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Abstract

In TREC 2006, teams from the University of Maryland participated in the Blog track, the Expert Search
task of the Enterprise track, the Complex Interactive Question Answering task of the Question Answering
track, and the Legal track. This paper reports our results.

1 Blog Track

Blogs are being hailed as fundamentally different from other Internet communication protocols (e.g., email,
WWW), and as possessing a socially-transformative, democratizing potential [9]. Journalists see blogs as al-
ternative sources of news and public opinion [12]. “Blogs tend to be impressionistic, telegraphic, raw, honest,
individualistic, highly opinionated and passionate, often striking an emotional chord” [13]. Private individuals
create blogs as a vehicle for self-expression and self-empowerment [3, 9]. Therefore the blogosphere is a huge
information space of unstructured informal text in which opinions and attitudes are embedded.

People may have different information needs concerning opinions and attitudes. Political candidates may wish
to know both the aggregate attitudes (or sentiments) toward them and which groups of people like/dislike them.
Policy makers and journalists may want to know the whole spectrum of attitudes of stakeholders (including foreign
countries) on an issue. Advertisers may want to know the change of aggregate attitudes after the advertisement
is delivered to the targeted population. Individuals may want to know a certain celebrity’s attitudes about an
issue, or to find people who share their attitudes to have a discussion, or to find people who disagree with their
attitudes to persuade them. Therefore opinion retrieval can be useful to many people.

Previously there have been opinion retrieval studies on small collections of news articles, blogs, and Web
forums. However, the TREC-2006 Blog pilot track offered the first opportunity to create a large public test
collection for evaluation of blog opinion search using a large collection of blogs. The pilot track has two tasks, a
main task (opinion retrieval) which focuses on the opinionated nature of many blogs, and an open task which aims
to determine a suitable second task for 2007 on other aspects of blogs. The University of Maryland participated
in the opinion retrieval task, which involves locating blog posts that express an opinion about a given target.
“The target can be a ‘traditional’ named entity — a name of a person, location, or organization — but also a
concept (such as a type of technology), a product name, or an event.”! In this first year of the track, NIST
judges created 50 topics and performed relevance judgment. No training topics were available. Results from this
year of the opinion retrieval track should therefore be considered preliminary—the main goal is to explore the
design space for tasks and metrics and to create an initial test collection for use in formative evaluation.

1.1 Methods

In our TREC-2006 opinion retrieval experiments, we tested the following ideas: (1)segmenting permalink doc-
uments to natural paragraphs and fixed sized passages to examine their difference in retrieval effectiveness;
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(2)demoting the non-opinionated paragraphs along the retrieved ranked list; (3)query formulation using the title
fields only versus using both the title and the description fields.

The blog collection was crawled over a period of 11 weeks (December 2005 - February 2006). The total size
of the collection amounts to 23 GB (compressed) with three main components: feeds (8 GB), permalinks (11
GB), and homepages (4 GB). The collection contains spam as well as possibly non-blogs, e.g. RSS feeds from
news broadcasters. The distributed collection takes the form of a collection of organized, and uniquely identified
XML feeds and their corresponding HTML blog posting pages.?

Since the retrieval units are the documents from the permalinks, we use the permalinks only. Each permalink
file is basically a blog posting plus its comments (if any) embedded in a Web page with HTML markup. We
used a perl program to remove javascript codes and then used the Lynx utility to strip off the HTML tags. Each
html-stripped document contains a blog posting and possible comments surrounded by noisy information such
as Web page navigation, advertising, and copyright. We sent out an email to the participants to call for a joint
effort to clean the collection but received little passion and few responses. Since each blog hosting site has its
own pattern of web page design, we by ourselves can clean only a very limited number of such Web pages. By
taking a look at the permalinks.txt file under each of the 71 folders (from 20051206 to 20060221) which records
the permalinks of blog postings and comments, we roughly estimated the frequency of each blog hosting site
and selected the top 5 sites (i.e., livejournal.com, spaces.msn.com, xanga.com, blogs.msdn.com, 6-allthe.info) for
further cleaning, which accounts for approximately 10% of the total number of permalinks. We then manually
examined 100 documents from each of the 5 sites trying to find patterns for removing noisy information on the
permalink Web pages. Here are some example patterns for cleaning livejournal.com:

— remove anything beneath “Log in now.”

— remove anything between “Page Summary” and a date pattern such as “November 24th, 2005.”

— remove anything between the following hint strings and a string starting with a *: “Previous Posts[ :]”,
“Recent blog posts| :]”, “Recent Posts] :]”, “Categories| :]”, “Recent News][ :]”, “Advertising[ :]”, “Blogs I read|
:]7; “Documents I liked] :].” Here [ :] means either a space or a colon.

— remove consecutive short lines (less than 41 characters) starting with *, 4+, #, o, or @ followed by a space.
The latter two patterns were also applied to the permalink Web pages of other than the top 5 hosting sites.
These are rough cleaning steps in an attempt to remove the titles of other posts, so there is still noisy information
remaining after these steps. The size of the original permalinks and processed permalink files is listed in Table 1.

original permalinks 90.1GB (3215171 documents)
after stripping off HTML tags || 22.1 GB
after further cleaning 179 GB

Table 1: Size of the Permalink Collection.

We think a whole permalink document may include attitudes toward multiple targets, so the ideal document
granularity for attitude analysis is a paragraph or a passage. Paragraph detection is a text classification task
which requires training data with boundaries marked. Moreover, blog postings and comments are all personal
writings which have not gone through any professional editing, so automatic paragraph detection can be a
challenging research problem here. To simplify the complicated problem, we manually examined a random
sample of 200 permalink documents to find heuristic patterns for segmenting a document into natural non-
overlapped paragraphs. Our algorithm consists of two steps. The first step identifies candidate paragraphs by
merging lines. A current line is merged into a previous line if:

(1) the current line is an empty line or a line ending with any of the following punctuation marks: !, ., 7, 7, and
) if the previous line is not as such, or

(2) the previous line starts with any of the following symbols: -, >, * +, o, ., or numbers. These symbols usually
represent the title of a section.

