntax for function definition excludes the “old-style” C function. In C, “old-style”
syntax is allowed, but deprecated as “obsolescent.”
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Common in old programs, but already known to be obsolescent.

8.5.2

Change: In C + +, when initializing an array of character with a string, the number of characters in the string
(including the terminating ’\0’) must not exceed the number of elements in the array. In C, an array can
be initialized with a string even if the array is not large enough to contain the string terminating ’\0’
Example:

char array[4] = "abcd"; // valid C, invalid C + +

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is potential
for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to
contain the string terminating ’\0’.
How widely used: Seldom. This style of array initialization is seen as poor coding style.

[diff.class] C.1.7 Clause 9: classes

9.1 [see also 7.1.3]

Change: In C + +, a class declaration introduces the class name into the scope where it is declared and hides
any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declara-
tion of a struct tag name never hides the name of an object or function in an outer scope
Example:

int x[99];
void f()
{

struct x { int a; };
sizeof(x); /* size of the array in C */
/* size of the struct in C + + */

}

Rationale: This is one of the few incompatibilities between C and C + + that can be attributed to the new C + +
name space definition where a name can be declared as a type and as a nontype in a single scope causing
the nontype name to hide the type name and requiring that the keywords class, struct, union or
enum be used to refer to the type name. This new name space definition provides important notational
conveniences to C + + programmers and helps making the use of the user-defined types as similar as possible
to the use of built-in types. The advantages of the new name space definition were judged to outweigh by
far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at glo-
bal scope, the :: C + + operator can be used. If the hidden name is at block scope, either the type or the
struct tag has to be renamed.
How widely used: Seldom.

9.7

Change: In C + +, the name of a nested class is local to its enclosing class. In C the name of the nested class

702

 ISO/IEC ISO/IEC 14882:2003(E)

Annex C Compatibility C.1.7 Clause 9: classes

belongs to the same scope as the name of the outermost enclosing class
Example:

struct X {
struct Y { /* ... */ } y;

};
struct Y yy; // valid C, invalid C + +

Rationale: C + + classes have member functions which require that classes establish scopes. The C rule
would leave classes as an incomplete scope mechanism which would prevent C + + programmers from main-
taining locality within a class. A coherent set of scope rules for C + + based on the C rule would be very
complicated and C + + programmers would be unable to predict reliably the meanings of nontrivial examples
involving nested or local functions.
Effect on original feature: Change of semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of
the enclosing struct, the struct tag could be declared in the scope of the enclosing struct, before the enclos-
ing struct is defined. Example:

struct Y; // struct Y and struct X are at the same scope
struct X {

struct Y { /* ... */ } y;
};

All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of
the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of
the difference in scope rules, which is documented in 3.3.
How widely used: Seldom.

9.9

Change: In C + +, a typedef name may not be redefined in a class declaration after being used in the declara-
tion
Example:

typedef int I;
struct S {

I i;
int I; // valid C, invalid C + +

};

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can
create confusion for C + + programmers as to what the meaning of ’I’ really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be
renamed.
How widely used: Seldom.

[diff.special] C.1.8 Clause 12: special member functions

12.8 (copying class objects)

Change: Copying volatile objects
The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a
copy of a volatile lvalue. For example, the following is valid in ISO C:

703

ISO/IEC 14882:2003(E)  ISO/IEC

C.1.8 Clause 12: special member functions Annex C Compatibility

struct X { int i; };
struct X x1, x2;
volatile struct X x3 = {0};
x1 = x3; // invalid C + +
x2 = x3; // also invalid C + +

Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X&
would greatly complicate the generation of efficient code for class objects. Discussion of providing two
alternative signatures for these implicitly-defined operations raised unanswered concerns about creating
ambiguities and complicating the rules that specify the formation of these operators according to the bases
and members.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a user-
declared constructor or assignment must be provided. If non-volatile semantics are required, an explicit
const_cast can be used.
How widely used: Seldom.

[diff.cpp] C.1.9 Clause 16: preprocessing directives

16.8 (predefined names)

Change: Whether _ _STDC_ _ is defined and if so, what its value is, are implementation-defined
Rationale: C + + is not identical to ISO C. Mandating that _ _STDC_ _be defined would require that transla-
tors make an incorrect claim. Each implementation must choose the behavior that will be most useful to its
marketplace.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Programs and headers that reference _ _STDC_ _are quite common.

[diff.library] C.2 Standard C library

1 This subclause summarizes the contents of the C + + Standard library included from the Standard C library.
It also summarizes the explicit changes in definitions, declarations, or behavior from the ISO/IEC
9899:1990 and ISO/IEC 9899:1990/DAM 1 noted in other subclauses (17.4.1.2, 18.1, 21.4).

2 The C + + Standard library provides 54 standard macros from the C library, as shown in Table 95.

3 The header names (enclosed in < and >) indicate that the macro may be defined in more than one header.
All such definitions are equivalent (3.2).

Table 95—Standard Macros
_ __
assert HUGE_VAL NULL <cstring> SIGILL va_arg

BUFSIZ LC_ALL NULL <ctime> SIGINT va_end

CLOCKS_PER_SEC LC_COLLATE NULL <cwchar> SIGSEGV va_start

EDOM LC_CTYPE offsetof SIGTERM WCHAR_MAX

EOF LC_MONETARY RAND_MAX SIG_DFL WCHAR_MIN

ERANGE LC_NUMERIC SEEK_CUR SIG_ERR WEOF <cwchar>

errno LC_TIME SEEK_END SIG_IGN WEOF <cwctype>

EXIT_FAILURE L_tmpnam SEEK_SET stderr _IOFBF

EXIT_SUCCESS MB_CUR_MAX setjmp stdin _IOLBF

FILENAME_MAX NULL <cstddef> SIGABRT stdout _IONBF

FOPEN_MAX NULL <cstdio> SIGFPE TMP_MAX_ __ 



























704

 ISO/IEC ISO/IEC 14882:2003(E)

Annex C Compatibility C.2 Standard C library

4 The C + + Standard library provides 45 standard values from the C library, as shown in Table 96:

Table 96—Standard Values
_ __
CHAR_BIT FLT_DIG INT_MIN MB_LEN_MAX

CHAR_MAX FLT_EPSILON LDBL_DIG SCHAR_MAX

CHAR_MIN FLT_MANT_DIG LDBL_EPSILON SCHAR_MIN

DBL_DIG FLT_MAX LDBL_MANT_DIG SHRT_MAX

DBL_EPSILON FLT_MAX_10_EXP LDBL_MAX SHRT_MIN

DBL_MANT_DIG FLT_MAX_EXP LDBL_MAX_10_EXP UCHAR_MAX

DBL_MAX FLT_MIN LDBL_MAX_EXP UINT_MAX

DBL_MAX_10_EXP FLT_MIN_10_EXP LDBL_MIN ULONG_MAX

DBL_MAX_EXP FLT_MIN_EXP LDBL_MIN_10_EXP USHRT_MAX

DBL_MIN FLT_RADIX LDBL_MIN_EXP

DBL_MIN_10_EXP FLT_ROUNDS LONG_MAX

DBL_MIN_EXP INT_MAX LONG_MIN_ __ 





























5 The C + + Standard library provides 19 standard types from the C library, as shown in Table 97:

Table 97—Standard Types
_ __
clock_t ldiv_t size_t <cstdio> wctrans_t

div_t mbstate_t size_t <cstring> wctype_t

FILE ptrdiff_t size_t <ctime> wint_t <cwchar>

fpos_t sig_atomic_t time_t wint_t <cwctype>

jmp_buf size_t <cstddef> va_list_ __ 













6 The C + + Standard library provides 2 standard structures from the C library, as shown in Table 98:

Table 98—Standard Structs
_ ____________
lconv tm_ ____________  

7 The C + + Standard library provides 209 standard functions from the C library, as shown in Table 99:

705

ISO/IEC 14882:2003(E)  ISO/IEC

C.2 Standard C library Annex C Compatibility

Table 99—Standard Functions
_ __
abort fmod isupper mktime strftime wcrtomb

abs fopen iswalnum modf strlen wcscat

acos fprintf iswalpha perror strncat wcschr

asctime fputc iswcntrl pow strncmp wcscmp

asin fputs iswctype printf strncpy wcscoll

atan fputwc iswdigit putc strpbrk wcscpy

atan2 fputws iswgraph putchar strrchr wcscspn

atexit fread iswlower puts strspn wcsftime

atof free iswprint putwc strstr wcslen

atoi freopen iswpunct putwchar strtod wcsncat

atol frexp iswspace qsort strtok wcsncmp

bsearch fscanf iswupper raise strtol wcsncpy

btowc fseek iswxdigit rand strtoul wcspbrk

calloc fsetpos isxdigit realloc strxfrm wcsrchr

ceil ftell labs remove swprintf wcsrtombs

clearerr fwide ldexp rename swscanf wcsspn

clock fwprintf ldiv rewind system wcsstr

cos fwrite localeconv scanf tan wcstod

cosh fwscanf localtime setbuf tanh wcstok

ctime getc log setlocale time wcstol

difftime getchar log10 setvbuf tmpfile wcstombs

div getenv longjmp signal tmpnam wcstoul

exit gets malloc sin tolower wcsxfrm

exp getwc mblen sinh toupper wctob

fabs getwchar mbrlen sprintf towctrans wctomb

fclose gmtime mbrtowc sqrt towlower wctrans

feof isalnum mbsinit srand towupper wctype

ferror isalpha mbsrtowcs sscanf ungetc wmemchr

fflush iscntrl mbstowcs strcat ungetwc wmemcmp

fgetc isdigit mbtowc strchr vfprintf wmemcpy

fgetpos isgraph memchr strcmp vfwprintf wmemmove

fgets islower memcmp strcoll vprintf wmemset

fgetwc isprint memcpy strcpy vsprintf wprintf

fgetws ispunct memmove strcspn vswprintf wscanf

floor isspace memset strerror vwprintf_ __ 





















































































[diff.mods.to.headers] C.2.1 Modifications to headers

1 For compatibility with the Standard C library, the C + + Standard library provides the 18 C headers (D.5), but
their use is deprecated in C + +.

[diff.mods.to.definitions] C.2.2 Modifications to definitions

[diff.wchar.t] C.2.2.1 Type wchar_t

1 wchar_t is a keyword in this International Standard (2.11). It does not appear as a type name defined in
any of <cstddef>, <cstdlib>, or <cwchar> (21.4).

706

 ISO/IEC ISO/IEC 14882:2003(E)

Annex C Compatibility C.2.2.2 Header <iso646.h>

[diff.header.iso646.h] C.2.2.2 Header <iso646.h>

1 The tokens and, and_eq, bitand, bitor, compl, not_eq, not, or, or_eq, xor, and xor_eq are
keywords in this International Standard (2.11). They do not appear as macro names defined in
<ciso646>.

[diff.null] C.2.2.3 Macro NULL

1 The macro NULL, defined in any of <clocale>, <cstddef>, <cstdio>, <cstdlib>, <cstring>,
<ctime>, or <cwchar>, is an implementation-defined C + + null pointer constant in this International
Standard (18.1).

[diff.mods.to.declarations] C.2.3 Modifications to declarations

1 Header <cstring>: The following functions have different declarations:

— strchr

— strpbrk

— strrchr

— strstr

— memchr

2 21.4 describes the changes.

[diff.mods.to.behavior] C.2.4 Modifications to behavior

1 Header <cstdlib>: The following functions have different behavior:

— atexit

— exit

— abort

18.3 describes the changes.

2 Header <csetjmp>: The following functions have different behavior:

— longjmp

18.7 describes the changes.

[diff.offsetof] C.2.4.1 Macro offsetof(type, member-designator)

1 The macro offsetof, defined in <cstddef>, accepts a restricted set of type arguments in this Inter-
national Standard. 18.1 describes the change.

[diff.malloc] C.2.4.2 Memory allocation functions

1 The functions calloc, malloc, and realloc are restricted in this International Standard. 20.4.6
describes the changes.

707

ISO/IEC 14882:2003(E)  ISO/IEC

708

Blank page

 ISO/IEC ISO/IEC 14882:2003(E)

Annex D Compatibility features D Compatibility features

Annex D [depr]
(normative)

Compatibility features

1 This clause describes features of the C + + Standard that are specified for compatibility with existing imple-
mentations.

2 These are deprecated features, where deprecated is defined as: Normative for the current edition of the
Standard, but not guaranteed to be part of the Standard in future revisions.

[depr.incr.bool] D.1 Increment operator with bool operand

1 The use of an operand of type bool with the ++ operator is deprecated (see 5.3.2 and 5.2.6).

[depr.static] D.2 static keyword

1 The use of the static keyword is deprecated when declaring objects in namespace scope (see 3.3.5).

[depr.access.dcl] D.3 Access declarations

1 Access declarations are deprecated (see 11.3).

[depr.string] D.4 Implicit conversion from const strings

1 The implicit conversion from const to non-const qualification for string literals (4.2) is deprecated.

[depr.c.headers] D.5 Standard C library headers

1 For compatibility with the Standard C library, the C + + Standard library provides the 18 C headers, as shown
in Table 100:

Table 100—C Headers
__
<assert.h> <iso646.h> <setjmp.h> <stdio.h> <wchar.h>
<ctype.h> <limits.h> <signal.h> <stdlib.h> <wctype.h>
<errno.h> <locale.h> <stdarg.h> <string.h>
<float.h> <math.h> <stddef.h> <time.h>__ 












2 Every C header, each of which has a name of the form name.h, behaves as if each name placed in the
Standard library namespace by the corresponding cname header is also placed within the namespace scope
of the namespace std and is followed by an explicit using-declaration (7.3.3).

3 [Example: The header <cstdlib> provides its declarations and definitions within the namespace std.
The header <stdlib.h> makes these available also in the global namespace, much as in the C Standard.
—end example]

[depr.ios.members] D.6 Old iostreams members

1 The following member names are in addition to names specified in clause 27:

709

ISO/IEC 14882:2003(E)  ISO/IEC

D.6 Old iostreams members Annex D Compatibility features

namespace std {
class ios_base {
public:
typedef T1 io_state;
typedef T2 open_mode;
typedef T3 seek_dir;
typedef OFF_T streamoff;
typedef POS_T streampos;
// remainder unchanged

};
}

2 The type io_state is a synonym for an integer type (indicated here as T1) that permits certain member
functions to overload others on parameters of type iostate and provide the same behavior.

3 The type open_mode is a synonym for an integer type (indicated here as T2) that permits certain member
functions to overload others on parameters of type openmode and provide the same behavior.

4 The type seek_dir is a synonym for an integer type (indicated here as T3) that permits certain member
functions to overload others on parameters of type seekdir and provide the same behavior.

5 The type streamoff is an implementation-defined type that satisfies the requirements of type OFF_T
(27.4.1).

6 The type streampos is an implementation-defined type that satisfies the requirements of type POS_T
(27.2).

7 An implementation may provide the following additional member function, which has the effect of calling
sbumpc() (27.5.2.2.3):

namespace std {
template<class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:
void stossc();
// remainder unchanged

};
}

8 An implementation may provide the following member functions that overload signatures specified in
clause 27:

namespace std {
template<class charT, class Traits> class basic_ios {
public:
void clear(io_state state);
void setstate(io_state state);
void exceptions(io_state);
// remainder unchanged

};

class ios_base {
public:

// remainder unchanged
};

710

 ISO/IEC ISO/IEC 14882:2003(E)

Annex D Compatibility features D.6 Old iostreams members

template<class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:

pos_type pubseekoff(off_type off, ios_base::seek_dir way,
ios_base::open_mode which = ios_base::in | ios_base::out);

pos_type pubseekpos(pos_type sp,
ios_base::open_mode which);

// remainder unchanged
};

template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:

basic_filebuf<charT,traits>* open
(const char* s, ios_base::open_mode mode);

// remainder unchanged
};

template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:

void open(const char* s, ios_base::open_mode mode);
// remainder unchanged

};

template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:

void open(const char* s, ios_base::open_mode mode);
// remainder unchanged

};

}

9 The effects of these functions is to call the corresponding member function specified in clause 27.

[depr.str.strstreams] D.7 char* streams

1 The header <strstream> defines three types that associate stream buffers with character array objects
and assist reading and writing such objects.

[depr.strstreambuf] D.7.1 Class strstreambuf

namespace std {
class strstreambuf : public basic_streambuf<char> {
public:
explicit strstreambuf(streamsize alsize_arg = 0);
strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));
strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = 0);
strstreambuf(const char* gnext_arg, streamsize n);

strstreambuf(signed char* gnext_arg, streamsize n,
signed char* pbeg_arg = 0);

strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char* pbeg_arg = 0);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

virtual ˜strstreambuf();

711

ISO/IEC 14882:2003(E)  ISO/IEC

D.7.1 Class strstreambuf Annex D Compatibility features

void freeze(bool freezefl = true);
char* str();
int pcount();

protected:
virtual int_type overflow (int_type c = EOF);
virtual int_type pbackfail(int_type c = EOF);
virtual int_type underflow();
virtual pos_type seekoff(off_type off, ios_base::seekdir way,

ios_base::openmode which
= ios_base::in | ios_base::out);

virtual pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

virtual streambuf* setbuf(char* s, streamsize n);

private:
// typedef T1 strstate; exposition only
// static const strstate allocated; exposition only
// static const strstate constant; exposition only
// static const strstate dynamic; exposition only
// static const strstate frozen; exposition only
// strstate strmode; exposition only
// streamsize alsize; exposition only
// void* (*palloc)(size_t); exposition only
// void (*pfree)(void*); exposition only

};
}

1 The class strstreambuf associates the input sequence, and possibly the output sequence, with an object
of some character array type, whose elements store arbitrary values. The array object has several
attributes.

2 [Note: For the sake of exposition, these are represented as elements of a bitmask type (indicated here as T1)
called strstate. The elements are:

— allocated, set when a dynamic array object has been allocated, and hence should be freed by the
destructor for the strstreambuf object;

— constant, set when the array object has const elements, so the output sequence cannot be written;

— dynamic, set when the array object is allocated (or reallocated) as necessary to hold a character
sequence that can change in length;

— frozen, set when the program has requested that the array object not be altered, reallocated, or freed.
—end note]

3 [Note: For the sake of exposition, the maintained data is presented here as:

— strstate strmode, the attributes of the array object associated with the strstreambuf object;

— int alsize, the suggested minimum size for a dynamic array object;

— void* (*palloc)(size_t), points to the function to call to allocate a dynamic array object;

— void (*pfree)(void*), points to the function to call to free a dynamic array object. —end note]

4 Each object of class strstreambuf has a seekable area, delimited by the pointers seeklow and
seekhigh. If gnext is a null pointer, the seekable area is undefined. Otherwise, seeklow equals
gbeg and seekhigh is either pend, if pend is not a null pointer, or gend.

712

 ISO/IEC ISO/IEC 14882:2003(E)

Annex D Compatibility features D.7.1.1 strstreambuf constructors

[depr.strstreambuf.cons] D.7.1.1 strstreambuf constructors

explicit strstreambuf(streamsize alsize_arg = 0);

1 Effects: Constructs an object of class strstreambuf, initializing the base class with streambuf().
The postconditions of this function are indicated in Table 101:

Table 101—strstreambuf(streamsize) effects
_ _________________________

Element Value_ __________________________ _________________________
strmode dynamic
alsize alsize_arg
palloc a null pointer
pfree a null pointer_ _________________________ 














strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));

2 Effects: Constructs an object of class strstreambuf, initializing the base class with streambuf().
The postconditions of this function are indicated in Table 102:

Table 102—strstreambuf(void* (*)(size_t),void (*)(void*) effects
_ _____________________________

Element Value_ ______________________________ _____________________________
strmode dynamic
alsize an unspecified value
palloc palloc_arg
pfree pfree_arg_ _____________________________ 














strstreambuf(char* gnext_arg, streamsize n, char *pbeg_arg = 0);
strstreambuf(signed char* gnext_arg, streamsize n,

signed char *pbeg_arg = 0);
strstreambuf(unsigned char* gnext_arg, streamsize n,

unsigned char *pbeg_arg = 0);

3 Effects: Constructs an object of class strstreambuf, initializing the base class with streambuf().
The postconditions of this function are indicated in Table 103:

Table 103—strstreambuf(charT*,streamsize,charT*) effects
_ _____________________________

Element Value_ ______________________________ _____________________________
strmode 0
alsize an unspecified value
palloc a null pointer
pfree a null pointer_ _____________________________ 














4 gnext_arg shall point to the first element of an array object whose number of elements N is determined
as follows:

— If n > 0, N is n.

