MMCI at the TREC 2010 Web Track

Andreas Broschart, Ralf Schenkel

Saarland University, Saarbriicken, Germany
{abrosch, schenkel}@mmci.uni-saarland.de

ABSTRACT

Term proximity scoring models incorporate distance information of
query term occurrences and are an established means in informa-
tion retrieval to improve retrieval quality. The integration of such
proximity scoring models into efficient query processing, however,
has not been equally well studied. Existing methods make use of
precomputed lists of documents where tuples of terms, usually pairs,
occur together, usually incurring a huge index size compared to
term-only indexes. This paper uses a joint framework for trading off
index size and result quality. The framework provides optimization
techniques for tuning precomputed indexes towards either maxi-
mal result quality or maximal query processing performance under
controlled result quality, given an upper bound for the index size.

1. INTRODUCTION

The MMCI group at Saarland University has participated in the
2010 Web Track Adhoc task. Our submission uses a joint frame-
work described in [1] to tune index parameters to be used for later
index construction. We impose an index size limit for the tuned in-
dex and keep an eye on the result quality at the same time. For our
experiments in the TREC Web Track, we used the topics from the
AdHoc task 2009 for training and optimizing index parameters. We
considered only the 50% least spammy English ClueWeb(09 docu-
ments from Category A according to the Waterloo Fusion spam
scores (approximately 6 TB uncompressed size).

The remainder of the paper is structured as follows: Section 2
describes the score model our approach is based on, the employed
index structures, and the query processing approach. Section 3 con-
tains a detailed description of the runs we have submitted to the
2010 Web Track Adhoc task. We comment on some results and
conclude in Section 4.

2. SYSTEM
2.1 Score Model

The proximity score model we use is based on [2], the modifica-
tion was initially described in [4]. For a document d from a collec-
tion C of documents, we denote by the term frequency ¢f4(t) the
number of times term ¢ occurs in d, and the length Ig = Y ¢ fa(¢)
of document d is the sum of the term frequencies of all terms it
contains. We use the established BM25 content score [3], which is
computed for a query ¢ = {t1,...,tn} of terms as

tfa(t) - (k1 +1)
tfa(t) + ki (1—b+bldr)

avgdl

scoregmas(d,) = Z -1df (t)

teq

where k1 and b are tunable parameters, avgdl is the average length
of all documents in the collection, and ¢df (¢) is the inverse docu-

ment frequency of ¢ in the collection: Denoting by df (¢) the num-
ber of documents in which ¢ occurs and by N the number of docu-
ments in C, idf (¢) is defined as

N
idf (t) = log ——
df (t)

We denote by p;(d) the term at position ¢ of d, omitting d when
the document is clear from the context. For a term ¢, Py(¢) denotes
the positions in d where ¢ occurs. For a query ¢ = {t1,...,tn},
Pi(q) := Ui, eqPa(t;) denotes the positions of those terms in d,
and

Qa(q) == {(i,7) € Pa(q) x Palq) | i <jApi #pj}

denotes the position pairs of distinct terms from q in d. The score
fora query ¢ = {t1,...,tn} is then a linear combination of a stan-
dard BM25 content score and a BM25-style proximity score where
term frequencies are replaced by per-term accumulators acc':

scorepicher(d,q) = scorepmps(d; q)
) . accy(t) - (k1 + 1)
+ % min{l, de(t)}—accfi(t) 1

Here, the accumulator for term t;, € g is defined as

accy(ty) = Z idf (p;)

(4,5)€Qa(a):pi=tg

(i —3)?

) — 2
(1:1)EQa(a)pj=tx (i =J)

This score shows two major differences from the original score
developed by Biittcher et al.: (1) it does not include the document
length in the proximity score, and (2) accumulators combine not
only adjacent query term occurrences. It has been shown in [4]
that these modifications do not have an impact on result quality, but
allow for efficient precomputation and indexing. A simple refor-
mulation of the definition of acc)(ty) yields

/ . 1
accy(te) = Didf®) > =
t€q (1,7) € Qa(q) :
(pi =tr,pj =1)
V(pi =t,p; = tg)

:=accq(tg,t)

> idf (t) - accalte,t)

teq

Now acc);(t,) is represented as a monotonous combination of per-
pair scores accq(t, t), which can be precomputed for all possible
term pairs and stored in an inverted index.

