The University of Amsterdam at the TREC 2011 Session Track

Bouke Huurnink Richard Berendsen

Edgar Meij

Katja Hofmann

Maarten de Rijke

ISLA, University of Amsterdam
http://ilps.science.uva.nl/

Abstract: We describe the participation of the
University of Amsterdam’s ILPS group in the Ses-
sion track at TREC 2011.

1 Introduction

The stream of interactions created by a user engaging with a
search system contains a wealth of information. For retrieval
purposes, previous interactions can help inform us about a
user’s current information need. Building on this intuition,
our contribution to this TREC year’s session track focuses
on session modeling and learning to rank using session infor-
mation. In this paper, we present and compare three comple-
mentary strategies that we designed for improving retrieval
for a current query using previous queries and clicked re-
sults: probabilistic session modeling, semantic query mod-
eling, and implicit feedback.

The rest of this paper is structured as follows: we detail
our approach in Section 2, followed by our retrieval setup in
Section 3. We describe our results in Section 4 and end with
a concluding section.

2 Modeling Sessions and Queries, and
Learning from Feedback

Here we describe our three strategies for session-based
search: probabilistic session modeling, semantic query mod-
eling, and implicit feedback. Before we start, we fix our
notation and terminology. We use ¢, to denote the current
query and I = {iy,i2,...,iu—1 } to denote the set of past inter-
actions, where each interaction i, is associated with a query
qn, a set of displayed result snippets R, and a set of clicked
result snippets C,.

2.1 Probabilistic Session Modeling

Our probabilistic session modeling strategy uses interpola-
tion to combine results from the current query with results
from previously issued queries and with results from previ-
ously displayed or clicked snippets. Our experiments use
progressively increasing amounts of session information:

first previously issued queries, then previously displayed re-
sult snippets, and then previously clicked result snippets.
They are aimed at answering the following research ques-
tions:

e Does incorporating results from previously issued
queries improve performance for the current query?

e Does incorporating results from previously displayed
result snippets improve performance for the current
query?

e Does incorporating results from previously clicked
result snippets improve performance for the current
query?

To form a query from a set of displayed or clicked result
snippets, we apply RM-1 [6].

Our session modeling approach is based on the FixInt ap-
proach of Shen et al. [10]. However, instead of creating new
query models, we model the sessions at the document level.
We calculate P(gy,|d), the probability of g, given a docu-
ment d, and P(i,|d), the probability of each prior interaction
given d. We calculate P(A[|d), the probability of the current
information need A/, by combining these probabilities using
an interpolation parameter o such that:

Y Pin|d)

PA) = - Plgld) + (1 —0) - ==

)]
As o increases, previous interactions are given less weight.
When o = 1, only the results from the current query are
taken into account. All previous interactions are given equal
weight, normalizing by the number of previous interactions.

Further, we model an interaction as a combination of a
past query g, issued by the user, and a feedback query f,
formed from either R, or C,, depending on the experimental
condition. We interpolate these results again, using a second
parameter [3:

Pin|d) = B- P(gnld) + (1= B) - P(fuld). 2)
Substituting Eq. 2 into Eq. 1, we obtain
P(N|d) = ou- P(gm|d) 3)

(1-0) X5 B P(qald) + (1 - B) - P(fuld)

|
I

http://ilps.science.uva.nl/

When B = 1, only the results from the user-issued query are
taken into account, and conversely, when 3 = 0, only results
from the feedback query are taken into account. We deter-
mine o and by optimizing on the training data as described
in Section 3.3.

2.2 Semantic Query Modeling

Wikipedia provides a rich and extensive source of informa-
tion, not only in terms of content but also in terms of more
structural information, such as the hyperlinks between ar-
ticles. We implemented a novel algorithm that leverages
the anchor texts of incoming hyperlinks to Wikipedia arti-
cles, including not only “normal” hyperlinks, but also redi-
rects and alternative titles of pages. It does so in two steps.
First, the anchor texts are used to identify and score rele-
vant Wikipedia articles for all possible term n-grams in a
query [7, 8]. Then, for each of these articles, we again use
the incoming anchor texts. In this step, however, we use
them to determine the parameters of a language model for
each article. The language models are subsequently com-
bined for all n-grams in the query, yielding as end result a
semantically-informed language model of the query, i.e., a
semantic query model (SQM).

2.3 Learning from Implicit Feedback

Our implicit feedback strategy uses machine learning to
combine different ranking features, building on previous
work in the area of online learning to rank from implicit
feedback [3, 4]. We experiment with two learning strategies:
(1) learning from explicit relevance judgments on an exter-
nal collection, and (2) learning from previous result clicks
on previous results in the same session and other sessions.
Our experiments compare these two strategies to address the
following research questions:

e Do weights tuned on an external collections carry over
to the TREC session task?

e Do the clicks included with the TREC session data pro-
vide enough information for effective learning to rank?

e How do weights tuned using learning to rank from im-
plicit feedback compare to those tuned on an external
collection?