The second step merges a current candidate paragraph into a previous candidate paragraph if:

(1) the merged paragraph has < 50 tokens, or

(2) the current paragraph has >= 50 tokens but the previous one has < 30 tokens, or

(3) the current paragraph has < 50 tokens and the merged paragraph has between 50 and 60 tokens, or

(4) the previous paragraph has >= 50 tokens, and the current paragraph has < 10 tokens, and the current
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paragraph does not start with the pattern of somebody “wrote:”, “write:”, “writes:”, “said:”, “say:”, “says:”, or
(5) the previous paragraph has >= 50 tokens, the current paragraph has >= 10 tokens, the current paragraph
does not start with the pattern of somebody “wrote:”, “write:”, “writes:”, “said:”, “say:”, “says:”, and each line
of the current paragraph has same number of starting empty spaces as the previous paragraph.

The algorithm is still flawed since some of the generated paragraphs are very long, especially for those postings
and comments which are ill-formatted, but we did not have enough time to improve it.

An alternative to segmenting a document into paragraph is to segment a document into overlapped fixed
sized passages. Text tiling segments text into multi-paragraph subtopic passages [8], but is not appropriate here
since it sets passage boundary when the topic changes, that is, it may fail to detect an appropriate passage for
an attitude target when the topic and the target do not match. We generated overlapped fixed sized passages
with window size of 50 words and overlap of 10 words between two neighbor windows.

We indexed the paragraphs and passages generated from the cleaned permalink collection using Indri®. The
Porter stemmer was applied and stop words removed during indexing. Topics were processed into Indri queries
with stop words removed. Indri automatically stems the query words using the stemmer specified during the
indexing process. Two types of queries were formulated - using the title fields only, and using both the title and
description fields. The relevant paragraphs or passages were retrieved for opinion analysis.

We took two steps to analyze the attitudes toward the attitude targets. First we computed the semantic
orientations of the words in a relevant paragraph or passage, then aggregated the semantic orientations of the
words of the relevant paragraph or passage to get a final sentiment score of the paragraph or passage. At first
we collected the prior-polarity subjectivity lexicon from Wilson [20] which annotates the semantic orientation
(i.e., positive, negative, neutral) of 8221 words.

Turney and Littman [18] presented an unsupervised learning method for inferring semantic orientation of
words (including adjectives, adverbs, nouns, and verbs) from semantic association. Seven positive words (good,
nice, excellent, positive, fortunate, correct, and superior) and 7 negative words (bad, nasty, poor, negative,
unfortunate, correct, and superior) were intuitively selected as paradigms of positive and negative semantic
orientation due to their lack of sensitivity to context. The semantic orientation of a given word was calculated
from the strength of its association with the 7 positive words, minus the strength of its association with the 7
negative words. The magnitude of the difference can be considered as the strength of the semantic orientation.
The strength of the semantic association between words were computed using two methods—pointwise mutual
information (PMI) and latent semantic analysis. PMI was computed using word co-occurrence collected from
the web search engine Altavista (i.e., the hits of a query “word? NEAR word2”) as follows:

% hits(wordy NEARwords)

PMI(wordy, words) = |
(word,, wordy) ng(%hits(wordl)%hits(wordg)

(1)

where N is the total number of documents indexed by the search engine. The PMI method, given an unla-
beled Web training corpus of approximately one hundred billion words, attained an accuracy of 82.8% which is
comparable with Hatzivassiloglou and McKeown’s complex method [7].

Due to the time constraint, we were not allowed to compute the semantic orientations of all the words in
the retrieved paragraphs or passages of all the 5 runs. However, Wiebe et al. found that subjectivity clues
include low-frequency words, collocations, and adjectives and verbs identified using distributional similarity [19],
so we selected the low frequency words from the top 1000 retrieved paragraphs using the title fields only. Since
the method of counting positive and negative terms requires us to transform the terms into their base forms
(lemmas) in order to be able to check if a term is in our sentiment lexicon [10], before selecting low frequency
words, we lemmatized all the words of the retrieved paragraphs using Morpha*, then removed stop words, the
words in Wilson’s subjectivity lexicon, and those not in a dictionary detected by the unix “spell” utility, then
we selected the lemma with document frequency no more than 40 times (DF <= 40). We noticed that when
DF > 40 more non-subjective lemmas were seen. Finally we selected 16773 words.

Since Altavista is not available any more and it is very time consuming to consult any Web search engine
for word co-occurrence frequency, we computed the PMIs of the 16773 words by consulting the blog permalinks
collections directly. We used Indri’s RunQuery to collect hits of words and word co-occurrence. Whenever
RunQuery reported a core dump for any word (due to too many retrieved documents), that word was removed.
Nine words were removed due to this reason.

Shttp://www.lemurproject.org/indri/
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We aggregated a sentiment score of a paragraph or passage from the semantic orientations of the lemmas
by checking two sources. If a lemma was in Wilson’s subjectivity lemma lexicon, it got 1 point. Otherwise,
if it was in the low frequency word list with a score between -3 and -0.05, or between 0.05 and 5, it got 0.2
point. Lemmas with a score of (-0.05, 0.05) were considered neutral, and those with a score (-infinite, -3) or (5,
infinite) were considered abnormal, and therefore were removed. The aggregated sentiment score of a paragraph
or passage is computed as a score accumulated from all the lemmas in the paragraph/passage normalized by the
paragraph/passage length (i.e., the number of lemmas in the paragraph/passage).

We performed a proportional demotion of paragraphs/passages along the retrieved ranked list if a para-
graph/passage has a normalized sentiment score less than 0.15. We tried two demotions - demotion by 2 times
and 3 times. By demoting n times we mean demoting a paragraph/passage from its original position of x to the
position of nx along the ranked list. Before submitting our runs, we merged the paragraphs/passages from a same
permalink document back into one document bottom up along the ranked list. If fewer than 1000 documents
were generated, we re-ran our queries to retrieve more paragraphs/passages.

