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Abstract

We describe a system developed for the Annota-
tion Hierarchy subtask of the Text Retrieval Con-
ference (TREC) 2004 Genomics Track. The goal
of this track is to automatically predict Gene On-
tology (GO) domain annotations given full-text
biomedical journal articles and associated genes.

Our system uses a two-tier statistical machine
learning system that makes predictions first on
“zone”-level text (i.e. abstract, introduction,
etc.) and then combines evidence to make fi-
nal document-level predictions. We also describe
the effects of more advanced syntactic features
(equivalence classes of syntactic patterns) and
“informative terms” (phrases semantically linked
to specific GO codes). These features are in-
duced automatically from the training data and
external sources, such as “weakly labeled” MED-
LINE abstracts.

Our baseline system (using only traditional word
features), significantly exceeds median F; of all
task submissions on unseen test data. We show
further improvement by including syntactic fea-
tures and informative term features. Our com-
plete system exceeds median performance for all
three evaluation metrics (precision, recall, and
F1), and achieves the second highest reported Fy
of all systems in the track.

1. Introduction

A major activity of most model organism database
projects is to assign codes from the Gene Ontology
(The Gene Ontology Consortium, 2000) to annotate
the known function of genes and proteins. The Gene
Ontology (GO) consists of three structured, controlled
domains (“hierarchies,” or “subontologies”) that de-
scribe functions of genes and their products. These
domains are Biological Process (BP), Cellular Com-
ponent (CC), and Molecular Function (MF). Each as-
signed GO code can also be delegated a level of evi-
dence indicating specific experimental support for its

assignment. The TREC 2004 Genomics Track Anno-
tation Task consisted of two subtasks: Annotation Hi-
erarchy, and Annotation Hierarchy Plus Evidence.

We focused on developing a system to solve the Anno-
tation Hierarchy subtask. In this task, we are given
a document-gene tuple (d,g) and are to determine
which, if any, of the three GO domains (BP, CC, MF)
are applicable to gene g according to the text in doc-
ument d. Note that the goal is not to link the gene
with a precise GO code (e.g. “Ahr” and “signal trans-
duction”), but rather the domain from which these
GO codes come (e.g. “Ahr” and “Biological Process”).
This is a significantly simplified version of the annota-
tion task that organism database curators must face,
since the exact GO code need not be identified, and
we are given the relevant genes a priori.

The training data for this task comes from 178 full-
text journal articles as curated in 2002 by the Mouse
Genome Informatics (MGI) database (Blake et al.,
2003). These documents and their associated genes
serve as “positive” examples (i.e. have at least one GO
annotation). We are also provided with 326 full-text
articles that were not selected for GO curation, but for
which genes are associated. These document-gene tu-
ples serve as “negative” examples (i.e. have no GO an-
notation). In total, there are 504 documents and 1,418
document-gene tuples in the training data. Test data
containing 378 documents and 877 document-gene tu-
ples are similarly prepared from articles processed by
MGTI in 2003.

This paper is organized as follows. First, we provide
a fairly detailed description of our system’s architec-
ture and explain how more advanced feature sets are
generated. We then present experimental results on
cross-validated training data, as well as a report on
official task evaluation. Finally, we present our con-
clusions and future directions for this work.



2. System Description

This section describes the architecture of our sys-
tem. There are several key steps involved in taking
a document-gene tuple and predicting GO domain an-
notations. Figure 1 illustrates the overall system. The
following sections describe each step in detail.

2.1 Zoning and Text Preprocessing

First we process the documents, provided by task orga-
nizers in SGML format, into six distinct information-
content zones: title, abstract, introduction,
methods, results, and discussion. Partitioning is
done using keyword heuristics during SGML parsing
(e.g. “discussion,” “conclusion,” and “summary” are
keywords for the discussion zone). We then segment
the text in each zone into paragraphs and sentences
using SGML tags and regular expressions. All other
SGML tags are then stripped away.

