DalTREC 2006 QA System Jellyfish: Regular
Expressions Mark-and-Match Approach to
Question Answering

Vlado Keselj Tony Abou-Assaleh
Nick Cercone
Faculty of Computer Science
Dalhousie University, Halifax, Canada
{vlado,taa,nick}@cs.dal.ca

24 October 2006

Abstract

We present a question-answering system Jellyfish. Our approach is
based on marking and matching steps that are implemented using the
methodology of cascaded regular-expression rewriting. We present the
system architecture and evaluate the system using the TREC 2004, 2005,
and 2006 datasets. TREC 2004 was used as a training dataset, while
TREC 2005 and TREC 2006 were used as testing dataset. The robustness
of our approach is demonstrated in the results.

1 Introduction

Previous work has explored the application of several approaches to question an-
swering in the overlapping area of unification-based and stochastic NLP (Natural
Language Processing) techniques [5, 1]. Two novel methods that were explored
relied on the notions of modularity and just-in-time sub-grammar extraction.

One of the learned lessons of the previous experiments is that the regular
expression (RegExp) substitutions are a very succinct, efficient, maintainable,
and scalable method to model many NL subtasks of the QA task. This is
also observed in the context of lexical source-code transformations of arbitrary
programming languages [2], where RegExp substitutions are an alternative to
manipulating the abstract syntax tree, and proved to be more robust in the face
of missing header files, errors, usage of macros, templates, and other embedded
programming language constructs.

We employ RegExp rewriting as a primary technique in our question-answering
(QA) system Jellyfish. We use RegExpmatching and rewriting at various stages
of the system, whose architecture is described in section 3.

We evaluate our system using the datasets from TREC 2004, TREC 2005,
and TREC 2006. Our system is developed with respect to the TREC 2004
dataset, which acts as a training dataset. The TREC 2005 and TREC 2006
datasets are used for testing.

Our goal is to apply a unification-based approach as a high-level answer-
extraction step on top of the low-level RegExp processing.

2 Regular Expression Rewriting

The basic method used at various components of the QA system is RegEzp
rewriting. The open angle bracket (<) is used as a special escape character,
hence we make sure that it does not appear in the source text, which is either
a question or a passage. The basic text substrings, such as the target or named
entities, are recognized using regular expressions and replaced with an angle-
bracket-delimited expression. For example, the target is marked as <TARGET>.
More commonly, a named entity e of type t is replaced with <t_es>, where e
is the named entity e encoded as a string of printable characters that do not
include <. The RegExp rewriting can be seen as a bottom-up deterministic
parsing technique. For example, the rewriting in which “<NP_z> <VP_y>” is
replaced with “<S_z>” corresponds to the context-free rule S — NP VP. The
value z is obtained by decoding x and y, concatenating them, and encoding the
result again.

3 System Architecture

The current system consists of the following phases: 1) Question Processing,
2) Passage Retrieval, 3) Target Marking, 4) Question Category Marking, 5)
Matching, 6) Answer selection, and 7) Post-processing.

3.1 Question Processing

The Question Processing phase takes the original questions as input, parses
them, and generates complete questions as output. Questions are parsed using
RegExp matching and substitution to identify the question category and extract
some related metadata. Some metadata extracted during parsing is analyzed
using WordNet [3] to identify additional metadata and relationships between
the target and what the question is asking about.

In TREC datasets, question are grouped by targets. Replacing the anaphoric
references in questions with the target results in self-contained questions. These
complete questions are used in passage retrieval.

3.2 Passage Retrieval

The passage retrieval from the AQUAINT dataset is performed by an exter-
nal search engine using the full questions generated in the question processing

phase. We use two different sets of passages. The first set is the passages
provided by NIST using the PRISE search engine. The second set is generate
using our MySQL-based search engine that employed MySQL’s full-text index-
ing functions. In both cases, the PRISE and MySQL, the results are treated in
the same way—as passages relevant to the question.

3.3 Target Marking

The string in the question that constitutes that target is identified during the
question processing step (section 3.1). Using simple RegExp rewriting rules,
the target is identified in the passages and replaced with the <TARGET> tag.
In effect, this phase annotates sentences in the passages that may contain an
answer. Currently, our system does not handle intra-sentence references.

3.4 Question Category Marking

During this step, the system scans all the relevant passages and uses RegExp
rewriting to mark entities that belong to the question category. The type of Reg-
Exp used depends on the question category and may be a simple keyword-based
RegExp or a sophisticated multipart RegExp. Question category marking acts
as a just-in-time annotation phase where only the passages that may be relevant
to the current question are annotated, and the annotation data is customized
based on the question category.