1.2 Relevance Assessment

TREC organizes assessments for the opinion retrieval task. For the assessment, the content of a blog post is
defined as the content of the post itself and the contents of all comments to the post; if the relevant content is in
a comment, then the permalink is declared to be relevant. The assessors assigned 6 levels of relevance scores®:
not judged (-1), irrelevant (0), relevant but non-opinionated (1), relevant with negative opinion (2), relevant with
mixed (or ambiguous) opinion (3), relevant with positive opinion (4). Note that for opinion relevance, the topic
of the post does not necessarily have to be the target, but an opinion about the target must be present in the
post or one of the comments to the post. We report our results at two levels: topic relevant level (>=1 vs < 1)

and opinion relevant level (>= 2 vs < 2).

1.3 Results and Discussion

We submitted 5 automatic runs consisting of the top 1,000 documents for each topic for the opinion retrieval
task.

ParTitDef. Baseline 1. This is our required automatic run. Permalink documents are segmented into para-
graphs. Queries are automatically formulated using the title fields only. No opinion detection is performed.

ParTitDesDef. Baseline 2. Permalink documents are segmented into paragraphs. Queries are automatically
formulated using both the title and description fields. No opinion detection is performed.

PasTitDesDef. Baseline 3. Permalink documents are segmented into passages. Queries are automatically
formulated using both the title and description fields. No opinion detection is performed.

ParTiDesDmt2. Permalink documents are segmented into paragraphs. Queries are automatically formulated
using both the title and description fields. Non-opinionated paragraphs are demoted 2 times proportionally
along the retrieved ranked list.

ParTiDesDmt3. Permalink documents are segmented into paragraphs. Queries are automatically formulated
using both the title and description fields. Non-opinionated paragraphs are demoted 3 times proportionally
along the retrieved ranked list.

Our analysis to date has focused on retrieval effectiveness for topic relevance and opinion relevance. Table 2
shows retrieval effectiveness measures at topic relevance. Comparing ParTitDesDef with other four runs, we see
a minor reduction of Mean uninterpolated Average Precision (MAP) for demotion of opinionated paragraphs
(ParTiDesDmt2 and ParTiDesDmt3) and substantial reduction of MAP for ParTiDef and PasTiDesDef.

A Wilcoxon signed-rank test for paired samples indicated that the reduction in MAP between ParTitDesDef
and ParTiDesDmt2 is not significant at p < 0.05, between ParTitDesDef and ParTiDesDmt3 is marginally
significant at p = 0.05, between ParTitDesDef and ParTiDef or PasTiDesDef is significant at p < 0.05.

Table 3 shows retrieval effectiveness measure at opinion relevance. Comparing ParTitDesDef with other
four runs, we see similar reduction patterns as Table 2 except a minor improvement of ParTiDesDmt2 over
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Difference in AP

Median Better

Figure 1: [Blog] Difference between ParTiDesDmt2 and Median, Average Precision at Opinion Relevance.

ParTitDesDef. A Wilcoxon signed-rank test for paired samples indicated that the difference in MAP between
ParTitDesDef and ParTiDesDmt2 or ParTiDesDmt3 is not significant at p < 0.05, between ParTitDesDef and
ParTiDef or PasTiDesDef is significant at p < 0.05.

From these comparisons we conclude that demotion of opinionated paragraphs does not help better retrieve
either topically relevant or opinion relevant documents; query formulation using both the title and description
fields is significantly better than using the title fields only; segmenting permalink documents into paragraphs is
significantly better than segmenting into fixed sized passages.

H Runs H MAP \ Bpref \ P10 \ R-Prec ‘
ParTitDesDef 0.2849 | 0.3998 | 0.6200 | 0.3490
ParTiDesDmt2 || 0.2845 | 0.4040 | 0.6200 | 0.3501
ParTiDesDmt3 || 0.2812 | 0.4034 | 0.6200 | 0.3542
ParTiDef 0.2362 | 0.3580 | 0.5280 | 0.3162
PasTiDesDef 0.2733 | 0.3866 | 0.5800 | 0.3516

Table 2: Comparison at Topic Relevance.

H Runs H MAP \ Bpref \ P10 \ R-Prec ‘
ParTitDesDef 0.1882 | 0.2521 | 0.3780 | 0.2441
ParTiDesDmt2 || 0.1887 | 0.2573 | 0.3780 | 0.2421
ParTiDesDmt3 || 0.1873 | 0.2568 | 0.3780 | 0.2417
ParTiDef 0.1547 | 0.2256 | 0.3360 | 0.2106
PasTiDesDef 0.1631 | 0.2274 | 0.3460 | 0.2264

Table 3: Comparison at Opinion Relevance.

For topic relevance, ParTitDesDef yielded our best results when evaluated using MAP and P10 whereas
ParTiDesDmt2 yielded best results when evaluating with Bpref and P10. Compared with the median across all
57 runs submitted by any team, ParTitDesDef outperformed the median AP for 37 out of 50 topics. For opinion
relevance, ParTiDesDmt2 yielded our best results when evaluating using MAP, Bpref and P10. Compared with
the median across all 57 runs, ParTiDesDmt2 outperformed the median AP for 39 out of 50 topics (see Figure 1),
but hit the best AP only once. Median results are likely to be biased somewhat low in the first year of a new
track, but this analysis suggests that conventional term weighting and document scoring techniques such as those
implemented in Indri perform reasonably well for this task.

Demotion of opinionated documents does not help or hurt much the retrieval effectiveness at both topic
relevance and opinion relevance levels. Comparing AP of ParTiDesDmt2 with ParTitDesDef topic by topic (see
Figure 2) reveals that ParTiDesDmt2 does better than ParTitDesDef on some topics but worse than the others.
We suspect this might be due to our flawed way of sentiment detection. Additional analysis will be needed to
characterize the reasons for the ineffectiveness of our opinion detection approach.
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Figure 2: [Blog] Difference between ParTiDesDmt2 and ParTitDesDef, Average Precision at Opinion Relevance.