— If n == 0, N is std::strlen(gnext_arg).

— If n < 0, N is INT_MAX.312)

312) The function signature strlen(const char*) is declared in <cstring>. (21.4). The macro INT_MAX is defined in
<climits> (18.2).

713

ISO/IEC 14882:2003(E)  ISO/IEC

D.7.1.1 strstreambuf constructors Annex D Compatibility features

5 If pbeg_arg is a null pointer, the function executes:

setg(gnext_arg, gnext_arg, gnext_arg + N);

6 Otherwise, the function executes:

setg(gnext_arg, gnext_arg, pbeg_arg);
setp(pbeg_arg, pbeg_arg + N);

strstreambuf(const char* gnext_arg, streamsize n);
strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(const unsigned char* gnext_arg, streamsize n);

7 Effects: Behaves the same as strstreambuf((char*)gnext_arg,n), except that the constructor
also sets constant in strmode.

virtual ˜strstreambuf();

8 Effects: Destroys an object of class strstreambuf. The function frees the dynamically allocated array
object only if strmode & allocated != 0 and strmode & frozen == 0.
(_lib.strstreambuf.virtuals_ describes how a dynamically allocated array object is freed.)

[depr.strstreambuf.members] D.7.1.2 Member functions

void freeze(bool freezefl = true);

1 Effects: If strmode & dynamic is non-zero, alters the freeze status of the dynamic array object as fol-
lows:

— If freezefl is true, the function sets frozen in strmode.

— Otherwise, it clears frozen in strmode.

char* str();

2 Effects: Calls freeze(), then returns the beginning pointer for the input sequence, gbeg.
3 Notes: The return value can be a null pointer.

int pcount() const;

4 Effects: If the next pointer for the output sequence, pnext, is a null pointer, returns zero. Otherwise,
returns the current effective length of the array object as the next pointer minus the beginning pointer
for the output sequence, pnext - pbeg.

[depr.strstreambuf.virtuals] D.7.1.3 strstreambuf overridden virtual functions

int_type overflow(int_type c = EOF);

1 Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:

— If c != EOF and if either the output sequence has a write position available or the function makes a
write position available (as described below), assigns c to *pnext++.
Returns (unsigned char)c.

— If c == EOF, there is no character to append.
Returns a value other than EOF.

2 Returns EOF to indicate failure.
3 Notes: The function can alter the number of write positions available as a result of any call.

To make a write position available, the function reallocates (or initially allocates) an array object with a
sufficient number of elements n to hold the current array object (if any), plus at least one additional
write position. How many additional write positions are made available is otherwise unspecified.313) If

313) An implementation should consider alsize in making this decision.

714

 ISO/IEC ISO/IEC 14882:2003(E)

Annex D Compatibility features D.7.1.3 strstreambuf overridden virtual functions

palloc is not a null pointer, the function calls (*palloc)(n) to allocate the new dynamic array
object. Otherwise, it evaluates the expression new charT[n]. In either case, if the allocation fails,
the function returns EOF. Otherwise, it sets allocated in strmode.

4 To free a previously existing dynamic array object whose first element address is p: If pfree is not a null
pointer, the function calls (*pfree)(p). Otherwise, it evaluates the expression delete[] p.

5 If strmode & dynamic == 0, or if strmode & frozen != 0, the function cannot extend the
array (reallocate it with greater length) to make a write position available.

int_type pbackfail(int_type c = EOF);

6 Puts back the character designated by c to the input sequence, if possible, in one of three ways:

— If c != EOF, if the input sequence has a putback position available, and if (char)c == gnext[-
1], assigns gnext - 1 to gnext.
Returns c.

— If c != EOF, if the input sequence has a putback position available, and if strmode & constant
is zero, assigns c to *--gnext.
Returns c.

— If c == EOF and if the input sequence has a putback position available, assigns gnext - 1 to
gnext.
Returns a value other than EOF.

7 Returns EOF to indicate failure.
8 Notes: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.

The function can alter the number of putback positions available as a result of any call.

int_type underflow();

9 Effects: Reads a character from the input sequence, if possible, without moving the stream position past it,
as follows:

— If the input sequence has a read position available, the function signals success by returning
(unsigned char)*gnext.

— Otherwise, if the current write next pointer pnext is not a null pointer and is greater than the current
read end pointer gend, makes a read position available by: assigning to gend a value greater than
gnext and no greater than pnext.
Returns (unsigned char)*gnext.

10 Returns EOF to indicate failure.
11 Notes: The function can alter the number of read positions available as a result of any call.

pos_type seekoff(off_type off, seekdir way, openmode which = in | out);

12 Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table
104:

715

ISO/IEC 14882:2003(E)  ISO/IEC

D.7.1.3 strstreambuf overridden virtual functions Annex D Compatibility features

Table 104—seekoff positioning

Conditions Result__
(which & ios::in) != 0 positions the input sequence___
(which & ios::out) != 0 positions the output sequence___
(which & (ios::in |
ios::out)) == (ios::in |
ios::out)) and way ==
either ios::beg or
ios::end

positions both the input and the
output sequences

Otherwise the positioning operation fails.___ 


























13 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determines newoff as indicated in Table 105:

Table 105—newoff values
_ ___

Condition newoff Value_ __ ___
way == ios::beg 0_ ___
way == ios::cur the next pointer minus the begin-

ning pointer (xnext - xbeg)_ ___
way == ios::end seekhigh minus the beginning

pointer (seekhigh - xbeg)_ ___
the positioning operation failsIf (newoff + off) <

(seeklow - xbeg),
or (seekhigh - xbeg) <
(newoff + off)_ ___ 




























14 Otherwise, the function assigns xbeg + newoff + off to the next pointer xnext.
15 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type),

that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the return value is
pos_type(off_type(-1)).

pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

16 Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond to the
stream position stored in sp (as described below).

— If (which & ios::in) != 0, positions the input sequence.

— If (which & ios::out) != 0, positions the output sequence.

— If the function positions neither sequence, the positioning operation fails.

17 For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Other-
wise, the function determines newoff from sp.offset():

— If newoff is an invalid stream position, has a negative value, or has a value greater than (seekhigh -
seeklow), the positioning operation fails

— Otherwise, the function adds newoff to the beginning pointer xbeg and stores the result in the next
pointer xnext.

716

 ISO/IEC ISO/IEC 14882:2003(E)

Annex D Compatibility features D.7.1.3 strstreambuf overridden virtual functions

18 Returns: pos_type(newoff), constructed from the resultant offset newoff (of type off_type),
that stores the resultant stream position, if possible. If the positioning operation fails, or if the con-
structed object cannot represent the resultant stream position, the return value is
pos_type(off_type(-1)).

streambuf<char>* setbuf(char* s, streamsize n);

19 Effects: Implementation defined, except that setbuf(0, 0) has no effect.

[depr.istrstream] D.7.2 Class istrstream

namespace std {
class istrstream : public basic_istream<char> {
public:
explicit istrstream(const char* s);
explicit istrstream(char* s);
istrstream(const char* s, streamsize n);
istrstream(char* s, streamsize n);
virtual ˜istrstream();

strstreambuf* rdbuf() const;
char *str();

private:
// strstreambuf sb; exposition only

};
}

1 The class istrstream supports the reading of objects of class strstreambuf. It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as:

— sb, the strstreambuf object.

[depr.istrstream.cons] D.7.2.1 istrstream constructors

explicit istrstream(const char* s);
explicit istrstream(char* s);

1 Effects: Constructs an object of class istrstream, initializing the base class with istream(&sb) and
initializing sb with strstreambuf(s,0)). s shall designate the first element of an NTBS.

istrstream(const char* s, streamsize n);

2 Effects: Constructs an object of class istrstream, initializing the base class with istream(&sb) and
initializing sb with strstreambuf(s,n)). s shall designate the first element of an array whose
length is n elements, and n shall be greater than zero.

[depr.istrstream.members] D.7.2.2 Member functions

strstreambuf* rdbuf() const;

1 Returns: (strstreambuf*)&sb.

char* str();

2 Returns: rdbuf()->str().

717

ISO/IEC 14882:2003(E)  ISO/IEC

D.7.3 Class ostrstream Annex D Compatibility features

[depr.ostrstream] D.7.3 Class ostrstream

namespace std {
class ostrstream : public basic_ostream<char> {
public:
ostrstream();
ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);
virtual ˜ostrstream();

strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
char* str();
int pcount() const;

private:
// strstreambuf sb; exposition only

};
}

1 The class ostrstream supports the writing of objects of class strstreambuf. It supplies a
strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as:

— sb, the strstreambuf object.

[depr.ostrstream.cons] D.7.3.1 ostrstream constructors

ostrstream();

1 Effects: Constructs an object of class ostrstream, initializing the base class with ostream(&sb) and
initializing sb with strstreambuf()).

ostrstream(char* s, int n, ios_base::openmode mode = ios_base::out);

2 Effects: Constructs an object of class ostrstream, initializing the base class with ostream(&sb),
and initializing sb with one of two constructors:

— If (mode & app) == 0, then s shall designate the first element of an array of n elements.
The constructor is strstreambuf(s, n, s).

— If (mode & app) != 0, then s shall designate the first element of an array of n elements that con-
tains an NTBS whose first element is designated by s.
The constructor is strstreambuf(s, n, s + std::strlen(s)).314)

[depr.ostrstream.members] D.7.3.2 Member functions

strstreambuf* rdbuf() const;

1 Returns: (strstreambuf*)&sb.

void freeze(bool freezefl = true);

2 Effects: Calls rdbuf()->freeze(freezefl).

314) The function signature strlen(const char*) is declared in <cstring> (21.4).

718

 ISO/IEC ISO/IEC 14882:2003(E)

Annex D Compatibility features D.7.3.2 Member functions

char* str();

3 Returns: rdbuf()->str().

int pcount() const;

4 Returns: rdbuf()->pcount().

[depr.strstream] D.7.4 Class strstream

namespace std {
class strstream
: public basic_iostream<char> {

public:
// Types
typedef char char_type;
typedef typename char_traits<char>::int_type int_type;
typedef typename char_traits<char>::pos_type pos_type;
typedef typename char_traits<char>::off_type off_type;

// consturctors/destructor
strstream();
strstream(char* s, int n,

ios_base::openmode mode = ios_base::in|ios_base::out);
virtual ˜strstream();

// Members:
strstreambuf* rdbuf() const;
void freeze(bool freezefl = true);
int pcount() const;
char* str();

private:
// strstreambuf sb; exposition only
};

}

1 The class strstream supports reading and writing from objects of classs strstreambuf. It supplies
a strstreambuf object to control the associated array object. For the sake of exposition, the maintained
data is presented here as

— sb, the strstreambuf object.

[depr.strstream.cons] D.7.4.1 strstream constructors

strstream();

1 Effects: Constructs an object of class strstream, initializing the base class with iostream(&sb).

strstream(char* s, int n,
ios_base::openmode mode = ios_base::in|ios_base::out);

2 Effects: Constructs an object of class strstream, initializing the base class with iostream(&sb) and
initializing sb with one of the two constructors:

— If (mode & app) == 0, then s shall designate the first element of an array of n elements. The con-
structor is strstreambuf(s,n,s).

— If (mode & app) != 0, then s shall designate the first element of an array of n elements that con-
tains an NTBS whose first element is designated by s. The constructor is
strstreambuf(s,n,s+std::strlen(s)).

719

ISO/IEC 14882:2003(E)  ISO/IEC

D.7.4.2 strstream destructor Annex D Compatibility features

[depr.strstream.dest] D.7.4.2 strstream destructor

virtual ˜strstream()

1 Effects: Destroys an object of class strstream.

strstreambuf* rdbuf() const;

2 Returns: &sb.

[depr.strstream.oper] D.7.4.3 strstream operations

void freeze(bool freezefl = true);

1 Effects: Calls rdbuf()->freeze(freezefl).

char* str();

2 Returns: rdbuf()->str().

int pcount() const;

3 Returns: rdbuf()->pcount().

720

 ISO/IEC ISO/IEC 14882:2003(E)

Annex E [extendid]
(normative)

Universal-character-names

1 This clause lists the complete set of hexadecimal code values that are valid in universal-character-names in
C + + identifiers (2.10).

2 This table is reproduced unchanged from ISO/IEC PDTR 10176, produced by ISO/IEC JTC1/SC22/WG20,
except that the ranges 0041–005a and 0061–007a designate the upper and lower case English alphabets,
which are part of the basic source character set, and are not repeated in the table below.

Latin: 00c0–00d6, 00d8–00f6, 00f8–01f5, 01fa–0217, 0250–02a8, 1e00–1e9a, 1ea0–1ef9

Greek: 0384, 0388–038a, 038c, 038e–03a1, 03a3–03ce, 03d0–03d6, 03da, 03dc, 03de, 03e0, 03e2–03f3,
1f00–1f15, 1f18–1f1d, 1f20–1f45, 1f48–1f4d, 1f50–1f57, 1f59, 1f5b, 1f5d, 1f5f–1f7d, 1f80–1fb4,
1fb6–1fbc, 1fc2–1fc4, 1fc6–1fcc, 1fd0–1fd3, 1fd6–1fdb, 1fe0–1fec, 1ff2–1ff4, 1ff6–1ffc

Cyrillic: 0401–040d, 040f–044f, 0451–045c, 045e–0481, 0490–04c4, 04c7–04c8, 04cb–04cc, 04d0–04eb,
04ee–04f5, 04f8–04f9

Armenian: 0531–0556, 0561–0587

Hebrew: 05d0–05ea, 05f0–05f4

Arabic: 0621–063a, 0640–0652, 0670–06b7, 06ba–06be, 06c0–06ce, 06e5–06e7

Devanagari: 0905–0939, 0958–0962

Bengali: 0985–098c, 098f–0990, 0993–09a8, 09aa–09b0, 09b2, 09b6–09b9, 09dc–09dd, 09df–09e1,
09f0–09f1

Gurmukhi: 0a05–0a0a, 0a0f–0a10, 0a13–0a28, 0a2a–0a30, 0a32–0a33, 0a35–0a36, 0a38–0a39,
0a59–0a5c, 0a5e

Gujarati: 0a85–0a8b, 0a8d, 0a8f–0a91, 0a93–0aa8, 0aaa–0ab0, 0ab2–0ab3, 0ab5–0ab9, 0ae0

Oriya: 0b05–0b0c, 0b0f–0b10, 0b13–0b28, 0b2a–0b30, 0b32–0b33, 0b36–0b39, 0b5c–0b5d, 0b5f–0b61

Tamil: 0b85–0b8a, 0b8e–0b90, 0b92–0b95, 0b99–0b9a, 0b9c, 0b9e–0b9f, 0ba3–0ba4, 0ba8–0baa,
0bae–0bb5, 0bb7–0bb9

Telugu: 0c05–0c0c, 0c0e–0c10, 0c12–0c28, 0c2a–0c33, 0c35–0c39, 0c60–0c61

Kannada: 0c85–0c8c, 0c8e–0c90, 0c92–0ca8, 0caa–0cb3, 0cb5–0cb9, 0ce0–0ce1

Malayalam: 0d05–0d0c, 0d0e–0d10, 0d12–0d28, 0d2a–0d39, 0d60–0d61

Thai: 0e01–0e30, 0e32–0e33, 0e40–0e46, 0e4f–0e5b

Lao: 0e81–0e82, 0e84, 0e87, 0e88, 0e8a, 0e8d, 0e94–0e97, 0e99–0e9f, 0ea1–0ea3, 0ea5, 0ea7, 0eaa, 0eab,

721

ISO/IEC 14882:2003(E)  ISO/IEC

E Universal-character-names Annex E Universal-character-names

0ead–0eb0, 0eb2, 0eb3, 0ebd, 0ec0–0ec4, 0ec6

Georgian: 10a0–10c5, 10d0–10f6

Hiragana: 3041–3094, 309b–309e

Katakana: 30a1–30fe

Bopmofo: 3105–312c

Hangul: 1100–1159, 1161–11a2, 11a8–11f9

CJK Unified Ideographs: f900–fa2d, fb1f–fb36, fb38–fb3c, fb3e, fb40–fb41, fb42–fb44, fb46–fbb1,
fbd3–fd3f, fd50–fd8f, fd92–fdc7, fdf0–fdfb, fe70–fe72, fe74, fe76–fefc, ff21–ff3a, ff41–ff5a, ff66–ffbe,
ffc2–ffc7, ffca–ffcf, ffd2–ffd7, ffda–ffdc, 4e00–9fa5

722

 ISO/IEC ISO/IEC 14882:2003(E)

Index

, —see comma operator 92
! —see logical negation operator 78
!= —see inequality operator 88
operator 311
operator 312
% —see modulus operator 85
%= operator 91
&
—see address-of operator 78
—see bitwise AND operator 89
reference declarator 135
&& —see logical AND operator 89
&= operator 91
()
—see function call operator 68
function declarator 138
*
—see indirection operator 78
—see multiplication operator 85
pointer declarator 135
*= operator 91
+
—see addition operator 86
—see unary plus operator 78
++ —see increment operator 71
+= operator 79, 91
-
—see subtraction operator 86
—see unary minus operator 78
-- —see decrement operator 71
-= operator 91
-> —see class member access operator 70
->* —see pointer to member operator 85
. —see class member access operator 70
.* —see pointer to member operator 85
... —see ellipsis 139
/ —see division operator 85
/* */ comment 12
// comment 12
/= operator 91
:
field declaration 163
label specifier 95
::
—see scope resolution operator 67
scope resolution operator 34
::*, pointer to member declarator 136
<
—see less than operator 87
template and 242–243
<< —see left shift operator 87
<<= operator 91
<= —see less than or equal to operator 87
= —see assignment operator 91
== —see equality operator 88
> —see greater than operator 87
>= —see greater than or equal operator 87
>> —see right shift operator 87
>>= operator 91
?: —see conditional expression operator 90

[]
—see subscripting operator 68
array declarator 137
\ —see backslash 17
ˆ —see bitwise exclusive OR operator 89
ˆ= operator 91
_, underscore in identifier 14
{}
block statement 95
class declaration 153
class definition 153
enum declaration 112
initializer list 147
| —see bitwise inclusive OR operator 89
|= operator 91
|| —see logical OR operator 90
˜
—see destructor 195
—see one’s complement operator 78
0
—see also zero, null 19
null character 19
string terminator 19

A
abort 46, 99, 326, 342, 347, 351
abs 590, 602
complex 578

abstract
class 176
class, constructor and 177
class, pointer to 176

abstract-declarator 132
access
adjusting base class member 182
ambiguity, member 169
and friend, class 184
and friend function 183
base class 181
base class member 167
checking and default argument 180
class member 70
control 179
control, anonymous union 163
control default 179
control, member function and 189
control, overloading resolution and 170
declaration 182
example, member name 183
member name 179
overloading and 216
specifier 180–181
specifier and friend 185
specifier and object layout 181
struct default member 153
union default member 153
virtual function 187

access-specifier 167
accumulate 599

723

ISO/IEC 14882:2003(E)  ISO/IEC

acos 590, 602
addition operator 86
additive operator 86
additive-expression 86
address 55, 88
of bit-field 163
of bit-field restriction 163
of constructor 190
of cv-qualified name 78
of member function, unspecified 331
of overloaded function 78, 230

address-of operator 78
adjacent_find 553
adjusting base class member access 182
adjustment
array parameter 139
function parameter 139
advance 525
aggregate 147
alert 17
<algorithm> 543
alias 117
alignment
of bit-field 163
of bit-field, implementation defined 163
requirement, implementation-defined 52
storage allocation 81

allocation
alignment storage 81
function 47, 81
implementation defined bit-field 163
new, storage 80
unspecified 157, 181
allocator 374
Allocator requirements 360
allowing an exception 303
altermate definition 328
always_noconv, codecvt 432
ambiguity
base class member 169
class conversion 172
declaration type 104
declaration versus cast 132
declaration versus expression 101
detection, overloaded function 216
function declaration 146
member access 169
parentheses and 80
resolution, scoping 170

ambiguous conversion sequence 226
Amendment 1 328
AND
operator, bitwise 89
operator, logical 89
operator, side effects and logical 89

and pointer to member type, multi-level mixed pointer 61
anonymous
union 162
union access control 163
union at namespace scope 163
union, global 163
union restriction 163
any, bitset 513
append, basic_string 398
apply, valarray 588
arbitrary-positional stream 317
arg, complex 578
argc 44
argument 1, 330–331, 357
access checking and default 180
and name hiding, default 143

and virtual function, default 144
binding of default 142
conversion 139
declaration, default 141
evaluation of default 142–143
evaluation, order of 70
evaluation, unspecified order of 70
example of default 141–142
list, empty 139
list, variable 139
matching —see overload resolution 216
overloaded operator and default 233
passing 69
passing, reference and 151
reference 69
scope of default 143
specification, template 283
substitution 311
template 244
to constructor, unspecified 83
type checking 69
type checking of default 142
type, unknown 139

argument-dependent lookup 32
arguments, implementation-defined order of evaluation of

function 143
argv[] 44
arithmetic
constant expression 92
conversions, usual 66
exception 65
exception, undefined 65
pointer 86
type 54
unsigned 54

array
bound 137
const 56
declaration 137
declarator [] 137
declarator, multidimensional 138
delete 83
example 138
initialization 147
member 156
multidimensional 138
new 80
of class objects and constructor 200
of class objects and new 82
of class objects initialization 150, 200
order of execution, constructor and 199
order of execution, destructor and 196
overloading and pointer versus 214
parameter adjustment 139
pointer conversion 60
size, default 138
sizeof 79
storage of 138
type 55, 139

array-to-pointer conversion 60
arrow operator —see class member access operator 70
as-if rule 5
asin 590, 602
asm
declaration 126
implementation-defined 126

assembler 126
<assert.h> 326, 709
assign
basic_string 399
deque 479

724

 ISO/IEC ISO/IEC 14882:2003(E)

list 483
vector 491
Assignable requirements 465
assignment
and initialization, overloaded 200
and lvalue 91
conversion by 91
expression 91
operator 91, 324
operator, copy 209
operator, overloaded 233
operator restriction, copy 210
reference 151
to class object 91
to reference 91

assignment-expression 91
assignment-operator 91
at, basic_string 398
atan 590, 602
atan2 590, 602
atexit 46, 326, 342
auto 105
destruction of 99–100
initialization 101
object initialization 145
restriction 105
specifier 105
storage duration 46

automatic initialization 100–101
˜auto_ptr, auto_ptr 379
auto_ptr 378
˜auto_ptr 379
auto_ptr 379
auto_ptr 379
get 379
operator* 379
operator-> 379
operator= 379
release 380