2.2 Description of the Index Structures
As described in [1] we use two different index structures:

e text index lists (short: TLs): each list stores, for a single
stemmed term ¢ and for each document d where this term oc-
curs, an entry of the form (d.docid, scoregpyps(d, t)) where
d.docid is a unique numerical id for document d. The entries
are ordered by descending scoregpps (i.e., BM25 score
with b = 0.5 and k1 = 1.2).

e combined index lists (short: CLs): each list contains, for
a single stemmed term pair (¢1,¢2) and for each document
where this term pair occurs within a text window of 10 terms
in the document, an entry of the form (d.docid, accq(t1,t2),
scoregmas(d, t1), scoregpas(d, t2)). The resulting prox-
imity contribution of (¢1,¢2) for d is stored in accq(t1,t2).
Each index list is ordered by descending acc contribution.

The tuning process in this submission aims at finding appropriate
tuning parameters for the later index construction such that index
entries with the least impact in both TLs and CLs are not material-
ized.

We tune two parameters:

e the minimal score cutoff: We keep only those combined in-
dex list entries whose acc-score is not below a certain lower
limit m.

o the list length cutoff: We keep at most the [entries from
each text and combined index list that have the highest scores
(scoregpps for TL, acc for CL).

The index tuning process results in optimal choices for m and
! which are named 7 and [. More details are given in Section 5
of [1]. The resulting tuned indexes lead to efficient processing of
queries using an n-ary merge join, still providing at least BM25
result quality and controlling the index space requirements. All
indexes are compressed using delta- and v-byte encoding. Details
about the different tuning approaches and the compression can be
found in [1].

2.3 Query Processing

We use an n-way merge join with pruned index lists to get rid of
the overhead costs dynamic pruning algorithms incur (cp. Section
6 in [1]). Our merge-based processing architecture consists of the
following components:

1. After pruning index lists to a fixed maximal number of en-
tries (and, possibly, using a minimal score cutoff for com-
bined lists), we resort each list in ascending order of docu-
ment ids, and optionally compress it.

2. At query time, the n text and combined lists for the query are
combined using an n-way merge join that combines entries
for the same document and computes its score. If that score
is higher than the current k*" best score, the document is kept
in a heap of candidate results, otherwise it is dropped.

3. Once all index entries have been read, the content of the heap
is returned.

Instead of maintaining a heap with the currently best k results, an
even simpler implementation could keep all results as result can-
didates and sort them at the end; however, this would increase the
memory footprint of the execution as not k, but all encountered
documents and their scores need to be stored.

3. DESCRIPTION OF THE RUNS

For the 2010 Web Track Adhoc task we submitted the following
three runs:

o MMCITLCLI20M: This run uses TLs and CLs pruned to the
first 20 million entries (I = 20,000, 000 and m = 0.00) as
input to an NRA (a dynamic pruning algorithm) implemen-
tation. The input lists consist of TLs for all stemmed query
terms and CLs for all pairs of stemmed query terms. Stop-
words are removed. We exclude the 50% spammiest doc-
uments according to the Waterloo Fusion spam score. The
judging precedence was set to medium. We had to limit the
index lists to the first 20 million entries as building the un-
pruned CLs exceeded our disk capacity.

o MMCITLI20M: This run uses TLs pruned to the first 20 mil-
lion entries (I = 20,000, 000) as input to an NRA imple-
mentation. The input lists consist of TLs for all stemmed
query terms. Stopwords are removed. We exclude the 50%
spammiest documents according to the Waterloo Fusion spam
score. The judging precedence was set to least important. To
be able to compare to MMCITLCLI20M, we decided to limit
the index lists to the first 20 million entries for the TLs as
well.

