
Combining Multiple Resources, Evidence and
Criteria for Genomic Information Retrieval

Luo Si1, Jie Lu2 and Jamie Callan2
1Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

lsi@cs.purdue.edu
2Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

{jielu, callan}@cs.cmu.edu

ABSTRACT
We participated in the passage retrieval and aspect retrieval subtasks of the TREC 2006 Genomics Track.
This paper describes the methods developed for these two subtasks. For passage retrieval, our query
expansion method utilizes multiple external biomedical resources to extract acronyms, aliases, and
synonyms, and we propose a post-processing step which combines the evidence from multiple scoring
methods to improve relevance-based passage rankings. For aspect retrieval, our method estimates the
topical aspects of the retrieved passages and generates passage rankings by considering both topical
relevance and topical novelty. Empirical results demonstrate the effectiveness of these methods.

1. INTRODUCTION
We describe in this paper the design of the system built for the passage retrieval and aspect retrieval
subtasks of the TREC 2006 Genomics Track. The modules provided in the Lemur toolkit for language
modeling and information retrieval (version 4.2)1 constitute the backbone of our system. The Indri index
was chosen for its support of conveniently indexing and retrieving various fields of the documents, and its
rich query language that easily handles phrases and structured queries. New methods and tools were
developed to equip the system with enhanced capabilities on collection pre-processing, indexing, query
expansion, passage retrieval, result post-processing, and aspect retrieval.
Particularly, based on the success of query expansion indicated by the results of previous Genomics tracks,
we continue the exploration of incorporating domain knowledge to improve the quality of query topics.
Acronyms, aliases, and synonyms are extracted from external biomedical resources, weighted, and
combined using the Indri query operators to expand original queries. A hierarchical Dirichlet smoothing
method is used for utilizing passage, document, and collection language models in passage retrieval. A
post-processing step that combines the scores from passage retrieval, document retrieval, and a query term
matching-based method further improves the search performance. An external database constructed from
MEDLINE abstracts is used to assign MeSH terms to passages for estimating topical aspects. Furthermore,
passage rankings are generated for aspect retrieval by considering both topical relevance and topical
redundancy from the estimated aspects of the passages.
The following section describes various modules of the system developed for genomic passage retrieval
and aspect retrieval. Section 3 presents some evaluation results, and Section 4 concludes.

2. SYSTEM DESCRIPTION
In this section we elaborate on the methods and tools used in different modules of our system, focusing on
query expansion, post-processing, and aspect retrieval.

2.1 PRE-PROCESSING
The corpus for the TREC 2006 Genomics Track includes 160,472 biomedical documents from 59 journals.
The documents are in html format. The formats of the html files are similar but not identical. For example,
some documents use the tag “BIB” to indicate reference while other documents use the tag “Reference”.
Since the TREC 2006 Genomics Track mainly focuses on passage retrieval, it is important to design an
effective method to segment the biomedical documents into passages. A passage extraction method is
developed to consider both paragraph boundaries and sentence boundaries. As required by the TREC 2006
Genomics Track, a biomedical document is first segmented into many paragraphs based on the tags “<p>”

1 http://www.lemurproject.org/

or “</p>”. Special treatment is applied to the reference part to make sure that the paragraphs for references
are separate from the paragraphs in the main text part. Furthermore, the html tags and other irrelevant
contents (e.g., scripts) are removed from the extracted paragraphs. Then each paragraph is segmented into
many sentences with a modified version of a perl script2. The sentences are assigned to individual
passages until the length of a passage exceeds 50 words. There is no overlap among the passages, which
means that two consecutive passages contain different sentences. This procedure is applied to all the
biomedical documents in the Genomics Track. Altogether, there are 2.1 million passages extracted from
the biomedical documents. Each document on average contains 132 passages. A new version of each
document is built by merging the passages extracted from the document. The identity of each passage is
preserved by using special tags. A new text collection is built from all the new documents.

