Juru at TREC 2006: TAAT versus DAAT
in the Terabyte Track

David Carmel, Einat Amitay
IBM Haifa Research Lab
Haifa 31905, Israel
Email: {carmel,einat}@il.ibm.com

Abstract

Our experiments focused this year on the ad-hock task of the
Terabyte track. We experimented with WAND, a document-at-
a-time evaluation algorithm we developed recently. Our results
demonstrate the superiority of WAND over traditional term-a-
time strategy while searching over a large collection such as gov2.
We demonstrate how Web expansion can be successfully applied to
significantly improve search results. In addition, we describe sev-
eral schemes for creating manual queries, following this year’s goal
to enrich the pool of results by manual runs.

1 Introduction

The ad-hock task of the Terabyte track evaluates the ability of a search system
to retrieve precise search results from a large collection in a reasonable time. Last
year, due to scale limitations of our system, we distributed the .gov2 data into
10 sub-collections and applied federated search over them [4]. Following significant
improvements in our search system, Juru [2], this is the first time that we were able
to index and search the entire .gov2 collection using only one index.

Juru’s original query processing is a standard term-at-a-time (TAAT) strategy as
applied by many IR systems. During query execution, it maintains a heap for holding
document partial scores. The algorithm orders the query terms by decreasing weight,
according to their document frequency, and then traverses the infrequent terms
first until the heap is full. After that, the algorithm moves to a “continue” mode
for which it only updates already existing document accumulators in the heap.
New non-scored documents in the remaining posting lists are ignored. During the
continue mode posting lists are traversed very quickly by accessing only documents
already found in the heap.

On the other hand, document-at-a-time (DAAT) strategies fully evaluate the doc-
ument score by considering the contributions of all query terms with respect to
the document before moving to the next document. While TAAT strategies are by
far most common in traditional IR systems due to the simplicity of their imple-
mentation, there are some clear advantages to (DAAT) strategies, especially when
dealing with very large data sets. First, it is usually not feasible to maintain partial

results for all candidate documents in main memory. Second, I/O operations re-
quired for posting retrieval can be easily parallelized when using DAAT strategies,
since all posting lists are traversed in parallel. Finally, advanced search features
such as Boolean operators, proximity operators, and numeric range constraints, can
be handled more efficiently by DAAT strategies, since all conditions can be eval-
uated at the same time to decide whether a document “satisfies” the query. It is
thus clear that search engines which must handle context-sensitive queries over very
large collections should prefer DAAT strategies. Indeed most Web search engines
employ such strategies.

The main goal of our experiments this year, in the ad-hock task of the Terabyte
track, was to implement a DAAT algorithm in Juru, and to optimally tune it for
Web search. WAND [1] is a DAAT algorithm specifically designed for high precision
search over very large collection, hence, it perfectly fits the Terabyte ad-hock task.

The rest of the paper is organized as follows. Section 2 shortly describes the WAND
algorithm. A full description can be found in [1]. Section 3 describes our experiments
with WAND), comparing its performance to our original TAAT algorithm. Section 4
describe several schemes for creating manual queries, following this year’s goal to
enrich the pool by submitting manual runs. Section 5 analyses the results of our
official runs. Finally, Section 6 summarizes.

2 The WAND algorithm

The WAND algorithm is suited for DAAT strategies that evaluates queries using
two levels of granularity. The algorithm iterates in parallel over query term post-
ings and identifies candidate documents using a preliminary evaluation taking into
account only partial information on term occurrences and no query independent
factors. Once a candidate document is identified, it is fully evaluated and its exact
score is computed. Furthermore, as in the standard DAAT approach, our algorithm
iterates in parallel over query term postings but the nature of the preliminary eval-
uation is such that it is possible to skip quickly over large portions of the posting
lists. If the result of this “fast and rough” evaluation is above a certain threshold,
varied dynamically during the execution, then a full evaluation is performed and
the exact score is computed.

Our approach allows both safe optimization and approximate optimization. For safe
optimization, the two-level strategy makes no false-negative errors and thus it is
guaranteed to return the top documents in the correct order and with accurate
scores. For an approximate optimization, dynamic pruning techniques are used such
that fewer documents pass the preliminary evaluation step, that is, we allow some
false-negative errors at the risk of missing some candidate documents whose accurate
scores would have placed them in the returned document set. The amount of pruning
can be controlled by the user as a function of time allocated for query evaluation.

