Looking at Limits and Tradeoffs: Sabir Research at
TREC 2005

Chris Buckley
Sabir Research, Inc.
cabuckley@sabir.com

1 Introduction

Sabir Research participated in TREC-2005 in the Terabyte, Robust, and document retrieval
part of the Question Answering tracks. This writeup focuses on the Robust track, and in
particular on a “routing” run that took advantage of relevance judgements for the topics
on the old trec V45 collection to construct queries for the new Aquaint collection. The
smart_retro tool is described which given a query and the set of relevant documents, con-
structs an optimally weighted version of the query. smart_retro is also used to examine the
differences in difficulty between the V45 and Aquaint collections (the Aquaint collection is
considerably easier).

The final part of the paper describes the compression algorithms and tradeoffs that were
used in both TREC 2004 and 2005. These were presented in the TREC 2004 speaker session,
but never formally written up.

The hardware used for all runs was a single commodity PC with a total cost of $1600:
$540 for a Dell PC, $520 for four 250 GByte disks, and $500 to bring the memory up to 2.5
GBytes.

The information retrieval software used was the research version of SMART 15.0. SMART
was originally developed in the early 1960’s by Gerard Salton and since then has continued
to be a leading research information retrieval tool. It continues to use a statistical vector
space model, with stemming, stop words, weighting, inner product similarity function, and
ranked retrieval.

2 Robust

The 2005 Robust track topics consisted of 50 topics which had previously been run on the
V45 documents (with Congressional Record documents removed). These 50 topics had been
categorized as difficult topics on V45 by NIST.

I ran standard SMART retrieval runs (ltu query weights, Lnu document weights) includ-
ing straight retrieval with no expansion, and blind feedback runs where terms occurring in

Table 1: Official Robust MAP Results

Runname Query terms MAP
sab05rot1 title 0.180
sab05rot2 title and blind fdbk exp 0.229
sab05rod1 description 0.184
sab0brod?2 desc and blind fdbk exp 0.229
sab0broal all topic 0.230
sab05roa2 all and blind fdbk exp 0.255
sab0brorl | 250 terms from V45 rel docs | 0.262

the top documents of an initial retrieval are assumed to be useful and automatically added
to the query. These approaches have been described multiple times in the past and are not
further discussed here.

Overall results are given in Table 1 and were mediocre. Runs using only title words
and runs using only description words performed about the same; using the entire topic did
better. Blind feedback helped significantly for all three runs. Analysis revealed a bug in the
blind feedback procedure that had a small effect (a mis-set parameter inadvertently combined
the similarity of the initial retrieval and final retrieval), and it is also clear that I need to
revisit document length normalization: there were definite biases in favor of retrieving long
documents. Correcting these biases here gives roughly a 10% improvement, but further work
is needed. In any case, blind feedback expansion by itself is no longer competitive with other
expansion techniques (eg web expansion); the runs were made because they were simple to
do and provide a reasonable base case to start future work on.

Part of the robust track effort is to predict the difficulty of the topics: rank the 50 topics
in order of expected MAP score. The approach taken in both TREC 2004 and 2005 is the use
of the measure topdoc_map (formerly known as anchormap) as described in SIGIR 2004 [1].
In this application, topdoc_map takes the top 30 documents of the initial retrieval run, and
measures whether they stay near the top of the retrieved list after blind feedback is done. The
algorithm used is that of the normal MAP measure, but with the top 30 documents of the
initial retrieval considered the relevant documents for MAP. Note that no actual relevance
information is used at all.

The idea is that if the blind feedback expansion is stable and leaves the initial documents
near the top of the final ranked list, then both the initial retrieval and the expanded retrieval
have been able to consistently capture some conceptual idea, hopefully that of the topic, and
performance should be good. On the other hand, if the expanded retrieval documents have
diverged significantly from the initial documents, then even the initial retrieval probably
didn’t capture the notion of the topic, much less the final retrieval being reasonable.