2 Enterprise Track

The primary goal of the expert search task [4] is to look for a person or multiple people in an organization who
are experts on a given topic. The task briefly connects content (emails, web pages, etc.) to people and both
represent the major two sides of searching (or making sense of) any informal communication media, matching
the main goal of JIKD project in University of Maryland® that focuses more on emails as an example of such
media. Hence, our first-time participation in the task has two goals. The first is to build a baseline and the
second is to apply what we have learned in JIKD about modeling identity [5] to a public mailing lists such as
W3C as opposed to personal archives such as Enron collection [11]. With both in mind, we have adopted a
simple unsupervised approach that focuses solely on mailing lists as the source of evidence and ranks candidates
based on references (in the headers and the body text) to their names and email addresses in a set of emails
that the system believes as relevant to the topic of interest. The credit granted at each detected reference is
computed based on (1) the relevance score of the email where the reference appears, and (2) the specific email
field (headers, new text, quoted, etc.) in which it is observed.

2.1 Preprocessing

Duplicate Removal We used W3C mailing lists version that was cleaned by Daqing He”. Before any further
processing we removed the duplicate emails, yielding 169,053 unique emails out of what was originally 173,146
emails in that cleaned version.

Detection of signature blocks Since our approach is based on the references in the body of the email, it
was natural to isolate the signature blocks of each email so that the names that appear there do not mislead the
subsequent scoring. To detect these blocks we used the same technique described in [5].

Indexing We indexed the mailing lists using Lucene, an open source search engine®. Body text was stemmed
and the stop words were removed from each email and the new text, signature block, quoted headers, and quoted
text were indexed in separate fields.

Building simple models of identity To be able to recognize as many references to the same person as we
can, we have built simple models of identity [5] that associate multiple forms of names and email addresses of
the same person from the main and quoted headers. For each person, only strong co-occurrences (whose relative
frequency exceeds a specific threshold) are kept in the model in order to get rid of unreliable associations that
were incorrectly extracted due to parsing errors. For the expert search task, a list of 1092 candidates (one name
and one email address for each) is provided to the search system. The built models are aimed to enrich that list
by alternative addresses and forms of names of the same person.

Query Formulation We have formulated our queries using one or more (concatenated) fields of the traditional
TREC topic format. The specific combinations used in the submitted runs will be given later in section 2.3. Each

Swww.jikd.umiacs.umd.edu
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Table 4: Fields f and Weights wy
Sender 2.0 | Receiver 1.0 | Subject 1.0 | New text tf
Qtd. sender 1.0 | Qtd. receiver 0.5 Qtd. text ¢

query was stemmed and the stop words were removed before being passed to the search engine. The searched
email fields are both subject and new text.

Name Recognition We used Aho-Corasick algorithm [1] to recognize references to names or email address in
linear time. Note that we restrict the list of recognized names to full names only trying to reduce the uncertainty
in resolving them.

2.2 Retrieval Approach

We first retrieve a set of emails that are relevant to the formulated query using Lucene’s vector space model. We
experimented with two different retrieval approaches:

2.2.1 Email-based Approach

This approach considers the top 500 emails as the relevant set of emails Rp to the given topic T" and computes
a score for each candidate as follows:

score(cand|T) = Z support(d|cand, T')
deRT

where

support(d|cand, T) = sim(d,T) - assoc(cand, d)

assoc(cand, d) wa cand, d)
fed

and sim(d,T) is the similarity score assigned by Lucene for document d. The weights of the different fields are
listed in Table 4.

2.2.2 Thread-based Approach

In this alternative approach, we add to Ry the first 15 emails in a breadth-first traversal of the threads H rooted
by the emails retrieved by the query. Since those just added emails are not directly relevant to the topic T', we
have used the following scoring function:

score(cand|T) = Z Z support(d|cand, T)
heH deh

1

support(d|cand, T) = sim(root(d),T) - Tevel(d Tng)
evel(d, hq

- assoc(cand, d)

where level(d, hq) is 1 4 the distance from thread root to d.

2.3 Evaluation and Results

Each participating site was allowed to submit up to 5 runs. For each topic, the system provides a ranked list
of candidates (up to 100) along with a ranked list of supporting documents (up to 20) for each candidate. The
goal of the later list is to guide both the relevance judgment and evaluation processes.

Two evaluation approaches are applied to the task this year. The first (called ”expert-retrieval”) evaluates
each run based solely on the expert ranking while the other (called ”expert-support”) considers a retrieved
candidate relevant only if the system provides a (judged) positive support document for that candidate.

UMD submitted 5 runs (listed in Table 5) which differ in how the query is formulated given the TREC topic
and whether the system retrieves emails or threads. The table gives a brief summary of the evaluation results of
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Table 5: Summary of the Results

Retrieval Support
Run Id Query Approach MAP P@l0 MAP PQl0
UMDemail TTL Title Email 0.195 0406 0.072 0.182
UMDemailTLNR Title + Narr. Email 0.350 0.504 0.141 0.298
UMDthrdTTL Title Thread 0.218 0.449 0.090 0.198

UMDthrdTTLNR Title + Narr.  Thread 0.843 0.514 0.139 0.29/
UMDthrdTTLDS Title + Desc.  Thread 0.315 0.502 0.119 0.278
Average of Medians — — 0.341 0.508 0.154 0.294

each run in two different measures for both methods of evaluation. The average score of the median system in
each topic is also listed in the table for comparison.

The table indicates that the runs which use both title and narrative parts of the topics were the best with the
email-based one in particular the best in most measures. Notice the significant difference between scores in both
evaluation approaches for the same run (even in the average-of-medians case), which means that systems were
usually not able to justify their choices.