2.1 Document scoring

The final score of a document involves a textual score which is based on the doc-
ument textual similarity to the query, as well as other query independent factors
such as connectivity for web pages, citation count for scientific papers, inventory
for e-commerce items, etc. We assume an additive scoring model, that is, the tex-
tual score of each document is determined by summing the contribution of all query
terms belonging to the document. Thus, the textual score of a document d for query

q is:
Score(d, q) = Z arw(t,d) (1)

teqnd

For example, for the tf x idf scoring model, a; is a function of the number of
occurrences of ¢ in the query, multiplied by the inverse document frequency (idf) of
t in the index and w(t,d) is a function of the term frequency (¢f) of ¢ in d, divided
by the document length |d|.

In addition we assume that each term is associated with an upper bound on its
maximal contribution to any document score, UB; such that

UB; > ay max(w(t, dr), w(t,dz),...).

Thus, by summing the upper bounds of all query terms appearing in a document,
we can determine an upper bound on the document’s query-dependent score.

UB(d,q) = Z UB; > Score(d, q). (2)

teqnd

At the heart of our approach, there is a Boolean predicate called WAND standing
for Weak AND, or Weighted AND. WAND takes as arguments a list of Boolean
variables X1, Xo, ..., X}, a list of associated positive weights, wi,ws, ..., wy, and a
threshold 6.

By definition, WAND (X1, w1, ... Xj, wg, 0) is true iff

Z T;W; Z 9, (3)

1<i<k
where x; is the indicator variable for X;, that is

S 1,if X; is true
* 7] 0, otherwise.

Given this setup, our preliminary scoring consists of evaluating for each document
d, WAND(X,, UB1, X2, UBs, ..., X}, UBy,0), where X, is an indicator variable
for the presence of query term ¢ in document d and the threshold 6 is varied during
the algorithm as explained below. If WAND evaluates to true, then the document
d undergoes a full evaluation.

The threshold 6 is set dynamically by the algorithm based on the minimum score m
among the top n results found so far, where n is the number of requested documents.
The larger the threshold, the more documents will be skipped and thus we will need
to compute full scores for fewer documents. It is easy to see that if the contribution
upper bounds are accurate, then the final score of a document is no greater than
its preliminary upper bound, and therefore all documents skipped by WAND with
6 = m would not be placed in the top scoring document set by any other alternative
scheme that uses the same additive scoring model.

However, (a) we might have only approximate upper bounds for the contribution of
each term, (b) the score might involve query independent factors, and (c) we might
want to use a higher threshold in order to execute fewer full evaluations. Thus in
practice we will set

0=F -m (4)

where F' is a threshold factor chosen to balance the positive and negative errors for
the collection.

2.2 Setting the WAND Threshold

Assume that we wish to retrieve the top n scoring documents for a given query. The
algorithm will maintain a heap of size n to keep track of the top n results. When a
new candidate is returned by the WAND iterator, this document is fully evaluated
using the system’s scoring model resulting in the precise score for this document. If
the heap is not full the candidate is inserted into the heap. If the heap is full and
the new score is larger than the minimum score in the heap, the new document is
inserted into the heap, replacing the one with the minimum score.

The threshold value that is passed to the WAND iterator is set based on the mini-
mum score of all documents currently in the heap. Recall that this threshold deter-
mines the lower bound that must be exceeded for a document to be considered as
candidate and to be passed to the full evaluation step.

The initial threshold is set based on the query type. For an OR query, or for a
free-text query, the initial threshold is set to zero. The approximate score of any
document that contains at least one of the query terms would exceed this threshold
and would thus be returned as a candidate. Once the heap is full and a more realistic
threshold is set, we only fully evaluate documents that have enough terms to yield
a high score. For an AND query, the initial threshold can be set to the sum of all
term upper bounds. Only documents containing all query terms would have a high
enough approximate score to be considered candidates.

The initial threshold can also be used to handle mandatory terms (those preceded by
a ‘+’). The upper bound for such terms can be set to some huge value, H, which is
much larger than the sum of all the other terms upper bounds. By setting the initial
threshold to H, only documents containing the mandatory term will be returned as
candidates. If the query contains k£ mandatory terms, the initial threshold should
be set to k- H.