Again, results of topdoc_map for prediction are mediocre. At this time no further analysis
of it has been done, but I feel there is still strong potential for prediction here (perhaps in
combination with con_map described later).

2.1 Robust Routing

The Robust track this year offered a unique opportunity to look at the effect of running
the old queries/topics on a new document collection that was not the intended target of the
original topics. The old V45 and new Aquaint documents are similar in many important
ways, such as being primarily newswire, but differ in others such as the time-span covered,
and focus of the newswire sources (the V45 sources all had different emphases, while the
Aquaint sources were chosen to have overlapping emphases).

This setup allows the possibility to have what was called a “human information” run:
use the known relevant documents on V45 to fashion a query to run on Aquaint. This is
very similar to “routing” runs in early TRECs, except there was typically more continuity /
similarity of collection back then. The question is then how to fashion the query.

2.2 Robust Routing smart_retro

I've been playing around with my smart_retro tool for several years now. smart_retro at-
tempts to find the optimal weights for a given query retrospectively, given the relevant doc-
uments for the query, a document indexing for the collection, and use of the inner product
similarity function. It basically is a highly beefed up DFO (Dynamic Feedback Optimization)
algorithm as described in SIGIR 1995 [2]. It’s a hill climbing approach that tries increasing
and decreasing query weights in turn and seeing whether MAP increases. It works quite well
- given enough terms from relevant documents it can achieve a MAP value of .98 (on the
125 odd topics of V45). It also seems to be very robust in practice: on much shorter queries
such as title or description queries, changing the starting conditions 25 times by randomly
permuting either order or initial weights on the input query improves MAP by only 1% over
all the topics. It was used as an investigative tool in the RIA workshop [4].

For this particular application, for each query I took the the 250 terms that occurred
most frequently in relevant documents for that query in V45. This generally included almost
every “near-stopword” in the collection (which is why as many as 250 terms were used), but
in general did not include those terms which occurred in only 1 relevant document (except
for a couple of topics with very few relevant documents). These terms were then weighted
equally (this is discussed later), and fed into smart_retro. After about 3 minutes per topic,
smart_retro would output optimally weighted (for V45) queries. These queries were then run
on a version of Aquaint indexed with the same dictionary as was used for V45. The results
were submitted as the sab0brorl official run.

2.3 Robust Routing Results and Analysis

Table 1 shows that the optimized query gives a MAP score of 0.262 when run on Aquaint,
just a bit better than using blind feedback with no relevance information (0.255). What’s
happening?

Looking at the topic by topic results, the routing run gives the best submitted result of
any run on 9 out of the 50 topics. However, it also does miserably on a large number of very

easy topics. For example, on Topic 325 it gets a MAP of .054, while the best run of anybody
is .723, and simply running the full topic with no expansion or relevance information gives
.543 (sab05roal run). Similarly, on Topic 433, my routing run has a MAP of .0002, the best
run is .798, and sabO5roal gets .372.

The problem is obviously overfitting, tuning the query too specifically to the relevant
documents of V45. But that was expected to be the problem going in, and steps were taken
to minimize the effect of overtuning (such as considering the most frequently occurring
terms in the relevant documents, and not all the terms). However, looking at the queries, it
becomes clear that a major problem was not over-fitting as much as a peculiar under-fitting,
or under-specification.

Running the 50 optimized queries on V45 evaluate to an extremely high MAP score of
0.8995. Obviously a large number of queries had perfect, or near perfect retrieval. That is
good, except it ignores how easily that perfection was achieved. In Topic 433 (mentioned
earlier), for example, the optimization algorithm started with 250 equally weighted terms,
and in its first pass dropped 70 terms to weight 0.0. That happened to be sufficient to give
perfect retrieval - the 13 relevant documents were all retrieved first, so the algorithm couldn’t
improve any more and stopped. The resulting query consisted of 180 equally weighted terms,
most of which were quite high frequency (about half occurring in at least 25,000 documents,
and only 10 occurring in less than 240 documents). The topic was too easy.