o MMCII410m1: This run aims at providing the retrieval qual-
ity of BM25 scores (i.e., similar early precision quality) for
k = 10 result documents and at the same time efficient query
processing, still considering the index size. The indexes are
tuned for efficient evaluation but still aim at providing BM25
result quality with a maximum index size of 1 TB for the
test topics from the 2010 Web Track Adhoc task. We have
used the efficiency-oriented absolute index quality tuning ap-
proach as described in [1] to come up with appropriate index
tuning parameters. A list length of [= 410 with a minimum
score requirement of m = 1.00 for the proximity contri-
bution acc turned out to be optimal. To allow for efficient
query processing, this run uses pruned TL and CL indexes
that are reordered by docid then. The pruned indexes are
the input to a merge join implementation. The input lists
consist of pruned and reordered TLs for all stemmed query
terms as well as pruned and reordered CLs for all pairs of
stemmed query terms. Stopwords are removed. We exclude
the 50% spammiest documents according to the Waterloo Fu-
sion spam score. Judging precedence was set to most impor-
tant.

For the tuning process that produced the index parameters for
MMCII410m1, we used the 50 Web Track 2009 topics as training
topics and compared the respective precision values for the top-
10 results at many pruning levels (i.e., many (/, m) combinations)
with the precision for the top-10 results of the MMCITLI20M eval-
uation. Intuitively, the tuning process selects the smallest list length
that can still achieve at least BM25 quality for the training topics
within the index space constraint of 1 TB. If there is more than one
solution for that list length, we select the one with the highest m to
minimize the required index space.

As MMCII410m1 aims at providing the retrieval quality of BM25
and MMCITLI20M uses (almost) complete (i.e., non-pruned) BM25
score lists, MMCITLI20M is the baseline run for MMCII410mi’s
retrieval quality. MM CITLCLI20M is a baseline run for the effective-
ness-oriented index tuning approaches. Due to the limitation of
submittable runs, we can only provide runtimes for some of the
runs.

size[GB] prec@k Zreads-10~° | @bytes-10"° | Ztwarm [ms] Bleora[ms]
Opt. goal k (1,7m) est. | real train test train test | train test | train | test train | test
efficiency-oriented 10 (410,1.00) | 503.6 | 499.8 || 0.190 0.2292 || 0.01 0.01 | 0.07 0.06 | 0.77 0.47 | 79.61 | 71.15
index quality 100 (400,1.00) | 464.6 | 462.8 || 0.1170 | - 0.01 0.0I | 0.07 0.06 | 0.63 0.44 [69.05 [55.60
effectiveness-oriented | 10 (1410,1.00) | 640.2 | 636.2 || 0.200 0.04 0.04 | 0.24 0.18 | 2.32 1.25 | 67.35 | 56.38
index quality 100 || (4600,0.30) | 979.0 | 9779 || 0.1344 0.14 0.1T | 0.75 0.56 | 5.35 3.33 | 83.69 | 61.44

Table 1: Index tuning for absolute index quality

4. RESULTS AND CONCLUSION

Table 1 depicts our absolute index quality tuning results with an
index size limit of 1 TB. ! As described earlier, for our experiments
in the Web Track Adhoc Task 2010, we used the topics from the
Web Track AdHoc task 2009 as training topics and their relevance
assessments to optimize the index parameters. We considered only
the 50% least spammy English ClueWeb09 documents from Cat-
egory A according to the Waterloo Fusion spam scores (approxi-
mately 6 TB uncompressed size).

We provide processing times of a single-threaded, Java-based
implementation running on a single cluster node. These measure-
ments were taken by running the complete batch of queries five
times and taking the average. When we measure cold cache run-
times, we empty the filesystem cache before the evaluation of each
query (not every query batch) which is a very conservative setting.

MMCITLI20M, the baseline run for indexes produced by effi-
ciency-oriented tuning approaches, generates a precision@10 of
0.180, and a precision@100 of 0.1110 for the training topics. For
the test topics, it produces a precision@ 10 of 0.2250 and a preci-
sion@100 of 0.1294.

With index parameters tuned for efficiency and top-10 document
retrieval, the most efficient resulting index (I,7) = (410, 1.00)
(used in run MMCII410m1) needs less than 500 GB of disk space.
For the training topics, at a precision@10 of 0.190, it provides a
result quality comparable to indexes that use pure BM25 scores
(which generate a precision@10 of 0.180). Query processing with
the index pruned at (I, m) = (410, 1.00) requires on average less
than 1 ms for warm caches and about 80 ms for cold caches to
process one training topic.

