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Abstract

User relevance feedback is usually utilized by Web sys-
tems to interpret user information needs and retrieve ef-
fective results for users. However, how to discover useful
knowledge in user relevance feedback and how to wisely
use the discovered knowledge are two critical problems.
However, understanding what makes an individual docu-
ment good or bad for feedback can lead to the solution of
the previous problem. In TREC 2010, we participated in
the Relevance Feedback Track and experimented two mod-
els for extracting pseudo-relevance feedback to improve the
ranking of retrieved documents. The first one, the main run,
was a pattern-based model, whereas the second one, the op-
tional run, was a term-based model. The two models con-
sisted of two stages: one using relevance feedback provided
by TREC’10 to expand queries to extract pseudo-relevance
feedback; one using pseudo-relevance feedback to find use-
ful patterns and terms according to their relevance and ir-
relevance judgements to rank documents. In this paper, the
detailed description of those models is presented.

1 Introduction

Web users’ personal interests and preferences can be
drawn in their user profiles. In Web information gathering,
user profiles are used by many works to search informa-
tion for users according to their personal needs [2, 8]. To
acquire user profiles, some techniques explicitly interview
users [16]; some use user relevance feedback [21]. These
mechanisms require user-effort in the user profile acquisi-
tion process. Attempting to release such burden from users,
alternatively some automatic techniques have been devel-
oped to acquire user profiles from a collection of user per-
sonal information, for example, browsing history [2, 25].
User profiles acquired by such techniques, however, usually
contain noise and uncertainties. Hence, a method to acquire

user profiles effectively and efficiently (without the burden
of user-effort) is an urgent need for personalized Web infor-
mation gathering.

Relevance feedback has been used widely in the area of
information retrieval. It has been reported effective when
applying to different kinds of retrieval models [7, 19, 20,
22, 33]. The idea of relevance feedback is to involve the
user in the retrieval process in order to improve the final re-
sult set. Some retrieval models also used pseudo relevance
feedback [13, 14] especially when there were no relevance
judgements available. In such models a small number of
top-ranked documents in the initial retrieval results are as-
sumed relevant, and then relevance feedback is applied [6].

The popular term-based IR models include the Rocchio
algorithm [4,19], probabilistic models, Okapi BM25 [5,18],
and language models including model-based methods and
relevance models [7, 15, 17, 31, 33]. Generally speaking,
in the vector space model, terms have been extracted from
feedback by using the Rocchio algorithm. Those terms are
used to form a new query vector by maximizing its simi-
larity to relevant documents and minimizing its similarity
to non-relevant documents [19]. In the language modelling
approaches, the key elements are the probabilities of word
sequences including both words and phrases (or sentences).
They are often approximated by n-gram models [27], such
as Unigram, Bigram or Trigram, for considering term de-
pendencies.

IR models are the basis of ranking algorithm used in
search engines to rank documents according to their rel-
evance to a given query [3, 32]. Over the years, pattern-
based approaches have been expected to outperform term-
based techniques when discovering relevance features. Pat-
terns are more discriminative and carry more “semantics”.
However, according to information retrieval (IR) experi-
ments, few significant improvements have been achieved by
using pattern-based methods to replace term-based meth-
ods [23,24]. When utilizing pattern mining techniques, peo-
ple encountered two problems: (i) highly frequent patterns
are usually general, whereas specific patterns are usually



with low frequency (this is because the measuring methods
for pattern learning, such as “support” and “confidences”,
appeared unsuitable in the filtering stage [9]); (ii) negative
user feedback is difficult to use when revising the features
extracted from positive user feedback. Relevance feature
discovery is challenging [8].