The results per topic for our best run (UMDemailTLNR) are shown in Figure 3(a) where the difference in
average precision from the median score is plotted for each topic sorted by topic ID and that difference. The
figure shows that this particular run may represent an average system among all submitted runs.

Since our approach only utilizes mailing lists part of the W3C collection, it is interesting to see how that
limitation affects the performance of our approach. Here we propose one way to achieve that goal by first
computing Email Support Ratio “ESR”; an estimation of the dependency of a topic T on mailing lists as follows:

ESR(T) — —|Positive Support Emails of 7|

|Positive Support Documents of T'|

ESR gives an indication of how much each topic is actually represented (or discussed) in mailing lists. Figure
3(b) illustrates both ESR and the actual number of positive support emails per topic. The figure shows that
ESR spans its range almost uniformly over topics but it is not directly proportional to the number of supporting
emails. Two topics (EX63 and EX74) had no email support at all.

To investigate whether there is a potential relationship between our scores and ESR, we plot in Figure 3(c)
the difference in average precision from both median and best scores over topics sorted by ESR. Fitted cubic
curves are also plotted in each case. The curves show that our system (in average) performs better as ESR
increases, i.e, scores on topics that are heavily discussed in mailing lists are generally better

3 Legal Track

In the legal community, people have been familiar with using simple term-based techniques to search against
large data sets. However, the effectiveness of such technologies in finding responsive documents in legal settings
has not been generally studied. The TREC legal track provides a forum to evaluate the results of searches on
”topics” approximating real legal requests in litigation. For the first year of the track, the University of Maryland
team mainly tried two techniques: Boolean search and combining query terms from multiple sources. Since a
boolean query for each search request was provided in the test collection, we wanted to see how a retrieval system
that is designed for ranked retrieval would perform if we made it act like a Boolean search system. In this case,
we used Indri retrieval engine, and by combining some of its query operators we were able to produce a Boolean
run. For comparative purpose, we also produce three other runs, which are explained below.

We indexed all the fields in the document collection to create one document index. All the four submitted
runs used this index. The first is a baseline run, whose queries used all words from the <RequestText> field in
the topics to form automatic queries. This is called baseline run since we expected other runs to achieve better
retrieval effectiveness through either performing Boolean retrieval or adding query terms from the Boolean text.
The second run is a run using manually formulated queries based on the <FinalQuery> field in the topics. Since
we did not have a true Boolean retrieval system available, we combined several query operators in Indri retrieval
engine to “mock” this Boolean run. In addition, we also submitted a run with queries based on all word from
the original Boolean queries to form queries (i.e., ignored all the Boolean syntax and treated each query as a



bad of words). A comparison of this run with the above Boolean run will reveal whether the Boolean syntax
can improve the retrieval effectiveness. Finally, we combined all word from the original Boolean queries and all
words from the <RequestText> to form combined queries. We want to see whether using such a combination of
query words can lead to improvement over using either the Boolean query words or using the <RequestText>
words alone.

3.1 Techniques

Although research and practice in information retrieval has run for a long time, we haven’t seen much comparison
of Boolean retrieval and ranked retrieval. A main reason is that usually a retrieval system is designed for either
ranked retrieval or Boolean retrieval, both rarely for both. Boolean retrieval has been widely used in the legal
community, while the majority of the IR systems used in TREC evaluation are ranked retrieval. It would be very
interesting to conduct such a comparison since the result can inform us whether experimental ranked retrieval
systems can achieve performance comparable to or even better than the practical Boolean system. However, it is
not easy for research teams like us to get a practical Boolean system. Fortunately, we found that Indri retrieval
system provides several query operators that can be used to mock Boolean retrieval. So we decided to use Indri
to conduct both the Boolean retrieval and the ranked retrieval. In this section, we describe how we constructed
Boolean queries in Indri and other three sets of queries used in our official submission.

The retrieval model in Indri is based on a combination of the language modeling and inference network
retrieval frameworks [16]. Indri provides a lot of operators that can be sued to form complicated and effective
structured queries. Two types of query operators that are particular important for the purpose of this study
are “matching” operator and “belief” operator. Matching operators can be used to decide whether a document
match the query in question. This is basically done through some sort of term matching. Belief operators are
used to decide the degree of matching. For ranked retrieval, they are directly related to the rank of a document.
In our study, we used different combinations of those query operators to mimic Boolean retrieval. Specifically,

e OR For Boolean expression “a OR b”, we constructed “#combine( a b )” as the Indri Boolean query. This
query will return every document that contains either a or b or both. As the name indicates, #combine
operator combines the belief based on term @ and term b, hence ranking is possible, although for the
purpose of Boolean retrieval, ranks can be ignored.

e AND For Boolean expression: “a AND b”, we constructed “#filreq( #band( a b ) #combine( a b ) )”
as the Indri Boolean query. This query will return all documents containing both ¢ and b and then rank
documents according to the belief computed with “#combine( a b )”. Again, the score can be ignored for
Boolean retrieval.

e NOT For Boolean expression “a NOT b”, we constructed “#filrej( b a )”. This will score all documents
that contains term a but never return any containing term b.

The above three basic operations can be combined to handle more complicated Boolean queries. For example,
for a Boolean expression:

((aORb)ANDc)NOTd

We can first use Boolean logic to convert it into:

((aANDc)OR (bANDc))NOTd

The resulting Indri query will be:

#filrej( d #combine( #filreq( #band( a ¢ ) #combine( a ¢ ) ) #filreq( #band( b ¢ ) #combine( bc) ) ) )

For more complicated Boolean queries, such as “(a OR b) AND (¢ OR d)”, #syn query operator should be
used. This is because if we follow the above rules, we’ll have a query like this:

#filreq( #band( #combine( a b ) #combine( ¢ d ) ) #combine( #combine( a b ) #combine(cd ) ))

However, this query won’t work because the #filreq (and also #filrej) operator requires the first argument to
an expression that returns matches, not one that returns scores. Being a belief operator, the #combine operator
returns scores, so it can’t be used as the first argument. In cases like this one, the #syn operator can be used
instead. #syn is a matching operator - #syn returns documents that matches at least one of the term specified
in it. Consequently, the above query can be revised as:

#filreq( #band( #syn( a b ) #syn( ¢ d ) ) #combine( #combine( a b ) #combine( ¢ d ) ) )

Following these rules, we were able to work around to convert the Boolean queries provided in the search
topics into Indri queries. Although it is possible to automatically derive Indri Boolean queries based on the



original Boolean queries of the search topics, we used a semi-automatic approach due to some syntax errors and
typos in the original queries. That is, we used a Perl script to form the initial set of Indri Boolean queries based
on the above rules, and then manually corrected the errors. In the original Boolean queries, most words were
truncated. In formulating the Indri Boolean queries, however, we returned to the full form of each word since
we applied the built-in stemming function of Indri to both the queries and the documents.