B
back_inserter 532
back_insert_iterator 531
back_insert_iterator 531
back_insert_iterator 531
operator* 531
operator++ 531
operator= 531

backslash character 17
backspace 17
bad, basic_ios 623
bad_alloc 81, 343, 347
bad_alloc 346
bad_alloc 346
operator= 346
what 346
bad_alloc::what, implementation-defined 347
bad_cast 73, 348
bad_cast 348
bad_cast 348
operator= 348
what 348
bad_cast::what, implementation-defined 348
bad_exception 305, 350
bad_exception 350–351
bad_exception 350–351
operator= 351
what 351
bad_exception::what, implementation-defined 351

bad_typeid 73, 349
bad_typeid 349
bad_typeid 349
operator= 349
what 349
bad_typeid::what, implementation-defined 349
base
class 328, 331
class 167–168
class access 181
class cast 75
class constructor order of execution 190
class destructor order of execution 196
class, direct 167
class, indirect 167
class initialization 201
class initialization, order of 202
class initializer 144
class member access 167
class member access, adjusting 182
class member ambiguity 169
class, private 181
class, public 181
class virtual —see virtual base class 167
of integer literal 16

base-specifier 167
base-specifier-list 167
basic
execution character set 4
source character set 10
˜basic_filebuf, basic_filebuf 665
basic_filebuf 607, 664
˜basic_filebuf 665
basic_filebuf 665
basic_filebuf 665
close 666, 673
imbue 669
is_open 666, 673
open 666, 673
overflow 668
pbackfail 667
rdbuf 673
seekoff 668
seekpos 669
setbuf 668
showmanyc 667
sync 669
uflow 667
underflow 667
basic_filebuf<char> 664
basic_filebuf<wchar_t> 664
basic_fstream 607, 672
basic_fstream 673
basic_fstream 673
basic_ifstream 607, 669
basic_ifstream 670
basic_ifstream 670
close 670
is_open 670
open 670
rdbuf 670
basic_ifstream<char> 664
basic_ifstream<wchar_t> 664
basic_ios 607, 619
bad 623
basic_ios 620
basic_ios 620
clear 622
copyfmt 622
eof 623
exceptions 623

725

ISO/IEC 14882:2003(E)  ISO/IEC

fail 623
fill 622
good 623
imbue 621
init 638, 648
narrow 621
operator bool 622
operator! 622
rdbuf 621
rdstate 622
setstate 622
tie 621
widen 622
basic_ios<char> 610
basic_ios::failure argument, implementation-defined

622
˜basic_iostream, basic_iostream 646
basic_iostream 646
˜basic_iostream 646
basic_iostream 646
basic_iostream 646
basic_ios<wchar_t> 610
basic_istream 607, 636
˜sentry 639
basic_istream 638
basic_istream 638
gcount 641
get 641
getline 643
ignore 644
operator bool() 639
operator>> 640
peek 644
putback 644
read 644
readsome 644
seekg 645
sentry 638
sync 645
tellg 645
unget 645
basic_istreambuf_iterator 607
basic_istream<char> 635
basic_istream<wchar_t> 635
basic_istringstream 607, 660
basic_istringstream 660
basic_istringstream 660
rdbuf 661
str 661
basic_istringstream<char> 656
basic_istringstream<wchar_t> 656
basic_ofstream 607, 671
basic_ofstream 671
basic_ofstream 671
close 672
is_open 672
open 672
rdbuf 672
basic_ofstream<char> 664
basic_ofstream<wchar_t> 664
˜basic_ostream, basic_ostream 648
basic_ostream 607
˜basic_ostream 648
˜sentry 649
basic_ostream 648
basic_ostream 648
flush 653
operator bool() 649
operator<< 650
put 652
seekp 649

sentry 648
tellp 649
write 652
basic_ostreambuf_iterator 607
basic_ostream<char> 635
basic_ostream<wchar_t> 635
basic_ostringstream 607, 661
basic_ostringstream 662
basic_ostringstream 662
rdbuf 662
str 662
basic_ostringstream<char> 656
basic_ostringstream<wchar_t> 656
basic_streambuf 607, 626
basic_streambuf 628
basic_streambuf 628
eback 630
egptr 630
epptr 631
gbump 630
getloc 629
gptr 630
imbue 631
in_avail 629
overflow 634
pbackfail 633
pbase 631
pbump 631
pptr 631
pubimbue 629
pubseekoff 629
pubseekpos 629
pubsetbuf 629
pubsync 629
sbumpc 629
seekoff 631
seekpos 631
setbuf 631
setg 630
setp 631
sgetc 629
sgetn 630
showmanyc 632, 667
snextc 629
sputbackc 630
sputc 630
sputn 630
sungetc 630
sync 632
uflow 633
underflow 632
xsgetn 632
xsputn 634
basic_streambuf<char> 625
basic_streambuf<wchar_t> 625
basic_string 389, 407, 655
append 398
assign 399
at 398
basic_string 393
basic_string 393
begin 396
c_str 403
capacity 397
clear 397
compare 406
copy 402
data 403
empty 397
end 396
erase 401

726

 ISO/IEC ISO/IEC 14882:2003(E)

find 403
find_first_not_of 405
find_first_of 404
find_last_not_of 406
find_last_of 405
getline 410
insert 400
max_size 397
operator!= 408
operator+ 407
operator+= 398
operator< 409
operator<< 410
operator<= 409
operator= 396
operator== 408
operator> 409
operator>= 410
operator>> 410
operator[] 398
rbegin 396
rend 396
replace 401
reserve 397
resize 397
rfind 404
size 396
substr 406
swap 403, 410
basic_stringbuf 607, 656
basic_stringbuf 657
basic_stringbuf 657
overflow 658
pbackfail 658
seekoff 658
seekpos 659
str 657
underflow 658
basic_stringbuf<char> 656
basic_stringbuf<wchar_t> 656
basic_stringstream 607, 662
basic_stringstream 663
basic_stringstream 663
rdbuf 663
str 663
before, type_info 348
begin, basic_string 396
behavior
default 318, 321
implementation-defined 2, 451
locale-specific 2
reentrancy, implementation-defined 331
required 318, 321
undefined 2
unspecified 3

Ben 215
bidirectional_iterator_tag 524
binary
operator, interpretation of 233
operator, overloaded 233
binary_function 367
binary_negate 369
binary_search 563
bind1st 370
bind2nd 371
binder1st 370
binder2nd 370
binding
—see virtual function, dynamic 172
of default argument 142
reference 151

bit-field 163
address of 163
alignment of 163
allocation, implementation defined 163
declaration 163
implementation defined alignment of 163
implementation-defined sign of 163
layout 163
restriction 163
restriction, address of 163
restriction, pointer to 163
type of 163
unnamed 163
zero width of 163

bit-fields, Boolean 163
bitmask type 322–323
<bitset> 509
bitset 509
any 513
bitset 510
bitset 510
count 513
flip 512
none 513
operator!= 513
operator& 514
operator&= 511
operator<< 513–514
operator<<= 511
operator== 513
operator>> 513–514
operator>>= 512
operatorˆ 514
operatorˆ= 511
operator| 514
operator|= 511
operator˜ 512
reset 512
set 512
size 513
test 513
to_string 512
to_ulong 512

bitwise
AND operator 89
exclusive OR operator 89
inclusive OR operator 89
operator 89

block
initialization in 100
scope —see local scope 26
statement {} 95
structure 100

body, function 144
bool
increment 71, 79
type-specifier 110
bool()
basic_istream operator 639
basic_ostream operator 649

bool promotion to int 61
boolalpha 623
Boolean
bit-fields 163
conversion 63
literal 19
type 53
type 54

boolean-literal 19
bound array 137
bound, of array 137

727

ISO/IEC 14882:2003(E)  ISO/IEC

break statement 99
built-in type —see fundamental type 53
byte 79
string, null-terminated 323

C
C
header 327–328, 330, 709
library, Standard 317, 323, 325, 327, 704, 706, 709
linkage to 127
summary, compatibility with ISO 695

call
—see also function call, member function call, overloaded

function call, virtual function call 68
by reference 69
by value 69
operator function 232
pseudo destructor 70
calloc 380, 707
candidate functions 271
capacity
basic_string 397
vector 492

carriage return 17
case label 95, 97
<cassert> 326, 358
cast
ambiguity, declaration versus 132
base class 75
const 76
derived class 75
dynamic 72, 348
integer to pointer 75
lvalue 74–75
operator 78, 84, 132
pointer to function 75
pointer to integer 75
pointer to member 75–76
reference 74, 76
reinterpret 75
reinterpret_cast, lvalue 75
reinterpret_cast, reference 76
static 74
static_cast, lvalue 74
static_cast, reference 74
to incomplete class 84
undefined pointer to function 75

cast-expression 84
casting 70, 84
catch 297
category, locale 418
c-char 16
c-char-sequence 16
<cctype> 411
ceil 602
cerr 609
<cerrno> 328, 358
<cfloat> 341
C + +
headers 325
Standard Library 317, 328, 330–331
Standard library 328
Standard Library exception specifications 332

change
to const object, undefined 109
to string literal, undefined 19
char
implementation-defined sign of 53
literal, implementation-defined value of 18

type 53
type, signed 53
type specifier 110
type, unsigned 53–54

character 317
array initialization 150
container type 317
decimal-point 323
literal 17
literal, type of 17
multibyte 2
set, basic execution 4
set, basic source 10
signed 53
string 19
type 53
type string, null-terminated 318
underscore 327–328

character-literal 16
char_traits
eq 403–406
length 395–396, 398–400, 402, 404–406, 408–409

checking
and default argument, access 180
point of error 263
syntax 263
cin 608
<ciso646> 707
class
type specifier 153
versus struct 153
versus union 153

class 55, 153
abstract 176
access and friend 184
and type 153
base 328, 331
base —see base class 168
cast to incomplete 84
constructor and abstract 177
conversion 192
conversion ambiguity 172
declaration {} 153
declaration, forward 154
definition 153, 156
definition 22
definition {} 153
definition, empty 153
definition example 156
definition name hiding 154
definition, scope of 154
derived 331
derived —see derived class 167
gslice 593
linkage of 42
linkage specification 127
local —see local class 164
member —see also member 155
member access 70
member access operator 70
member declaration 155
member function 157
member initialization 146
member semantics 70
member, static 46
member storage duration 48
member syntax 70
name 132
name as type definition 153
name declaration 21
name, elaborated 111, 154–155

728

 ISO/IEC ISO/IEC 14882:2003(E)

name, point of declaration 155
name, scope of 154
name, typedef 108, 155
nested —see nested class 164
object, assignment to 91
object, const 56
object copy 207
object copy —see also copy constructor 191
object initialization 147, 199–200
object initialization —see also constructor 147
object layout 157, 168
object, member 156
object, operations on 153
object, sizeof 79
objects and constructor, array of 200
objects and new, array of 82
objects initialization, array of 150, 200
pointer to abstract 176
polymorphic 172
scope 27
scope of enumerator 113
sizeof, empty 153
template 510
template partial specializations 254
template specialization 244
unnamed 108

classes
narrow-oriented iostream 318
wide-oriented iostream 319
classic, locale 423
classic_table, ctype<char> 430
class-key 153
class-name 153
class-specifier 153
clear
basic_ios 622
basic_string 397
<climits> 341, 511, 713
<clocale> 323, 463, 707
clog 609
close
basic_filebuf 666, 673
basic_ifstream 670
basic_ofstream 672
messages 458
<cmath> 601
codecvt 431
always_noconv 432
do_always_noconv 434
do_encoding 434
do_in 433
do_length 434
do_max_length 434
do_out 433
do_unshift 433
encoding 432
in 432
length 433
max_length 433
out 432
unshift 432
codecvt_byname 435
collate 445
compare 446
do_compare 446
do_hash 446
do_transform 446
hash 446
transform 446
collate_byname 447
combine, locale 422

comma
operator 92
operator, side effects and 92

comment 11
/* */ 12
// 12
compare
basic_string 406
collate 446

comparison
function 317
pointer 88
pointer to function 88
undefined pointer 86, 88
unspecified pointer 88
void* pointer 88

compatibility with ISO C summary 695
compilation, separate 9
compiler control line —see preprocessing directive 307
complete object 5
completely defined object type 156
<complex> 572
complex 573
abs 578
arg 578
complex 575
complex 575
conj 578
cos 578
cosh 578
exp 578
imag 578
log 578
log10 579
norm 578
operator!= 577
operator* 577
operator*= 576
operator+ 576
operator+= 575–576
operator- 576
operator-= 575–576
operator/= 576
operator<< 577
operator== 577
operator>> 577
polar 578
pow 579
real 578
sin 579
sinh 579
sqrt 579
tan 579
tanh 579

component 318
compound
statement 95
type 55

compound-statement 95
concatenation
string 19
undefined string literal 19

condition 96
conditional
expression operator 90
inclusion 308

conditional-expression, throw-expression in 90
conditions, rules for 96
conj, complex 578
consistency
example, linkage 105

729

ISO/IEC 14882:2003(E)  ISO/IEC

linkage 105
linkage specification 128
type declaration 43
*const example 135
const 55
array 56
class object 56
constructor and 160, 189
destructor and 160, 195
example 135
initialization 109, 147
linkage of 41, 105
member function 160
object, undefined change to 109
overloading and 214
reference 151
type 108

const
cast 76
member initialization 202

constant 15, 66
enumeration 112
expression 92
expression, arithmetic 92
expression, pointer to member 78
initializer 156
null pointer 62–63
pointer declaration 135
pointer example 135

constant-expression 92
constant-initializer 156
const_mem_fun1_ref_t 373
const_mem_fun1_t 373
const_mem_fun_ref_t 373
const_mem_fun_t 373
constructor 189
address of 190
and abstract class 177
and array order of execution 199
and const 160, 189
and initialization 199–200
and initialization example 200
and member function 190
and new 82
and new, unspecified 83
and return 100
and static objects order of execution 201
and virtual function call 205
and volatile 160, 189
array of class objects and 200
call, explicit 190
conversion by 193
conversion by —see also user-defined conversion 192
copy 190–191, 207, 324
default —see default constructor 82
definition 144
elision, copy 211
example 190
exception handling 300
for temporary 191
inheritance of 189
non-trivial 189
order of execution, base class 190
order of execution, member 190
restriction 189–190
restriction, copy 209
type of 190
union 162
unspecified argument to 83

container
requirements 465

type, character 317
context, nondeduced 289
continue
in for statement 99
statement 99–100

control line —see preprocessing directive 307
convention 321
conversion
ambiguity, class 172
and name hiding, user-defined 193
argument 139
array pointer 60
array-to-pointer 60
Boolean 63
by assignment 91
by constructor 193
class 192
derived-to-base 226
explicit type —see casting 70
floating point 62
floating-integral 62
function 194
function —see also user-defined conversion 192
function-to-pointer 60
implementation defined pointer integer 75
implementation-defined floating point 62
implicit 59, 192
implicit user-defined 192
inheritance of user-defined 195
integer 62
lvalue-to-rvalue 59, 698
operator —see conversion function 194
overload resolution and 223
overload resolution and pointer 232
pointer 62
pointer to function 60
pointer to member 63
pointer to member void* 63
rank 227
return type 100
reverse_iterator 527
sequence, ambiguous 226
sequence, implicit 225
sequence, standard 59
signed unsigned integer 62
standard 59
to enumeration type 75
to enumeration type, static_cast, 75
to rvalue, lvalue 59
to rvalue, lvalue 698
type of 194
undefined floating point 62
user-defined 192–194
virtual user-defined 195

conversion-function-id 194
conversions
qualification 60
usual arithmetic 66
copy 555
basic_string 402

copy
assignment operator 209
assignment operator 207
assignment operator, implicitly-declared 209
assignment operator restriction 210
class object 207
constructor 190–191, 207, 324
constructor elision 211
constructor, implicitly-declared 208
constructor restriction 209
initialization 146

730

 ISO/IEC ISO/IEC 14882:2003(E)

copy_backward 555
CopyConstructible requirements 360
copyfmt, basic_ios 622
cos 590, 602
complex 578
cosh 590, 602
complex 578
count 553
bitset 513
count_if 553
cout 608
__cplusplus 315
<csetjmp> 328, 352
cshift, valarray 587
<csignal> 353
<cstdarg> 139, 328, 352
<cstddef> 79, 86, 333, 706–707
<cstdio> 608–609, 664, 666–667, 673, 707
<cstdlib> 44, 46, 326, 342, 353, 380, 412, 569, 601,

706–707, 709
c_str, basic_string 403
<cstring> 323, 381, 412, 707, 713, 718
<ctime> 352, 381, 416, 707
ctor-initializer 201
ctype 424
do_is 426
do_narrow 427
do_scan_is 426
do_scan_not 426
do_tolower 426
do_toupper 426
do_widen 426
is 425
narrow 426
scan_is 425
scan_not 425
tolower 425
toupper 425
widen 426
ctype_byname 427
ctype_byname<char> 431
˜ctype<char>, ctype<char> 429
ctype<char>
˜ctype<char> 429
classic_table 430
ctype<char> 429
ctype<char> 429
is 429
narrow 430
scan_is 429
scan_not 429
table 430
tolower 430
toupper 430
widen 430
<ctype.h> 709
cv-qualified name, address of 78
cv-qualifier 132
cv-qualifier 55
<cwchar> 324, 328, 412, 706–707
<cwctype> 328, 412

D
DAG
multiple inheritance 169
nonvirtual base class 169
virtual base class 169
data, basic_string 403
data

member —see member 155
member, static 160
date_order, time_get 448
deallocation
—see delete 83
function 48, 83, 198
dec 625, 651
decimal literal 16
decimal-literal 15
decimal_point, numpunct 444
decimal-point character 323
declaration 103
declaration 21, 103
:, field 163
{}, class 153
{}, enum 112
access 182
ambiguity, function 146
array 137
as definition 104
asm 126
bit-field 163
class member 155
class name 21
class name, point of 155
consistency, type 43
constant pointer 135
default argument 141
definition versus 21
ellipsis in function 69, 139
enumerator point of 25
example 22, 140
example, function 140
extern 21
extern reference 151
forward 106
forward class 154
function 21, 138
hiding —see name hiding 100
in for, scope of 99
in for statement 99
in switch statement 97
matching, overloaded function 215
member 155
multiple 43
name 21
name, point of 25
overloaded 213
overloaded name and friend 185
parameter 139
parentheses in 132, 135
pointer 135
reference 136
register 105
specifier 104
statement 100
static member 21
storage class 105
type 134
type ambiguity 104
typedef 21
typedef as type 107
versus cast ambiguity 132
versus expression ambiguity 101

declaration-statement 100
declarative region 21, 24
declarator 131
declarator 103, 131
&, reference 135
(), function 138
*, pointer 135