So far we have only described methods in which we are guaranteed to return accu-
rate results for the query (safe evaluation). However, the threshold can additionally
be used to expedite the evaluation process by being more opportunistic in terms of
selecting candidate documents for full evaluation. In this case, the threshold would
be set to a value larger than the minimum score in the heap. By increasing the
threshold, the algorithm can dynamically prune documents during the approxima-
tion step and thus fully evaluate less overall candidates but with higher potential.
The cost of dynamic pruning is the risk of missing some high scoring documents
and thus the results are not guaranteed to be accurate. However, in many cases this
can be a very effective technique. For example, systems that govern the maximum
time spent on a given query can increase the threshold when the time limit is ap-
proaching thus enforcing larger skips and fully evaluating only documents that are
very likely to make the final result list.

3 Experiments

Our experiments are based on the the .gov2 collection and on the 99 topics of the
Terabyte tracks of 2004 and 2005. Short queries are based on topic titles while long
queries are based on topic title plus description. We measure average query time
by measuring the time required to retrieve the top 20 results (following the track’s
instructions). Precision is measured by p@5, p@10, and MAP, by retrieving the top
1000 results.

3.1 TAAT versus DAAT

In the first experiment we compared the original TAAT strategy, originally used
by Juru, with the new DAAT strategy as implemented by WAND. For TAAT we
used 2 different variants of heap size, 100K and 200K, which are reasonable for the
expected number of results (1000). For WAND we used much smaller heaps of 1K
and 2K (for query time evaluation we used a heap of size 20). The threshold factor
F was fixed to 1.0 (see Equation 4). Both implementations used the same scoring
mechanism of Juru. Table 1 shows the results in terms of query execution time and
precision.

|l | Short Query | Long Query |
| [[time(sec)[PQ5[P@I0[MAP][time[PQ5[PQI0[MAP]|

TAAT 100K 2.9 0.53] 0.49 | 0.25 ||11.8]0.53|0.523| 0.25
TAAT 200K 3.3 0.53] 0.49 | 0.25 |{12.3]|0.53|0.523| 0.25

WAND 1K 1.87]0.58| 0.56 | 0.29 ||3.02]0.58| 0.55 | 0.25
WAND 2K 1.87 10.62| 0.58 | 0.31 ||3.02]0.59| 0.56 | 0.27

Table 1. The search results of the original Juru’s TAAT strategy compared to WAND,
averaged over the 99 Terabyte topics.

The results clearly show the advantage of WAND compared to TAAT in terms of
precision and search time. While handling a much smaller heap WAND enables
to achieve much better results than the TAAT strategy. The main reason is the
better pruning mechanism of WAND compared to the pruning process concealed
in TAAT. There is also significant improvement in search time. Retrieving top 20
results by WAND only requires a heap of size 20 - a factor that strongly affects
search time, while in contrast, TAAT must handle a huge heap even when only 20
results are required.

3.2 Phrase Expansion

During query evaluation, query terms are constructed to include the query’s original
keywords and lexical affinities (LAs) of the query [3]. This is achieved by finding
all pairs of query words found close to each other in a window of some predefined
small size. For each LA, Juru creates a pseudo posting list by merging the posting
lists of the LA terms. It then finds all documents in which these terms appear close
to each other, and adds them to the posting list of the LA with all the relevant
occurrence information. After creating the posting list, the new LA is treated by
the retrieval algorithm as any other term in the query. The user can also control the
relative weight between keywords and LAs, thus giving more (or less) significance
to LAs in relation to simple keywords in computing the relevance score.

The query can also be expanded by the query phrase. The posting list of the query
phrase is created by merging the postings of all terms, considering only documents
containing the query terms in adjacent offsets and in the right order. Thus, docu-
ments containing the query phrase are biased compared to other documents.

Similarly to LA weight which specifies the relative weight between an LA term
and simple keyword term, a phrase weight specifies the relative weight of a phrase
term. Table 2 shows the results for phrase expansion with several different phrase
weights. The results are averaged for the 99 short queries of the Terabyte topics,
using WAND with 1K heap size.

[Phrase weight] 0 [0.1]0.2 0.3]

P@5h 0.618]0.614/0.602|0.594
P@10 0.575|0.577|0.573|0.562
MAP 0.305|0.310{0.307|0.304

Table 2. Phrase expansion with different phrase weights.

It seems that phrase expansion slightly contributes to average search precision.
However, it does not help to improve the top results. This is quite surprising due to
the common assumption that the existence of the query phrase in a document is a
good indication for its relevancy. This phenomenon should be further investigated.