Once a document has been zoned and segmented, we
apply a gene name recognition algorithm to each sen-
tence. This step involves taking the gene symbol that
is provided in the tuple, looking it up in a list of known
aliases provided by MGI,! and matching these against
the text using regular expressions that are somewhat
robust to orthographic variants (e.g. allowing “Aox-1”
to match against “Aox I” or “A0X1”). We find that
this simple matching approach is able to retrieve 97%
of all document-gene tuples among positive training
documents, and only 52% of tuples among negative
training documents. Therefore, we treat this step as
a filter on our predictions: documents for which the
associated gene cannot be found are not considered
for GO annotation. Assuming the matching algorithm
behaves comparably on test data, this filter sets an
upper bound of 97% on recall, but effectively prunes
away 48% of potential false positives.

2.2 Feature Vector Encoding

Once the text preprocessing is complete, our system
selects only those sentences where gene name men-
tions were identified. The reasoning for this is two-
fold. First, it reduces the feature space for the machine
learning algorithms, as we only consider the text that
is close to the gene of interest. Second, and perhaps
more importantly, it introduces a unique (d, g) repre-
sentation for a document that may contain multiple
genes. Consider a single article that is disjointly cu-
rated for Molecular Function (MF) of “Magedl,” but
Biological Process (BP) of “Ndn.” By using only sen-
tences that reference each gene, we generate unique

ftp:/ /ftp.informatics.jax.org/pub/reports/

feature vectors and can better distinguish between
them.

From these sentences, we generate six feature vectors
per document (one for each zone). Our baseline sys-
tem employs traditional bag-of-words text classifica-
tion features. In this case, each word that occurs in
a sentence with a mention of the gene is considered
a unique feature (case-insensitive, with stop-words re-
moved). Consider the following sentence, taken from
a caption in the (11694502, Des) training tuple:

“An overlay of desmin and syncoilin im-
munoreactivity confirmed co-localization.”

Our baseline system represents this using features like
word=overlay, word=immunoreactivity, etc. But
perhaps the syntactic pattern “OVERLAY OF X7 refers
to a procedure with some special significance to label-
ing? Perhaps certain keywords, such as “syncoilin,”
have semantic correlation with a particular process,
component, or function? We wish to induce features
that capture such information.

In this paper, we also introduce and investigate two
advanced types of features that were used to encode
the problem. The features described here are syntac-
tic features (equivalence classes of shallow syntactic
patterns) and “informative terms” (n-grams with se-
mantic association with specific GO codes). These
features were automatically induced from the training
corpus plus several external text sources. Section 3.2
describes the experimental impact of including these
features. The following subsections describe how they
are generated and incorporated into the system.

2.2.1 EXTERNAL DATA SOURCES

The task training set of 178 MGI-labeled documents
provided for the task is decidedly small. To remedy
this, we supplement data used for feature induction
with training data released for Task 2 of the 2003
BioCreative text mining challenge.? This provides an
additional 803 documents labeled with GO-related in-
formation as curated by GOA (Camon et al., 2004).

While this corpus may be larger, it still represents rel-
atively few specific GO codes (which we use for infor-
mative term features). Thus, we also use databases
from the GO Consortium website to gather more data
about other organisms. The databases we use include
FlyBase (The FlyBase Consortium, 2003), WormBase
(Harris et al., 2004), SGD (Dolinski et al., 2003), and
TAIR (Huala et al., 2001). They are similar to the

*http:/ /www.mitre.org/public/biocreative/
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Figure 1. A system diagram for the annotation hierarchy task. (1) Documents are partitioned into zones, and sentences

with gene name mentions are identified within each zone.

(2) Feature vectors for each zone are constructed using

the sentences where gene mentions were found. (3) Label predictions for each zone are made by a trained multi-class
Naive Bayes model, and predictions are combined to create a secondary document-level feature vector. (4) Final binary
predictions for each GO domain annotation are made by trained Maximum Entropy models.