A promising model, Relevance Feature Discovery
(RFD), has been proposed by [10] for information filter-
ing (IF) within the data mining community. The model
has shown encouraging improvements of IF effectiveness.
Closed sequential patterns were discovered in positive text
documents, where a pattern was a set of terms that fre-
quently appeared in a paragraph. The deployed method was
applied to the extracted patterns to overcome the low fre-
quency problem. Based on the positive features some neg-
ative documents were selected (called offenders) that were
closed to the extracted features in the positive documents.
The features were extracted from selected negative docu-
ments used for groups. Low-level features (terms) were de-
vised based on both their appearances in the higher-level
features (patterns) and their categories [1, 10]. The objec-
tive of relevance feature discovery is to find useful features
available in a training set, including both positive and nega-
tive documents, to describe what users want. This is a par-
ticularly challenging task in modern information analysis,
from both an empirical and a theoretical perspective [8,11].
Motivated by these challenges, we proposed a relevance
feature discovery model, and tested the model in the Rel-
evance Feedback Track in TREC 2010. This Relevance
Feedback track was designed to to investigate what makes
an individual document good or bad for feedback.

The remainder of this paper is organized as follows.
Section 2 presents an overview of the Relevance Feedback
Track in TREC’10. Section 3 reviews the concepts of Roc-
chio and cosine similarity. The query expansion based on
TREC provided feedback and Rocchio model are discussed
in Section 4. Section 5 reviews the concept of patterns in
text documents and a detailed reviews of Relevance Feature
Discovery (RFD) model. Section 6 describes the optional
run based on Rocchio model and pseudo-feedback. After
that, the final retrieved results are discussed in Section 7,
and the last section makes conclusions.

2 The Model

In response to a query, the first stage is to automatically
retrieve a list of documents from the ClubWeb09 Category-
B and rank them based on their similarity to the query. The
key issue here is how to acquire user interest from limited
information. In TREC’10 most of the queries have a lim-
ited number of terms, whereas the ClubWeb09 Category-B
dataset has a large number of documents. Expanding the
query at this stage without any feedback from the user could

misleading. For example, there is many versions of inter-
pretation that can be learned from a keyword “toilet” (e.g,
toilet paper , toilet design, toilet suites, caroma toilet,...etc.).
However, it is difficult to determine which one reflects the
user’s information need.

Based on that observation, we developed a model to
work as follows:

1. Given a topic, 15000 relevant documents were ex-
tracted using Rocchio and cosine similarity via content
search. The top 2500 documents were submitted as the
base run results;

2. Using the highly frequent terms extracted from the
user feedback (provided by TREC’10) to expand
queries using Rocchio. The 15000 documents were
re-ranked again using cosine similarity method;

3. The top 10 documents were selected as the positive
feedback and the bottom 10 as negative. These pseudo-
relevance feedback were used to update user profiles in
two different runs.

- Main run: The pseudo-relevance feedback went
into the RFD model to generate three feature sets
(the positive, specific terms, general terms, and
negative, specific terms). The three feature sets
were used to re-index the 15000 documents.

- Optional run: The Rocchio was used to build
user profiles from pseudo-relevance feedback;
then used the feedback to re-index the 15000 doc-
uments.

4. The top 2500 ranked documents were submitted as the
final results.

3 Rocchio and Cosine Similarity

In the vector space model all queries and documents are
represented as vectors in |V |-dimensional space, whereV is
the set of all distinct terms in the collection. Restricted by a
fixed similarity metric, documents with similar content have
similar vectors. However, the similarity of a document d to
a query q is measured based on the terminological overlap
between the query and the document. Thus, those relatively
rare terms have a comparatively high weight. The docu-
ments are ranked by the magnitude of the angle between
the document vector and the query vector.

The core of vector space model is cosinemeasure that
measures the angle between two vectors. The cosine be-
tween two vectors is determined as the dot product between
each document vector

−→
d and the query vector −→q , normal-

ized by the lengths of the document and the query. The main

2



function of cosine similarity can be generalized as follow:

cosine(q, d) =
−→q .
−→
d

|−→q ||
−→
d |

The vector space model does not specify how to set the doc-
ument term weight and the query term weight, but in prac-
tice these weights are often calculated using their collection
frequency and within-document frequency:

wq,t = ln(1 +
N

ft
) (1)

wd,t = 1 + ln(fd,t) (2)

In vector space model each document d is represented
as a vector

−→
d = (d, ,̇dn). According to a fixed similarity

metric, documents with similar content have similar vec-
tors. Each element dn is represented by a set for terms T =
{t0, t1, ,̇ti}. The termset T of a document d is calculated
as a combination of the statistics TF (ti; d) and DF (ti).
The termfrequency TF (ti; d) is the number of terms
ti occurred in the document d; the documentfrequency
IDF (ti) is the number of documents with term ti occurred
at least once [4].