3.3 Web query expansion

Our next experiment dealt with query expansion based on external resource. Fol-
lowing the good results obtained by several groups using Web expansion in previous
years, we upgraded our system to benefit Web expansion using Answers.com search
engine. Answers.com is a free search service, providing instant answers over many
topics. As opposed to standard search engines that serve up a list of links to follow,
it displays quick, snapshot answers with concise, reliable information. If it fails to
answer the query it returns the first result returned by Google for that query. Our
expansion procedure works by first submitting the topic title to answer.com, and
then using the result page for query expansion. All query terms are expanded by
their lexical affinities as extracted from the expanding Web page [3].

Unfortunately, We could not demonstrate significant improvement using Web ex-
pansion for the 99 training topics. However, following our belief in the quality of this
mechanism, one of our official runs for this year’s task is based on Web expansion.
Indeed, this is our best run for this year’s task (see Table 3).

3.4 Some other experiments

We also experimented with several other parameters to tune our system for the
.gov2 collection while using WAND. In agreement with previous results, document
static scores, based on number of in-links of the web pages, were found to be very
useful. The document’s static score is linearly combined with its textual score to
provide its final score.

In contrast to static scores, anchor-text which is considered to be very helpful for
TREC Web tasks, damaged the results for the 99 training topics we used. We do
not have a good explanation for that. One speculation is that anchor text should be
only used when it contains all query terms. This will avoid the cases that one query
term, frequently appearing within many anchors, negatively biases the results.

4 Manual Run

A challenging task this year was to manually construct queries that will answer
the topic while enriching the pool with unique results. In order to promote unique
results we first studied the results returned with the plain runs, assuming most
automatic runs will have a similar bias toward documents containing topic terms.

Our main assumption was that the way to achieve the best uniqueness score is to
try and re-rank the top 50 results of each run to include results that will not appear

in a normal topic title run so that the manual and the automatic runs will agree
on as few documents as possible. We came up with taxonomy of query styles that
will yield different results from the “conventional” run: Skew Query, Reduce Query,
Alternate Query, and Substitute Query. Figure 1 shows the schemes of the different

@ @CO0 @

skew reduce alternate substitute

Fig. 1. Schemes of the different query types.

Skew Query

This is a query that keeps the most important terms in the query but changes one
of the less important terms to create a partial overlap with the expected automatic
run. An example for this is topic number 801 Kudzu Pueraria lobata, which we
changed to +Kudzu Eradication, control, herbicide, Tordon'. We identified Kudzu
to be a unique and unambiguous term which appears 1756 times in the collection.
Similarly, topic number 829, Spanish Civil War support, was manually changed to
+ “Spanish Civil War” aid. The unambiguous phrase “Spanish Civil War” appears
in the collection 354 times. In these topics the terms Kudzu and “Spanish Civil
War” were enough to define the scope of the query and by forcing the system to
return only answers that contain them we were able to farther filter those relevant
documents with terms that slightly change the ranking of the results. In both queries
we retrieved all documents in the Qrels set (801: 128/128 and 829: 24/24).

Reduce Query

An example for this can be found in our editing for topic 816 USAID assistance to
Galapagos which we changed to +USAID +Galapagos. In the collection, the term
Galapagos and the term USAID appear as lexical affinity only six times, which
means that most occurrences of the terms in the Qrels (there are 23 of those) do
not appear next to each other. However, the term assistance appears 2798691 times
from which 10666 times as a lexical affinity of USAID. This means that by reducing
the query to just USAID and Galapagos we were able to promote only the essential
terms in the query. We contend that the term assistance provide more noise than
information in this case and that by reducing the query to two terms we remove
most of the noise.

Alternate Query

This type of modification is an “OR” query where both sides of the “OR” are
conceived as perfectly good queries. Query 806, Doctors Without Borders, is an
excellent example. For this query we requested all the documents that contain either
“Doctors Without Borders” or “Medecins sans Frontieres”. Each of the queries
describes the topic and is unambiguous.

! In the query syntax of our system, a query term marked by '+’ is must-appear term.

Substitute Query

This is a query in which all the original terms are replaced with new terms. For
example, we replaced the terms in topic 820, imported fire ants, with their Latin
name “Solenopsis invicta” “Solenopsis richteri” since it is likely that only articles
that specifically discuss imported fire ants will make the effort to mention their
Latin name.