731

ISO/IEC 14882:2003(E)  ISO/IEC

::*, pointer to member 136
[], array 137
example 132
initializer, temporary and 191
meaning of 134
multidimensional array 138

declarator-id 132
decl-specifier 104
decrement
operator 71, 78–79
operator, overloaded 234
default label 95, 97
default
access control 179
argument, access checking and 180
argument and name hiding 143
argument and virtual function 144
argument, binding of 142
argument declaration 141
argument, evaluation of 142–143
argument, example of 141–142
argument, overload resolution and 223
argument, overloaded operator and 233
argument, scope of 143
argument, type checking of 142
array size 138
behavior 318, 321
constructor 189
constructor and initialization 199
constructor and new 82
destructor 195
initialization 145
initializers, overloading and 215
member access, struct 153
member access, union 153

default-initialization 145
#define 311
definition 21, 317
{}, class 153
altermate 328
and initialization 104
class 22
class 153, 156
class name as type 153
constructor 144
declaration as 104
empty class 153
enumerator 22
enumerator point of 112
example 22
example, function 144
example, nested class 164, 188
function 22
function 144
local class 165
member function 157
name hiding, class 154
namespace 114
nested class 164
object 22
of template 239
pure virtual function 176
scope, macro 312
scope of class 154
static member 161
versus declaration 21
virtual function 174

definitions, implementation-generated 22
delete 47, 83, 198
destructor and 83, 196
example 198

example, destructor and 199
example, scope of 199
operator 329, 344, 380
overloading and 48
type of 198
undefined 83
delete[], operator 329, 345
delete
array 83
object 83

deleted object, undefined 48
delete-expression 83
dependent name 267, 270
deprecated features 71, 79
<deque> 474
deque 477
assign 479
erase 480
insert 480
resize 480

dereferencing —see also indirection 78
derivation —see inheritance 167
derived
class 331
class 167
class cast 75
class example 167
class, most 5
class, overloading and 215
object, most 5

derived-to-base conversion 226
destination type 147
destruction
of auto 99–100
of local static 101
of local variable 99–100
of temporary 191
of temporary, order of 191

destructor 195, 324
and array order of execution 196
and const 160, 195
and delete 83, 196
and delete example 199
and exception, explicit 198
and exit from scope 99
and fundamental type 197
and member function 196
and placement of object 197
and virtual function call 205
and volatile 160, 195
call example, explicit 197
call, explicit 196
call, implicit 196
call, pseudo 70
default 195
exception handling 300
for temporary 191
non-trivial 195
order of execution 196
order of execution, base class 196
order of execution, member 196
program termination and 196
pure virtual 196
restriction 195–196
static object 45
union 162
virtual 196

diagnostic message 1
digit 14
digit-sequence 18
digraph 12

732

 ISO/IEC ISO/IEC 14882:2003(E)

direct
base class 167
binding of reference 151
initialization 146

direct-abstract-declarator 132
direct-declarator 131
directed acyclic graph —see DAG 168
directive
error 314
null 314
pragma 314
preprocessing 307

direct-new-declarator 80
distance 525
distinct string 19
div 602
divides 367
division
by zero, undefined 65, 86
implementation defined 86
operator 85
djacent_difference 601
do statement 97–98
do_always_noconv, codecvt 434
do_close, messages 459
do_compare, collate 446
do_curr_symbol, moneypunct 457
do_date_order, time_get 449
do_decimal_point
moneypunct 456
numpunct 445
do_encoding, codecvt 434
do_falsename, numpunct do_truename 445
do_frac_digits, moneypunct 457
do_get
messages 458–459
money_get 452
num_get 437
do_get_date, time_get 449
do_get_monthname, time_get 449
do_get_time, time_get 449
do_get_weekday, time_get 449
do_get_year, time_get 449
do_grouping
moneypunct 457
numpunct 445
do_hash, collate 446
do_in, codecvt 433
do_is, ctype 426
do_length, codecvt 434
domain_error 356
domain_error 356
domain_error 356
do_max_length, codecvt 434
dominance, virtual base class 171
do_narrow, ctype 427
donarrow 430
do_negative_sign, moneypunct 457
do_neg_format, moneypunct 457
do_open, messages 459
do_out, codecvt 433
do_pos_format, moneypunct 457
do_positive_sign, moneypunct 457
do_put
money_put 454
num_put 440
time_put 451
do_scan_is, ctype 426
do_scan_not, ctype 426
dot operator —see class member access operator 70
do_thousands_sep

moneypunct 456
numpunct 445
do_tolower, ctype 426
do_toupper, ctype 426
do_transform, collate 446
do_truename do_falsename, numpunct 445
double
literal 18
type 54
type specifier 110

double quote 17
do_unshift, codecvt 433
do_widen, ctype 426
dowiden 430
dynamic
binding —see virtual function 172
cast 72, 348
initialization 44
storage duration 47, 80
type 2

E
E suffix 18
eback, basic_streambuf 630
effect, side 6
egptr, basic_streambuf 630
elaborated
class name 111, 154–155
enum name 111
type specifier —see elaborated class name 155

elaborated-type-specifier 111
#elif 308
elimination of temporary 191, 211
elision, copy constructor 211
ellipsis
example 139
in function declaration 69, 139
overload resolution and 223
#else 309
else 96
empty 524
basic_string 397

empty
argument list 139
class definition 153
class sizeof 153
statement 95
encoding, codecvt 432
encoding, multibyte 19
end, basic_string 396
#endif 309
endl 650, 653
end-of-file 514
ends 653
entity 21
enum 55
declaration {} 112
name, elaborated 111
overloading and 214
type of 112–113
type specifier 111

enum name, typedef 108
enumerated type 55, 322
enumeration 112
constant 112
example 113
linkage of 42
type, conversion to 75
type, static_cast, conversion to 75

733

ISO/IEC 14882:2003(E)  ISO/IEC

underlying type 113
enumerator 112
enumerator
class, scope of 113
definition 22
member 113
point of declaration 25
point of definition 112
redefinition 112
restriction 112
value of 112

environment, program 44
eof, basic_ios 623
epptr, basic_streambuf 631
eq, char_traits 403–406
equal 554
istreambuf_iterator 539

equality operator 88
EqualityComparable requirements 359
equality-expression 88
equal_range 563
equal_to 368
equivalence
template type 248
type 107, 153

equivalent
parameter declarations 213
parameter declarations, overloading and 213
erase
basic_string 401
deque 480
list 484
vector 493
<errno.h> 709
#error 314
error
checking, point of 263
directive 314

escape
character —see backslash 17
sequence 17
sequence, undefined 17

escape-sequence 16
evaluation
new, unspecified order of 83
of default argument 142–143
of expression, order of 7
order of argument 70
unspecified order of 45, 65
unspecified order of argument 70
unspecified order of function call 70

example
*const 135
array 138
class definition 156
const 135
constant pointer 135
constructor 190
constructor and initialization 200
declaration 22, 140
declarator 132
definition 22
delete 198
derived class 167
destructor and delete 199
ellipsis 139
enumeration 113
explicit destructor call 197
explicit qualification 170
friend 154
friend function 183

function declaration 140
function definition 144
linkage consistency 105
local class 165
member function 159, 183
member name access 183
nested class 164
nested class definition 164, 188
nested class forward declaration 165
nested type name 166
of default argument 141–142
of incomplete type 52
of overloading 213
pointer to member 137
pure virtual function 176
scope of delete 199
scope resolution operator 170
static member 161
subscripting 138
type name 132
typedef 107
unnamed parameter 144
variable parameter list 139
virtual function 173–174
<exception> 349
˜exception, exception 350
exception
˜exception 350
exception 350
exception 350
operator= 350
what 350

exception
allowing an 303
and new 82
arithmetic 65
declaration scope 26
explicit destructor and 198
handler 300, 331
handler, incomplete type in 300
handling 297
handling constructor 300
handling destructor 300
object 299
specifications, C + + Standard Library 332
specifications, implementation-defined 332
specifications, Standard C library 332
throwing 298
types, implementation-defined 332
undefined arithmetic 65

exception-declaration 297
exceptions, basic_ios 623
exception-specification 302
exception::what message, implementation-defined 350
execution character set, basic 4
exit 44–45, 99, 326, 342, 347
exit from scope, destructor and 99
exp 590, 602
complex 578

explanation, subscripting 138
explicit specifier 107
explicit
constructor call 190
destructor and exception 198
destructor call 196
destructor call example 197
instantiation 276
qualification 34
qualification example 170
specialization, template 277
type conversion —see casting 70

734

 ISO/IEC ISO/IEC 14882:2003(E)

explicit-specialization 277
exponent-part 18
export 239
expression 92
expression 65
ambiguity, declaration versus 101
arithmetic constant 92
assignment 91
constant 92
order of evaluation of 7
parenthesized 67
pointer to member constant 78
postfix 68
primary 66
reference 65
statement 95
unary 78

expression-list 68
expression-statement 95
extern 105
"C" 327–328
"C + +" 327–328
declaration 21
linkage of 105
linkage specification 126
reference declaration 151
restriction 105

external linkage 41, 327–328

F
F suffix 18
f suffix 18
facet, locale 420
fail, basic_ios 623
failed, ostreambuf_iterator 541
failure, ios_base::failure 613
falsename, numpunct truename 444
fclose 667
field declaration : 163
file 9
source 9, 326, 328
filebuf 607, 664
implementation-defined 669
fill 557
basic_ios 622
gslice_array 596
indirect_array 599
mask_array 597
slice_array 593
fill_n 557
final overrider 172
find 552
basic_string 403
find_end 552
find_first_not_of, basic_string 405
find_first_of 552
basic_string 404
find_if 552
find_last_not_of, basic_string 406
find_last_of, basic_string 405
fIoctal-digit 15
fixed 625
flags, ios_base 424, 616
flip, bitset 512
float
literal 18
type 54
type specifier 110
<float.h> 709

floating
point conversion 62
point conversion, implementation-defined 62
point conversion, undefined 62
point literal 18
point literal, type of 18
point promotion 61
point type 53
point type 54
point type, implementation-defined 54

floating-integral conversion 62
floating-literal 18
floating-suffix 18
float_round_style 339
floor 602
flush 616, 638, 649, 653
basic_ostream 653
fmtflags
ios 654
ios_base 613
fopen 666
for
scope of declaration in 99
statement 97, 99
statement, continue in 99
statement, declaration in 99
for_each 551
form feed 17
formal argument —see parameter 69
forward
class declaration 154
declaration 106
declaration example, nested class 165
forward_iterator_tag 524
fpos 610, 618
state 618

fractional-constant 18
free 380
free store —see also new, delete 80
freestanding implementation 326
freeze
ostrstream 718
strstream 720
strstreambuf 714
frexp 602
friend
access specifier and 185
class access and 184
declaration, overloaded name and 185
example 154
function, access and 183
function example 183
function, inline 185
function, linkage of 185
function, member function and 183
function, nested class 165
inheritance and 185
local class and 186
member function 185
specifier 108
template and 252
virtual and 174

friend
local class 186
specifier 331
front_inserter 533
front_insert_iterator 532
front_insert_iterator 532
front_insert_iterator 532
operator* 532
operator++ 533

735

ISO/IEC 14882:2003(E)  ISO/IEC

operator= 532
fseek 666
<fstream> 664
fstream 607
full-expression 6
function
—see also friend function, member function, inline

function, virtual function 106
allocation 47, 81
argument —see argument 69
arguments, implementation-defined order of evaluation of

143
body 144
call 69
call evaluation, unspecified order of 70
call operator 68, 232
call operator, overloaded 234
call, recursive 70
call, undefined 75
cast, pointer to 75
cast, undefined pointer to 75
comparison 317
comparison, pointer to 88
conversion 194
conversion, pointer to 60
deallocation 48, 83, 198
declaration 21, 138
declaration ambiguity 146
declaration, ellipsis in 69, 139
declaration example 140
declaration matching, overloaded 215
declarator () 138
definition 144
definition 22
definition example 144
global 328, 330–331
handler 318
linkage specification overloaded 128
modifier 318
name hiding 215
name, overloaded 213
observer 318
operator 232
overloaded —see also overloading 213
parameter —see parameter 69
parameter adjustment 139
plain old 353
pointer to member 85
prototype scope 26
replacement 318
reserved 319
return —see return 100
return type —see return type 140
scope 27
specifier 106
template 282
template overload resolution 293
template partial ordering 260
type 55, 138–139
typedef 140
viable 217
virtual —see virtual function 172
virtual member 328, 331
<functional> 365
function-body 144
function-definition 144
function-like macro 310
functions, candidate 271
function-specifier 106
function-to-pointer conversion 60
function-try-block 297

fundamental
type 53
type conversion —see conversion, user-defined conversion

194
type, destructor and 197

G
gbump, basic_streambuf 630
gcount, basic_istream 641
generate 557
generated destructor —see default destructor 195
generate_n 557
get
auto_ptr 379
basic_istream 641
money_get 452
num_get 437
get_date, time_get 448
getline
basic_istream 643
basic_string 410
getloc
basic_streambuf 629
ios_base 617
get_monthname, time_get 448
get_temporary_buffer 377
get_time, time_get 448
get_weekday, time_get 448
get_year, time_get 449
global, locale 423
global
anonymous union 163
function 328, 330–331
name 27
namespace 328
namespace scope 27
scope 27
good, basic_ios 623
goto
initialization and 100
statement 95, 99–100
gptr, basic_streambuf 630
grammar 675
greater 368
greater
than operator 87
than or equal to operator 87
greater_equal 368
grouping, numpunct 444
gslice
class 593
gslice 594
gslice 594
size 594
start 594
stride 594
gslice_array 594–595
fill 596
gslice_array 595
gslice_array 595
operator%= 595
operator&= 595
operator*= 595
operator+= 595
operator-= 595
operator/= 595
operator<<= 595
operator= 595
operator>>= 595

736

 ISO/IEC ISO/IEC 14882:2003(E)

operatorˆ= 595
operator|= 595

H
handler 297
handler
exception 300, 331
function 318
incomplete type in exception 300

handler-seq 297
hasfacet, locale 423
hash, collate 446
header, C 327–328, 330, 709
header-name 13
headers, C + + 325
hex 625
hex number 18
hexadecimal literal 16
hexadecimal-digit 15
hexadecimal-escape-sequence 17
hexadecimal-literal 15
hex-quad 10
hiding —see name hiding 28
horizontal tab 17
hosted implementation 326

I
id, locale 420
id, qualified 67
identifier 13
identifier 14, 67, 103
_, underscore in 14

identities and overloading, operator 232
id-expression 66
id-expression 67
#if 308, 330
if statement 96–97
#ifdef 309
#ifndef 309
ifstream 607, 664
ignore, basic_istream 644
ill-formed program 2
imag 576
complex 578
imbue
basic_filebuf 669
basic_ios 621
basic_streambuf 631
ios_base 616

immolation, self 279
implementation
defined alignment of bit-field 163
defined bit-field allocation 163
defined division 86
defined modulus 86
defined pointer integer conversion 75
defined pointer subtraction 86
defined right shift 87
defined type of ptrdiff_t 86
freestanding 326
hosted 326
limits 2

implementation-defined 62, 152, 326, 328, 333, 343, 346,
348–351, 617, 660, 668, 707

__STDC__ 315
alignment requirement 52
asm 126
bad_alloc::what 347

bad_cast::what 348
bad_exception::what 351
bad_typeid::what 349
basic_ios::failure argument 622
behavior 2, 451
behavior reentrancy 331
exception specifications 332
exception types 332
exception::what message 350
filebuf 669
floating point conversion 62
floating point type 54
generation of temporary 191
linkage of main() 44
linkage specification 127
object linkage 129
order of evaluation of function arguments 143
parameters to main() 43
sign of bit-field 163
sign of char 53
sizeof integral type 53
sizeof type 53
streambuf 605
streamoff 611, 710
streampos 710
string literal 19
type of integer literal 16
type_info::name 348
types 322
value of char literal 18
value of multicharacter literal 17
volatile 110
wchar_t 54

implementation-dependent 639, 649
implementation-generated definitions 22
implementation-specifiedsmanip 653
implicit
conversion 59, 192
conversion sequence 225
conversion sequences implied object parameter 217
destructor call 196
instantiation, template 273
object argument 217
user-defined conversion 192

implicitly-declared
copy assignment operator 209
copy constructor 208
default constructor 189
default constructor —see default constructor 189

implied
object parameter 217
object parameter, implicit conversion sequences 217
in, codecvt 432
in_avail, basic_streambuf 629
#include 309, 326
includes 565
inclusion
conditional 308
source file 309

incomplete
class, cast to 84
type 22–23, 26, 52, 59, 68–70, 72–73, 78–80, 83, 86, 91,

167
type, example of 52
type in exception handler 300

increment
bool 71, 79
operator 71, 78–79
operator, overloaded 234

indeterminate uninitialized variable 145
indirect base class 167

737

ISO/IEC 14882:2003(E)  ISO/IEC

indirect_array 597
fill 599
indirect_array 598
indirect_array 598
operator%= 598
operator&= 598
operator*= 598
operator+= 598
operator-= 598
operator/= 598
operator<<= 598
operator= 598
operator>>= 598
operatorˆ= 598
operator|= 598

indirection 78
operator 78

inequality operator 88
inheritance 167
—see also multiple inheritance 167
and friend 185
of constructor 189
of overloaded operator 232
of user-defined conversion 195
˜Init, ios_base::Init 616
init, basic_ios 638, 648
Init, ios_base::Init 615
init-declarator 131
init-declarator-list 131
initialization 145
and goto 100
and new 82
array 147
array of class objects 150, 200
auto 101
auto object 145
automatic 100–101
base class 201
character array 150
class member 146
class object 147, 199–200
class object —see also constructor 147
const 109, 147
const member 202
constructor and 199–200
copy 146
default 145
default constructor and 199
definition and 104
direct 146
dynamic 44
example, constructor and 200
in block 100
jump past 97, 100
local static 101
member 201
member object 201
order of 44, 168
order of base class 202
order of member 202
order of virtual base class 202
overloaded assignment and 200
parameter 69
reference 136, 150
reference member 202
run-time 44
static member 161
static object 44, 145
struct 147
union 150, 162
virtual base class 202, 209

initializer 145
initializer 145
base class 144
constant 156
list {} 147
member 144
scope of member 203
temporary and declarator 191

initializer-clause 145
initializer-list 145
injected-class-name 153
inline
linkage of 41
specifier 106

inline 330
friend function 185
function 106
member function 157
inner_product 600
inplace_merge 564
input_iterator_tag 524
insert
basic_string 400
deque 480
list 484
vector 492
inserter 534
insert_iterator 533
insert_iterator 533
insert_iterator 533
operator* 534
operator++ 534
operator= 533

instantiation
explicit 276
point of 270
template implicit 273
unit 10
int
type 53
type specifier 110
type, unsigned 54

int, bool promotion to 61
integer
cast, pointer to 75
conversion 62
conversion, implementation defined pointer 75
conversion, signed unsigned 62
literal 16
literal, base of 16
literal, implementation-defined type of 16
literal, type of 16
to pointer cast 75
type 54

integer-literal 15
integer-suffix 16
integral
promotion 61
type 53
type 54
type, implementation-defined sizeof 53
value, undefined unrepresentable 62
internal 624
internal linkage 41
interpretation
of binary operator 233
of unary operator 233
invalid_argument 356, 510–511
invalid_argument 356
invalid_argument 356

invocation, macro 311

738

 ISO/IEC ISO/IEC 14882:2003(E)