The same effect happened on a good number of topics, though not quite as blatently:
there were very large numbers of equally weighted terms indicating that an optimum query
was decided without the need to distinguish between those terms.

One quick fix for this problem is to try and start with reasonable query weights before
the optimization. Giving the input query terms standard Rocchio weights indeed helps a
bit, giving .2878. But it doesn’t solve the problem. For example, performance on Topic 433
is still only 0.0019. Some other approach is needed to avoid having the problem of too much
good information to distinguish between. My current thought is simply to start with the
original terms in the topic, and, one at a time, add the most frequently occurring terms in
the relevant documents until the optimization algorithm can get some target score like .90
MAP.

Overall, the question of how to construct a good query that doesn’t overfit the relevant
documents is an important one, occurring in tasks such as filtering, routing, relevance feed-
back, and blind feedback. The DFO /smart_retro optimization here works very well for some
topics, but fails on other easy topics and needs some more work.

2.4 Robust Collection Comparison

One interesting question in the Robust track is “What are the differences in retrieval per-
formance caused by the change in document collection?” smart_retro can be used to mea-
sure the difficulty of the topics in a reasonably system independent way. smart_retro will
give results independent of query weighting approaches (the big difference between bag-
of-words systems), but document weighting (especially length normalization) and text to-
kenization/stemming will have a slight effect, and an inner product similarity function is

Table 2: Robust V45 vs Aquaint MAP Comparisons

Coll title Description
Itu.Lnt | smart_retro || ltu.Lnt | smart_retro

V45 0.1030 0.1421 0.1037 0.2314

Aquaint | 0.1976 0.2344 0.1797 0.3310

assumed.

Table 2 gives the MAP results on the two collections of running both smart_retro,
and a standard SMART inner product run (using a different document length normalization
method than was used for the official runs). All runs use only either title words or description
words, with no expansion.

The Aquaint collection is clearly “easier” than V45 in some sense. Well-weighted title
(or description) words do a much better job at retrieving relevant documents on Aquaint.
There are several possible explanations:

1. Aquaint is a more standardized newswire then V45. FBIS in particular in V45 is
stranger. Vocabulary usage could be more standardized in Aquaint simply because of
passage of time.

2. (Related to above) V45 might have a wider range of articles than Aquaint. Thus title
words might be used in more non-relevant contexts in V45.

3. MAP has a tendency to give higher scores if it has more relevant documents, and
Aquaint has more relevant documents. But our 2004 Bpref paper [3] suggests this
effect is much smaller than the 40-70% increase here.

4. Aquaint is larger than V45 (twice as many documents), and could easily effectively be
considered much larger. The varied subject areas of the V45 subcollections meant that
many topics were restricted to one subcollection for relevant documents. The larger
collection with judgement pool size remaining the same might mean that the obviously
relevant documents may be dominating the judgement pool.

5. Our retrieval systems could be becoming more standardized as they improve. We could
all be finding the same easier relevant documents (those that contain the title words),
and the harder relevant documents may not be entering the judgement pool at all.

The last two possibilities are worrisome. It is the case that the judgement pool included
a couple of runs like my routing run which used human information, and the HARD track
runs, with a limited user interaction, also contributed to the pool. So it is not just BM25
and related automatic runs that supplied documents to the pool. However, I think we need
to watch out for these possibilities in other TREC tracks such as the Terabyte track.