Due to shorter index lists for the topics from the Adhoc task 2010
which serve as test topics, query processing is even a bit faster than
for the training topics, showing more performant warm cache times
and cold cache times of about 70 ms. This is reflected in the average
number of accessed entries per query: while for the training topics
we need on average 1,302 reads per query, we only need 1,045
reads for the test topics. The precision@ 10 of 0.2292 for the tuned
index MMCII410m1 on the test topics slightly exceeds the preci-
sion@ 10 of 0.2250 for MM CITLI20M. The most efficient resulting
index for top-100 document retrieval, (I,7m) = (400,1.00) at a
precision@100 of 0.1170 also meets the precision requirements for
the training topics (MM CITLI20M has a precision@ 100 of 0.1110).

MMCITLCLI20M, the baseline run for indexes produced by ef-
fectiveness-oriented tuning approaches, generates a precision@ 10
of 0.198, and a precision@ 100 of 0.1324 for the training topics.
For the test topics, it produces a precision@10 of 0.2250 and a
precision@100 of 0.1358.

Our effectiveness-oriented index for top-10 document retrieval
with (I,/m) = (1410,1.00) aims at providing precision values
which are comparable to MM CITLCLI20M. It requires 640 GB disk

'Please note that the retrieval quality measured in this paper is
based on relevance assessments for 48 topics while the evaluation
in [1] was based on the older relevance assessments that only con-
tained 36 topics, hence the different precision values.

space and provides a precision@ 10 value of 0.200. This precision
is comparable to the precision for the (almost) non-pruned prox-
imity score run MM CITLCLI20M that has a precision@ 10 value of
0.198. Query execution takes about 2 ms for the training topics and
slightly more than 1 ms for the test topics for warm caches.

The precision@ 10 value of 0.2250 for MM CITLCLI20M is the
same as for MM CITLI20M; we would have expected higher preci-
sion values for MM CITLCLI20M like for our previous experiments
on the GOV2 collection with the TREC 2004 to 2006 Terabyte
Track (detailed results are provided in [1]). This may be partially
due to the sparser relevance assessments for the Web Track topics.
As to the precision@ 100 values MM CITLCLI20M performs better
(at 0.1358) than MMCITLI20M (at 0.1294) which meets our expec-
tations.

Our effectiveness-oriented index for top-100 document retrieval
with (I,72) = (4600, 0.30) has longer index lists than for k=10
which leads to a slightly slower query processing; despite the longer
lists, it still fits the 1 TB space limit.

In [1] we also describe experiments with the GOV2 collection:
Although the indexed part of ClueWeb(9 is one order of magnitude
larger than GOV2 (6 TB vs. 426 GB uncompressed size), the re-
quired index space does not grow as fast as the collection size. For
the efficiency-oriented index quality setting, the parameter tuning
for k=10 on ClueWeb09 results in (I,72) = (410, 1.00) whereas
for GOV?2 it results in (I,7m) = (310,0.05). The final index size
is 500 GB for ClueWeb09 and 95 GB for GOV2. Indexes tuned
for the ClueWeb09 collection often have shorter list lengths which
provides even faster query processing.

5. REFERENCES

[1] A. Broschart and R. Schenkel. Real-time text queries with
tunable term pair indexes. MPI Technical Report
MPI-I-2010-5-006, 2010. Available at
http://www.mpi-inf.mpg.de/reports.

S. Biittcher, C. L. A. Clarke, and B. Lushman. Term proximity
scoring for ad-hoc retrieval on very large text collections. In
SIGIR, pages 621-622, 2006.

S. E. Robertson and H. Zaragoza. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends in
Information Retrieval, 3(4):333-389, 2009.

R. Schenkel, A. Broschart, S. won Hwang, M. Theobald, and
G. Weikum. Efficient text proximity search. In SPIRE, pages
287-299, 2007.

[2

—

(3]

(4]