<iomanip> 635
<ios> 610
ios 607, 610
fmtflags 654
ios_base 611
flags 424, 616
fmtflags 613
getloc 617
imbue 616
ios_base 618
ios_base 618
iostate 614
iword 617
openmode 615
precision 424, 616
pword 617
register_callback 618
seekdir 615
setf 616
sync_with_stdio 617
unsetf 616
width 424, 616
xalloc 617
ios_base::failure 613
failure 613
what 613
ios_base::Init 615
˜Init 616
Init 615
<iosfwd> 605
iostate, ios_base 614
<iostream> 608
iostream
classes, narrow-oriented 318
classes, wide-oriented 319
is
ctype 425
ctype<char> 429
isalnum 423
isalpha 423
iscntrl 423
isdigit 423
isgraph 423
islower 423
ISO C summary, compatibility with 695
<iso646.h> 707, 709
is_open
basic_filebuf 666, 673
basic_ifstream 670
basic_ofstream 672
isprint 423
ispunct 423
isspace 423
<istream> 635
istream 607, 635
operator>> 639
istreambuf_iterator 537
equal 539
istreambuf_iterator 539
istreambuf_iterator 539
operator!= 539
operator* 539
operator++ 539
operator== 539
proxy 538
istream_iterator 534
operator== 536
istringstream 607, 656
istrstream 717
istrstream 717
istrstream 717

rdbuf 717
str 717
isupper 423
isxdigit 423
iteration statement 97
iteration-statement 97, 99–100
scope 98
<iterator> 520
iterator requirements 515
iter_swap 555
iword, ios_base 617

J
Jessie 193
jump
past initialization 97, 100
statement 99

jump-statement 99

K
keyword 675
list 14

L
L
prefix 17, 19
suffix 16, 18
l suffix 16, 18
label 100
case 95, 97
default 95, 97
name space 95
scope of 27, 95
specifier : 95

labeled statement 95
lattice —see DAG, sub-object 168
layout
access specifier and object 181
bit-field 163
class object 157, 168

layout-compatible type 53
left 624
left
shift operator 87
shift, undefined 87
length
char_traits 395–396, 398–400, 402, 404–406, 408–409
codecvt 433
valarray 587

length of name 14
length_error 356, 390
length_error 356
length_error 356
less 368
less
than operator 87
than or equal to operator 87
less_equal 368
LessThanComparable requirements 359
lexical conventions 9
lexicographical_compare 568
Library, C + + Standard 317, 328, 330–331
library
C + + Standard 328
Standard C 317, 323, 325, 327, 704, 706, 709
<limits> 334

739

ISO/IEC 14882:2003(E)  ISO/IEC

limits, implementation 2
<limits.h> 709
#line 314
linkage 21, 41
consistency 105
consistency example 105
external 41, 327–328
implementation-defined object 129
internal 41
of class 42
of const 41, 105
of enumeration 42
of extern 105
of friend function 185
of inline 41
of main(), implementation-defined 44
of static 41, 105
of template name 239
specification 126
specification class 127
specification consistency 128
specification, extern 126
specification, implementation-defined 127
specification object 129
specification overloaded function 128
to C 127

linkage-specification 126
<list> 475
list 481
assign 483
erase 484
insert 484
merge 485
remove 485
resize 484
reverse 486
sort 486
splice 484
unique 485

list
{}, initializer 147
keyword 14
operator 15, 232

literal 15
literal 15, 66
base of integer 16
character 17
decimal 16
double 18
float 18
floating point 18
hexadecimal 16
implementation-defined type of integer 16
implementation-defined value of char 18
implementation-defined value of multicharacter 17
integer 16
long 16
long double 18
multicharacter 17
narrow-character 17
octal 16
type of character 17
type of floating point 18
type of integer 16
unsigned 16

local
class and friend 186
class definition 165
class example 165
class, friend 186
class member function 165

class, member function in 158
class nested class 166
class restriction 166
class restriction, static member 162
class, scope of 165
object, static 46
object storage duration 46
scope 26
static, destruction of 101
static initialization 101
variable, destruction of 99–100
<locale> 415
˜locale(), locale 422
locale
˜locale() 422
category 418
classic 423
combine 422
facet 420
global 423
hasfacet 423
id 420
locale() 421
name 422
operator!= 422
operator() 422
operator== 422
usefacet 423
locale(), locale 421
<locale.h> 709
locale-specific behavior 2
log 590, 602
complex 578
log10 590, 602
complex 579

logical
AND operator 89
AND operator, side effects and 89
negation operator 78–79
OR operator 90
OR operator, side effects and 90
logical_and 369
logical_not 369
logical_or 369
logic_error 355
logic_error 355
logic_error 355
long
double literal 18
double type 54
literal 16
type 53
type specifier 110
type, unsigned 54
typedef and 104
longjmp 353
long-suffix 16
lookup
argument-dependent 32
member name 169
name 21, 29
template name 261
lower_bound 562
lowercase 323
lvalue 56, 698
assignment and 91
cast 74–75
cast, reinterpret_cast, 75
cast, static_cast, 74
conversion to rvalue 59
conversion to rvalue 698

740

 ISO/IEC ISO/IEC 14882:2003(E)

modifiable 56
lvalue-to-rvalue conversion 59, 698

M
macro
definition scope 312
function-like 310
invocation 311
masking 330
name 310
name, predefined 315
object-like 310
parameters 311
preprocessor 307
replacement 310
main() 43
implementation-defined linkage of 44
implementation-defined parameters to 43
parameters to 44
return from 44–45
make_heap 567
make_pair 365
malloc 380, 707
<map> 495
map 497
operator< 499
operator== 499
operator[] 500
mask_array 596
fill 597
mask_array 596
mask_array 596
operator%= 597
operator&= 597
operator*= 597
operator+= 597
operator-= 597
operator/= 597
operator<<= 597
operator= 596
operator>>= 597
operatorˆ= 597
operator|= 597

masking macro 330
<math.h> 709
max 568
valarray 587
max_element 568
max_length, codecvt 433
max_size, basic_string 397
meaning of declarator 134
member
—see also base class member 155
access operator, overloaded 234
access ambiguity 169
access, base class 167
access, class 70
access, struct default 153
access, union default 153
array 156
cast, pointer to 75–76
class object 156
constructor order of execution 190
declaration 155
declaration, class 155
declaration, static 21
definition, static 161
destructor order of execution 196
enumerator 113

example, static 161
function and access control 189
function and friend function 183
function call, undefined 158
function, class 157
function, const 160
function, constructor and 190
function definition 157
function, destructor and 196
function example 159, 183
function, friend 185
function in local class 158
function, inline 157
function, local class 165
function, nested class 188
function, overload resolution and 217
function, static 160–161
function template 249
function, union 162
function, virtual 328, 331
function, volatile 160
initialization 201
initialization, const 202
initialization, order of 202
initialization, reference 202
initialization, static 161
initializer 144
initializer, scope of 203
local class restriction, static 162
name access 179
name access example 183
name lookup 169
name, overloaded 156
object initialization 201
pointer to —see pointer to member 55
pointer value, null 63
static 160
static class 46
storage duration, class 48
template and static 250
type of static 78
use, static 160

member-declaration 155
member-declarator 155
member-specification 155
memchr 413
mem_fun 372–373
mem_fun1_ref_t 372
mem_fun1_t 372
mem_fun_ref 372–373
mem_fun_ref_t 372
mem_fun_t 372
mem-initializer 201
mem-initializer-id 201
<memory> 374
memory
management —see also new, delete 80
model 4
merge 564
list 485

message, diagnostic 1
messages 458
close 458
do_close 459
do_get 458–459
do_open 459
open 458
messages_byname 459
min 568
valarray 587
min_element 568

741

ISO/IEC 14882:2003(E)  ISO/IEC

minus 367
mismatch 553
missing storage class specifier 105
mixed pointer and pointer to member type, multi-level 61
mod 602
modf 602
modifiable lvalue 56
modifier function 318
modulus 368
modulus
implementation defined 86
operator 85
zero, undefined 65
money_get 452
do_get 452
get 452
moneypunct 455
do_curr_symbol 457
do_decimal_point 456
do_frac_digits 457
do_grouping 457
do_neg_format 457
do_negative_sign 457
do_pos_format 457
do_positive_sign 457
do_thousands_sep 456
moneypunct_byname 457
money_put 454
do_put 454
put 454

most
derived class 5
derived object 5

multibyte
character 2
encoding 19
string, null-terminated 324

multicharacter
literal 17
literal, implementation-defined value of 17

multidimensional
array 138
array declarator 138

multi-level
mixed pointer and pointer to member type 61
pointer to member type 61
multimap 500
operator< 503
operator== 503

multiple
declaration 43
inheritance 167–168
inheritance DAG 169
inheritance, virtual and 174

multiplication operator 85
multiplicative operator 85
multiplicative-expression 85
multiset 506
operator< 508
operator== 508
mutable 105

N
name
locale 422
type_info 348

name 14, 21, 67
address of cv-qualified 78
and translation unit 21

class —see class name 153
declaration 21
dependent 267, 270
elaborated enum 111
global 27
hiding 25, 28, 66–67, 100
hiding, class definition 154
hiding, function 215
hiding, overloading versus 215
hiding, user-defined conversion and 193
length of 14
lookup 21, 29
lookup, member 169
lookup, template 261
macro 310
overloaded function 213
overloaded member 156
point of declaration 25
predefined macro 315
qualified 34
reserved 327
resolution, template 261
scope of 24
space, label 95
unqualified 29

namespace 325, 709
definition 114
global 328
scope 27
scope, anonymous union at 163
scope, global 27
unnamed 115

namespaces 114
narrow
basic_ios 621
ctype 426
ctype<char> 430

narrow string literal 19
narrow-character literal 17
narrow-oriented iostream classes 318
NDEBUG 326
negate 368
negation operator, logical 78–79
nested
class definition 164
class definition example 164, 188
class example 164
class forward declaration example 165
class friend function 165
class, local class 166
class member function 188
class, scope of 164
type name 166
type name example 166
type name, scope of 166

nested-name-specifier 67
<new> 329, 343
new 47, 80–81
array 80
array of class objects and 82
constructor and 82
default constructor and 82
exception and 82
initialization and 82
operator 328, 343–344, 346, 380
placement syntax 81
scoping and 80
storage allocation 80
type of 198
unspecified constructor and 83
unspecified order of evaluation 83

742

 ISO/IEC ISO/IEC 14882:2003(E)

new[], operator 328, 345–346
new-declarator 80
new-expression 80
new_handler 48, 347
new-initializer 80
new-line 17
new-placement 80
new-type-id 80
next_permutation 569
noboolalpha 623
nondeduced context 289
nondigit 13
none, bitset 513
non-trivial
constructor 189
destructor 195

nonvirtual base class DAG 169
nonzero-digit 15
norm, complex 578
noshowbase 623
noshowpoint 624
noshowpos 624
noskipws 624
not1 369
not2 370
notation, syntax 4
not_equal_to 368
nounitbuf 624
nouppercase 624
NTBS 323–324, 666, 717–718
static 323

NTCTS 318
nth_element 562
NTMBS 324
static 324

NTWCS 324
static 324
NULL 333
null
character 0 19
directive 314
member pointer value 63
pointer constant 62–63
pointer value 62
reference 136
statement 95

null-terminated
byte string 323
character type string 318
multibyte string 324
wide-character string 324

number
hex 18
octal 18
<numeric> 599
numeric type requirements 571
numeric_limits 54, 334
num_get 435
do_get 437
get 437
numpunct 443
decimal_point 444
do_decimal_point 445
do_grouping 445
do_thousands_sep 445
do_truename do_falsename 445
grouping 444
thousands_sep 444
truename falsename 444
numpunct_byname 445
num_put 439

do_put 440
put 440

O
object 4, 21, 56
class —see also class object 153
complete 5
definition 22
delete 83
destructor and placement of 197
destructor static 45
initialization, auto 145
initialization, static 44, 145
layout, access specifier and 181
lifetime 49
linkage, implementation-defined 129
linkage specification 129
representation 52
state 318
static local 46
storage duration, local 46
temporary —see temporary 191
type 4
type 53
type, completely defined 156
undefined deleted 48
unnamed 190

object-expression 65
object-like macro 310
observer function 318
oct 625
octal
literal 16
number 18

octal-escape-sequence 17
octal-literal 15
of
overloading, example 213
reference, direct binding 151
offsetof 333, 707
ofstream 607, 664
old function, plain 353
one-definition rule 22
one’s complement operator 78–79
open
basic_filebuf 666, 673
basic_ifstream 670
basic_ofstream 672
messages 458
openmode, ios_base 615
operations on class object 153
operator
bool, basic_ios 622
bool(), basic_istream 639
bool(), basic_ostream 649
delete 329, 344, 380
delete 81, 83, 198
delete —see delete 83
delete[] 329, 345
delete[] 81, 83, 198
function 232
new 328, 343–344, 346, 380
new 81
new[] 328, 345–346
new[] 81
overloaded 232
operator!
basic_ios 622
valarray 586

743

ISO/IEC 14882:2003(E)  ISO/IEC

operator!= 364
basic_string 408
bitset 513
complex 577
istreambuf_iterator 539
locale 422
reverse_iterator 529
type_info 348
valarray 589
operator%, valarray 588
operator%=
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator&
bitset 514
valarray 588
operator&&, valarray 588–589
operator&=
bitset 511
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator(), locale 422
operator*
auto_ptr 379
back_insert_iterator 531
complex 577
front_insert_iterator 532
insert_iterator 534
istreambuf_iterator 539
ostreambuf_iterator 540
reverse_iterator 527
valarray 588
operator*=
complex 576
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator+
basic_string 407
complex 576
reverse_iterator 528, 530
valarray 586, 588
operator++
back_insert_iterator 531
front_insert_iterator 533
insert_iterator 534
istreambuf_iterator 539
ostreambuf_iterator 540
reverse_iterator 528
operator+=
basic_string 398
complex 575–576
gslice_array 595
indirect_array 598
mask_array 597
reverse_iterator 528
slice_array 592
valarray 586
operator-
complex 576
reverse_iterator 529–530
valarray 586, 588
operator--, reverse_iterator 528

operator-=
complex 575–576
gslice_array 595
indirect_array 598
mask_array 597
reverse_iterator 529
slice_array 592
valarray 586
operator->
auto_ptr 379
reverse_iterator 528
operator/, valarray 588
operator/=
complex 576
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator<
basic_string 409
map 499
multimap 503
multiset 508
pair 365
queue 487
reverse_iterator 529
set 505
valarray 589
vector 491
vector<bool> 495
operator<< 625
basic_ostream 650
basic_string 410
bitset 513–514
complex 577
valarray 588
operator<<=
bitset 511
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator<= 364
basic_string 409
reverse_iterator 530
valarray 589
operator=
auto_ptr 379
back_insert_iterator 531
bad_alloc 346
bad_cast 348
bad_exception 351
bad_typeid 349
basic_string 396
exception 350
front_insert_iterator 532
gslice_array 595
indirect_array 598
insert_iterator 533
mask_array 596
ostreambuf_iterator 540
slice_array 592
type_info 348
valarray 584–585
operator==
basic_string 408
bitset 513
complex 577
istream_iterator 536

744

 ISO/IEC ISO/IEC 14882:2003(E)

istreambuf_iterator 539
locale 422
map 499
multimap 503
multiset 508
pair 364
queue 487
reverse_iterator 529
set 505
type_info 347
valarray 589
vector 491
vector<bool> 495
operator> 364
basic_string 409
reverse_iterator 529
valarray 589
operator>= 364
basic_string 410
reverse_iterator 530
valarray 589
operator>>
basic_istream 640
basic_string 410
bitset 513–514
complex 577
istream 639
valarray 588
operator>>=
bitset 512
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator[]
basic_string 398
map 500
reverse_iterator 529
valarray 585
operatorˆ
bitset 514
valarray 588
operatorˆ=
bitset 511
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator|
bitset 514
valarray 588
operator|=
bitset 511
gslice_array 595
indirect_array 598
mask_array 597
slice_array 592
valarray 586
operator||, valarray 588–589
operator˜
bitset 512
valarray 586

operator 232
operator
—see conversion function, conversion 194
%= 91
&= 91
*= 91
+= 79, 91

-= 91
/= 91
<<= 91
>>= 91
ˆ= 91
|= 91
additive 86
address-of 78
assignment 91, 324
bitwise 89
bitwise AND 89
bitwise exclusive OR 89
bitwise inclusive OR 89
cast 78, 84, 132
class member access 70
comma 92
conditional expression 90
copy assignment 207
decrement 71, 78–79
division 85
equality 88
example, scope resolution 170
function call 68, 232
function call 232
greater than 87
greater than or equal to 87
identities and overloading 232
increment 71, 78–79
indirection 78
inequality 88
left shift —see left shift operator 87
less than 87
less than or equal to 87
list 15, 232
logical AND 89
logical negation 78–79
logical OR 90
modulus 85
multiplication 85
multiplicative 85
new —see new 80
one’s complement 78–79
overloaded 65
overloading —see also overloaded operator 232
overloading restrictions 232
pointer to member 85
precedence of 7
relational 87
right shift; right shift operator 87
scope resolution 66–67, 81, 158, 167, 176
shift —see left shift operator, right shift operator 87
side effects and comma 92
side effects and logical AND 89
side effects and logical OR 90
sizeof 78–79
subscripting 68, 232
unary 78
unary minus 78–79
unary plus 78
use, scope resolution 161

operator-function-id 232
optimization of temporary —see elimination of temporary 191
OR
operator, bitwise exclusive 89
operator, bitwise inclusive 89
operator, logical 90
operator, side effects and logical 90

order
of argument evaluation 70
of argument evaluation, unspecified 70
of base class initialization 202

745

ISO/IEC 14882:2003(E)  ISO/IEC

of destruction of temporary 191
of evaluation new, unspecified 83
of evaluation of expression 7
of evaluation of function arguments, implementation-defined

143
of evaluation, unspecified 45, 65
of execution, base class constructor 190
of execution, base class destructor 196
of execution, constructor and array 199
of execution, constructor and static objects 201
of execution, destructor 196
of execution, destructor and array 196
of execution, member constructor 190
of execution, member destructor 196
of function call evaluation, unspecified 70
of initialization 44, 168
of member initialization 202
of virtual base class initialization 202

ordering, function template partial 260
<ostream> 635
ostream 607, 635
ostreambuf_iterator 540
failed 541
operator* 540
operator++ 540
operator= 540
ostreambuf_iterator 540
ostreambuf_iterator 540
ostream_iterator 536
ostringstream 607, 656
ostrstream 718
:pcount 719
freeze 718
ostrstream 718
ostrstream 718
rdbuf 718
str 718
out, codecvt 432
out_of_range 357, 390, 510–513
out_of_range 357
out_of_range 357
output_iterator_tag 524
overflow
basic_filebuf 668
basic_streambuf 634
basic_stringbuf 658
strstreambuf 714

overflow 65
undefined 65
overflow_error 357–358, 510, 512
overflow_error 358
overflow_error 358

overload
resolution 216
resolution and conversion 223
resolution and default argument 223
resolution and ellipsis 223
resolution and member function 217
resolution and pointer conversion 232
resolution contexts 216
resolution, function template 293
resolution, template 260

overloaded
assignment and initialization 200
assignment operator 233
binary operator 233
declaration 213
decrement operator 234
function, address of 78, 230
function ambiguity detection 216
function call operator 234

function call resolution —see also argument matching,
overload resolution 216

function declaration matching 215
function, linkage specification 128
function name 213
increment operator 234
member access operator 234
member name 156
name and friend declaration 185
operator 232
operator 65
operator 232
operator and default argument 233
operator, inheritance of 232
subscripting operator 234
unary operator 233

overloading 139, 154, 213, 259
and access 216
and const 214
and default initializers 215
and delete 48
and derived class 215
and enum 214
and equivalent parameter declarations 213
and pointer versus array 214
and return type 213
and scope 215
and static 213
and typedef 214
and volatile 214
operator identities and 232
postfix ++ and -- 234
prefix ++ and -- 234
resolution and access control 170
restriction 232
subsequence rule 229
versus name hiding 215

overrider, final 172

P
pair 364
operator< 365
operator== 364

parameter type list 139
parameter 2
adjustment, array 139
adjustment, function 139
declaration 139
example, unnamed 144
initialization 69
list example, variable 139
list, variable 69, 139
reference 136
scope of 26
void 139

parameter-declaration 139
parameterized type —see template 239
parameters
macro 311
to main() 44
to main(), implementation-defined 43

parentheses
and ambiguity 80
in declaration 132, 135

parenthesized expression 67
partial
ordering, function template 260
specializations, class template 254
partial_sort 561

746

 ISO/IEC ISO/IEC 14882:2003(E)

partial_sort_copy 562
partial_sum 600
partition 560
pbackfail
basic_filebuf 667
basic_streambuf 633
basic_stringbuf 658
strstreambuf 715
pbase, basic_streambuf 631
pbump, basic_streambuf 631
:pcount, ostrstream 719
pcount
strstream 720
strstreambuf 714
peek, basic_istream 644
period 323
phases, translation 9
placement
of object, destructor and 197
syntax, new 81

plain old function 353
plus 367
pm-expression 85
POD
class type 82
type 53
type 82