Since the query length is constant for the evaluation of
a single query, we can ignore this factor, while preserving
ranking order. Bringing Equations 1 and 2 into the cosine
measure, we have:

cosine(q, d)rank =

∑
t∈q∩d

(ln(1 + N
ft
)× (1 + ln(fd,t)))√∑

t∈d
(1 + ln(fd,t))2

(3)
Similarity score have been calculated for all documents

in ClubWeb09 dataset Category-B against queries using
Eq. 3. The weight of each term t in a query q is set to 1
after text pre-processing include steaming and stopword re-
moval. As a result, Eq. 3 can be re-generalized as:

cosine(q, d)rank =

∑
t∈q∩d

(1× fd,t)

|fd,t|

The final result of this step is a ranked list of all doc-
uments with their weights. The top 2500 documents were
selected as a result of the base run; the top 15000 documents
were used as an input of the next stage.

4 Query Expansion

The main goal of query expansion is to optimize a query.
A query is optimal if it ranks all relevant documents on top
of those non-relevant. A query could lead to a good ranking

Table 1. A set of paragraphs
Paragraph Terms

dp1 t1 t2
dp2 t3 t4 t6
dp3 t3 t4 t5 t6
dp4 t3 t4 t5 t6
dp5 t1 t2 t6 t7
dp6 t1 t2 t6 t7

result if it contains all features in relevant documents and
disregards all features in non-relevant documents. How-
ever, the reformulation of an optimal query is difficult. The
Rocchio algorithm [19] has been widely adopted when us-
ing relevant documents (D+) and non-relevant documents
(D−) to reformulate an initial query q:

−→q = γ×−→q +α
1

|D+|
∑
−→
d ∈D+

−→
d

||
−→
d ||
− β 1

|D−|
∑
−→
d ∈D−

−→
d

||
−→
d ||
(4)

where α = β = γ = 1.0 in this presented work as sug-
gested by [26].

4.1 Query Expansion with Given Feed-
back

Relevance feedback requires a user to classify docu-
ments into groups of relevant or non-relevant. Relevance
feedback has been used widely in information retrieval. It
has been reported effective in many IR models [7, 19, 20,
22, 33]. The feedback is used to expand queries and make
better ranking of documents.

In TREC’10, with the main goal of understanding what
makes an individual document good or bad for feedback,
we used only one document explicitly provided by the user
(NIST) to expand query −→q . Thus, Eq. 4 can be simplified:

−→q = γ ×−→q + α
∑
−→
d ∈D+

−→
d

||
−→
d ||

The updated query −→q was used to re − rank the 15000
documents retrieved in Section 3. The top 10 weighted doc-
uments were selected as pseudo positive feedback D+; the
lowest 10 ranked documents were selected as pseudo neg-
ative feedback D−. They were used to expand the query
again to re−rank the documents. In TREC’10 we provided
two runs: the main run using the Relevance Feature Discov-
ery (RFD) model, and the optional run using the Rocchio
model (see Eq. 4). More details are provided in the follow-
ing sections.
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Table 2. Frequent patterns and covering sets
Frequent Pattern Covering Set
{t3, t4, t6} {dp2, dp3, dp4}
{t3, t4} {dp2, dp3, dp4}
{t3, t6} {dp2, dp3, dp4}
{t4, t6} {dp2, dp3, dp4}
{t3} {dp2, dp3, dp4}
{t4} {dp2, dp3, dp4}
{t1, t2} {dp1, dp5, dp6}
{t1} {dp1, dp5, dp6}
{t2} {dp1, dp5, dp6}
{t6} {dp2, dp3, dp4, dp5, dp6}

5 Relevance Feature Discovery (RFD) (main
run)

5.1 Frequent and Closed Sequential Pat-
terns

Table 1 lists a set of paragraphs for a sample document d,
where PS(d) = {dp1, dp2, . . . , dp6} with duplicate terms
removed. Assume min sup = 3, ten frequent patterns
would be extracted as shown in Table 2.