MGI curations provided with training data in that
they list document, gene, and GO-related triplets for
many genes belonging to these respective organisms.
We extract the triplets from these databases in cases
where the documents have PUBMED IDs associated
with them. Then we obtain the abstracts for these
documents via a MEDLINE query. We consider these
abstracts to be “weakly labeled” with GO codes be-
cause they are not complete articles, and thus it is
possible that the evidence associating a GO code of
interest to the gene might not be mentioned in the
abstract. However, we hypothesize that if we collect
significant numbers of documents for any GO code,
a large enough fraction will contain this type of evi-
dence, thereby allowing us to induce features for that
GO code.

PUBMED IDs for all BioCreative data and MEDLINE
abstracts are cross-referenced with the TREC test data
to ensure that no feature induction occurs on evalua-
tion text. (Even though our models are not directly
“trained” on these external sources, the feature induc-
tion is still considered part of the training process.)

2.2.2 SYNTACTIC FEATURES

We use syntactic features in an attempt to model
deeper structural information about a sentence, which
may be useful beyond surface-level lexical features.
What we call a syntactic feature is a set of patterns
that are information-theoretically clustered to be in-
dicative of the presence of absence of a GO domain.

To generate these patterns, we use a system called
AutoSlog-TS (Riloff, 1996), which first constructs a
shallow parse of each sentence, then enumerates sim-

ple syntactic patterns for subjects and direct objects
(e.g. “X BINDS TO”, or “TRANSLATION OF X”). The
system is run on the training corpus plus external cor-
pora to generate several thousand such patterns. We
consider patterns that occur fewer than 10 times not
to be useful, and discard them.

We found that treating each pattern as a separate fea-
ture has little predictive impact. Thus, we cluster
patterns together into a set of disjoint features based
on how “purely” they indicate a GO domain. To do
this, we separate documents (training data plus exter-
nal sources) into two sets for each GO domain: the
“support” set (documents which are labeled with this
GO domain), and a “background” set (all other docu-
ments). We then tally the occurrences of each pattern
in the support and background texts. For a given pat-
tern p, let pg be proportion of occurrences of p in the
support set, and pg be the complementary proportion
in the background set. We then rank p using entropy:

Entropy(p) = —pe log(pe) — po log(ps)-

Patterns are then clustered together into features
based on (1) whether they occur in greater propor-
tion in the support/background set, and (2) their en-
tropy ranking. We clustered entropy in increments of
0.1 (chosen empirically). Table 1 provides some sam-
ple patterns and their statistics for two such features.
The pattern “OVERLAY OF X7 is clustered into the
cluster=CC_0.0 feature, as it is indicative of the CC
label with entropy 0.0 (i.e. totally pure). This fea-
ture is assumed to contain syntactic structures that
suggest cell components or experimental methodolo-
gies relating to them. Likewise, “MOVEMENT FROM



| CC @ 0.0 Patterns | CC/Total | Entropy

X INDUCED CURRENTS 24/24 0.000
X INDUCED VESICLES 17/17 0.000
X OVERLAY ASSAYS 11/11 0.000
OVERLAY OF X 11/11 0.000
N-GLYCOSYLATION OF X 10/10 0.000
| BP @ 0.2 Patterns | BP /Total | Entropy |
STARVED X 54/56 0.222
ROLLING ON X 25/26 0.235
DEGREES C AT X 24/25 0.242
PATHWAYS TO X 22/23 0.256
MOVEMENT FROM X 19/20 0.266

Table 1. Sample patterns from two syntactic features. Pat-
terns from the feature at the top indicate CC perfectly (en-
tropy = 0), whereas the patterns below are less strongly
associated with the BP label.

X7 is clustered into the cluster=BP_0.2 feature, as
it indicates the BP label somewhat less strongly, with
entropy 0.266. If any of the patterns in a particular
syntactic feature occurs in the the text for a zone, that
feature is active in the feature vector. This method
generated 41 novel syntactic features.