Table 3: Official Terabyte MAP Results

Runname | Query terms | MAP | Bpref | total time (sec)
sab05tbt title only 0.1670 | 0.2437 28.0
sab0btball all topic 0.2087 | 0.2786 135.6
sab0btbas | all, stop early | 0.2088 | 0.2791 75.7
sabtb05ef1 title(all) 0.0411 | 0.0410 10198.9

Further post-TREC investigation shows that out of the 2750 documents the sabO5rorl
run that were judged in the final judging pool (the top 55 documents for 50 topics), 405
unique relevant documents were found; i.e., the run was the only run to find those relevant
documents in the top 55 documents. That’s an unprecedently large number of unique relevant
documents for a run that did not have a human oracle in the loop judging document relevance.
Thus a routing run that described the learning set relevant documents instead of the topic,
found a very different subset of the relevant documents than the other topic-based runs.
That would seem to indicate that a substantial bias exists in the judgement pool.

3 Question Answering Track

I submitted one very basic run to the document retrieval subtask of the QA track. This was
a standard SMART ltu.Lnu inner prodcut run with no expansion. The only thing unusual
with the processing was that queries were first translated to standard TREC ad hoc query
format, and all previous questions in the dialog were included. The run evaluated to a MAP
score of 0.3197, but I've done no analysis of the results.

4 Terabyte Track

I participated in the Terabyte track with pretty much the same system and indexing as was
used in the TREC 2004 Terabyte track. Since I didn’t describe the system at that time, I
will discuss the compression algorithms and hybrid dictionary approach used after I discuss
the results.

Table 3 gives the MAP and Bpref scores, plus the total retrieval time for all topics, for
the 3 ad hoc runs plus the single efficiency run. Note that the efficiency run is evaluated
over 20 documents instead of 1000, and the retrieval time is over 50,000 topics instead of 50.

All runs were standard SMART ltu.Lnu runs with no query expansion, run on the nibble
compressed inverted file (nibble compression described below). The only semi-interesting
run from a retrieval standpoint is the “stop early” run, which ran on the full terabyte topics,
but stopped retrieval as soon as the top document was guaranteed to be retrieved within
the top 10 documents. This run was almost twice as fast as if the retrieval had gone to
completion, but at no cost to retrieval effectiveness (even a very slight insignificant gain).

4.1 Terabyte: Hybrid Dictionary

The major change in basic indexing for the Terabyte Track was in the dictionary, mapping
strings to internal concept numbers. Given the size of the collection and the uncertain
nature of the documents involved (for example, many documents of binary data instead
of text), it was too difficult to treat all terms as first class objects in SMART. Instead, a
hybrid dictionary approach was used. There was an 800,000 entry fixed dictionary of words
and stems; if a token in a document occurred in the dictionary then the corresponding
concept number (between 1 and 1,000,000) of the token’s stem was assigned. If the token
did not occur in the fixed dictionary, then a hash value for the token was computed, between
1,000,000 and 3,000,000, and assigned.

The major disadvantage of the hybrid dictionary is that multiple different tokens that
did not occur in the fixed dictionary could be assigned the same concept number. Thus
a user query using one of these tokens might retrieve additional unwanted documents due
to these false matches. In practice the chance that a random document containing a false
match would also match the rest of the user’s query is very small. In addition, the more
advanced search modules of SMART re-index the top documents, and can detect the false
match.

The advantages of the hybrid dictionary approach are that it is fast, and every token
can still get indexed. Thus there is no reason to filter out foreign language or binary data.
Indeed, if a user has a binary data chunk from some source, they can use that chunk as a
query and find other occurrences of that binary chunk in the collection.

4.2 Terabyte: Compression

The major effort in indexing the Terabyte collection was in compressing inverted lists in the
collection index. The goal of index compression is to reduce the amount of space needed to
store inverted lists, at a cost in indexing and possibly a cost in retrieval time.

A typical inverted list gives the documents which contain a given term along with the
weight of the term in that document. Ignoring the weight for now, the list for a common
term might look like (2, 5,7, 13, ...,2300001, 2300004, 2300008, 2300009)

The numbers in that list can be represented in skip-list form as the differences between
successive entries, rather than the entries: (2,3,2,6,...,3,4,1)

Just as it takes less room on the page to write out the list, it can take many fewer bytes
to store a list of 10,000,000 small numbers rather than 10,000,000 large numbers. There have
been numerous papers on methods to encode these long lists of small numbers; the reader is
referred to Managing Gigabytes by Moffat et al[6] for a good overview.