For both learning strategies we use the same implementation
of an online learning to rank algorithm. Training data is con-
structed from either the external collection or click data ob-
served on previous user interactions. The data is then used to
learn weights for linear weighted combinations of the rank-
ing features. To generate the final result list to be presented
to the user, we apply the learned weight vector to the cur-
rent query. Below, we detail the methods used to construct
training data, the learning algorithm, features, and research
questions.

Constructing training data In runs using an external col-
lection, we constructed training instances from the data pro-
vided for the TREC 2009 Million Query track [1]. We used
relevance assessments from the last queries of training ses-
sions we constructed, see Section 3.3. In preliminary exper-
iments, we found that best results were obtained when us-
ing all pairs of documents where one document was judged
somewhat relevant (relevance grade 1), and the other doc-
ument was judged highly relevant (grade 2). We extracted
all such document pairs and trained our learning algorithm
on all resulting data. As the algorithm is stochastic, we ran
it repeatedly and selected the best weight vector to generate
the results.

For the run using click data, we extract pair-wise prefer-
ence relations, following [5]. In this approach, result docu-
ments that were clicked and presented at a lower rank than
other, non-clicked documents, can be inferred to be more
relevant than these non-clicked documents. Here, we extract
all pairs that can be constructed in this way from all sessions.

Thus, given a document result list that was presented to a
user in response to a query, and for which one or more clicks
on documents were observed, we construct all possible or-
dered document pairs X, and infer labels Y (x) € {—1,+1}
for those pairs for which one document was clicked while
the other was not (pairs for which neither, or both documents
were clicked are discarded).

During learning, we use two sets of training data. Global
training instances X¢ include all pair-wise preference rela-
tions inferred for all but the current target session (similar to
leave-one-out). Local training instances Xy, include all train-
ing instances extracted for the current session (if available).

Features To facilitate learning that can generalize over
documents and queries, we use a feature ¢(d|q) representa-
tion that encodes the relationship between queries g and doc-
uments d. To apply pair-wise learning to rank we then rep-
resent pairs of documents by the difference of their feature
vectors, such that x; = ¢(d;, |¢) — ¢(di,|q). As the amount
of training data is fairly limited, we limited ourselves to the
following three features:

e standard retrieval scores for the current query on the
anchor text,

e scores returned by the run UvAmodeling.RL[1-3], and

e scores returned by the run UvAsemantic.RL[1-3].

Learning to rank Given a set of observed data (X,Y)
for P document pairs, we apply the stochastic gradient de-
scent (SGD) algorithm defined by Zhang [11, Algorithm
2.1]. This algorithm finds a weight vector w that minimizes
the empirical loss:

1 & A 2
W = in|— Y L(w,x;,y)+ 5 4
W = argmin Pl (W7Xz,y1)+2\|w\|2 .)

where L(w, X, y) is a loss function, in this case the hinge loss,
and the last term is a regularization term. The algorithm was
shown to perform competitvely on standard learning to rank
datasets [9]. Here, we follow the implementation provided
in sofia-ml." For each observed training sample (x;,y;), this
algorithm updates the weight vector w; using the update rule
W] = Wy +My:X; —NAw. We use the unregularized version
of this algorithm (by setting A = 0) and use a small constant
n = 0.0005.

Finally, a given weight vector w is applied directly to the
extracted feature vectors for given document-query pairs to
compute ranking scores S = wd(D|q). Documents are sorted
by this score to obtain a result ranking [5].

3 Experimental Setup

3.1 Retrieval Framework

For retrieval we use a standard KL-divergence approach,
with Bayesian smoothing using a Dirichlet prior.

3.2 Collection

We made use of the English portion of the Clueweb A doc-
ument collection. We did not use any form of stemming and
removed a conservative list of 588 stopwords. We removed
the 70% of the documents most likely to be spam accord-
ing to the Waterloo fused spam scores [2]. Some Wikipedia
pages were classified as spam using this algorithm, how-
ever, we kept these pages in the collection as we consider
Wikipedia to be valuable knowledge resource.

We created two indexes. For the first index, the content
index, we stripped all html from the documents and indexed
the resulting plain text using the Indri retrieval engine. For
the second index, the anchor-text index, we represented each
document by the anchor text of URLSs pointing to that docu-
ment.

3.3 Training Data

To create training sessions, we worked backwards from
queries for which we had relevance assessments. We se-
lected queries from the Million Query Track 2009. For each
query, we wrote an information need for which the query-
would be a reasonable last query ¢,,. Then we performed
search sessions in Clueweb09? based on that information
need and we recorded the result pages and our clicks.