POD-struct 153
POF 353
point
of declaration class name 155
of declaration, enumerator 25
of declaration name 25
of definition, enumerator 112
of error checking 263
of instantiation 270
promotion, floating 61
type, floating 53

pointer
—see also void* 55
and pointer to member type, multi-level mixed 61
arithmetic 86
cast, integer to 75
comparison 88
comparison, undefined 86, 88
comparison, unspecified 88
comparison, void* 88
constant, null 62–63
conversion 62
conversion, array 60
conversion, overload resolution and 232
declaration 135
declarator * 135
example, constant 135
integer conversion, implementation defined 75
subtraction, implementation defined 86
terminology 55
to abstract class 176
to bit-field restriction 163
to function cast 75
to function cast, undefined 75
to function comparison 88
to function conversion 60
to integer cast 75
to member 55, 85
to member cast 75–76
to member constant expression 78
to member conversion 63
to member declarator ::* 136
to member example 137
to member function 85

to member operator 85
to member type, multi-level 61
to member type, multi-level mixed pointer and 61
to member void* conversion 63
type 55
value, null 62
value, null member 63
versus array, overloading and 214
zero 62
pointer_to_binary_function 371
pointer_to_unary_function 371
polar, complex 578
polymorphic
class 172
type 172
pop, priority_queue 488
pop_heap 567
postfix
++ and -- 71
++ and --, overloading 234
expression 68

potential scope 24
pow 590, 602
complex 579

pp-number 13
pptr, basic_streambuf 631
#pragma 314
pragma directive 314
precedence of operator 7
precision, ios_base 424, 616
predefined macro name 315
prefix
++ and -- 79
++ and --, overloading 234
L 17, 19

preprocessing 307
directive 307

preprocessing-op-or-punc 15
preprocessing-token 11
preprocessor, macro 307
prev_permutation 569
primary
expression 66
template 254
priority_queue 487
pop 488
priority_queue 488
priority_queue 488
push 488
private 179
base class 181

program 41
environment 44
ill-formed 2
start 43–44
startup 327, 329
termination 44–46
termination and destructor 196
well-formed 3

promotion
floating point 61
integral 61
to int, bool 61
protected 179
protection 331
—see access control 179
proxy, istreambuf_iterator 538
pseudo destructor call 70
pseudo-destructor-name 68
pseudo-destructor-name 70
ptrdiff_t 86

747

ISO/IEC 14882:2003(E)  ISO/IEC

implementation defined type of 86
ptr_fun 371
ptr-operator 131
pubimbue, basic_streambuf 629
public 179
base class 181
pubseekoff, basic_streambuf 629
pubseekpos, basic_streambuf 629
pubsetbuf, basic_streambuf 629
pubsync, basic_streambuf 629
punctuators 15
pure
specifier 155
virtual destructor 196
virtual function 176
virtual function call, undefined 177
virtual function definition 176
virtual function example 176

pure-specifier 155
push, priority_queue 488
push_heap 567
put
basic_ostream 652
money_put 454
num_put 440
time_put 451
putback, basic_istream 644
pword, ios_base 617

Q
qualification
conversions 60
explicit 34

qualified
id 67
name 34

qualified-id 67
question mark 17
<queue> 475
queue 486
operator< 487
operator== 487

quote
double 17
single 17

R
random_access_iterator_tag 524
random_shuffle 559
range_error 357
range_error 357
range_error 357

rank, conversion 227
rbegin, basic_string 396
rdbuf
basic_filebuf 673
basic_ifstream 670
basic_ios 621
basic_istringstream 661
basic_ofstream 672
basic_ostringstream 662
basic_stringstream 663
istrstream 717
ostrstream 718
strstream 720
rdstate, basic_ios 622
read, basic_istream 644
readsome, basic_istream 644

real 576
complex 578
realloc 380
recursive function call 70
redefinition
enumerator 112
typedef 107

reentrancy 331
implementation-defined behavior 331

reference 55
and argument passing 151
and return 151
argument 69
assignment 151
assignment to 91
binding 151
call by 69
cast 74, 76
cast, reinterpret_cast, 76
cast, static_cast, 74
const 151
declaration 136
declaration, extern 151
declarator & 135
direct binding of 151
expression 65
initialization 136, 150
member initialization 202
null 136
parameter 136
restriction 136
sizeof 79

reference-compatible 151
reference-related 151
region, declarative 21, 24
register 105
declaration 105
restriction 105
register_callback, ios_base 618
reinterpret cast 75
reinterpret_cast
lvalue cast 75
reference cast 76

relational operator 87
relational-expression 87
release, auto_ptr 380
rel_ops 363
remainder operator —see modulus operator 85
remove 557
list 485
remove_copy 557
remove_copy_if 557
remove_if 557
rend, basic_string 396
replace 556
basic_string 401
replace_copy 556
replace_copy_if 556
replace_if 556
replacement
function 318
macro 310

repositional stream 319
representation
object 52
value 52

required behavior 318, 321
requirements 320
Allocator 360
Assignable 465
container 465

748

 ISO/IEC ISO/IEC 14882:2003(E)

CopyConstructible 360
EqualityComparable 359
iterator 515
LessThanComparable 359
numeric type 571

reraise 299
rescanning and replacement 312
reserve
basic_string 397
vector 492

reserved
function 319
identifier 14
name 327
word —see keyword 14
reset, bitset 512
resetiosflags 653
resize
basic_string 397
deque 480
list 484
valarray 588
vector 492

resolution
and conversion, overload 223
and default argument, overload 223
and ellipsis, overload 223
and member function, overload 217
and pointer conversion, overload 232
argument matching —see overload 216
function template overload 293
overload 216
overloaded function call resolution —see also argument

matching, overload 216
overloading —see overload resolution 216
resolution overloading —see overload 216
scoping ambiguity 170
template name 261
template overload 260

restriction 330–331
address of bit-field 163
anonymous union 163
auto 105
bit-field 163
constructor 189–190
copy assignment operator 210
copy constructor 209
destructor 195–196
enumerator 112
extern 105
local class 166
overloading 232
pointer to bit-field 163
reference 136
register 105
static 105
static member local class 162
union 162, 190

restrictions, operator overloading 232
rethrow 299
return 99–100
constructor and 100
from main() 44–45
reference and 151
statement —see also return 99

return
type 140
type conversion 100
type, overloading and 213
reverse 558
list 486

reverse_copy 558
reverse_iterator 526

conversion 527
operator!= 529
operator* 527
operator+ 528, 530
operator++ 528
operator+= 528
operator- 529–530
operator-- 528
operator-= 529
operator-> 528
operator< 529
operator<= 530
operator== 529
operator> 529
operator>= 530
operator[] 529
reverse_iterator 527
reverse_iterator 527
rfind, basic_string 404
right 625
right
shift, implementation defined 87
shift operator 87
rotate 559
rotate_copy 559
rounding 62
rule
as-if 5
one-definition 22

rules
for conditions 96
summary, scope 29

run-time initialization 44
runtime_error 357
runtime_error 357
runtime_error 357

rvalue 56
lvalue conversion to 59
lvalue conversion to 698

S
sbumpc, basic_streambuf 629
scalar type 53
scan_is
ctype 425
ctype<char> 429
scan_not
ctype 425
ctype<char> 429

s-char 19
s-char-sequence 19
scientific 625
scope 21, 24
anonymous union at namespace 163
class 27
destructor and exit from 99
exception declaration 26
function 27
function prototype 26
global 27
global namespace 27
iteration-statement 98
local 26
macro definition 312
namespace 27
of class definition 154
of class name 154

749

ISO/IEC 14882:2003(E)  ISO/IEC

of declaration in for 99
of default argument 143
of delete example 199
of enumerator class 113
of label 27, 95
of local class 165
of member initializer 203
of name 24
of nested class 164
of nested type name 166
of parameter 26
overloading and 215
potential 24
resolution operator 66–67, 81, 158, 167, 176
resolution operator :: 34
resolution operator example 170
resolution operator use 161
rules summary 29
selection-statement 96

scoping
ambiguity resolution 170
and new 80
search 554
seekdir, ios_base 615
seekg, basic_istream 645
seekoff
basic_filebuf 668
basic_streambuf 631
basic_stringbuf 658
strstreambuf 715
seekp, basic_ostream 649
seekpos
basic_filebuf 669
basic_streambuf 631
basic_stringbuf 659
strstreambuf 716

selection statement 96
selection-statement 96

scope 96
self immolation 279
semantics, class member 70
˜sentry
basic_istream 639
basic_ostream 649
sentry
basic_istream 638
basic_ostream 648

separate
compilation 9
translation 9

sequence
ambiguous conversion 226
implicit conversion 225
point 6, 65
standard conversion 59
statement 95

sequencing operator —see comma operator 92
<set> 496
set 503
bitset 512
operator< 505
operator== 505

set, basic source character 10
setbase 654
setbuf
basic_filebuf 668
basic_streambuf 631
streambuf 717
strstreambuf 717
set_difference 566
setf, ios_base 616

setfill 654
setg, basic_streambuf 630
set_intersection 565
setiosflags 654
setjmp 328
<setjmp.h> 709
setlocale 323
set_new_handler 329, 347
setp, basic_streambuf 631
setprecision 654
setstate, basic_ios 622
set_symmetric_difference 566
set_terminate 329, 352
set_unexpected 329, 351
set_union 565
setw 655
sgetc, basic_streambuf 629
sgetn, basic_streambuf 630
shift, valarray 587
shift operator —see left shift operator, right shift operator 87
shift-expression 87
short
type 53
type specifier 110
type, unsigned 54
typedef and 104
showbase 623
showmanyc
basic_filebuf 667
basic_streambuf 632, 667
showpoint 623
showpos 624
side
effect 6
effects 65
effects and comma operator 92
effects and logical AND operator 89
effects and logical OR operator 90

sign 18
sign
of bit-field, implementation-defined 163
of char, implementation-defined 53
<signal.h> 709
signature 2
signed
char type 53
character 53
typedef and 104
unsigned integer conversion 62

simple-escape-sequence 17
simple-type-specifier 110
sin 590, 602
complex 579

single quote 17
sinh 590, 602
complex 579
size
basic_string 396
bitset 513
gslice 594
slice 591
sizeof
array 79
class object 79
empty class 153
integral type, implementation-defined 53
operator 78–79
reference 79
string 19
type, implementation-defined 53
size_t 79

750

 ISO/IEC ISO/IEC 14882:2003(E)

skipws 624
slice 590
size 591
slice 591
slice 591
start 591
stride 591
slice_array 591
fill 593
operator%= 592
operator&= 592
operator*= 592
operator+= 592
operator-= 592
operator/= 592
operator<<= 592
operator= 592
operator>>= 592
operatorˆ= 592
operator|= 592
slice_array 592
slice_array 592
smanip, implementation-specified 653
snextc, basic_streambuf 629
sort 561
list 486
sort_heap 567
source
character set, basic 10
file 9, 326, 328
file inclusion 309

space, white 11
special member function —see also constructor, destructor,

inline function, user-defined conversion, virtual function
189

specialization
class template 244
template 272
template explicit 277

specializations, class template partial 254
specification, template argument 283
specifications
C + + Standard Library exception 332
implementation-defined exception 332
Standard C library exception 332

specifier
access —see access specifier 167
auto 105
declaration 104
explicit 107
friend 108
friend 331
function 106
inline 106
missing storage class 105
static 105
storage class 105
type —see type specifier 108
typedef 107
virtual 107
splice, list 484
sputbackc, basic_streambuf 630
sputc, basic_streambuf 630
sputn, basic_streambuf 630
sqrt 590, 602
complex 579
<sstream> 656
stable_partition 560
stable_sort 561
<stack> 476
stack 488

stack unwinding 300
Standard
C library 317, 323, 325, 327, 704, 706, 709
C library exception specifications 332

standard
conversion 59
conversion sequence 59

Standard
Library, C + + 317, 328, 330–331
library, C + + 328

standard, structure of 4
start
gslice 594
slice 591

start, program 43–44
startup, program 327, 329
state, fpos 618
state, object 318
statement 95
statement 95
—see also return, return 99
{}, block 95
break 99
compound 95
continue 99–100
continue in for 99
declaration 100
declaration in for 99
declaration in switch 97
do 97–98
empty 95
expression 95
for 97, 99
goto 95, 99–100
if 96–97
iteration 97
jump 99
labeled 95
null 95
selection 96
sequence 95
switch 96–97, 99
while 97–98
static 105
class member 46
data member 160
destruction of local 101
initialization, local 101
linkage of 41, 105
local object 46
member 160
member declaration 21
member definition 161
member example 161
member function 160–161
member initialization 161
member local class restriction 162
member, template and 250
member, type of 78
member use 160
object, destructor 45
object initialization 44, 145
objects order of execution, constructor and 201
overloading and 213
restriction 105
specifier 105

static
cast 74
NTBS 323
NTMBS 324
NTWCS 324

751

ISO/IEC 14882:2003(E)  ISO/IEC

type 2
static_cast
conversion to enumeration type 75
lvalue cast 74
reference cast 74
<stdarg.h> 709
__STDC__ 315
implementation-defined 315
<stddef.h> 17, 19, 709
<stdexcept> 355
<stdio.h> 709
<stdlib.h> 709
storage
allocation new 80
class 21
class declaration 105
class specifier 105
class specifier, missing 105
duration 46
duration, auto 46
duration, class member 48
duration, dynamic 47, 80
duration, local object 46
management —see new, delete 80
of array 138
str
basic_istringstream 661
basic_ostringstream 662
basic_stringbuf 657
basic_stringstream 663
istrstream 717
ostrstream 718
strstream 720
strstreambuf 714
strchr 413
stream
arbitrary-positional 317
repositional 319
<streambuf> 625
streambuf 607, 625
implementation-defined 605
setbuf 717
streamoff 610, 618, 710
implementation-defined 611, 710
streampos, implementation-defined 710
streamsize 611
strftime 451
stride
gslice 594
slice 591
<string> 387
string
concatenation 19
distinct 19
literal 19
literal concatenation, undefined 19
literal, implementation-defined 19
literal, narrow 19
literal, type of 19
literal, undefined change to 19
literal, wide 19
null-terminated byte 323
null-terminated character type 318
null-terminated multibyte 324
null-terminated wide-character 324
sizeof 19
terminator 0 19
type of 19
stringbuf 607, 656
<string.h> 709
string-literal 19

stringstream 607
strlen 713, 718
strpbrk 413
strrchr 413
strstr 413
˜strstream, strstream 719
strstream 719
˜strstream 719
freeze 720
pcount 720
rdbuf 720
str 720
strstream 719
strstream 719
˜strstreambuf, strstreambuf 714
strstreambuf 711
˜strstreambuf 714
freeze 714
overflow 714
pbackfail 715
pcount 714
seekoff 715
seekpos 716
setbuf 717
str 714
strstreambuf 713
strstreambuf 713
underflow 715
struct
class versus 153
default member access 153
initialization 147
type specifier 153

structure 153
of standard 4
tag —see class name 153

sub-object 5
lattice —see DAG 168

subscripting
example 138
explanation 138
operator 68, 232
operator, overloaded 234

subsequence rule, overloading 229
substr, basic_string 406
subtraction
implementation defined pointer 86
operator 86

suffix
E 18
F 18
f 18
L 16, 18
l 16, 18
U 16
u 16
sum, valarray 587
summary
compatibility with ISO C 695
scope rules 29
syntax 675
sungetc, basic_streambuf 630
swap 555
basic_string 403, 410
swap_ranges 555
switch
statement 96–97, 99
statement, declaration in 97
sync
basic_filebuf 669
basic_istream 645

752

 ISO/IEC ISO/IEC 14882:2003(E)

basic_streambuf 632
sync_with_stdio, ios_base 617
synonym 117
type name as 107

syntax
checking 263
class member 70
notation 4
summary 675

T
table, ctype<char> 430
tan 590, 602
complex 579
tanh 590, 602
complex 579
tellg, basic_istream 645
tellp, basic_ostream 649
template 239
template 239
and < 242–243
and friend 252
and static member 250
argument 244
argument specification 283
class 510
definition of 239
explicit specialization 277
function 282
implicit instantiation 273
member function 249
name, linkage of 239
name lookup 261
name resolution 261
overload resolution 260
overload resolution, function 293
partial ordering, function 260
partial specializations, class 254
primary 254
specialization 272
specialization, class 244
type equivalence 248

template-argument 242
template-argument-list 242
template-declaration 239
template-id 242
template-name 242
template-parameter 240
template-parameter-list 239
temporary 191
and declarator initializer 191
constructor for 191
destruction of 191
destructor for 191
elimination of 191, 211
implementation-defined generation of 191
order of destruction of 191
terminate 45, 305, 342, 351–352
terminate() 304
terminate_handler 329, 351
termination
and destructor, program 196
program 44–46

terminator 0, string 19
terminology, pointer 55
test, bitset 513
this 66
pointer —see this 160
type of 160

thousands_sep, numpunct 444
throw 297
throw-expression 297
throw-expression in conditional-expression 90
throwing, exception 298
tie, basic_ios 621
time_get 447
date_order 448
do_date_order 449
do_get_date 449
do_get_monthname 449
do_get_time 449
do_get_weekday 449
do_get_year 449
get_date 448
get_monthname 448
get_time 448
get_weekday 448
get_year 449
time_get_byname 450
<time.h> 709
time_put 450
do_put 451
put 451
time_put_byname 451
times 367
to
int, bool promotion 61
rvalue, lvalue conversion 59

token 12
token 12, 15
tolower 424
ctype 425
ctype<char> 430
to_string, bitset 512
to_ulong, bitset 512
toupper 424
ctype 425
ctype<char> 430

traits 319
transform 556
collate 446

translation
phases 9
separate 9
unit 326–327
unit 9, 41
unit, name and 21

trigraph 9, 11
truename falsename, numpunct 444
truncation 62
try 297
try-block 297
type 21
ambiguity, declaration 104
arithmetic 54
array 55, 139
bitmask 322–323
Boolean 53
char 53
character 53
character container 317
checking, argument 69
checking of default argument 142
class and 153
completely defined object 156
compound 55
const 108
conversion, explicit —see casting 70
declaration 134
declaration consistency 43

753

ISO/IEC 14882:2003(E)  ISO/IEC

declaration, typedef as 107
definition, class name as 153
destination 147
double 54
dynamic 2
enumerated 55, 322
enumeration underlying 113
equivalence 107, 153
equivalence, template 248
example of incomplete 52
float 54
floating point 53
function 55, 138–139
fundamental 53
generator —see template 239
implementation-definedsizeof 53
incomplete 22–23, 26, 52, 59, 68–70, 72–73, 78–80, 83, 86,

91, 167
int 53
integral 53
long 53
long double 54
multi-level mixed pointer and pointer to member 61
multi-level pointer to member 61
name 132
name as synonym 107
name example 132
name example, nested 166
name, nested 166
name, scope of nested 166
object 4
of bit-field 163
of character literal 17
of constructor 190
of conversion 194
of delete 198
of enum 112–113
of floating point literal 18
of integer literal 16
of integer literal, implementation-defined 16
of new 198
of ptrdiff_t, implementation defined 86
of static member 78
of string 19
of string literal 19
of this 160
POD 53
pointer 55
polymorphic 172
pun 76
requirements, numeric 571
short 53
signed char 53
specifier, char 110
specifier, class 153
specifier, double 110
specifier, enum 111
specifier, float 110
specifier, int 110
specifier, long 110
specifier, short 110
specifier, struct 153
specifier, union 153
specifier, unsigned 110
specifier, void 110
specifier, volatile 110
static 2
unsigned 54
unsigned char 53–54
unsigned int 54
unsigned long 54

unsigned short 54
void 54
void* 55
volatile 108
wchar_t 54
wchar_t underlying 54
typedef
and long 104
and short 104
and signed 104
and unsigned 104
as type declaration 107
class name 108, 155
declaration 21
enum name 108
example 107
overloading and 214
redefinition 107
specifier 107

typedef, function 140
typedef-name 107
typeid 73
type-id 132
type-id-list 302
<typeinfo> 347
type_info 73, 347
before 348
name 348
operator!= 348
operator= 348
operator== 347
type_info 348
type_info 348
type_info::name, implementation-defined 348
typename 111
type-name 110
type-parameter 240
types
implementation-defined 322
implementation-defined exception 332

type-specifier 108
type-specifier
bool 110
wchart 110

U
U suffix 16
u suffix 16
uflow
basic_filebuf 667
basic_streambuf 633

unary
expression 78
minus operator 78–79
operator 78
operator, interpretation of 233
operator, overloaded 233
plus operator 78

unary-expression 78
unary_function 367
unary_negate 369
unary-operator 78
uncaught\xception 352
#undef 312, 327
undefined 318–319, 327–328, 330, 353, 398, 538, 584–589,