Silvestri et al in SIGIR 2004[5] had a very nice approach where they clustered the collec-
tion and then renumbered it. Documents which shared lots of common terms were therefore
given very close document numbers and therefore could be represented as very small differ-
ences in the term skip-lists.

The major fault of that approach is that it treats all terms and documents equally. It’s
not greedy enough. Zipf’s law states that most of the occurrences in the inverted lists will

come from the very common terms. Renumbering is a good idea, but a more greedy approach
would be to guarantee the longest lists will be compressed the most.

4.2.1 Adjacent Docid Renumbering

The goal of Adjacent Docid Renumbering is to maximize the number of adjacent document
numbers (a difference of 1) in the inverted lists. If skip-lists have long sequences of 1’s, then
they should be easy to compress.

The approach I used is to be as greedy as possible. Start with the longest inverted list,
make sure as many entries in that skip-list are 1 as possible, then consider the next longest
inverted list, and continue until all inverted lists are done.

Represent the longest inverted list as a bit-vector in the total list of documents

010010100000101010011100100...0110100010101001100100011

Renumber (move) all the documents represented with a 1 to the beginning of the list,
forming two buckets. The first bucket will contain all documents with the longest list term
present, and the second will contain those documents without that term. A skip list made
now for the longest list term will contain all 1’s.

111111111..1111111111111-000000000..0000000000000

Take the next longest inverted list. Do the same thing within each of the two buckets,
forming four buckets.

1111..111111_0000..00000__.00000000..000_11111..111

Since documents are only moved within the already formed buckets, a document move-
ment does not alter the number of adjacent docids in any preceding inverted list. The longest
list term will always have a skip-list of all 1’s.

Note that when a bucket is split into two parts, alternating between putting the 1’s first
or the 0’s first may mean longer sequences of 0’s or 1’s.

Continue splitting buckets until all inverted lists of length greater than 2 have been
considered. The final renumbering has now been done. and each docid can be mapped to
their final values.

The actual implementation within SMART does not actually change the docid assigned
to any document. Instead the mapping of docids is used to create the compressed inverted
index, and after inverted file retrieval the compressed docids are re-mapped out to their
original values. This allows an overall simpler system design for dynamic collections.

The implementation of Adjacent Docid Renumbering is a bit more complicated than the
conceptual algorithm above. If after the first 20 inverted lists, there are 22 buckets formed,
it is quite inefficient to go through the entire 21%¢ inverted list once for each bucket. Thus
the actual algorithm iterates over the inverted list, and splits the bucket that each inverted
list entry occurs in.

The final implementation was reasonably efficient. It took 6 clock hours to construct the
docid map (and its inverse). The running time in practice is dominated by the time needed
to sort each inverted list.

O(NlogN + KlogK + Y1k (|kllog k|))

where K is the number of inverted lists, IV is the number of terms, and |k| is the number
of terms in inverted list k.

This greedy renumbering scheme worked amazingly well. There were 4.3 billion postings
in the inverted index for the Terabyte Collection. After Adjacent Docid Renumbering, 2.96
billion postings were adjacent (skip-list value of 1).

I tried several attempts at further optimizing the number of 1’s. One to two percent
can be gained in compression by instead of using the next longest list as the next bucket
splitter, use the list with the most docids in common with the current list. The gain was
more substantial on smaller versions of the collection, but was more marginal on the full
collection, and almost doubled the running time.

4.2.2 Compressing After Adjacent Document Renumbering

There are more possibilities for compression algorithms when over 2/3 of the skip-list entries
are 1. I tried two major variants:

1. Multiple custom scheme: Try 15 different compression schemes (each optimized for a
different type of skip-list) and choose the best on a per list basis.