The other three set of queries used in out official submission are for comparison purpose. For a baseline ranked
retrieval run, we formulated the query by simply using all words contained in the <RequestText> field. Again,
we did not perform extra operations such as removing punctuation or stemming since they were taken care of by
the Indri functions. The third set of queries used all words in the original Boolean queries of the search topics,
but we ignored all Boolean syntax operators. We're interested in knowing whether a ranked retrieval system that
does not support Boolean retrieval can achieve reasonable retrieval effectiveness if we simply feed it with Boolean
queries constructed by people who are more comfortable with creating Boolean queries. Finally, we formulated
another set of queries that used a combination of all words from the <RequestText> and <FinalQuery> (i.e.,
the original Boolean query field). Here, we would like to see whether such a combination of query words from two
sources could lead to better retrieval effectiveness than using each of them alone. Of course, these two sources
share a lot of words.

As mentioned above, we used Indri retrieval engine for our experiment. Indri is retrieval system jointly
developed by the University of Massachusetts and Carnegie Mellon University. It has been made freely available
for the IR community ?. Although Indri accepts documents in a variety of formats including XML and the legal
documents are in XML format, it requires each document as one file. Since the collection contains 6,910,192
documents, we decided to convert the documents into trecweb format instead of splitting them into smaller files
(Indri also accepts trecweb format and does not require one document per file). All the fields in the original
XML format were retained as trecweb <BODY> content. Finally we create a single document index with this
reformatted document collection. Porter stemmer was used in both query and document processing.

Due to time constraint, we were not able to try other variants of indexing techniques such as character
n-gram. We understood that the documents contain many errors from from an optical character recognition
(OCR) process, and character n-gram based retrieval may compensate some of these errors.

3.2 Results

Table 6 shows the the average precision of each topic for the four submitted runs. Overall, mean average precision
(MAP) is very low for all the four runs, indicating either this is a challenging task or the techniques we explored
were not very effective. We suspect that the OCR errors might be a major contributing factor, especially when
word-based indexing was used.

Among the four runs, the one using all words from the <RequestText> field and the field <FinalQuery>
(i.e., Comb in the table) has the highest MAP. Wilcoxon signed rank tests indicate that this run significantly
outperformed the baseline run and the run with words from the Boolean queries (i.e., Base and BooleanAuto in
the table, respectively), while it is indistinguishable from the Boolean run (Boolean in the table). Two things are
important here. First, combing query words from different sources seemed to help improve retrieval effectiveness.
Secondly, Boolean retrieval can be just as effective as the best ranked retrieval in our study. The Boolean run is
statistically indistinguishable from any of the other three runs.

We were informed by the track organizers that, after the official evaluation was completed, our Boolean run
was indeed evaluated as if it were a ranked retrieval.

We also looked at the number of documents returned for each topic in our Boolean run (see Column “Boolean
ret#” in Table 6). In fact, the system did not return any document for eight topics (Topic numbers: 10, 17,
31, 33, 36, 38, 46, 47). However, in Table 6, each of those eight topics has one retrieved document. This is
because the sanity check script used by NIST requires at least one retrieved document for each topic, so we
randomly added one document for each of those eight topic in our Boolean run. Overall, the number of retrieved
documents varied greatly among the topics. We’re not sure what caused it, and future investigation is needed.

3.3 Future Work

Not surprisingly, for the first year of TREC legal track we could not achieve good retrieval effectiveness. We knew
very little about the test collection before we started to work on it. Time constraint was another challenge to

9http:/ /www.lemurproject.org/indri/



10
13
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
43
44
45
46
47
50
51
MAP

Base
0.0002
0.0086
0.0155
0.0213
0.0001
0.0253

0.0137
0.0114
0.0123
0.0003
0.0005

0.0039
0.0023

0.0001
0.0011
0.0978

0.2212
0.1316
0.0268
0.023
0.055
0.1119

0.0046
0.0288
0.0178

0

1
0.007
0.0021
0.0844
0.0005
0.0013
0.0004

0
0.0495

Boolean
0.0027

0.0509

BooleanAuto
0.0001
0.0141
0.0044

0.071
0.0003
0.0206

0

0.004
0.0331
0.0289
0.0059
0.0908

0
0.0009
0.014
0
0.0001
0.0008
0.0084
0.0031
0.2791
0.1395
0.0034
0.0734
0.0447
0.0629
0
0.0243
0.0047
0.0048
0
0.2
0.0032
0
0.0259
0.0207
0.0006
0.0448
0.0001
0.0316

Comb
0.0003
0.0284
0.0063
0.0565
0
0.0491
0
0.0185
0.023
0.0183
0.0077
0.0462
0
0.0035
0.0353
0
0.0001
0.0005
0.1401
0.0005
0.4789
0.1404
0.0362
0.137
0.0813
0.138
0
0.0307
0.0116
0.023
0
0.5
0.003
0.0009
0.1143
0.0333
0.0018
0.0176
0
0.056