594, 598, 619
arithmetic exception 65
behavior 2
change to const object 109

754

 ISO/IEC ISO/IEC 14882:2003(E)

change to string literal 19
delete 83
deleted object 48
division by zero 65, 86
escape sequence 17
floating point conversion 62
function call 75
left shift 87
member function call 158
modulus zero 65
overflow 65
pointer comparison 86, 88
pointer to function cast 75
pure virtual function call 177
string literal concatenation 19
unrepresentable integral value 62
underflow
basic_filebuf 667
basic_streambuf 632
basic_stringbuf 658
strstreambuf 715
underflow_error
underflow_error 358
underflow_error 358

underlying
type, enumeration 113
type, wchar_t 54

underscore
character 327–328
in identifier _ 14
unexpected 351
unexpected() 305
unexpected_handler 329, 351
unget, basic_istream 645
uninitialized variable, indeterminate 145
uninitialized_copy 377
uninitialized_fill 378
uninitialized_fill_n 378
union 55, 162
access control, anonymous 163
anonymous 162
at namespace scope, anonymous 163
class versus 153
constructor 162
default member access 153
destructor 162
global anonymous 163
initialization 150, 162
member function 162
restriction 162, 190
restriction, anonymous 163
type specifier 153
unique 558
list 485
unique_copy 558
unit
instantiation 10
translation 326–327
unitbuf 624
universal-character-name 10
universal-character-name 10
unknown argument type 139
unnamed
bit-field 163
class 108
namespace 115
object 190
parameter example 144

unqualified name 29
unqualified-id 66
unrepresentable integral value, undefined 62

unsetf, ios_base 616
unshift, codecvt 432
unsigned
arithmetic 54
char type 53–54
int type 54
integer conversion, signed 62
literal 16
long type 54
short type 54
type 54
type specifier 110
typedef and 104

unsigned-suffix 16
unspecified 344–345, 347, 394, 561, 587, 658, 713–715
address of member function 331
allocation 157, 181
argument to constructor 83
behavior 3
constructor and new 83
order of argument evaluation 70
order of evaluation 45, 65
order of evaluation new 83
order of function call evaluation 70
pointer comparison 88

unwinding, stack 300
upper_bound 563
uppercase 624
uppercase 323, 327
usefacet, locale 423
user-defined
conversion 192–194
conversion and name hiding 193
conversion, implicit 192
conversion, inheritance of 195
conversion, virtual 195

using-declaration 117
using-directive 123
usual arithmetic conversions 66
<utility> 363

V
va_end 328
<valarray> 579
˜valarray, valarray 584
valarray 582, 595
˜valarray 584
apply 588
cshift 587
length 587
max 587
min 587
operator! 586
operator!= 589
operator% 588
operator%= 586
operator& 588
operator&& 588–589
operator&= 586
operator* 588
operator*= 586
operator+ 586, 588
operator+= 586
operator- 586, 588
operator-= 586
operator/ 588
operator/= 586
operator< 589
operator<< 588

755

ISO/IEC 14882:2003(E)  ISO/IEC

operator<<= 586
operator<= 589
operator= 584–585
operator== 589
operator> 589
operator>= 589
operator>> 588
operator>>= 586
operator[] 585
operatorˆ 588
operatorˆ= 586
operator| 588
operator|= 586
operator|| 588–589
operator˜ 586
resize 588
shift 587
sum 587
valarray 584
valarray 584
va_list 328
value
call by 69
null member pointer 63
null pointer 62
of char literal, implementation-defined 18
of enumerator 112
of multicharacter literal, implementation-defined 17
representation 52
undefined unrepresentable integral 62

value-initialization 145
variable
argument list 139
indeterminate uninitialized 145
parameter list 69, 139
parameter list example 139
<vector> 476
vector 489
assign 491
capacity 492
erase 493
insert 492
operator< 491
operator== 491
reserve 492
resize 492
vector 491
vector 491
vector<bool> 493
operator< 495
operator== 495

vertical tab 17
viable function 217
virtual
and friend 174
and multiple inheritance 174
specifier 107

virtual
base class 168
base class DAG 169
base class dominance 171
base class initialization 202, 209
base class initialization, order of 202
destructor 196
destructor, pure 196
function 172
function access 187
function call 176
function call, constructor and 205
function call, destructor and 205
function call, undefined pure 177

function definition 174
function definition, pure 176
function example 173–174
function example, pure 176
function, pure 176
member function 328, 331
user-defined conversion 195

visibility 29
void
parameter 139
type 54
type specifier 110
void& 136
void*
conversion, pointer to member 63
pointer comparison 88
type 55
volatile 55
constructor and 160, 189
destructor and 160, 195
implementation-defined 110
member function 160
overloading and 214
type 108
type specifier 110

W
wcerr 609
<wchar.h> 709
wchar_t 17, 19, 324, 413
implementation-defined 54
type 54
underlying type 54
wchart type-specifier 110
wcin 609
wclog 609
wcout 609
wcschr 413
wcspbrk 414
wcsrchr 414
wcsstr 414
<wctype.h> 709
well-formed program 3
wfilebuf 607, 664
wfstream 607
what
bad_alloc 346
bad_cast 348
bad_exception 351
bad_typeid 349
exception 350
ios_base::failure 613
while statement 97–98
white
space 11
space 12

wide string literal 19
wide-character 17
string, null-terminated 324
widen
basic_ios 622
ctype 426
ctype<char> 430

wide-oriented iostream classes 319
width, ios_base 424, 616
wifstream 607, 664
wios 610
wistream 607, 635
wistringstream 607, 656

756

 ISO/IEC ISO/IEC 14882:2003(E)

wmemchr 414
wofstream 607, 664
wostream 607, 635
wostringstream 607, 656
write, basic_ostream 652
ws 640, 645
wstreambuf 607, 625
wstringbuf 607, 656
wstringstream 607

X
xalloc, ios_base 617
xsgetn, basic_streambuf 632
xsputn, basic_streambuf 634
X(X&) —see copy constructor 190, 207

Z
zero
pointer 62
undefined division by 65, 86
undefined modulus 65
width of bit-field 163

zero-initialization 145

757

ISO/IEC 14882:2003(E)

ICS 35.060
Price based on 757 pages

© ISO/IEC 2003 — All rights reserved

	Contents
	1 General
	1.1 Scope
	1.2 Normative references
	1.3 Definitions
	1.4 Implementation compliance
	1.5 Structure of this International Standard
	1.6 Syntax notation
	1.7 The C + + memory model
	1.8 The C + + object model
	1.9 Program execution
	1.10 Acknowledgments

	2 Lexical conventions
	2.1 Phases of translation
	2.2 Character sets
	2.3 Trigraph sequences
	2.4 Preprocessing tokens
	2.5 Alternative tokens
	2.6 Tokens
	2.7 Comments
	2.8 Header names
	2.9 Preprocessing numbers
	2.10 Identifiers
	2.11 Keywords
	2.12 Operators and punctuators
	2.13 Literals
	2.13.1 Integer literals
	2.13.2 Character literals
	2.13.3 Floating literals
	2.13.4 String literals
	2.13.5 Boolean literals

	3 Basic concepts
	3.1 Declarations and definitions
	3.2 One definition rule
	3.3 Declarative regions and scopes
	3.3.1 Point of declaration
	3.3.2 Local scope
	3.3.3 Function prototype scope
	3.3.4 Function scope
	3.3.5 Namespace scope
	3.3.6 Class scope
	3.3.7 Name hiding

	3.4 Name lookup
	3.4.1 Unqualified name lookup
	3.4.2 Argument-dependent name lookup
	3.4.3 Qualified name lookup
	3.4.3.1 Class members
	3.4.3.2 Namespace members

	3.4.4 Elaborated type specifiers
	3.4.5 Class member access
	3.4.6 Using-directives and namespace aliases

	3.5 Program and linkage
	3.6 Start and termination
	3.6.1 Main function
	3.6.2 Initialization of non-local objects
	3.6.3 Termination

	3.7 Storage duration
	3.7.1 Static storage duration
	3.7.2 Automatic storage duration
	3.7.3 Dynamic storage duration
	3.7.3.1 Allocation functions
	3.7.3.2 Deallocation functions

	3.7.4 Duration of sub-objects

	3.8 Object Lifetime
	3.9 Types
	3.9.1 Fundamental types
	3.9.2 Compound types
	3.9.3 CV-qualifiers

	3.10 Lvalues and rvalues

	4 Standard conversions
	4.1 Lvalue-to-rvalue conversion
	4.2 Array-to-pointer conversion
	4.3 Function-to-pointer conversion
	4.4 Qualification conversions
	4.5 Integral promotions
	4.6 Floating point promotion
	4.7 Integral conversions
	4.8 Floating point conversions
	4.9 Floating-integral conversions
	4.10 Pointer conversions
	4.11 Pointer to member conversions
	4.12 Boolean conversions

	5 Expressions
	5.1 Primary expressions
	5.2 Postfix expressions
	5.2.1 Subscripting
	5.2.2 Function call
	5.2.3 Explicit type conversion (functional notation)
	5.2.4 Pseudo destructor call
	5.2.5 Class member access
	5.2.6 Increment and decrement
	5.2.7 Dynamic cast
	5.2.8 Type identification
	5.2.9 Static cast
	5.2.10 Reinterpret cast
	5.2.11 Const cast

	5.3 Unary expressions
	5.3.1 Unary operators
	5.3.2 Increment and decrement
	5.3.3 Sizeof
	5.3.4 New
	5.3.5 Delete

	5.4 Explicit type conversion (cast notation)
	5.5 Pointer-to-member operators
	5.6 Multiplicative operators
	5.7 Additive operators
	5.8 Shift operators
	5.9 Relational operators
	5.10 Equality operators
	5.11 BitwiseANDoperator
	5.12 Bitwise exclusiveORoperator
	5.13 Bitwise inclusiveORoperator
	5.14 LogicalANDoperator
	5.15 LogicalORoperator
	5.16 Conditional operator
	5.17 Assignment operators
	5.18 Comma operator
	5.19 Constant expressions

	6 Statements
	6.1 Labeled statement
	6.2 Expression statement
	6.3 Compound statement or block
	6.4 Selection statements
	6.4.1 The if statement
	6.4.2 The switch statement

	6.5 Iteration statements
	6.5.1 The while statement
	6.5.2 The do statement
	6.5.3 The for statement

	6.6 Jump statements
	6.6.1 The break statement
	6.6.2 The continue statement
	6.6.3 The return statement
	6.6.4 The goto statement

	6.7 Declaration statement
	6.8 Ambiguity resolution

	7 Declarations
	7.1 Specifiers
	7.1.1 Storage class specifiers
	7.1.2 Function specifiers
	7.1.3 The typedef specifier
	7.1.4 The friend specifier
	7.1.5 Type specifiers
	7.1.5.1 The cv-qualifiers
	7.1.5.2 Simple type specifiers
	7.1.5.3 Elaborated type specifiers

	7.2 Enumeration declarations
	7.3 Namespaces
	7.3.1 Namespace definition
	7.3.1.1 Unnamed namespaces
	7.3.1.2 Namespace member definitions

	7.3.2 Namespace alias
	7.3.3 Theusingdeclaration
	7.3.4 Using directive

	7.4 Theasmdeclaration
	7.5 Linkage specifications

	8 Declarators
	8.1 Type names
	8.2 Ambiguity resolution
	8.3 Meaning of declarators
	8.3.1 Pointers
	8.3.2 References
	8.3.3 Pointers to members
	8.3.4 Arrays
	8.3.5 Functions
	8.3.6 Default arguments

	8.4 Function definitions
	8.5 Initializers
	8.5.1 Aggregates
	8.5.2 Character arrays
	8.5.3 References

	9 Classes
	9.1 Class names
	9.2 Class members
	9.3 Member functions
	9.3.1 Nonstatic member functions
	9.3.2 The this pointer

	9.4 Static members
	9.4.1 Static member functions
	9.4.2 Static data members

	9.5 Unions
	9.6 Bit-fields
	9.7 Nested class declarations
	9.8 Local class declarations
	9.9 Nested type names

	10 Derived classes
	10.1 Multiple base classes
	10.2 Member name lookup
	10.3 Virtual functions
	10.4 Abstract classes

	11 Member access control
	11.1 Access specifiers
	11.2 Accessibility of base classes and base class members
	11.3 Access declarations
	11.4 Friends
	11.5 Protected member access
	11.6 Access to virtual functions
	11.7 Multiple access
	11.8 Nested classes

	12 Special member functions
	12.1 Constructors
	12.2 Temporary objects
	12.3 Conversions
	12.3.1 Conversion by constructor
	12.3.2 Conversion functions

	12.4 Destructors
	12.5 Free store
	12.6 Initialization
	12.6.1 Explicit initialization
	12.6.2 Initializing bases and members

	12.7 Construction and destruction
	12.8 Copying class objects

	13 Overloading
	13.1 Overloadable declarations
	13.2 Declaration matching
	13.3 Overload resolution
	13.3.1 Candidate functions and argument lists
	13.3.1.1 Function call syntax
	13.3.1.1.1 Call to named function
	13.3.1.1.2 Call to object of class type

	13.3.1.2 Operators in expressions
	13.3.1.3 Initialization by constructor
	13.3.1.4 Copy-initialization of class by user-defined conversion
	13.3.1.5 Initialization by conversion function
	13.3.1.6 Initialization by conversion function for direct reference binding

	13.3.2 Viable functions
	13.3.3 Best Viable Function
	13.3.3.1 Implicit conversion sequences
	13.3.3.1.1 Standard conversion sequences
	13.3.3.1.2 User-defined conversion sequences
	13.3.3.1.3 Ellipsis conversion sequences
	13.3.3.1.4 Reference binding

	13.3.3.2 Ranking implicit conversion sequences

	13.4 Address of overloaded function
	13.5 Overloaded operators
	13.5.1 Unary operators
	13.5.2 Binary operators
	13.5.3 Assignment
	13.5.4 Function call
	13.5.5 Subscripting
	13.5.6 Class member access
	13.5.7 Increment and decrement

	13.6 Built-in operators

	14 Templates
	14.1 Template parameters
	14.2 Names of template specializations
	14.3 Template arguments
	14.3.1 Template type arguments
	14.3.2 Template non-type arguments
	14.3.3 Template template arguments

	14.4 Type equivalence
	14.5 Template declarations
	14.5.1 Class templates
	14.5.1.1 Member functions of class templates
	14.5.1.2 Member classes of class templates
	14.5.1.3 Static data members of class templates

	14.5.2 Member templates
	14.5.3 Friends
	14.5.4 Class template partial specializations
	14.5.4.1 Matching of class template partial specializations
	14.5.4.2 Partial ordering of class template specializations
	14.5.4.3 Members of class template specializations

	14.5.5 Function templates
	14.5.5.1 Function template overloading
	14.5.5.2 Partial ordering of function templates

	14.6 Name resolution
	14.6.1 Locally declared names
	14.6.2 Dependent names
	14.6.2.1 Dependent types
	14.6.2.2 Type-dependent expressions
	14.6.2.3 Value-dependent expressions
	14.6.2.4 Dependent template arguments

	14.6.3 Non-dependent names
	14.6.4 Dependent name resolution
	14.6.4.1 Point of instantiation
	14.6.4.2 Candidate functions

	14.6.5 Friend names declared within a class template

	14.7 Template instantiation and specialization
	14.7.1 Implicit instantiation
	14.7.2 Explicit instantiation
	14.7.3 Explicit specialization

	14.8 Function template specializations
	14.8.1 Explicit template argument specification
	14.8.2 Template argument deduction
	14.8.2.1 Deducing template arguments from a function call
	14.8.2.2 Deducing template arguments taking the address of a function template
	14.8.2.3 Deducing conversion function template arguments
	14.8.2.4 Deducing template arguments from a type

	14.8.3 Overload resolution

	15 Exception handling
	15.1 Throwing an exception
	15.2 Constructors and destructors
	15.3 Handling an exception
	15.4 Exception specifications
	15.5 Special functions
	15.5.1 The terminate() function
	15.5.2 The unexpected() function
	15.5.3 The uncaught_exception() function

	15.6 Exceptions and access

	16 Preprocessing directives
	16.1 Conditional inclusion
	16.2 Source file inclusion
	16.3 Macro replacement
	16.3.1 Argument substitution
	16.3.2 The # operator
	16.3.3 The ## operator
	16.3.4 Rescanning and further replacement
	16.3.5 Scope of macro definitions

	16.4 Line control
	16.5 Error directive
	16.6 Pragma directive
	16.7 Null directive
	16.8 Predefined macro names

	17 Library introduction
	17.1 Definitions
	17.2 Additional definitions
	17.3 Method of description (Informative)
	17.3.1 Structure of each subclause
	17.3.1.1 Summary
	17.3.1.2 Requirements
	17.3.1.3 Specifications
	17.3.1.4 C Library

	17.3.2 Other conventions
	17.3.2.1 Type descriptions
	17.3.2.1.1 Enumerated types
	17.3.2.1.2 Bitmask types
	17.3.2.1.3 Character sequences
	17.3.2.1.3.1 Byte strings
	17.3.2.1.3.2 Multibyte strings
	17.3.2.1.3.3 Wide-character sequences

	17.3.2.2 Functions within classes
	17.3.2.3 Private members

	17.4 Library-wide requirements
	17.4.1 Library contents and organization
	17.4.1.1 Library contents
	17.4.1.2 Headers
	17.4.1.3 Freestanding implementations

	17.4.2 Using the library
	17.4.2.1 Headers
	17.4.2.2 Linkage

	17.4.3 Constraints on programs
	17.4.3.1 Reserved names
	17.4.3.1.1 Macro names
	17.4.3.1.2 Global names
	17.4.3.1.3 External linkage
	17.4.3.1.4 Types

	17.4.3.2 Headers
	17.4.3.3 Derived classes
	17.4.3.4 Replacement functions
	17.4.3.5 Handler functions
	17.4.3.6 Other functions
	17.4.3.7 Function arguments
	17.4.3.8 Required paragraph

	17.4.4 Conforming implementations
	17.4.4.1 Headers
	17.4.4.2 Restrictions on macro definitions
	17.4.4.3 Global or non-member functions
	17.4.4.4 Member functions
	17.4.4.5 Reentrancy
	17.4.4.6 Protection within classes
	17.4.4.7 Derived classes
	17.4.4.8 Restrictions on exception handling

	18 Language support library
	18.1 Types
	18.2 Implementation properties
	18.2.1 Numeric limits
	18.2.1.1 Class template numeric_limits
	18.2.1.2 numeric_limits members
	18.2.1.3 Type float_round_style
	18.2.1.4 Type float_denorm_style
	18.2.1.5 numeric_limits specializations

	18.2.2 C Library

	18.3 Start and termination
	18.4 Dynamic memory management
	18.4.1 Storage allocation and deallocation
	18.4.1.1 Single-object forms
	18.4.1.2 Array forms
	18.4.1.3 Placement forms

	18.4.2 Storage allocation errors
	18.4.2.1 Class bad_alloc
	18.4.2.2 Type new_handler
	18.4.2.3 set_new_handler

	18.5 Type identification
	18.5.1 Class type_info
	18.5.2 Class bad_cast
	18.5.3 Classbad_typeid

	18.6 Exception handling
	18.6.1 Classexception
	18.6.2 Violating exception-specifications
	18.6.2.1 Class bad_exception
	18.6.2.2 Type unexpected_handler
	18.6.2.3 set_unexpected
	18.6.2.4 unexpected

	18.6.3 Abnormal termination
	18.6.3.1 Type terminate_handler
	18.6.3.2 set_terminate
	18.6.3.3 terminate

	18.6.4 uncaught_exception

	18.7 Other runtime support

	19 Diagnostics library
	19.1 Exception classes
	19.1.1 Class logic_error
	19.1.2 Class domain_error
	19.1.3 Class invalid_argument
	19.1.4 Class length_error
	19.1.5 Class out_of_range
	19.1.6 Class runtime_error
	19.1.7 Class range_error
	19.1.8 Class overflow_error
	19.1.9 Class underflow_error