2.2 INDEXING
All the new documents generated by the pre-processing module are indexed by the indexing module. The
document parser in the indexing module provided by the Lemur toolkit is modified to further process
potential biomedical acronyms. Specifically, two additional operations are applied to the tokens
recognized by the text tokenizer: segmentation and normalization.
Segmentation takes as input a token free of space or punctuation characters (including hyphen) and looks
for boundaries between any two adjacent characters of the token, based on which it segments the token into
multiple tokens. A boundary occurs between two adjacent characters of the token in the following cases: i)
one is numeric and the other is alphabetic; or ii) both are alphabetic but of different cases, except for the
case that the characters are the first two characters of the token with the first in uppercase and the second in
lowercase. For example, taking the token “hMMS2” as input, the output of the segmentation operation
includes three tokens “h”, “MMS”, and “2”.
Normalization converts Roman digits into their corresponding Arabic numbers. For instance, the “II” in
“hMMS II” is converted to “2” by the normalization operation.

2.3 QUERY EXPANSION
The query expansion module parses each of the original queries and utilizes several external resources to
incorporate domain knowledge by expanding queries with acronyms, aliases, and synonyms. Both the
original terms and the expanded terms are weighted. Each original term and its expanded terms are
combined using the weighted synonym operator “#wsyn” into a “#wsyn” expression, and different “#wsyn”
expressions for a query are combined using the “#weight” belief operator of the Indri query language3.
The data provided by AcroMed4, LocusLink5, and UMLS6 are processed to create three lexicons. In the
AcroMed lexicon, entries are indexed by technical terms or phrases, and each entry is a list of acronyms
associated with the corresponding technical term/phrase, accompanied by the frequencies of such
associations. In the LocusLink lexicon, entries are indexed by acronyms, and each entry is a list of aliases
that are only associated with the corresponding acronym but no other acronyms. In the UMLS lexicon,
entries are indexed by technical terms or phrases, and each entry is a list of synonyms associated with the
corresponding technical term/phrase.
For example, the phrase “huntington’s disease” has an entry in the AcroMed lexicon “1582 hd 2 h.d.”,
indicating that the acronym “hd” is associated with “huntington’s disease” 1582 times while “h.d.” is
associated with “huntington’s disease” only twice. An example for the LocusLink lexicon is that the
acronym “psen1” corresponds to a list of aliases “ps-1, pre1, psen, zfps1, zf-ps1”. The entry provided by
UMLS for the phrase “mad cow disease” is “bovine spongiform encephalopathy, bse, bovine spongiform
encephalitis”, excluding the variants generated by varying the form or order of the words.
For each query, the lexicons are applied in the order of AcroMed, LocusLink, and UMLS for query
expansion. Generally speaking, AcroMed is used to find the acronyms associated with a technical term or

2 http://l2r.cs.uiuc.edu/~cogcomp/atool.php?tkey=SS
3 http://www.lemurproject.org/lemur/IndriQueryLanguage.html
4 http://medstract.med.tufts.edu/acro1.1/
5 http://www.ncbi.nlm.nih.gov/projects/LocusLink/
6 http://www.nlm.nih.gov/research/umls

phrase (gene or disease name) that occurs in the query. LocusLink is used to find the aliases of the
acronyms identified by AcroMed. UMLS is used to find the synonyms of the technical terms or phrases
not recognized by AcroMed or LocusLink. In addition, commonly observed synonyms for some
“function” words such as “role” and “disease” that occur in the query are added as expansion terms, and
multiple surface forms of the acronyms or aliases are included. Specifically, the following steps are
performed in order to generate an expanded query:
1. If a string of word(s) in the original query has an entry in AcroMed, the string is considered a technical

term/phrase. The acronyms in its entry in AcroMed whose frequencies are above a threshold (25) are
added as expansion terms, with the weight of each acronym proportional to its frequency, normalized
by the maximum frequency in the entry so the maximum weight is 1.00.

2. If an acronym included in the expanded query can locate in LocusLink its aliases, the aliases are
included and their weights are equal to the weight of the acronym.

3. For the strings of words that occur in the original query but are not expanded by steps 1-2, UMLS is
used to find possible synonyms to add to the expanded query, each with a weight of 0.50.