For a given topic, the RFD model extracts from a doc-
ument set a set of features, including patterns and terms,
and assigns them weights. The document set, usually called
a training set and denoted as D, consists of a set of posi-
tive documents (D+) and a set of negative documents (D−).
When splitting a document into paragraphs, a document d
can also be represented by a set of paragraphs PS(d).

Let T = {t1, t2, . . . , tm} be a set of terms extracted from
D+; X be a set of terms (called a termset) in document d.
coverset(X) denotes the covering set of X for d, which
includes all paragraphs dp ∈ PS(d) where X ⊆ dp, i.e.,
coverset(X) = {dp|dp ∈ PS(d), X ⊆ dp}. The abso-
lute support of X is the number of occurrences of X in
PS(d): supa(X) = |coverset(X)|. The relative support
of X is the fraction of the paragraphs that contain the pat-
tern: supr(X) = |coverset(X)|

|PS(d)| . A termset X is then called
a frequent pattern if its supa (or supr) ≥ min sup, a min-
imum support.

Given a set of paragraphs Y ⊆ PS(d), we can also de-
fine its termset, which satisfies

termset(Y ) = {t|∀dp ∈ Y ⇒ t ∈ dp}.

By defining the closure of X as:

Cls(X) = termset(coverset(X))

a pattern (or termset) X is closed if and only if X =
Cls(X).

Let X be a closed pattern. We have

supa(X1) < supa(X) (5)

for all patterns X1 ⊃ X .
A taxonomy can be constructed by using closed pat-

terns with is-a (or subset) relations. Table 2 contains three
closed patterns, < t3, t4, t6 >, < t1, t2 >, and < t6 >,
within ten frequent patterns. After pruning the non-closed
patterns, a pattern taxonomy PT can be constructed, like
PT = {〈t3, t4, t6〉, 〈t1, t2〉, 〈t6〉} in Table 2 when consid-
ering 〈t6〉 a subset of 〈t3, t4, t6〉.

Small patterns (e.g. 〈t6〉) in a taxonomy are usually gen-
eral because they have more chance to be used frequently.
Vice versa, large patterns (e.g. 〈t3, t4, t6〉) are relatively
specific because they usually have a low frequency.

A sequential pattern s =< t1, . . . , tr > (ti ∈ T ) is an or-
dered list of terms. Denoted by s1 v s2, a sequence s1 =<
x1, . . . , xi > is a sub-sequence of s2 =< y1, . . . , yj >,
iff ∃j1, . . . , ji such that 1 ≤ j1 < j2 . . . < ji ≤ j and
x1 = yj1 , x2 = yj2 , . . . , xi = yji . Given s1 v s2, we
call s1 a sub-pattern of s2, and s2 a super-pattern of s1. To
simplify the explanation, we refer to sequential patterns as
patterns.

As the same as those defined for normal patterns, we
define the absolute support and relative support for a pat-
tern (an ordered termset) X in d. We also denote the cov-
ering set of X as coverset(X), which includes all para-
graphs ps ∈ PS(d) such that X v ps, i.e., coverset(X) =
{ps|ps ∈ PS(d), X v ps}. X is then called a frequent pat-
tern if supr(X) ≥ min sup. By using Eq. (5), a frequent
sequential pattern X is closed if @ any super-pattern X1 of
X such that supa(X1) = supa(X).

5.2 Deploying High-Level Patterns on
Low-Level Terms

To overcome the problem of patterns with low-
frequency, a method has been developed to deploy high
level patterns over low-level terms. The evaluation of term
supports (weights) in this paper is different from that in
term-based approaches. For a term-based approach, the
value of a term is scaled based on its appearance in doc-
uments. In our method, the value of terms are scaled based
on their appearance in discovered patterns.