In many of the reformulated queries we reduced the number of possible results
and “risked” ourselves in finding fewer relevant results and thus achieve a worse
run overall. However, since most of the unique results are found somewhere in the
“fringes” of the data this was a calculated risk.

5 Official Submissions

We submitted 4 official runs for this year ad-hock task:

1. JuruMan: queries were created manually for the new topics. The main
goal is to diversify the results from those returned by automatic runs which
are usually biased toward documents containing topic terms.

2. JuruT: queries are automatically created based on the topic title.

3. JuruTD: queries are automatically created based on the topic title and
description.

4. JuruTWE: title queries are expanded by LAs extracted from the Web page
returned by Answers.com for that query. The LAs are those containing one
of the query terms.

For all runs we used WAND, using static scores, and applying phrase expansion for
the automatic runs. Anchor text was disregarded by setting the anchor term weight
to zero. Table 3 shows the results, compared to the average median and the average
best results of all participating systems. Figur 2 shows the difference between the
AP of Juru’s title-based runs to the median AP of all automatic runs, for each of
the new topics.

[[MAP[PGI0[fAP]

JuruT 0.329]0.572{0.269
JuruTD 0.343[0.58010.280
JuruTWE 0.351]0.638{0.269
auto-Median||0.291{0.540|0.241
auto-Best 0.517(0.870(0.473
JuruMan 0.275/0.570(0.241
man-Median |[0.243/0.562(0.198
man-Best 0.512(0.9080.479

Table 3. Official results of TREC 2006, compared to the average median and the average
best results of all runs.

Our best run is JuruTWE. Web expansion significantly improves the results, mostly
P@10. However, it is interesting to note that Web expansion works best for “easy”
topics — for many difficult topics expansion does not help much.

o
3

o
S

o
w

o
o

=3
5,

ERINERTARIn ﬂru_.-ﬁhhl

BO1|j 803 805 BO7 | c09 W 611 813 8# 817 819 821“ 823 é‘gﬁ &7 829 E31u ﬁf}“ 8386 ;37 g* 841 843 Tf I 7 I849u

o

MAP diff from median

o

a
|
—

o
o

o
w

o
E

Topic No.
EJuruT B JuruTWE

Fig. 2. The difference between the AP of Juru’s title-based runs to the median AP of all
61 automatic ad-hock runs.

For most topics, Juru’s results seems to be consistently better than the median
result of all runs. This is also true for the manual run that its results are better
than the median results of all 19 manual runs. However, the results of Juru’s manual
run are lower than the results of the automatic runs. This is agreement with the
other manual runs for which the median MAP is lower than the median MAP of
the automatic runs. A possible explanation is that manual runs focus on diversity
from the automatic runs. In addition, the manual runs return less results per topic
than the 1000 returned by the automatic runs (see Section 4).

6 Summary

The results we obtained from this year’s experiments demonstrate the superiority
of DAAT strategy over TAAT for searching over large collection. While handling
a much smaller heap in memory, WAND enables to achieve better results than
the TAAT strategy. The main reason is the better pruning mechanism of WAND
compared to the pruning process concealed in TAAT. Furthermore, Web expansion
proved to be a powerful tool for improving search results.

Finally, this is the first time that we were able to index and search over (half)
terabyte of data in a reasonable time, using only one index, while achieving decent
results — an important milestone for our search system.

References

1. Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. Effi-
cient query evaluation using a two-level retrieval process. In CIKM ’03: Proceedings of
the twelfth international conference on Information and knowledge management, pages
426-434, New York, NY, USA, 2003. ACM Press.

2. David Carmel, Einat Amitay, Miki Herscovici, Yoelle S. Maarek, Yael Petruschka, and
Aya Soffer. Juru at TREC 10 - Experiments with Index Pruning. In Proceeding of Tenth
Text REtrieval Conference (TREC-10). National Institute of Standards and Technology.
NIST, 2001.

3. David Carmel, Eitan Farchi, Yael Petruschka, and Aya Soffer. Automatic query refine-
ment using lexical affinities with maximal information gain. In Proceedings of the 25th
annual international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 283-290. ACM Press, 2002.

4. Elad Yom-Tov, David Carmel, Adam Darlow, Dan Pelleg, Shai Errera-Yaakov, and Shai
Fine. Juru at TREC 2005: Query Prediction in the Terabyte and the Robust tracks.
In Proceedings of the 14th Text REtrieval Conference (TREC2005). National Institute
of Standards and Technology. NIST, 2005.