2.2.3 INFORMATIVE TERM FEATURES

Even though the task description is to label documents
only with GO domains, the specific GO codes are ac-
tually provided with the training data (and the exter-
nal sources). Our “informative term” features indicate
whether or not there is evidence in the text for a partic-
ular GO code lower down in the ontology. We hypoth-
esize that (1) this code-level evidence may help inform
a domain-level decision, and (2) if a domain-labeling
system can be successfully trained, these features can
in turn be useful in making lower level labelings.

To induce informative terms for each GO code, we
again separate documents into support and back-
ground sets for each GO code c¢. Then we tally oc-
currence counts for each term ¢, which is an n-gram of
text (where 1 < n < 3), in both of these sets. These
counts can be used to construct the following x? con-
tingency table:

# occurrences of
term ¢ in code c’s
support text
# occurrences of
other terms in code ¢’s
support text

#t occurrences of

term ¢ in code c’s

background text

# occurrences of
other terms in code ¢’s

background text

Any term t with a x? value greater than 200 (em-

Informative Term

| x* value

syncoilin 11843.04
filaments 1292.96
microtubule 1278.40
cytoskeleton 720.75
cytoskeletal 715.64
microsphere separation 686.48
dead box proteins 455.41
centrosome 451.85
spindle 396.62
actin binding protein 370.91
latently 344.93
kinesin light chains 332.90
myoblasts and myotubes 296.27
severing 236.60
punctate cytoplasmic pattern 221.93

Table 2. Sample informative terms and their associated x>
values generated for the code GO:0005856 (cytoskeleton).
A high score indicates that the term is likely correlated
with documents discussing the cytoskeleton.

pirically chosen threshold) is added to the list of in-
formative terms for GO code ¢. Table 2 provides
some sample informative terms generated for the code
G0:0005856 (cytoskeleton, in the CC domain). Simi-
lar to syntactic features, if any of these terms occurs
in zone text selected for feature vector encoding, the
infterm=cytoskeleton feature is active for that fea-
ture vector. This method generated novel informative
term features for 2,739 such GO codes.

2.3 Zomne-level Classification

Feature vectors for each zone are now labeled by a
multi-class, multinomial Naive Bayes model. Naive
Bayes is a well-established machine learning algorithm
that has been shown to work well on high-dimensional
text classification problems such as this. The model
uses Bayes’ rule to calculate the probability of label [
given evidence in document d. Note that we use the
term “document d” here to describe a zone within a
document, since classification at this stage is done at
the zone level:

P)P(d|l)
In this framework, P(l) is simply the proportion of
training documents that were assigned label [. Since
P(d) is held constant for our purposes (it is the same
for all labels since the document doesn’t change), we
must only worry about computing P(d|l).



We use the multinomial Bayesian event model in the
fashion of Lewis & Gale (1994). Here we view a doc-
ument as a series of features, drawn from some fea-
ture set. Let C; be the raw count of the number of
times feature f; occurs in document d. The multino-
mial event probability for our Naive Bayes classifier is
then:

P = Py T f"’

This is a multi-class model, trained to provide prob-
abilities for four labels: BP, CC, MF, and X (no do-
main). Note, however, that the three GO domain la-
bels are not mutually exclusive. To deal with this, a
training tuple which is labeled with more than one do-
main is repeated during training. Since we are using a,
Naive Bayes model, raw counts for features are simply
incremented multiple times, once under each label.

The output probabilities of this model are then com-
bined to construct a secondary feature vector. This
document-level vector uses 24 real-valued features (4
classes X 6 zones) which have corresponding seman-
tics (e.g. “the probability of labeling the title with
BP”).

2.4 Document-level Classification

At this stage, we have posterior probabilities for each
of four labels assigned to the six different zones in a
document. This, in and of itself, is sufficient informa-
tion to make GO domain predictions. However, we
consider the possibilities that (1) evidence for one la-
bel may influence the likelihood of annotation for an-
other, and (2) some zones may be more informative
for document-level annotation than others.

