Web Reinforced Question Answering
(MultiText Experiments for TREC 2001)

C. L. A. Clarke G. V. Cormack T. R. Lynam C.M. L G. L. McLearn

Computer Science, University of Waterloo, Waterloo, Ontario, Canada
mt@plg.uwaterloo.ca

1 Introduction

For TREC 2001, the MultiText Project concentrated on the QA track. Over the past year, we made
substantial enhancements to our QA system in three general areas. First, we explored a number
of methods for taking advantage of external resources (including encyclopedias, dictionaries and
Web data) as sources for answer validation, improving our ability to identify correct answers in
the target corpus. Of the methods explored, the use of Web data to reinforce answer selection
proved to be particular value. Second, we made a large number of incremental improvements to
the existing system components. For example, in our parsing component, the query generation
and answer category identification algorithms were extended and tuned, as were the named entity
identification algorithms used in our answer extraction component. Finally, we made a careful
analysis of the problem of null questions, those that have no answer in the target corpus, and
developed a general approach to the problem. A basic method for handling null questions, based
on the analysis, was added to our system.

We submitted three runs for the main task of the QA track. The first run (uwmtal) was
based on the enhanced system described above, including the full use of Web resources for answer
validation. For the second run (uwmta2) the Web resources were not used for validation, but the
system was otherwise identical. A comparison between these runs represents a major goal of our
TREC experimental work and the major concern of this paper. The final run (uwmta0O) tests a last-
minute enhancement. For this run a feedback loop was added to the system, in which candidate
answer terms were merged back into the query used for passage retrieval. While answer feedback
was not an area of significant effort for TREC 2001, and the intial results were disappointing, it
represents an area in which future work is planned.

Our other TREC 2001 runs are related to the QA track. Along with the QA runs submitted
for the main task, we also submitted exploratory runs for the list (uwmtalO and uwmtall) and
context (uwmtacO) tasks. These runs were generated through minor modifications to the existing
system, and represent preliminary attempts at participation rather than serious attempts at high
performance. Our runs for the Web track (uwmtawO, uwmtawl, and uwmtaw2) are related to our
QA runs. These runs were generated by our QA system by treating the topic title as a question
and using the ranked list of documents containing the best answers as the result. Finally, the runs
submitted by Sun Microsystems (mtsunaO and mtsunal) were generated using our system as the
backend and the Sun parser as the frontend. However, the integration between Sun and MultiText
was performed in a short period of time, and these runs should also be viewed as preliminary
experiments that point toward future work.

In the remainder of the paper we focus on our primary runs for the main task of the QA track.
In the next section we provide an overview of the QA system used for our TREC 2001 experiments,
including a discussion of our technique for Web reinforcement. In section 3 we present our approach
to the problem of null questions. Section 4 details our experimental results.

2 The MultiText QA System

The MultiText QA system was introduced in our TREC-9 paper [1]. and described in further detail
in a related SIGIR paper [2] This section presents an updated summary of the system.

Figure 1 provides an overview the version of our QA system used in our TREC 2001 experiments.
In our approach, question answering consists of three major processing steps: question parsing,
passage retrieval and answer selection.

The MultiText QA parser has two main functions: 1) to generate queries so that the retrieval
engine can extract the best candidate passages, and 2) to generate answer selection rules so that
the post-processor can select the best 50-byte answer fragment from the passages. The answer
selection rules generated by the parser include a category for the question (<name>, <place>, etc.)
and patterns that may be matched in the extracted passages to identify possible answer locations.

Queries generated by the parser are fed to the passage retrieval engine. For question answering,
we have developed a passage retrieval technique that can identify small excerpts that cover as many
question concepts as possible. Unlike most other passage retrieval techniques, our technique does
not require predefined passages, such as paragraphs, sentences or n-word segments, but can retrieve
any document substring in the target corpus. The score of substring depends on its length, the
number of question concepts it contains and the relative weight assigned to each of these concepts.
Once the k highest-scoring substrings from distinct documents are identified, the centerpoint of
each substring is computed and a 1000-word passage centered at this point is retrieved from the
corpus. These 1000-word passages were then used by the answer selection component to determine
the final answers fragments.

The answer selection component identifies possible answers (“candidates”) from the passages
and then ranks these candidates using a variety of heuristics. These heuristics take into account the
number of times each candidate appears in the retrieved passages, the location of the candidate in
the retrieved passages, the rank of the passages in which the candidate appears, the likelihood that
the candidate matches the assigned answer category, and other special-case information provided
by the selection rules.

Since the goal of the TREC 2001 QA experiments was to select 50-byte answer fragments
from the retrieved passages, the answer selection technique used to generate our experimental runs
does not attempt to identify candidates that are exact or complete answers. Instead, candidates are
single terms, where the nature of these terms depends on the category of the question. For example,
if a question asks for a proper noun, the candidates consist of those terms that match a simple
syntactic pattern for proper nouns; if a question asks for a length, the candidates consist of those
numeric values that precede appropriate units; and if a question cannot be classified, the candidates
simply consist of all non-query and non-stopword terms appearing in the retrieved passages.