2. Nibble scheme: All encodings were on a half-byte (nibble) boundary for efficiency.

The multiple custom scheme was designed for optimal compression, at a cost in indexing
time and retrieval time. Each compressed inverted list contained a 4 bit header indicating
which of the 15 compression methods was used for this list, followed by up to 52 bits giving
parameters for that particular method. Figure 1 gives a sample complicated compression
method designed for long lists with broken sequences of 1’s. Using that scheme, conceivably
the next 256 docid entries in an inverted list could be represented by one bit: if the fifth
choice out of the eight is given the prefix of zero 0’s, and the next 256 entries in the skip-list
are all 1.

The nibble scheme was designed to be more efficient at the cost of less compression.
Arbitrary bit-by-bit operations are expensive on PCs. It’s much more efficient to get and
operate on entire bytes (8 bits). The nibble is a compromise; you get a byte at a time but
operate on one of the first half, or the second half, or the entire byte. Figure 2 describes the
nibble scheme. All encodings start and end on a nibble boundary so it is considerably faster
to both compress and uncompress.

In addition to the document numbers, compressible by one of the two above schemes,
the document weights also have to be compressed in the inverted lists. Since the SMART
architecture allows for reasonably arbitrary weights, the weight compression scheme has to
be fairly general, and can’t be optimized strongly. The approach used here is to store the
minimum and maximum weights in a given inverted list as two 4-byte floating point numbers
at the start of the compressed list. Then each document weight is stored in some fixed N bits
per weight linearly scaled between these minimum and maximum weights. If N is 6, then
there are 64 possible values for document weights in this list. If N is 4, then there are 16.
If N is too low, then there is not sufficient power to distinguish between document weights

Each compressed entry consists of a prefix giving 8 choices describing the entry, and possibly
a following docid:

Next docid has a skip-list entry of 1.

Next 4 docids have a skip-list entry of 1.

Next 16 docids have a skip-list entry of 1.

Next 64 docids have a skip-list entry of 1.

Next 256 docids have a skip-list entry of 1.

Next docid is represented in 1threshl bits.

Next docid is represented in the following 1thresh2 bits.

Next docid is represented in the following ithresh3 bits.

The prefix is a sequence of zero to seven 0’s followed by a one (except after seven 0’s). The
initial parameter bits consists of three 5-bit numbers giving the threshl, thresh2 and thresh3
values, plus seven 3-bit numbers giving the prefix for each of the first 7 choices above. The
threshholds and the prefixes are optimized for representing this inverted list.

Figure 1: Sample complex compression scheme (OneOctDyn)

FEach compressed entry consists of a nibble giving 16 entry formats, possibly followed by a
docid. Eight format choices give a number of sequential skip-list entries of 1 being repre-
sented (1,2,4,8,16,64,512,4096). Eight format choices give the number of nibbles taken by
the following docid (1-8). It is assumed all renumbered docids can be represented in 32 bits.
There are no parameters in the nibble scheme.

Figure 2: Nibble Scheme

Table 4: Compression Tradeoffs

Compression Retrieval
Size | Time | Time(Cold) | CPU Time | Page Faults | BPref
(*10e9) | (Sec) (Sec/q) (Sec/q) (4K Pages)

None 32.37 0 7.54 1.68 3,649,523 206
Full (6bit wts) 5.07 27431 2.61 1.73 441,196 .206
Full (4bit wts) 4.00 | 34955 2.61 1.69 326,963 203
Nibble 4.40 13724 1.99 1.18 357,463 203
None(Title) 32.37 0 1.62 0.36 452,471 151
Nibble(Title) 4.40 13724 0.32 0.27 58,255 147

and retrieval will suffer. If the nibble scheme of compressing docids is used, the current
implementation, which stores docids and their weights together for efficiency reasons, must
use a value of N=4.