4. The same operations of segmentation and normalization used in the document parser are applied to the
acronyms in the original query, and the acronyms and aliases in the expanded query. In addition, the
segmented tokens of an acronym or alias output by the segmentation operation are fed into the
assembly operation, which assembles the tokens to produce multiple variants with the same weight as
the acronym or alias. For example, the acronym “hMMS2” is segmented into “h”, “MMS”, and “2”,
which are assembled into “hmms2”, “h mms2”, “hmms 2”, and “h mms 2” in phrasal representations.

5. Each word or phrase that occurs in the original query and is expanded by the above steps uses the
weighted synonym operator “#wsym” to combine itself (with the weight 1.00) and its expanded
acronyms, aliases or synonyms (with the corresponding weights described in the above steps). The
overall weight of the “#wsym” expression is 2.00.

6. A few “function” words commonly observed for genomic retrieval are grouped and the words within
each group are regarded as synonyms. If any word in the original query occurs in a synonym group,
the other words in the same group are added as expansion terms with weights half the value of the
weight given to the original word. The weighted synonym operator “#wsym” is used to combine these
terms. Particularly, two groups of synonyms are used: {role, affect, impact, contribute} and {disease,
cancer, tumor}. The first group of synonyms has an overall weight of 1.00 for the “#wsym”
expression, while the second group of synonyms has an overall weight of 2.00. Therefore, if the
words “role” and “cancer” are in the original query, they will be expanded into “1.00 #wsyn(1.00 role
0.50 affect 0.50 impact 0.50 contribute)” and “2.00 #wsyn(1.00 cancer 0.50 tumor 0.50 disease)”.

7. Finally, the “#wsym” expressions created during steps 1-6 and the words left in the original query are
combined using the “#weight” belief operator, with the weight of each unexpanded word in the
original query set to 2.00.

2.4 PASSAGE RETRIEVAL
A variant of the language modeling method is used for passage retrieval. This method extends the
traditional Dirichlet smoothing method [Zhai and Lafferty, 2001] with hierarchal smoothing. Specifically,
the log-likelihood of generating query Q from the jth passage of the ith document is calculated as follows:

{ }() j i 1
ij

w 1j

psg_tf (w)+d_probtf (w)*u
log P(Q| psg ,d) = log *qtf(w)

psg +u

 
 
 
 

∑
uuur r

uuur

where psg_tfj(w) and qtf(w) indicate the term frequency of word w in the jth passage and in the user query
respectively, jpsg

uuur
is the length of the jth passage, u1 is a normalization constant (set to 200 empirically),

and d_probtfi(w) introduces the evidence of word w from the document level, which is estimated as:
i c 2

i
i 2

dtf (w)+p (w)*ud_probtf (w)=
d +u
r

where dtfi(w) represents the term frequency of word w in the ith document, id
r

is the length of the ith

document, pc(w) is the word probability in the whole text collection, which is calculated by the relative
frequency of the word in the collection, and u2 is a normalization constant (set to 1000 empirically).

2.5 POST-PROCESSING
The retrieved passages are first cleaned to remove passages that don’t contain meaningful content and to
get rid of unnecessary characters at the beginning or the end of each passage. Specifically, the following
three steps are performed:
1. Simple word patterns are used to detect passages for acknowledgment, abbreviation list, keyword list,

address, figure list, and table list, and these passages are discarded.
2. A throw-away list is constructed which includes words commonly used in section titles of papers, such

as “introduction”, “experiments”, “discussions”, etc. and their morphological variants. If these words
occur at the beginning or the end of a retrieved passage, they are removed.

3. Regular expression patterns are used to identify tags, references, figures, tables, and punctuations at
the beginning or the end of a retrieved passage in order to remove them.

The cleaned passages are rescored by combining the scores obtained for document retrieval, passage
retrieval, and the query term matching-based scores recalculated for the passages. The details of
calculating the query term matching-based score for a cleaned passage are given below.
The terms of an expanded query are classified into three types, namely type-0, type-1, and type-2. Type-0
terms are terms that occur in a “function” word list containing common terms for genomic queries such as
“role”, “contribute”, “affect”, “develop”, “interact”, “activity”, “mutate”, etc. and their morphological
variants. Type-1 terms are non-type-0 terms added to the query during query expansion. Type-2 terms are
non-type-0 terms in the original query.
The query term matching-based passage score is calculated by accumulating the adjusted frequencies of the
matched query terms in the passage, which are computed differently for different types of terms:

Type-0: 0.50; Type-1: weight; Type-2:
tf

i-1

i=1
weight×(0.25)∑

where weight is each term’s weight in the expanded query, tf is the frequency of a term in the passage, and
0.50 is the typical minimum weight for a term in an expanded query.
The query term matching-based scores of the retrieved passages for a query are normalized by:

normalized
max min

S-2.00S =
min{4.00, S }-S

where S is the score of a passage before normalization, Smax and Smin are the maximum and minimum
scores of the retrieved passages for a query.
Because the weight of a type-2 term in the query is 2.00, the minimum score of a retrieved passage that
matches at least one type-2 term is 2.00. If a retrieved passage fails to match any of the type-2 terms in the
query, it is very likely to have a negative score unless it matches multiple type-1 terms. 4.00 is the
minimum score of a retrieved passage that matches at least two distinctive type-2 terms. Using min{4.00,
Smax} instead of Smax for normalization is to downgrade the differences between the passages that match
two or more distinctive type-2 terms since these passages probably have the same degree of relevance.
The original scores of the retrieved passages and the original scores of their corresponding documents are
normalized using the standard max-min normalization:

min
normalized

max min

S-SS =
S -S

The final score of a retrieved passage is a weighted linear combination of the normalized passage retrieval
score (with a weight of 0.85), the normalized document retrieval score of the document which contains the
passage (with a weight of 0.05), and the normalized query term matching-based passage score (with a
weight of 0.10). Passages for a query are reranked using the final scores.

2.6 ASPECT RETRIEVAL
Although topical relevance is the most important factor in information retrieval, an effective information
retrieval system also needs to consider the topical aspects of the retrieved information. For example, a
biomedical researcher would like to avoid seeing similar or even duplicated contents. Therefore, the
redundant information should be removed. The retrieval performance is generally considered better if the
top-ranked documents or passages are not only relevant but also cover a wide range of aspects.
Our aspect retrieval module considers both topical relevance and the coverage of aspects. Topical
relevance can be directly measured by the scores from the passage retrieval module (with or without
rescoring in the post-processing module). Topical aspects of each retrieved passage can be based on the
MeSH (i.e., Medical Subject Heading) terms which best describe the semantic meaning of the passage.
However, since MeSH terms are only associated with a whole document in the MEDLINE database, the
MeSH terms of each retrieved passage need to be estimated.
The process of assigning appropriate MeSH terms to retrieved passages is viewed as a multiple-category
classification problem in this work. Specifically, each retrieved passage is regarded as a query to locate
similar documents from a subset of the MEDLINE database. As the similar documents found tend to share
similar MeSH terms with this passage, we can assign MeSH terms to the passage based on the MeSH terms
associated with the similar documents.
In our work, the subset of the MEDLINE database is formed by the data for the adhoc retrieval task of the
TREC 2003 Genomics Track, which include 4,491,008 MEDLINE abstracts published during 1993-2003.
Most of the abstracts are associated with MeSH terms assigned by domain experts. After some text pre-
processing such as removing stopwords and stemming, the title field and the body text field of each
abstract are indexed. The average document length is about 160.
For each user query, the content of each of the 500 top-ranked passages from the ranked list of passage
retrieval is obtained and processed by removing stopwords and stemming to form a document query, which
is used for locating similar documents from the subset of the MEDLINE database. The Okapi formula is
used to retrieve the 50 top-ranked MEDLINE abstracts as the most similar documents. Then, the most
common 15 MeSH terms are extracted from these MEDLINE abstracts. Each MeSH term is associated
with a weight based on the number of occurrences of this term in the top-ranked MEDLINE abstracts.
These 15 MeSH terms are further represented by a vector in a vector space formed by all the MeSH terms.
We utilize the TF.IDF method as the term weighting scheme of the vector space:

ctf(w)val(w)=tf(w) log
c

∗

Where tf(w) is the number of occurrences of a specific MeSH term within the top-ranked MEDLINE
abstracts, ctf(w) is the number of occurrences of this MeSH term within the subset of the MEDLINE
database, and |c| is the total number of occurrences of all MeSH terms in the database.
In addition to extracting representative MeSH terms for each passage by analyzing the content similarity
between the passage and the MEDLINE abstracts, the MeSH terms associated with the biomedical
document that contains this passage can also be used to generate the MeSH terms for this passage. In order
to utilize both pieces of evidence, we use a linear form to combine the vector representations of the MeSH
terms from these two sources. More specifically, the two vectors are normalized respectively, and the
normalized vectors are summed together with an equal weight (i.e., 0.5). The final representation is
obtained by normalizing the sum.
The procedures described in the above paragraphs can be used to derive the MeSH representations for all
the top-ranked passages (top 500 in this work) for a user query. These MeSH representations reflect the
topical aspects of the passages. With both the topical aspects and the topical relevance information (i.e.,
passage retrieval scores), a new ranked list can be constructed by reranking the passage retrieval result.
Particularly, a procedure similar to the maximal marginal relevance method [Carbonell and Goldstern,
1998] is adopted here. This is a gradient-based search approach. At each step, a document is selected and
added to the bottom of the current reranked list. A combination score is calculated for each passage by
considering both the topical relevance information and the novelty information of the topical aspects with
respect to the current reranked list (i.e., the selected passages).

Selpsg))psg,psgSim((maxλ)1()psg(λS)psg(S iji
Selpsg

irelicomb
j

∉−−=
∈

where Scomb represents the combination score, Srel represents the normalized passage retrieval score (i.e.,
divided by the maximum score), λ is the factor to adjust the relative weights of the topical relevance
information and the topical aspect information (set to 0.5 in this work), Sel is the current reranked list of
the selected passages, Sim is a function that calculates the cosine similarity between the MeSH term
representations of two passages to reflect their topical similarity.
At each step, the combination scores are calculated for the passages that are not in the current reranked list
for a query. Since the passage with the maximum combination score reflects a good trade-off between
topical relevance and topical novelty, it is added to the bottom of the current reranked list. Note that the
above procedure is only applied to rerank the top 1-500 passages. The top 501-1000 passages are still the
same as the passages in the ranked list of passage retrieval solely based on topical relevance.

3. EVALUATION
We submitted three runs using automatically constructed queries. “PCPsgClean” used the automatically
expanded queries to conduct passage retrieval, and the retrieved passages were cleaned during post-
processing but not rescored. “PCPsgRescore” reranked the results obtained from “PCPsgClean” using the
rescoring method described in Section 2.5. “PCPsgAspect” further processed the results from passage
retrieval to optimize performance for aspect retrieval based on the method described in Section 2.6. None
of our results were optimized for document retrieval performance. Figure 1 shows the performance of our
system compared with the best and median performance for passage retrieval and aspect retrieval. For
passage retrieval, our “PCPsgRescore” run has 100% of the topics achieving performance better than the
median, and 5 topics achieve the best performance. For aspect retrieval, our “PCPsgAspect” run has 92%
of the topics achieving performance better than the median, and 1 topic achieves the best performance.

4. CONCLUSION
Our results for passage retrieval show that query expansion based on external biomedical resources is an
effective technique, and the hierarchical Dirichlet smoothing method that utilizes passage, document, and
collection language models works reasonably well for passage retrieval. Reranking the retrieved passages
by combining scores from passage retrieval, document retrieval, and the query term matching-based
rescoring consistently further improves the performance of passage retrieval. Our method of estimating
topical aspects of the retrieved passages and generating passage rankings by considering both topical
relevance and topical novelty has an acceptable performance but still leaves room for improvement.

REFERENCES
[1] Carbonell, J. and Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering

documents and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM.

[2] Zhai, C. X. and Lafferty, J. (2001). A study of smoothing methods for language models applied to ad
hoc information retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM.

160 162 164 166 168 170 172 174 176 178 180 182 184 186
0

0.1

0.2

0.3

0.4

0.5

Topic #

M
A

P

Best
PCPsgRescore
PCPsgClean
Median

160 162 164 166 168 170 172 174 176 178 180 182 184 186
0

0.2

0.4

0.6

0.8

1

Topic #

M
A

P

Best
PCPsgAspect
Median

 (a) passage retrieval (b) aspect retrieval

Figure 1 The performance of our system compared with the best and median performance.