3.5 Answer Matching

During answer matching, question metadata and annotated passages are com-
bined using special RegExp rules to generate candidate matches. The rules
are applied sequentially. Every time a match is found, it is added to the list of
matches. The realtive order of the rules imposes an implicit ranking of matches.
Consequently, more specific rules are placed before the more general ones. Since
some questions may have no answers in the dataset, one must avoid using rules
that are too general. Appropriate rule generality and ordering depends on the
question category. Typically, more specific question categories permit the usage
of more general rules, and vice versa.

3.6 Answer Selection

This phase is a filtering step that takes the list of answer for each question
from the matching phase and selects the answers that are to be included in the
output. For TREC, we set the number of answers for factoid questions to 1 and
for list questions to 7. Presently, we simply select the first answers in the list.

3.7 Post-processing

This phase formats the output either for evaluation, inspection, or integration
in other systems.

4 Evaluation

The TREC 2004 QA dataset was used for deriving the rules and fine tuning the
system. Testing of the system used TREC 2005 and TREC 2006 QA datasets.
On the training data, our system was able to correctly answer upto 46 out of
230 facoitd questions yeilding an accuracy of 20%. In the TREC 2005 dataset,
the number of factoid questions was increased to 364, and included new types of
questions dealing with events. Our system answered correctly 41 questions on
the testing dataset yielding an accuracy of 11.3%. In the TREC 2006 dataset,
the number of factoid question was 403. The formulation of the questions in
TREC 2006 relied more heavily on expanding the questions to incorporate the
context information provided in the target of each series. Our system answered
36 questions globally correctly, and 2 locally correctly, yielding global correct-
ness accuracy of 8.9%. The results of evaluation on all 3 datasets are presented
in table 1, where the number in the Correct column reflects the globally cor-
rect answers and in paranthesis the locally correct answer; the Pyramid column
shows a new alternative method for evaluating the ”Other” questions. The suf-
fix in the run name is interpreted as follows':m means the MySQL-based search
engine is used, p means the top 50 results from the PRISE search engine are
used, and e means the top 100 results from PRISE are used.

Run Correct | Factual | List | Other | Pyramid | Session
Dal06e 36(2) 0.089 | 0.021 | 0.028 0.032 0.046
Dal06p 33(2) 0.082 | 0.019 | 0.033 0.038 0.045
Dal06m 20(1) 0.050 | 0.010 | 0.037 0.033 0.033

Dal05p 41 0.113 | 0.033 | 0.088 - 0.087
Dal05m 27 0.075 | 0.017 | 0.056 - 0.056
Dal04p 46 0.200 | 0.092 - - 0.164
Dal04m 41 0.178 | 0.083 - - 0.146
Best 06 - 97.8 0.433 | 0.250 0.251 0.394
Median 06 - 18.6 0.087 | 0.125 0.139 0.134
Worst 06 - 4.0 0.000 | 0.000 0.000 0.013

Table 1: Jellyfish results from TREC QA Track

5 Lessons Learned

RegExp rewriting is a simple and powerful parsing technique. We have ef-
fectively used coarse-grained modularization of RegExp, and combined it with
dynamic loading of RegExp. Fine grained modularization of RegExp is pos-
sible, and would simplify the task of creating RegExp rules. Using a macro
system, such as Starfish, can greatly reduce the complexity of RegExp rules.
Just-in-time RegExp-based annotation can lower the computation requirements

IThe labels of runs for previous years may differ from the actual submitted labels

of deeper analysis. Our system is fairly robust. There performance of Jellyfish
on TREC 2005 and TREC 2006 questions is comparably. There is a slight de-
cline in the accuracy on factoid question, a significant improvement in the list
questions score, and a noticeable decline in the ”other” questions score. We
note that the core rules of the system are almost identical between for our 2005
and 2006 submissions, subjected only to minor bug fixes.

References

1]

N. Cercone, L. Hou, V. Keselj, A. An, K. Naruedomkul, and X. Hu. From
computational intelligence to web intelligence. IEEE Computer, 35(11):72—
76, November 2002.

A. Cox, T. Abou-Assaleh, W. Ai, and V. Keselj. Lexical source-code trans-
formation. In Proceedings of the STS’04 Workshop at GPCE/OOPSLA,
Vancouver, Canada, October 2004.

C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
1998.

V. Keselj. Question answering using unification-based grammar. In E. Strou-
lia and S. Matwin, editors, Advances in Artificial Intelligence, AI 2001, vol-
ume LNAI 2056 of L.N. in Comp.Sci., Springer, pages 297-306, Ottawa,
2001.

V. Keselj. Modular stochastic HPSGs for question answering. Technical
Report CS-2002-28, School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, June 2002.