To improve the efficiency of the pattern taxonomy min-
ing (PTM), an algorithm, SPMining(D+,min sup), was
introduced by [29] and further developed in [9, 30] to find
closed sequential patterns from positive documents D+.
The SPMining algorithm used the well-known Apriori prop-
erty to narrow down the searching space.

Let SP1, SP2, ..., SPn be the sets of discovered closed
sequential patterns for all documents di ∈ D+(i =
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1, · · · , n), where n = |D+|. For a given term t, its weight
in discovered patterns is assigned by:

w(t,D+) =

n∑
i=1

∑
t∈p⊆SPi

supr(p, di)

|p|
(6)

where |p| is the number of terms in p.
With weights assigned to the terms in D+, a function

can be used to rank and judge the relevance of incoming
documents:

rank(d) =
∑
t∈T

w(t)τ(t, d)

where w(t) = w(t,D+); and τ(t, d) = 1 if t ∈ d, other-
wise τ(t, d) = 0.

5.3 Mining Negative Patterns for Revis-
ing Low-Level Features

In general, the concept of relevance is subjective. Nor-
mally people can describe the relevance of a topic (or docu-
ment) in specificity or exhaustivity, where “specificity” de-
scribes the extent to which the topic focuses on what users
want, and “exhaustivity” describes the extent to which the
topic discusses what users want. It is easy for human being
to do so. However, it is very difficult to use these concepts
for interpreting relevance features in text documents. In this
section, we first discuss how to use the concepts for under-
standing the different roles of the low-level feature terms
for answering what users want. We also present the ideas
for accurately weighting terms based on their specificity
and distributions in the discovered higher level features. In
addition, we describe algorithms for both the discovery of
higher level features and the revision of weights of low-level
terms.

5.3.1 Specificity of Low-Level Features

A term’s specificity describes the extent of the term to
which the topic focuses on what users want. It is very dif-
ficult to measure the specificity of terms because a term’s
specificity depends on users’ perspectives for their informa-
tion needs [28]. Basically, we can understand the specificity
of terms based on their positions in a concept hierarchy. For
example, terms are more general if they are in the upper part
of the LCSH (Library of Congress Subject Headings) hier-
archy; otherwise, they are more specific. However, in many
cases, a term’s specificity is measured based on what topics
we are talking about. For example, “knowledge discovery”
will be a general term in data mining community; however
it may be a specific term when we talk about information
technology.

In order to understood how terms are grouped into three
groups (positive specific terms, general terms and negative
specific terms) based on their appearances in a training set.
Given a term t ∈ T , its coverage+ is the set of positive doc-
uments that contain t, and its coverage− is the set of neg-
ative documents that contain t. We assume that terms fre-
quently used in both positive documents and negative doc-
uments are general terms. Therefore, we want to classify
terms that are more frequently used in the positive docu-
ments into the positive specific category; and the terms that
are more frequently used in the negative documents into the
negative specific category.

Based on the above analysis, we define the specificity of
a given term t in the training set D = D+ ∪D− as follows:

spe(t) =
|coverage+(t)| − |coverage−(t)|

n

where coverage+(t) = {d ∈ D+|t ∈ d}, coverage−(t) =
{d ∈ D−|t ∈ d}, and n = |D+|. spe(t) > 0 means that
term t is used more frequently in positive documents than
in negative documents.

We present the following classification rules for deter-
mining the general terms G, the positive specific terms T+,
and the negative specific terms T−:

G = {t ∈ T |θ1 ≤ spe(t) ≤ θ2},

T+ = {t ∈ T |spe(t) > θ2}, and

T− = {t ∈ T |spe(t) < θ1}.

where θ2 is an experimental coefficient, the maximum
bound of the specificity for the general terms, and θ1 is
also an experimental coefficient, the minimum bound of the
specificity for the general terms. We assume that θ2 > 0
and θ2 ≥ θ1. It is easy to verify that G ∩ T+ ∩ T− = ∅.
Therefore, {G,T+, T−} is a partition of all terms.