Thus, the document-level feature vectors we prepare
are finally labeled by three binary classifiers, each
trained to annotate a different GO domain. In this
case, a “positive” example is a document-level vector
describing a tuple annotated with the corresponding
GO domain in the training data, and a “negative” ex-
ample describes a tuple annotated with either some
other GO domain, or nothing at all.

These secondary document-level classifiers are Maxi-
mum Entropy models, for which the probability of a
label [ for document-level vector d is defined as:

P(l|d) = Zid eXp(Z Aifi(d, 1)),

where Z; is a normalizing factor over all possible label-
ings of d (to ensure a proper probability in the range

[0,1]), and each ); is a real-valued weight assigned to
feature f;.

Maximum Entropy is attractive here because it is a
discriminative algorithm than does not make the con-
ditional independence assumptions that Naive Bayes
does. It also assigns positive or negative weights to
real-valued inputs (in this case posterior probabilities
from the Naive Bayes model), which can be inter-
preted as positive or negative evidence.? There are
several nonlinear optimization algorithms than can be
employed to find the globally optimal weight setting
in training. Our system uses a quasi-Newton method
called L-BFGS.

3. Experimentation and Development

We developed our system by conducting various 4-fold
cross-validation experiments on the training data. The
main system was implemented mostly in Java using,
in part, classes from the MALLET library (McCal-
lum, 2002). This library includes implementations of
multinomial Naive Bayes and Maximum Entropy clas-
sification models. Evaluation for this task uses three

criteria: Tp
Recall = m,
TP
Precision — —~+
recision TP+ FP’ and

2 x Recall x Precision
F =

Recall + Precision

where T'P means true positives, F'P means false posi-
tives, F'N means false negatives, and F} is the inverse
harmonic mean of precision and recall, a summary
statistic to account for the inherent trade-off between
them.

3.1 Exploiting Zone Information

First of all, we hypothesized that using zone informa-
tion would be generally useful in making document-
level annotations where the location of relevant tex-
tual content is unknown. Our first step was to in-
vestigate the validity of this idea. Figure 2 compares
recall-precision curves for three systems: (1) a Naive
Bayes model trained on words from the entire docu-
ment and ranked by posterior probability, (2) a simi-
lar model divided into zones (each zone submitting a
“vote” for classification weighted by its posterior prob-
ability), and (3) the two-tier classification described in
Section 2. From this figure we can see that moving

3We also experimented with Support Vector Machines
for the document-level model, which perform comparably.
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Figure 2. Recall-precision curves comparing use of zoning
information in various ways during system development
(using 4-fold cross-validation).
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Figure 3. A visualization of weights assigned by each
document-level Maximum Entropy model to the outputs
of the zone-level Naive Bayes model. Lighter cells indicate
positive weight, darker cells indicate negative weight, and
grey cells have weight close to 0.

from a full-document classification model to a simple
vote zoning system has a slight impact: sacrificing pre-
cision at low levels of recall, but maintaining higher
precision at high levels of recall. However, moving on
to the two-tier system significantly improves precision
across the whole recall spectrum.

Figure 3 is a visualization of the weights assigned by
each document-level Maximum Entropy model to the
posterior probabilities of each zone-level labeling. We
can see that a zone-level CC label is generally a good
predictor of a document-level CC label (likewise for
BP and MF), and that X (no annotation) weights are
generally negative. Moreover, we see stronger weights
for the title and introduction zones, indicating
highly predictive information in these text regions,
while abstract and discussion seem surprisingly un-
informative.

T
all features
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Figure 4. Recall-precision curves comparing use of different
feature sets during system development (using 4-fold cross-
validation).