Boolean ret#
15
13
1

201
1
208
2
1
21
456
2604
218

755
2039
976
1530
2647

rel#
122

165
185
129

160
36

80
502
35
289
68
392

12
352
184

46

17

93
320

63

37
245

34

13

78
136

18

1
1
161

28
157

50

6

61

29

Table 6: Average precision (AP) for 4 official runs. Base: queries were formulated by using all words from
the <RequestText> field; Boolean: queries were Indri Boolean queries manually formulated based on the
<FinalQuery> field; BooleanAuto: queries were formulated by using all words in the <FinalQuery> field (ig-
noring the Boolean syntax; Comb: queries were formulated by using all words from the <RequestText> field
and the <FinalQuery> filed; Boolean ret#: the number of documents retrieved in the Boolean run; rel#: the

number of relevant documents (official).




us. Our team had to serve as a member of the track organizing team while doing our own research. However, we
gained valuable experience. Our immediate plan is to try out character n-gram based indexing and compare the
results with the word-based indexing results. This may give us a better understanding of the effect of OCR errors
on the retrieval effectiveness. We also would like to index selectively different fields in the document collection
(e.g., metadata fields vs. OCR’d fields). In the future, we plan to team up with law librarians/students to
explore a broader range of issues, such as manual query formulation based on the full complaints and interactive
retrieval. Therefore, we look forward to next year’s legal track!

4 QA Track

Information needs are often complex, evolving, and difficult to express or capture [17], an issue that is not well
addressed in batch-oriented information retrieval system evaluations. This issue has received attention in earlier
TREC’s, most notably in the interactive track and in the HARD track [2]. In our previous work, we found that
well-constructed clarification questions help to better characterize the user’s information need and thus yield
better retrieval effectiveness [14].

Interactive question answering has recently become a focus of research in the context of complex QA. The
question templates in the ciQA task are substantially different from factoid questions in that the information
needs cannot be answered by named entities such as people, organizations, locations, dates, etc. To investigate the
role of interaction in complex QA, we relied on an approach similar to [14]: a trained intermediary manually read
through relevant documents, generated answers from them, constructed clarification questions, and produced
improved answers based on the clarification responses. We also submitted an automatic run to test quasi-
relevance feedback for question answering. Overall, we had three major goals:

e To explore the effectiveness of single-iteration written clarification dialogs
e To explore different strategies for clarifying user needs in question answering;

e To better understand the nature of complex, template-based questions.

The description of our ciQA activities is as follows: Section 4.1 describes our manual runs. Section 4.2
describes our automatic runs. Section 4.3 presents official results.

4.1 Manual Run

This section describes our methodology for creating manual pre- and post-clarification runs (UMDMIlpre,
UMDM1post). We employed a trained intermediary in all phases of the process.

Document Retrieval. We employed the building blocks strategy [6, 15] with Lucene to obtain a set of relevant
documents. We constructed a Boolean query based on the question template and narrative for each topic,
augmented with various query term expansions. Concepts were ANDed, and the set of synonyms for each
concept were ORed together.

We used a number of external sources for expanding query terms:

e The CIA World Factbook: used for geographic expansion. The World Factbook provides different forms
of country names: conventional long form, conventional short form, local long form, local short form, and
abbreviation. In addition, we also expanded country or region names to their states/provinces, ports and
terminals, and major cities (all fields in the Factbook).

e Google: used for lists of instances. For example, we expanded “performance-enhancing substances” into
the names of banned substances by NCAA and other organizations.

e WordNet: used to expand general concepts to their hyponyms, hypernyms, and synonyms. For example,
we expanded “weapon” to its hyponyms (for example, missile) and its synonyms (for example, arm).

e Roget’s Thesaurus: used for common concepts. For example, we expanded transportation to its various
forms, such as barge, rail, air, water, road, cargo, freight, and so on.



e Wikipedia: used for variation of organization names and related organizations. For example, we expanded
TRA to “Republican Movement”, “Irish republican organizations”, “Irish Republican Army”, “Fianna
FEireann”, and so on.

The query expansion allowed us to retrieve documents at the conceptual level—beyond simple matching of
terms in the topic description.

Answer Generation. We examined the top 20 documents for each topic to select statements, facts, or evidence
that would answer the question. We resolved anaphora, combined multiple sentences, and eliminated redundant
information when necessary.

Answer Ranking. Having gathered all the pieces, we then ranked the answers based on importance and/or
logical order to generate a coherent response. The intention was to present the answers in a order that makes
sense to the assessor. Depending on the topic, this could be chronological order, order of importance, or a
summary statement followed by supporting evidence.

Clarification Forms Generation. We used three types of clarification questions, depending on how well we
understood the question and the answers after the initial run.

e For 10 questions where the topic narrative seemed insufficient to generate a coherent response, we asked
specifically for guidance. See Figure 4 for an example.

e For 12 questions where the topic narrative seemed clear and the answers seemed to roughly cluster into
categories, we asked the assessor about the importance of the various categories so that we can re-rank the
answers. See Figure 5 for an example.

In this form, we also presented a few sample answers. Assessors were asked to judge the relevance of each
sample answer; the choices were relevant, partially relevant, and not relevant.

e For 8 questions where answers did not seem to cluster into coherent categories, we picked a number of
sample answers for soliciting relevance feedback. The choices were relevant, partially relevant, and not
relevant.

Refinement of Final Answers. After we received feedback from the users, we reselected and reranked the
initial answers. Additional searches were performed for a few topics. The number of manual answers for each
topic ranged from 5 to 18. We then filled the response with automatically-selected sentences retrieved from the
manual queries until the 7,000 character limit was reached.

4.2 Automatic Run

Our process for generating the automatic runs (UMDA1pre, UMDA 1post) was relatively simple. For each topic,
the question and narrative was used verbatim as a query to Lucene. From the top 20 resulting documents, 10
terms were selected based on tf.idf values. These terms were added to the original query to retrieve a new set of
documents. Sentences in this set that did not contain at least one term from the question were discarded. The
remaining sentences comprised the initial run.