To describe relevance features for a given topic, normally
we believe that specific terms are very useful for the topic
in order to distinguish it from other topics. However, many
experiments show that using only specific terms is not good
enough to improve the performance of RFD because user
information needs cannot simply be covered by documents
that contain only the specific terms. Therefore, the best way
is to use the specific terms mixed with some of the general
terms. We will discuss this issue in the evaluation section.

5.3.2 Revision of Discovered Features

In PTM, relevance features are discovered from a set of
positive documents. To effectively use both higher level
patterns and low-level terms, discovered patterns were de-
ployed on the space of terms in order to evaluate the sup-
ports of terms obtained from the patterns.
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Because of many noises in the discovered patterns (an in-
herent disadvantage of data mining), the evaluated supports
are not accurate enough. To improve the effectiveness of
PTM, in this paper, we use negative documents in the train-
ing set in order to remove the noises. Many people believed
that negative documents can be helpful if they are used ap-
propriately. The existing methods can be grouped into two
approaches: revising terms that appear in both positive and
negative documents; and observing how often terms appear
in positive and negative documents. However, how much
accuracy improvement can be achieved by using negative
feedback still remains an open question.

There are two major issues for effectively using nega-
tive documents. The first one is how to select a suitable
set of negative documents because we usually can obtain a
very large set of negative samples. For example, a Google
search can return millions of documents; however, only a
few documents are interesting to a Web user. Obviously, it
is not efficient to use all of negative documents. The second
issue is how to revise the features discovered in the positive
documents accurately.

In this research, we present an innovative solution for
these issues. We firstly show how to select a set of negative
samples. We also show the process of the revision.

If a document’s rank (see Eq. (3)) is less than or equals
to zero, this document is clearly negative to the system. If a
negative document has a high rank, the document is called
an offender [8] because it forces the system to make a mis-
take. The offenders are normally defined as the top-K neg-
ative documents in a ranked set of negative documents,D−.
The basics hypothesis is that the relevance features should
be mainly discovered from the positive documents. There-
fore, in our experiments, we set K = n

2 , the half of the
number of positive documents.

Once we select the top-K negative documents, the set of
negative document D− will be reduced to include only K
offenders (negative documents). The next step is to classify
terms into three categories, G,T+, and T−, based on D+

and the updated D−. We can easily verify that the experi-
mental coefficients θ1 and θ2 satisfy the following proper-
ties if K = n

2 :

0 ≤ θ2 ≤ 1, and − 1

2
≤ θ1 ≤ θ2.

Now, we show the basic process of revising discovered
features in a training set. This process can help readers to
understand the proposed strategies for revising weights of
low-level terms in different categories.

Formally, let DP+ be the union of all discovered closed
sequential patterns in D+, DP− be the union of all discov-
ered closed sequential patterns in D− and T be the set of
terms that appear in DP+ or DP−, where a closed sequen-
tial pattern of D+ (or D−) is called a positive pattern (or

negative pattern).
It is obviously that ∃d ∈ D+ such that t ∈ d for all t ∈

T+ since spe(t) > θ2 ≥ 0 for all t ∈ T+. Therefore, for
each t ∈ T+, it can obtain an initial weight by the deploying
method onD+ (using the higher level features, see Eq. (2)).

For the term in (T− ∪ G), there are two cases. If ∃d ∈
D+ such that t ∈ d, t will get its initial weight by using the
deploying method on D+; otherwise it will get a negative
weight by using the deploying methods on D−.

The initial weights of terms finally are revised according
to the following principles: increment the weights of the
positive specific terms, decline the weights of the negative
specific terms, and do not update the weights of the general
terms. The details are described as follows:

weight(t) =

 w(t) + w(t)× spe(t), if t ∈ T+

w(t), if t ∈ G
w(t)− |w(t)× spe(t)|, if t ∈ T−

where w is the initial weight (or the support in Eq. (2)).