After identification, each candidate term t is assigned a weight that takes into account the
number of distinct passages in which the term appears, as well as the relative frequency of the term
in the database:

wy = ctlog(N/ft),

where N is sum of the lengths of all documents in the database, f; is the number of occurrences

z
.| Altavista \%\

Frontend
] Web Pages .
; URLs Download Aclf%(}gl?gy
. Googrl1e 1
Frontend
; T
Quesion Shies
. Query
e
Parsing REs JREC
Passages
Selection Rules Answer Answers
Selection

Figure 1: QA System overview.

of ¢t in the database, and 1 < ¢; < k is the number of distinct passages in which ¢ appears. The
value ¢;, which represents the “redundancy” associated with the candidate, is a critical element of
the answer selection process [2].

The weights of the candidates are used to select 50-byte answer fragments from the retrieved
passages. Each 50 byte substring of the retrieved passages that starts or ends on a word boundary
is considered to be a potential answer fragment. A score for each of these fragments is computed
by summing the weights of the candidate terms that appear within it. Given a text fragment F
and a set of candidates K, each term that appears in both F and K has its weight w; temporarily
modified to a position-specific weight wj using heuristics that take into account the rank of the
passage in which the fragment appears, the location of the fragment relative to the centerpoint of
the passage, and the selection rules generated by the parser. The resulting score for a fragment is

> ()

teFAte K

where a value of & = 3 was used for all our TREC 2001 experiments.

Once the highest-scoring fragment is selected, the weights of the candidates appearing in that
fragment are reduced to zero. All fragments are re-scored and the highest-scoring fragment is again
selected. This process is repeated until five answer fragments have been selected.

At the level of detail given above, our QA system is little changed from TREC-9. However, for
TREC 2001 we expanded and enhanced many of the heuristics in the parser and answer selection
components. The number of question categories was increased from eight to 22, and these cate-
gories were arranged hierarchically. We extended and improved the pattern matching process for

recognizing candidates corresponding to these categories. This extended matching process relies
heavily on external resources, such as large lists of countries and cites, dictionaries, and the Word-
Net lexical database. If insufficient candidates are identified using the question category assigned
by the parser, the selecion component considers patterns matching categories farther up the hier-
archy. Finally, position- and rank-specific adjustments to candidate weights were modified to take
the question category into account.

Another addition for TREC 2001 was the use of Web data to reinforce the scores of promising
candidates by providing additional redundancy. As shown in figure 1, each question is used to
generate appropriate queries for two commercial search engines. The contents of the top 200 doc-
uments returned by each engine were used to create an auxiliary database. The passage retrieval
component then extracts 20 passages from the target database and 40 passages from the auxiliary
database, recording the source of each passage. Since the contents of the auxiliary database is heav-
ily biased by the query, term statistics from the target corpus are used during passages extraction
from the auxiliary database.

All 60 passages are passed to the answer selection component. The answer selection component
then proceeds to select answer fragments as usual, except that fragments cannot be selected from
passages extracted out of the auxiliary database. The Web data influences the answer selection
process only by increasing the redundancy factor ¢; for particular candidates.

3 Null Questions

Null questions are those questions which have no answer in the target corpus. For TREC 2001, a
corresponding null (“no answer”) response was treated as a legitimate answer that could be included
at any rank. If a question was judged to have no answer in the target corpus, null responses were
marked as correct.

Given a question @, a small number of parameters must be estimated to determine the best
rank (if any) to place a null response. The first of these parameters is po(Q), the probability that Q
has no answer. In addition, for any question, our system will produce five ranked answer fragments.
For each question, we have p;(Q), the probability that the highest-ranked fragment containing the
correct answer is located at rank ¢, with 1 <1 < 5.

Given these parameters we can compute the expected mean reciprocal rank (MRR) for @
(E;(Q)) under the assumption that the null response is placed at a particular rank 4, pushing down
the answer fragments appearing at the same rank and lower. For example,

ZM r2(Q) | p3(Q) _I_P4(Q).
3 2 4 5

E3(Q) = +p1(Q) + +

In addition we define Ey(Q) as the expected MRR if a null response is not included:
— pi(Q)
E, = —=.
0(Q) ; ;

The optimal location for a null response is then simply the value of 7 for which F;(Q) has maximum
value:

argmax E;(Q).
0<i<5

Estimating p;(Q) for a specific () proved to be a difficult problem, and for TREC 2001 we simply
used fixed estimates p;(Q) = p; (1 < i < 5) for all questions. These fixed estimates were derived

10 T T T T T T T T T

09 .

0.7 | r=1 —

0.6 T

0.5
r=2
04 —
r=3

r=4

Expected change in MRR

r=5
01]

-01 + -

_03 1 1 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Null question probability

Figure 2: Effect of placing a null response at various ranks (r).

from the actual performance of our TREC 2001 system on the TREC-9 questions as judged by the
NIST-supplied judging script. The values of the estimates used for TREC 2001 submissions are:

yal D2 b3 P4 DPs
0.500 0.100 0.050 0.033 0.025

In a similar fashion we used a fixed estimate po(Q)) = po for the probability that a question
has no answer. Fixing the value of the p;(Q) for all questions fixes the values for estimated MRR
E;(Q) = E; (0 <i<5) and implies that a null response should always be placed at fixed rank r or
always omitted. The precise action taken depends on the values of the estimates.