The automatically-generated clarification forms asked the assessor for relevance judgments on each of the
sentences (relevant, partially relevant, not relevant, and don’t know). The final run was prepared by moving
sentences judged as relevant up to the top of the list, followed by the sentences judged partially relevant. Sentences
judged as not relevant were discarded.

4.3 Results

Official NIST results are shown in Table 7. For our automatic run, interaction actually decreased performance
substantially. We have noticed that there exists a non-straightforward connection between sentence-level rel-
evance judgments and the “nuggetization” process involved in the evaluation methodology—these and related
issues are currently under investigation.



Topic 26: What evidence is there for transport of [smuggled VCDs] from [Hong Kong] to [China]?
1. What types of smuggled disks are you interested in? Check all that apply:
O VCDs
O CDs
O DVDs
O Other. Please specify:

2. Please rank the following types of evidence in order of importance to you (as 1, 2, 3..., with 1 the most
important). If two or more types are of the same importance, put the same number for them.

O Volume of smuggled VCDs, for example: The Customs police in south China’s Guangdong
Province recently confiscated more than 210,000 pirated video compact disks smuggled into the
province from Hong Kong.

O Ruses used by smugglers, for example: Smugglers hid these CDs and VCDs inside waste papers
carried by a ship coming from Hong Kong and transferred them to a small wooden boat.

O Other. Please describe:

Figure 4: Sample topic and clarification form.

Topic 26: What effect does [aspirin] have on [coronary heart disease]?
Please rate the importance of following types of evidence.

1. General claim of effects of aspirin.
O Important. O Somewhat important. O Not needed at all.

2. Guideline of how aspirin can be used to treat heart diseases.
O Important. O Somewhat important. O Not needed at all.

3. How aspirin works to prevent heart diseases.
O Important. O Somewhat important. O Not needed at all.

4. Side effects of aspirin.
O Important. O Somewhat important. O Not needed at all.

5. Facts that people take aspirin to treat certain heart diseases.
O Important. O Somewhat important. O Not needed at all.

6. Claims of doctors or medical researchers.
O Important. O Somewhat important. O Not needed at all.

7. Other. Please describe:
O Important. O Somewhat important. O Not needed at all.

Figure 5: Sample topic and clarification form.

Run F-Score
UMDM1pre | 0.316
UMDMI1post | 0.350 (+10.6%)
UMDA1pre 0.224
UMDA1Ipost | 0.180 (—19.4%)

Table 7: Official results for the ciQA task.




Acknowledgments

Thanks to Trevor Strohman and Don Metzler for their help with Indri. This work was supported in part by the
the DARPA GALE program and by the Joint Institute for Knowledge Discovery.

References

[1] A.V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search. In Communications
of the ACM, 1975.

[2] James Allan. HARD track overview in TREC 2005: High accuracy retrieval from documents. In Proceedings
of the Fourteenth Text REtrieval Conference (TREC 2005), 2005.

[3] Blood, Rebecca, 2002. The weblog handbook: practical advice on creating and maintaining your blog. Perseus
Publishing, Cambridge, MA.

[4] P. De Vries A. Craswell, N. and I. Soboroff. Overview of the TREC-2005 enterprise track. In Working Notes
of 2005 Text Retrieval Conference (TREC 05), 2005.

[6] T. Elsayed and D. W. Oard. Modeling identity in archival collections of email: A preliminary study. In
Conference on Email and Anti-Spam, pages 95-103, Mountain View, California, July 2006.

[6] Stephen Harter. Online Information Retrieval: Concepts, Principles, and Techniques. Academic Press, San
Diego, California, 1986.

[7] Hatzivassiloglou, Vasileois, and McKeown, Katheleen, 1997. Predicting the semantic orientation of adjec-
tives. ACL-97, 1997, 174-181

[8] Hearst, Marti, 1997. TextTiling: Segmenting text into multi-paragraph subtopic passages. Computational
Linguistics, 23 (1), pp-33-64, March 1997.

[9] Herring, Susan C., Scheidt, Lois Ann, Wright, Elijah, and Bonus, Sabrina, 2004. Bridging the Gap: A Genre
Analysis of Weblogs. Proceedings of the 37th Hawaii International Conference on System Sciences, 2004

[10] Kennedy, Alistair and Inkpen, Diana, 2005. Sentiment classification of movie and product reviews using
contextual valence shifters. FINEXIN 2005.

[11] B. Klimt and Y. Yang. Introducing the Enron corpus. In Conference on Email and Anti-Spam, Mountain
view, CA, USA, July 30-31 2004.

[12] Lasica, J. D., 2001. Blogging as a form of journalism. USC Annenberg Online Journalism Review.

[13] Lasica, J. D., 2001. Weblogs: A new source of news. USC Annenberg Online Journalism Review.

[14] Jimmy Lin, Philip Wu, Dina Demner-Fushman, and Eileen Abels. Exploring the limits of single-iteration
clarification dialogs. In SIGIR 2006, pages 469-476, 2006.

[15] Gary Marchionini. Information Seeking in Electronic Environments. Cambridge University Press, Cam-
bridge, England, 1995.

[16] D. Metzler and W.B. Croft. Combining the language model and inference network approaches to retrieval.
In Information Processing and Management Special Issue on Bayesian Networks and Information Retrieval,
volume 40, pages 735-750, 2004.

[17] Robert S. Taylor. The process of asking questions. American Documentation, 13(4):391-396, 1962.

[18] Turney, Peter and Littman, Michael, 2003. Measuring praise and criticism: inference of semantic orientation
from association. ACM Transactions on Information Systems (TOIS), 21. 315-346.

[19] Wiebe, Janyce, Wilson, Theresa, Bruce, Rebecca, et al, 2002. Learning Subjective Language. Tech Report
TR~02-100, Dept. of Comp. Science, Univ. of Pittsburg.

[20] Wilson, Theresa, Wiebe, Janyce, and Hoffmann, Paul, 2005. Recognizing contextual polarity in phrase-level

sentiment analysis. HLT-EMNLP 2005.