5.3.3 Mining and Revision Algorithms

The process of the revision firstly finds features in the pos-
itive documents in the training set, including higher level
positive patterns and low-level terms. It then selects top-K
negative samples (called offenders) in the training set ac-
cording to the positive features. It also discovers negative
patterns and terms from selected negative documents using
the same pattern mining technique that we used for the fea-
ture discovery in positive documents. In addition, the pro-
cess revises the initial features and obtains a revised weight
function. To understand this process clearly, we divided this
process into two algorithms: HLFMining and NRevision.
The former finds higher level positive features, selects top-
K negative samples, discovers higher level negative fea-
tures, and composes the set of terms. The latter revise the
term weigh function based on the higher level features and
the specificity of the terms.

Algorithm HLFMining describes the details of higher
level feature discovery. It takes a training set and a mini-
mum support, min sup. It firstly abstracts patterns, DP+,
and then terms, T , in the set of positive documents in step
2 and step 3. It also gives the initial weights (step 4 and
5) to all terms based on their supports in DP+. After that,
the algorithm ranks the negative documents in D− (step 6
to step 8), and selects offenders in step 9. Negative patterns
and terms are also discovered in step 10 and 11. At last, it
gives the initial weights to the terms that only appear in the
negative patterns (step 12 and 13), and updates the set of
terms (step 14).

The algorithm calls twice algorithm SPMining: one
for positive documents and one for offenders (a part of
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HLFMining(D)
Input: A training set, D = D+ ∪D−, min sup and K;
Output: extracted features < DP+, DP−, T >,

updated training set {D+, D−},
and an initial term weight function, w.

Method:
1: n = |D+|,m = |D−|;
2: DP+ =SPMining(D+,min sup);
3: T = {t|t ∈ p, p ∈ DP+};
4: foreach t ∈ T do
5: w(t) = support(t,D+);
6: foreach d ∈ D−do
7: rank(d) = Σt∈d∩Tw(t);
8: let D− = {d0, d1, ..., dm} in descendent ranking order,
9: D− = {di|di ∈ D−, rank(di) > 0, i < K};
10: DP− =SPMining(D−,min sup);
11: T0 = {t ∈ p|p ∈ DP−}; // all terms in negative patterns
12: foreach t ∈ (T0 − T ) do
13: w(t) = −support(t,D−);
14: T = T ∪ T0;

NRevision( )
Input: A updated training set, {D+, D−};

extracted features < T,DP+, DP− >;
the initial term weight function w; and experimental
parameters θ1 and θ2, − 1

2
≤ θ1 ≤ θ2, 0 ≤ θ2 ≤ 1.

Output: A term weight function.

Method:
1: G = ∅, T+ = ∅, T− = ∅, n = |D+|;
2: foreach t ∈ T do { //term partition

3: spe(t) =
|{d|d∈D+,t∈d}|−|{d|d∈D−,t∈d}|

n
;

4: if spe(t) > θ2
5: then T+ = T+ ∪ {t};
6: else if spe(t) < θ1
7: then T− = T− ∪ {t};
8: else G = G ∪ {t}; }
9: foreach t ∈ T+ do
10: weight(t) = w(t) + w(t) ∗ spe(t);
11: foreach t ∈ T− do
12: weight(t) = w(t)− |w(t) ∗ spe(t)|;

negative documents). It also takes times for calculating
weights of terms that appear in the discovered patterns, and
sorts the negative documents that takes O(mlogm), where
m = |D−|. To compared with the time complexity of al-
gorithm SPMining, the time of calculating weights spent
here can be ignored. Therefore, the time complexity of
this algorithm is O(mlogm) plus the time complexity of
SPMining.

For a given training set D = {D+, D−}, using
HLFMining(D), we can obtain the extracted features <
DP+, DP−, T >, and an initial weight function w over
T . Given the experimental parameters θ1 and θ2, algorithm
NRevision describes the details of revising the weights of
the terms based on their specificity and distributions in both
positive and negative patterns.