Table 4 gives both indexing and retrieval figures for the various compression schemes.
The first four lines compare four compression schemes (No compression, Full compression
with 6 bit weights, Full compression with 4 bit weights, and Nibble compression with 4 bit
weights), run on long topics. The last two lines give two compression schemes on very short
topics (title only).

The second column indicates the amount of compression. The full compression, unsur-
prisingly, does the best. On average it takes 3.4 bits per docid. One interesting fact not
in the table is that the 15 compression schemes comprising the full compression only do
about 5% better than the best single scheme (the OneOctDyn scheme described previously).
However, as the collection changes size, the 5% difference remains about the same, but the
best single scheme changes. OneOctDyn is no longer optimal on one twentieth sized subset
of the Terabyte collection. So the full compression scheme is more general even though single
schemes may do well enough on a particular collection.

In practice, the nibble scheme is fast and compresses enough to be useful in most general
applications. It’s been used in several internal investigations. Note that Table 4 shows that
the CPU time using the nibble approach is considerably faster than the CPU time using no
compression whatsoever. Part of that appears to be the effect of memory cache, especially
keeping the partial accumulation sums of the standard inverted search algorithm in the
cache. The long inverted lists with many adjacent docids in a row means the same cache line
containing partial sums will get hit multiple times in a row without having to go back and
forth to main memory. We do not get that savings with the no-compression search, or in
the nibble search if we translate back from the document renumbering to the original docids
before we do the partial sum accumulation

5

Conclusion

Sabir Research participated in a number of tracks in TREC 2005. The major points described
here that might be of interest to the wider IR community are

e The Robust Track routing run sabO5rorl which worked extremely well on some topics
and quite poorly on others due to at least two different sorts of over-fitting.

e sab05rorl also found a large number of relevant documents in its top 55 ranks that no
other run found. That suggests a possibility of bias in the document judgement pool
due to the size of the collection.

e The Sabir Research Terabyte Track runs were fast, but only mediocre in effectiveness.
The efficiency topics took about 0.2 seconds per topic.

e A hybrid dictionary was used for the Terabyte indexing in both 2004 and 2005, which
indexed all terms (except stop words) in all documents, including binary documents.
It was fast and worked well.

e A new compression algorithm was used in 2004 and 2005 that compresses docids better
than previous algorithms. It does a very aggressive “Adjacent Document Renumber-
ing” to get as many entries to be 1 as possible in the inverted file skip-lists, and then
compresses these '1’s effectively. After renumbering the Terabyte collection, over 68%
of the skip list entries are ’1’.

e Search on the compressed inverted file was much faster in elapsed time, and even
considerably faster in pure CPU time than on the original inverted lists.

References

1]

C. Buckley. Topic prediction based on comparative retrieval rankings. In K. Jarvelin,
J. Allan, P. Bruza, and M. Sanderson, editors, Proceedings of the 27th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 506-507, 2004.

C. Buckley and G. Salton. Optimization of relevance feedback weights. In E. Fox,
P. Ingwersen, and R. Fidel, editors, Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 351—
357, 1995.

C. Buckley and E. Voorhees. Retrieval evaluation with incomplete information. In
K. Jarvelin, J. Allan, P. Bruza, and M. Sanderson, editors, Proceedings of the 27th An-
nual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 25-32, 2004.

[4] Chris Buckley and Donna Harman. Reliable information access final workshop report.
ARDA Northeast Regional Research Center Technical Report, 2004.

[5] F. Silvestri, S. Orlando, and R. Perego. Assigning identifiers to documents to enhance the
clustering property of fulltext indexes. In K. Jarvelin, J. Allan, P. Bruza, and M. Sander-
son, editors, Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 305-312, 2004.

(6] 1. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes - Compressing and Indexing
Documents and Images, Second Edition. Morgan Kaufmann Publishing, 1999.