3.2 Varying the Feature Set

We also wanted to evaluate the impact of using dif-
ferent subsets of the advanced features described in
section 2.2 to extend our baseline system. Figure 4
compares recall-precision curves for the system using
various features sets. In general, we see that both
syntactic features and informative terms improve pre-
cision for a given level of recall, and combined they
show even more improvement. This turns out to hold
true for official track evaluation data as well.

4. Official Evaluation Results

Using the results obtained during development, we se-
lect the predictive threshold for each Maximum En-
tropy model that optimizes F for that GO domain on
the 4-fold cross-validated training data. Models are
then re-trained on the entire training corpus and ap-
plied to the unseen test corpus for official evaluation.

Table 4 illustrates how the four runs from our system,
each using a different subset of features, perform in the
official task evaluation. We also report minimum, me-
dian, and maximum scores for all track participants.
Our top two systems surpass median recall, our top
three surpass median precision, and all four systems
achieve a substantially higher F} than the median for
the track. (Our best system comes close to the over-
all maximum). Figure 5 presents the results of offi-
cial runs, for all track participants, in recall-precision
space.



System description | R P F |

words only (baseline) 55.96 39.35 46.21
words, syntactic features | 55.96 42.55 48.34
words, informative terms | 62.63 42.18 50.41
all features 62.02 43.86 51.38
track min 13.33  16.92 14.92
track median 60.00 41.74 35.84
track max 100.00 60.14 56.11

Table 3. Comparison of our system using four different fea-
ture sets on official TREC evaluation data. Also presented
are the minimum, median, and maximum scores for each
metric for all task participants.

5. Conclusions and Future Work

The performance of our two-tier system for the TREC
Annotation Hierarchy task seems very promising. The
major goals of this study were to investigate the value
of (1) zone information, and (2) advanced features not
often used in such text classification tasks (specifically
syntactic features and GO-specific informative terms).
This early work suggests that both facets can offer
substantial gains over our baseline approach for this
problem.

However, because the present work was greatly con-
strained by time (all work was done in approximately
six weeks), there are many things we were unable to in-
vestigate. Among other things, the single Naive Bayes
model = multiple Maximum Entropy model architec-
ture here is a bit theoretically unfounded. We did
experiment using with unique Naive Bayes models for
each zone with suboptimal performance (though this
may be due to data sparsity). We also used Maximum
Entropy models for zone-level classification, but expe-
rienced severe overfitting. In short, we were able to get
the present architecture to work empirically within the
task time line, but would like to try more variants of
this two-tier architecture.

Exploiting zone information—at least as it is presented
and used here—is quite helpful. However, our notion
of “zone” and the methods by which we partition a
document into them are necessarily ad-hoc. It would
be interesting to see if incorporating a finer grained,
more rhetorical zone ontology (Mizuta & Collier, 2004)
is more helpful. We are currently investigating ma-
chine learning approaches to automate this kind of
zoning, and plan to incorporate this into the Anno-
tation Hierarchy task as well.

The patterns we generate with AutoSlog-TS are sim-
ple and based on deterministic parses more suited to
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Figure 5. Graphical comparison in recall-precision space of
our systems vs. all other system runs submitted for official
task evaluation.

general English than the vernacular of biomedical jour-
nals. The system also generates all arbitrary pat-
terns, rather than those that extract genes and pro-
teins specifically. We would like to see if refining the
parsing, pattern generation and rule clustering can
lead to even more useful syntactic features. The in-
formative term features presented here are generated
similar to previous work (Ray & Craven, 2005), but
they are used quite differently. We consider the occur-
rence of an informative term to be a multinomial event
(similar to word features). However, much richer in-
formation is available to us: textual distance from the
term to the gene of interest, the x? confidence of that
particular term, etc. It is our belief that this sort of
information would be useful to the model as well.

Finally, curation and annotation tasks of this nature
seem ideal for research in active learning. We intend
to investigate algorithms that can learn to make pre-
dictions at the zone or passage level (rather than the
document level) and garner feedback from human or-
acles.
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