Step 1 initializes the sets for general terms G, positive

specific terms T+, and negative specific terms T−. From
step 2 to step 8, the algorithm partitions the terms into three
categories. It firstly calculates the specificity for all terms,
and then determines positive specific terms, negative spe-
cific terms and general terms based on the classification
rules defined in Section 5.3.1 5.1. At last, it updates the
initial weights of terms using the function weight defined in
Section 5.3.2.

The time complexity of NRevision( ) is mainly decided
by the process of the partition (step 2 to step 8), where the
calculation of the specificity dominates the process. For
each term t, it takes O(|d| × (n + |D−|)) = O(|d| × n)
for evaluating spe(t), where |d| is the average size of the
documents, |D−| is the number of offenders and |D−| ≤
n. Therefore, The time complexity of this algorithm is
O(|T | × |d| × n).

6 User Profiles Using Rocchio and Pseudo
Relevance Feedback (Optional Run)

In order to compare with the pattern-based RFD model,
a term-based model was implemented and tested for the op-
tional run. The optional run used the Rocchio method to
expand the query and re-rank the documents, as discuses in
section 4 but using different pseudo relevance feedback. For
each topic, we chose 150 terms in the pseudo positive docu-
ments based on tf*idf values. The test pre-processing again
included the tasks of stopword removal and word stem-
ming [12].

7 Process Review

Due to the large number of documents in ClueWeb09
Category-B and the limited number of terms in queries, at
the first step, for each topic we retrieved about 15,000 can-
didate documents based content search. The documents
were ranked using the cosine similarity values for docu-
ments vectors and query vectors, as discussed in Section 3.
The top 2500 of the retrieved documents (15,000) were se-
lected to submit as the base run results.

Then, the second step was to build a user profile for each
topic in each run using the query terms and the relevance
feedback provided by TREC’10 (one documents at a time).
The retrieved 15000 documents from the first step were re-
ranked using the user profile (discussed in Section 4) to se-
lect pseudo-relevance feedback. Then the top 10 weighted
documents were selected as positive feedback documents
D+; and the lowest 10 weight documents were selected as
negative feedback documents D−. Pseudo-relevance feed-
back was used for the main algorithms to update user pro-
files and perform the optional run.

In the main run (RFD model), the relevance features
were discovered from both positive and negative pseudo

7



relevance feedback, using a model introduced in section 5.
These relevance features consisted of high-level pattern fea-
tures and low-level term features. Based on the high-level
features, the low-level features were classified into three
groups: positive specific terms, general terms, and negative
specific terms. When applying negative patterns to revise
the discovered features, we increased the weight of positive
specific terms but declined that of negative specific terms
based on specificity scour. Finally, we filtered the candi-
dates based on document contents using the features dis-
covered from positive and negative feedback, as discussed
previously. The 15,000 candidates were re-ranked by accu-
mulating the weight(t) of features (see Algorithm NRevi-
sion()) that occurred in document contents. After that, the
top 2,500 documents were selected and submitted as the fi-
nal retrieved results against the given topic.

For the optional run, the Rocchio model was used to ac-
quire user profiles from pseudo relevance feedback, as de-
scribed in Section 6. The candidate documents were re-
ranked based on the user profiles and the top 2,500 weighted
documents were submitted as the final results of the optional
run.

8 Conclusion

Under the framework set up by TREC 2010 Relevance
Feedback Track, the work presented in this paper investi-
gated two models: (i) the pattern-based RFD model that
extracts pseudo-relevance feedback to improve the rank-
ing of retrieved documents (the main run); (ii) a term-
based model that extracts pseudo-relevance feedback to im-
prove the ranking of retrieved documents (the optional run).
Both models consist of two stages: one using the relevance
feedback provided by NIST for query expansion to extract
pseudo-relevance feedback; one using the pseudo-relevance
feedback (including positive and negative feedback) to up-
date user profiles. The exploration of using both positive
and negative feedback for information retrieval was innova-
tive, and the results are promising. Because negative feed-
back information is easily obtained comparing with positive
feedback in traditional means, this work has opened a new
door to improving the effectiveness of information retrieval.
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