Deriving a estimate for py that was anything but a guess proved to be impossible. The value of
po represents the ratio of questions in the test set that have no known answers in the target corpus.
The selection of this value was entirely the choice of NIST, and was not released to participants in
advance.

Since a meaningful estimate of pg could not be obtained, we treated the value as a free parameter
and examined the impact of its value on the expected change in MRR (E, — Ey) for the possible
values of r. The results are shown in figure 2.

After some discussion between members of the group, we agreed that the proportion of questions
with no known answer was unlikely to fall below 10% and unlikely to be greater than 20%; our best
guess was 10%. A small minority felt that the value would be very small (1-2%). For pg in the
range (0.10,0.20) values of » = 2 and r = 3 both produce small positive improvements to MRR. In
the end, a value of r = 3 was selected to minimize the consequences of an extremely small pg.

Run MultiText Judgment | NIST Judgment (strict/lenient)

MultiText baseline (uwmta2) 0.379 0.346/0.365

+ Web re-inforcement (uwmtai) 0.483 0.434/0.457

+ feedback (uwmta0) 0.482 0.404/0.450

Sun baseline (mtsunal) N/A 0.307/0.322

+ Web re-inforcement (mtsunaO) 0.416 0.405/0.418
Web data only 0.608 N/A
TREC-9 method 0.317 N/A

Figure 3: QA main task results

null response rank ‘ 1 2 3 4 5
adjusted MRR ‘ 0.311 0.440 0.434 0.426 0.424

Figure 4: Effect of relocating the null response

4 Experimental Results

Our main task question answering results are presented in figure 3. The figure includes both the
results of our own submissions and the results of the Sun submissions, which used our system
backend, including its passage retrieval and answer selection components. The third column lists
official NIST judgments or results derived from them. The second column lists unofficial judgments
made by one of the authors (Clarke) immediately after the runs were submitted to NIST. Although
creation of these unofficial judgments required less than two hours of total effort, their relative
values appear to correlate well with the official judgments, with slightly higher absolute values.
In this discussion below, we use these unofficial numbers to support comments that cannot be
supported by the official numbers.

The use of Web reinforcement produced a 25% improvement on our own results (uwmta2 vs.
uwmtal) and a 30% improvement on the Sun results (mtsunal vs. mtsuna0O). Considering that the
Web data can influence the answer selection process only through modifications to the candidate
redundancy parameter ¢;, the magnitude of the improvement is surprising and provides substantial
support for our view that candidate redundancy is a key factor in question answering [2]. To provide
an additional comparison, the top five answers were selected from the Web data used to reinforce
the MultiText runs and were judged by Clarke (“Web data only”).

For the TREC 2001 questions, py was 10%. As a result, the decision to always place a null
response at rank 3 had a small but positive impact. In reality, our performance estimates for
our system (p;, 1 < i < 5) were somewhat optimistic. Nonetheless, rank 3 proved to be a good
choice. Figure 4 shows the change to the strict MRR for our best run (uwmta10) if other ranks were
chosen for the null response. Rank 2 would have been a slightly better location, but the potential
improvement is less than 2%. If the null response had been omitted, we estimate that the MRR for
uwmtal0 would have been 0.421. Thus, our choice to always place a null response at rank 3 gave a
performance improvement of roughly 3%.

As a final experiment, we executed our TREC-9 system on this year’s questions. Based on
the judgments made by Clarke, the total effect of our efforts this year was an overall performance
improvement of more than 50%.

5 Conclusion and Future Work

We are continuing to enhance and extend our question answering system. The performance of
all aspects of the system is currently under review and many of the components will be heavily
modified or replaced over the coming year.

If the approach taken to null questions in TREC 2001 is continued in future TREC conferences
we plan to improve our technique by taking question-specific information into account. For example,
we intend to consider question category when estimating values for p; (1 < i < 5). Also we hope that
NIST will release a prior probability pg that a question will have no answer, since this information
is critical for placing null responses and in practice could be readily estimated from query logs.

Finally, we are actively experimenting with Web-based question answering, both as a method
of reinforcing question answering from closed collections and as an end in itself. We are presently
in the process of creating a > 1T B collection of Web explicitly to support question answering,
replacing the commercial search engines used in our TREC 2001 experiments

References

[1] C. L. A. Clarke, G. V. Cormack, D. I. E. Kisman, and T. R. Lynam. Question answering by
passage selection. In 9th Text RFEtrieval Conference, Gaithersburg, MD, 2000.

[2] Charles L. A. Clarke, Gordon V. Cormack, and Thomas R. Lynam. Exploiting redundancy in
question answering. In 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 358-365, New Orleans, September 2001.

-1