	19.2 Assertions
	19.3 Error numbers

	20 General utilities library
	20.1 Requirements
	20.1.1 Equality comparison
	20.1.2 Less than comparison
	20.1.3 Copy construction
	20.1.4 Default construction
	20.1.5 Allocator requirements

	20.2 Utility components
	20.2.1 Operators
	20.2.2 Pairs

	20.3 Function objects
	20.3.1 Base
	20.3.2 Arithmetic operations
	20.3.3 Comparisons
	20.3.4 Logical operations
	20.3.5 Negators
	20.3.6 Binders
	20.3.6.1 Class template binder1st
	20.3.6.2 bind1st
	20.3.6.3 Class template binder2nd
	20.3.6.4 bind2nd

	20.3.7 Adaptors for pointers to functions
	20.3.8 Adaptors for pointers to members

	20.4 Memory
	20.4.1 The default allocator
	20.4.1.1 allocator members
	20.4.1.2 allocator globals

	20.4.2 Raw storage iterator
	20.4.3 Temporary buffers
	20.4.4 Specialized algorithms
	20.4.4.1 uninitialized_copy
	20.4.4.2 uninitialized_fill
	20.4.4.3 uninitialized_fill_n

	20.4.5 Class template auto_ptr
	20.4.5.1 auto_ptr constructors
	20.4.5.2 auto_ptr members
	20.4.5.3 auto_ptrc onversions

	20.4.6 C Library

	20.5 Date and time

	21 Strings library
	21.1 Character traits
	21.1.1 Character traits requirements
	21.1.2 traits typedefs
	21.1.3 char_traits specializations
	21.1.3.1 struct char_traits<char>
	21.1.3.2 struct char_traits<wchar_t>

	21.2 String classes
	21.3 Class template basic_string
	21.3.1 basic_string constructors
	21.3.2 basic_string iterator support
	21.3.3 basic_string capacity
	21.3.4 basic_string element access
	21.3.5 basic_string modifiers
	21.3.5.1 basic_string::operator+=
	21.3.5.2 basic_string::append
	21.3.5.3 basic_string::assign
	21.3.5.4 basic_string::insert
	21.3.5.5 basic_string::erase
	21.3.5.6 basic_string::replace
	21.3.5.7 basic_string::copy
	21.3.5.8 basic_string::swap

	21.3.6 basic_string string operations
	21.3.6.1 basic_string::find
	21.3.6.2 basic_string::rfind
	21.3.6.3 basic_string::find_first_of
	21.3.6.4 basic_string::find_last_of
	21.3.6.5 basic_string::find_first_not_of
	21.3.6.6 basic_string::find_last_not_of
	21.3.6.7 basic_string::substr
	21.3.6.8 basic_string::compare

	21.3.7 basic_string non-member functions
	21.3.7.1 operator+
	21.3.7.2 operator==
	21.3.7.3 operator!=
	21.3.7.4 operator<
	21.3.7.5 operator>
	21.3.7.6 operator<=
	21.3.7.7 operator>=
	21.3.7.8 swap
	21.3.7.9 Inserters and extractors

	21.4 Null-terminated sequence utilities

	22 Localization library
	22.1 Locales
	22.1.1 Class locale
	22.1.1.1 locale types
	22.1.1.1.1 Type locale::category
	22.1.1.1.2 Class locale::facet
	22.1.1.1.3 Class locale::id

	22.1.1.2 locale constructors and destructor
	22.1.1.3 locale members
	22.1.1.4 locale operators
	22.1.1.5 locale static members

	22.1.2 locale globals
	22.1.3 Convenience interfaces
	22.1.3.1 Character classification
	22.1.3.2 Character conversions

	22.2 Standard locale categories
	22.2.1 The ctype category
	22.2.1.1 Class template ctype
	22.2.1.1.1 ctype members
	22.2.1.1.2 ctype virtual functions

	22.2.1.2 Class template ctype_byname
	22.2.1.3 ctype specializations
	22.2.1.3.1 ctype<char> destructor
	22.2.1.3.2 ctype<char> members
	22.2.1.3.3 ctype<char> static members
	22.2.1.3.4 ctype<char> virtual functions

	22.2.1.4 Class ctype_byname<char>
	22.2.1.5 Class template codecvt
	22.2.1.5.1 codecvt members
	22.2.1.5.2 codecvt virtual functions

	22.2.1.6 Class template codecvt_byname

	22.2.2 The numeric category
	22.2.2.1 Class template num_get
	22.2.2.1.1 num_get members
	22.2.2.1.2 num_get virtual functions

	22.2.2.2 Class template num_put
	22.2.2.2.1 num_put members
	22.2.2.2.2 num_put virtual functions

	22.2.3 The numeric punctuation facet
	22.2.3.1 Class template numpunct
	22.2.3.1.1 numpunct members
	22.2.3.1.2 numpunct virtual functions

	22.2.3.2 Class template numpunct_byname

	22.2.4 The collate category
	22.2.4.1 Class template collate
	22.2.4.1.1collate members
	22.2.4.1.2 collate virtual functions

	22.2.4.2 Class template collate_byname

	22.2.5 The time category
	22.2.5.1 Class template time_get
	22.2.5.1.1 time_get members
	22.2.5.1.2 time_get virtual functions

	22.2.5.2 Class template time_get_byname
	22.2.5.3 Class template time_put
	22.2.5.3.1 time_put members
	22.2.5.3.2 time_put virtual functions

	22.2.5.4 Class templatet ime_put_byname

	22.2.6 The monetary category
	22.2.6.1 Class template money_get
	22.2.6.1.1 money_get members
	22.2.6.1.2 money_get virtual functions

	22.2.6.2 Class template money_put
	22.2.6.2.1 money_put members
	22.2.6.2.2 money_put virtual functions

	22.2.6.3 Class template moneypunct
	22.2.6.3.1 moneyp unctmembers
	22.2.6.3.2 moneypunct virtual functions

	22.2.6.4 Class template moneypunct_byname

	22.2.7 The message retrieval category
	22.2.7.1 Class template messages
	22.2.7.1.1 messages members
	22.2.7.1.2 messages virtual functions

	22.2.7.2 Class template messages_byname

	22.2.8 Program-defined facets

	22.3 C Library Locales

	23 Containers library
	23.1 Container requirements
	23.1.1 Sequences
	23.1.2 Associative containers

	23.2 Sequences
	23.2.1 Class template deque
	23.2.1.1 deque constructors, copy, and assignment
	23.2.1.2 deque capacity
	23.2.1.3 deque modifiers
	23.2.1.4 deque specialized algorithms

	23.2.2 Class template list
	23.2.2.1 list constructors, copy, and assignment
	23.2.2.2 list capacity
	23.2.2.3 list modifiers
	23.2.2.4 list operations
	23.2.2.5 list specialized algorithms

	23.2.3 Container adaptors
	23.2.3.1 Class template queue
	23.2.3.2 Class template priority_queue
	23.2.3.2.1 priority_queue constructors
	23.2.3.2.2 priority_queue members

	23.2.3.3 Class template stack

	23.2.4 Class templatevector
	23.2.4.1 vector constructors, copy, and assignment
	23.2.4.2 vector capacity
	23.2.4.3 vector modifiers
	23.2.4.4 vector specialized algorithms

	23.2.5 Class vector<bool>

	23.3 Associative containers
	23.3.1 Class template map
	23.3.1.1 map constructors, copy, and assignment
	23.3.1.2 map element access
	23.3.1.3 map operations
	23.3.1.4 map specialized algorithms

	23.3.2 Class template multimap
	23.3.2.1 multimap constructors
	23.3.2.2 multimap operations
	23.3.2.3 multimap specialized algorithms

	23.3.3 Class template set
	23.3.3.1 set constructors, copy, and assignment
	23.3.3.2 set specialized algorithms

	23.3.4 Class template multiset
	23.3.4.1 multiset constructors
	23.3.4.2 multiset specialized algorithms

	23.3.5 Class template bitset
	23.3.5.1 bitset constructors
	23.3.5.2 bitset members
	23.3.5.3 bitset operators

	24 Iterators library
	24.1 Iterator requirements
	24.1.1 Input iterators
	24.1.2 Output iterators
	24.1.3 Forward iterators
	24.1.4 Bidirectional iterators
	24.1.5 Random access iterators

	24.2 Header <iterator> synopsis
	24.3 Iterator primitives
	24.3.1 Iterator traits
	24.3.2 Basic iterator
	24.3.3 Standard iterator tags
	24.3.4 Iterator operations

	24.4 Predefined iterators
	24.4.1 Reverse iterators
	24.4.1.1 Class template reverse_iterator
	24.4.1.2 reverse_iterator requirements
	24.4.1.3 reverse_iterator operations

	24.4.2 Insert iterators
	24.4.2.1 Class template back_insert_iterator
	24.4.2.2 back_insert_iterator operations
	24.4.2.3 Class template front_insert_iterator
	24.4.2.4 front_insert_iterator operations
	24.4.2.5 Class template insert_iterator
	24.4.2.6 insert_iterator operations

	24.5 Stream iterators
	24.5.1 Class template istream_iterator
	24.5.1.1 istream_iterator constructors and destructor
	24.5.1.2 istream_iterator operations

	24.5.2 Class template ostream_iterator
	24.5.2.1 ostream_iterator constructors and destructor
	24.5.2.2 ostream_iterator operations

	24.5.3 Class template istreambuf_iterator
	24.5.3.1 Class template istreambuf_iterator::proxy
	24.5.3.2 istreambuf_iterator constructors
	24.5.3.3 istreambuf_iterator::operator*
	24.5.3.4 istreambuf_iterator::operator++
	24.5.3.5 istreambuf_iterator::equal
	24.5.3.6 operator==
	24.5.3.7 operator!=

	24.5.4 Class template ostreambuf_iterator
	24.5.4.1 ostreambuf_iterator constructors
	24.5.4.2 ostreambuf_iterator operations

	25 Algorithms library
	25.1 Non-modifying sequence operations
	25.1.1 For each
	25.1.2 Find
	25.1.3 Find End
	25.1.4 Find First
	25.1.5 Adjacent find
	25.1.6 Count
	25.1.7 Mismatch
	25.1.8 Equal
	25.1.9 Search

	25.2 Mutating sequence operations
	25.2.1 Copy
	25.2.2 Swap
	25.2.3 Transform
	25.2.4 Replace
	25.2.5 Fill
	25.2.6 Generate
	25.2.7 Remove
	25.2.8 Unique
	25.2.9 Reverse
	25.2.10 Rotate
	25.2.11 Random shuffle
	25.2.12 Partitions

	25.3 Sorting and related operations
	25.3.1 Sorting
	25.3.1.1 sort
	25.3.1.2 stable_sort
	25.3.1.3 partial_sort
	25.3.1.4 partial_sort_copy

	25.3.2 Nth element
	25.3.3 Binary search
	25.3.3.1 lower_bound
	25.3.3.2 upper_bound
	25.3.3.3 equal_range
	25.3.3.4 binary_search

	25.3.4 Merge
	25.3.5 Set operations on sorted structures
	25.3.5.1 includes
	25.3.5.2 set_union
	25.3.5.3 set_intersection
	25.3.5.4 set_difference
	25.3.5.5 set_symmetric_difference

	25.3.6 Heap operations
	25.3.6.1 push_heap
	25.3.6.2 pop_heap
	25.3.6.3 make_heap
	25.3.6.4 sort_heap

	25.3.7 Minimum and maximum
	25.3.8 Lexicographical comparison
	25.3.9 Permutation generators

	25.4 C library algorithms

	26 Numerics library
	26.1 Numeric type requirements
	26.2 Complex numbers
	26.2.1 Header <complex> synopsis
	26.2.2 Class templatecomplex
	26.2.3 complex specializations
	26.2.4 complex member functions
	26.2.5 complex member operators
	26.2.6 complex non-member operations
	26.2.7 complex value operations
	26.2.8 complex transcendentals

	26.3 Numeric arrays
	26.3.1 Header <valarray> synopsis
	26.3.2 Class template valarray
	26.3.2.1 valarray constructors
	26.3.2.2 valarray assignment
	26.3.2.3 valarray element access
	26.3.2.4 valarray subset operations
	26.3.2.5 valarray unary operators
	26.3.2.6 valarray computed assignment
	26.3.2.7 valarray member functions

	26.3.3 valarray non-member operations
	26.3.3.1 valarray binary operators
	26.3.3.2 valarray logical operators
	26.3.3.3 valarray transcendentals

	26.3.4 Classslice
	26.3.4.1 slice constructors
	26.3.4.2 slice access functions

	26.3.5 Class template slice_array
	26.3.5.1 slice_array constructors
	26.3.5.2 slice_array assignment
	26.3.5.3 slice_array computed assignment
	26.3.5.4 slice_array fill function

	26.3.6 The gslice class
	26.3.6.1 gslice constructors
	26.3.6.2 gslice access functions

	26.3.7 Class template gslice_array
	26.3.7.1 gslice_array constructors
	26.3.7.2 gslice_array assignment
	26.3.7.3 gslice_array computed assignment
	26.3.7.4 gslice_array fill function

	26.3.8 Class template mask_array
	26.3.8.1 mask_array constructors
	26.3.8.2 mask_array assignment
	26.3.8.3 mask_array computed assignment
	26.3.8.4 mask_array fill function

	26.3.9 Class template indirect_array
	26.3.9.1 indirect_array constructors
	26.3.9.2 indirect_array assignment
	26.3.9.3 indirect_array computed assignment
	26.3.9.4 indirect_array fill function

	26.4 Generalized numeric operations
	26.4.1 Accumulate
	26.4.2 Inner product
	26.4.3 Partial sum
	26.4.4 Adjacent difference

	26.5 C Library

	27 Input/output library
	27.1 Iostreams requirements
	27.1.1 Imbue Limitations
	27.1.2 Positioning Type Limitations

	27.2 Forward declarations
	27.3 Standard iostream objects
	27.3.1 Narrow stream objects
	27.3.2 Wide stream objects

	27.4 Iostreams base classes
	27.4.1 Types
	27.4.2 Class ios_base
	27.4.2.1 Types
	27.4.2.1.1 Class ios_base::failure
	27.4.2.1.2 Type ios_base::fmtflags
	27.4.2.1.3 Type ios_base::iostate
	27.4.2.1.4 Type ios_base::openmode
	27.4.2.1.5 Type ios_base::seekdir
	27.4.2.1.6 Class ios_base::Init

	27.4.2.2 ios_base fmtflags state functions
	27.4.2.3 ios_base locale functions
	27.4.2.4 ios_base static members
	27.4.2.5 ios_base storage functions
	27.4.2.6 ios_base callbacks
	27.4.2.7 ios_base constructors/destructors

	27.4.3 Class template fpos
	27.4.3.1 fpos Members
	27.4.3.2 fpos requirements

	27.4.4 Class template basic_ios
	27.4.4.1 basic_ios constructors
	27.4.4.2 Member functions
	27.4.4.3 basic_ios iostate flags functions

	27.4.5 ios_base manipulators
	27.4.5.1 fmtflags manipulators
	27.4.5.2 adjustfield manipulators
	27.4.5.3 basefield manipulators
	27.4.5.4 floatfield manipulators

	27.5 Stream buffers
	27.5.1 Stream buffer requirements
	27.5.2 Class template basic_streambuf<charT,traits>
	27.5.2.1 basic_streambuf constructors
	27.5.2.2 basic_streambuf public member functions
	27.5.2.2.1 Locales
	27.5.2.2.2 Buffer management and positioning
	27.5.2.2.3 Get area
	27.5.2.2.4 Putback
	27.5.2.2.5 Put area

	27.5.2.3 basic_streambuf protected member functions
	27.5.2.3.1 Get area access
	27.5.2.3.2 Put area access

	27.5.2.4 basic_streambuf virtual functions
	27.5.2.4.1 Locales
	27.5.2.4.2 Buffer management and positioning
	27.5.2.4.3 Get area
	27.5.2.4.4 Putback
	27.5.2.4.5 Put area

	27.6 Formatting and manipulators
	27.6.1 Input streams
	27.6.1.1 Class template basic_istream
	27.6.1.1.1 basic_istream constructors
	27.6.1.1.2 Class basic_istream::sentry

	27.6.1.2 Formatted input functions
	27.6.1.2.1 Common requirements
	27.6.1.2.2 Arithmetic Extractors
	27.6.1.2.3 basic_istream::operator>>

	27.6.1.3 Unformatted input functions
	27.6.1.4 Standard basic_istream manipulators
	27.6.1.5 Class template basic_iostream
	27.6.1.5.1 basic_iostream constructors
	27.6.1.5.2 basic_iostream destructor

	27.6.2 Output streams
	27.6.2.1 Class template basic_ostream
	27.6.2.2 basic_ostream constructors
	27.6.2.3 Class basic_ostream::sentry
	27.6.2.4 basic_ostream seek members
	27.6.2.5 Formatted output functions
	27.6.2.5.1 Common requirements
	27.6.2.5.2 Arithmetic Inserters
	27.6.2.5.3 basic_ostream::operator<<
	27.6.2.5.4 Character inserter function templates

	27.6.2.6 Unformatted output functions
	27.6.2.7 Standard basic_ostream manipulators

	27.6.3 Standard manipulators

	27.7 String-based streams
	27.7.1 Class template basic_stringbuf
	27.7.1.1 basic_stringbuf constructors
	27.7.1.2 Member functions
	27.7.1.3 Overridden virtual functions

	27.7.2 Class template basic_istringstream
	27.7.2.1 basic_istringstream constructors
	27.7.2.2 Member functions

	27.7.3 Class basic_ostringstream
	27.7.3.1 basic_ostringstream constructors
	27.7.3.2 Member functions

	27.7.4 Class template basic_stringstream
	27.7.5 basic_stringstream constructors
	27.7.6 Member functions

	27.8 File-based streams
	27.8.1 File streams
	27.8.1.1 Class template basic_filebuf
	27.8.1.2 basic_filebuf constructors
	27.8.1.3 Member functions
	27.8.1.4 Overridden virtual functions
	27.8.1.5 Class template basic_ifstream
	27.8.1.6 basic_ifstream constructors
	27.8.1.7 Member functions
	27.8.1.8 Class template basic_ofstream
	27.8.1.9 basic_ofstream constructors
	27.8.1.10 Member functions
	27.8.1.11 Class template basic_fstream
	27.8.1.12 basic_fstreamconstructors
	27.8.1.13 Member functions

	27.8.2 C Library files

	Annex A - Grammar summary
	A.1 Keywords
	A.2 Lexical conventions
	A.3 Basic concepts
	A.4 Expressions
	A.5 Statements
	A.6 Declarations
	A.7 Declarators
	A.8 Classes
	A.9 Derived classes
	A.10 Special member functions
	A.11 Overloading
	A.12 Templates
	A.13 Exception handling
	A.14 Preprocessing directives

	Annex B - Implementation quantities
	Annex C - Compatibility
	C.1 C + + and ISO C
	C.1.1 Clause 2: lexical conventions
	C.1.2 Clause 3: basic concepts
	C.1.3 Clause 5: expressions
	C.1.4 Clause 6: statements
	C.1.5 Clause 7: declarations
	C.1.6 Clause 8: declarators
	C.1.7 Clause 9: classes
	C.1.8 Clause 12: special member functions
	C.1.9 Clause 16: preprocessing directives

	C.2 Standard C library
	C.2.1 Modifications to headers
	C.2.2 Modifications to definitions
	C.2.2.1 Type wchar_t
	C.2.2.2 Header <iso646.h>
	C.2.2.3 Macro NULL

	C.2.3 Modifications to declarations
	C.2.4 Modifications to behavior
	C.2.4.1 Macro offsetof(type,member-designator)
	C.2.4.2 Memory allocation functions

	Annex D - Compatibility features
	D.1 Increment operator with bool operand
	D.2 static keyword
	D.3 Access declarations
	D.4 Implicit conversion from const strings
	D.5 Standard C library headers
	D.6 Old iostreams members
	D.7 char* streams
	D.7.1 Class strstreambuf
	D.7.1.2 Member functions
	D.7.1.3 strstreambuf overridden virtual functions

	D.7.2 Class istrstream
	D.7.2.1 istrstream constructors
	D.7.2.2 Member functions

	D.7.3 Class ostrstream
	D.7.3.1 ostrstream constructors
	D.7.3.2 Member functions

	D.7.4 Class strstream
	D.7.4.1 strstream constructors
	D.7.4.2 strstream destructor
	D.7.4.3 strstream operations

	Annex E - Universal-character-names
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	JKL
	M
	N
	O
	P
	QR
	S
	T
	U
	V
	W
	XYZ

	copyright: © ISO/IEC 2003