3.4 Runs

All submitted runs were Category A runs.

IProvided online at http://code.google.com/p/sofia-ml/.
2We used http://boston.lti.cs.cmu.edu/Services/

UvAmodeling Run based on explicit modeling. All runs are
created according to Equation 3. Weight parameters are
determined using the training collection.

RL1 Use current query only: ot =1

RL2 Use current query and previous queries, but no
result snippets: o0 = 0.6, =1

RL3 Use current query, previous queries, and previous
displayed results: o= 0.6, =0.9

RL4 Use current query, previous queries, and previous
clicked results: oo = 0.4, =0.1

UvAsemantic Run based on semantic query modeling
(SQM). All runs are created using SQM, in combina-
tion with Equation 3. Weight parameters are deter-
mined using the training collection.

RL1 Use SQM for current query only: o = 1

RL2 Use SQM for current query and previous queries,
but no result snippets: oo = 0.6, =1

RL3 Use SQM for current query and previous queries,
and create query from previously displayed re-
sults without SQM: ac. = 0.5, =0.5

RL4 Use SQM for current query and previous queries,
and create query from previously clicked results
without SQM: a0 = 0.5, = 0.8

UvAlearning Runs combine several ranking features using
learning to rank on an external collection (RL1-3) or
from implicit feedback (RL4) as described in §2.3.

RL1 Learn weights using the external collection; fea-
tures: anchor text, UvAmodeling.RLI, UvAse-
mantic.RL1

RL2 Learn weights using the external collection; fea-
tures: anchor text, UvAmodeling.RL2, UvAse-
mantic.RL2

RL3 Learn weights using the external collection; fea-
tures: anchor text, UvAmodeling.RL3, UvAse-
mantic.RL3

RL4 Uses the same features as UvAlearning.RL3, but
learns weights using implicit feedback, as de-
scribed in §2.3.

4 Results

Result overviews for our submissions are shown in Table 1
and Table 2. We show results according to nDCG@10, as
this gives a good indication of the quality of the top 10 search
results.

The best run type overall was UvAmodeling. For this
run, we did not use query expansion or implicit learning, but
linearly interpolated results from the current query with re-
sults from previous queries and result clicks. This approach

http://code.google.com/p/sofia-ml/
http://boston.lti.cs.cmu.edu/Services/

Table 1: Result overview for all runs in terms of nDCG @10,
considering only those documents relevant to the subtopics
of the last query as relevant. The highest score pfr each ex-
perimental condition is indicated in bold.

Run type RL1 RL2 RL3 RL4

UvAmodeling 0.238 0.238 0.232 0.254
UvAsemantic 0.186 0.181 0.208 0.192
UvAlearning 0.211 0.199 0.233 0.173

gained the highest performance under experimental condi-
tions RL1, RL2, and RLA4. It also achieved the highest over-
all score. The highest performing run type under condition
RL3 was UvAlearning.

Looking in more detail at the UvAmodeling run set, we
see that performance did not increase between RL1 and RL2;
this was due to a a bug in the system. This means that we
cannot conclusively state whether incorporating results from
previously issued queries improves performance for the cur-
rent query in this setting. However, when we add informa-
tion from previously displayed results (RL3), we see that
performance goes down when evaluating with only the doc-
uments relevant to only the last subtopic. However, when
evaluating with documents relevant to the whole topic of
the session, performance increases. Finally, performance in-
creases for both types of evaluation when we add informa-
tion from previously clicked result snippets under RL4, and
indeed this is where we attain the best performance.

Regarding our learning approaches, where weights for lin-
ear weighted combinations of runs were learned from either
external data, or implicit feedback, we find few improve-
ments over individual runs. The runs UvAlearning.RL[1-2]
outperform the UvAsemantic runs, but score lower than the
UvAmodeling runs. The reason may be that semantic mod-
eling performs better on the external collection than on the
TREC session track data, so that weights for this run are over
estimated by the learning approach. In the RL3 series, where
scores for UvAsemantic are higher, the benefit of combining
weights increases, so that UvAlearning.RL3 outperforms all
other runs in this series.

Moving to the run UvAlearning.RL4, we see that scores
are substantially lower than for UvAlearning.RL3, which
uses the same features and learning algorithm, but train-
ing data extracted from implicit feedback. We conclude that
the click data associated with the current sessions does not
contain enough information to provide useful feedback for
learning to rank.

5 Conclusion

‘We have described the participation of the University of Am-
sterdam’s ILPS group in the session track at TREC 2011. In
our experiments we examined three complementary strate-
gies for improving retrieval for a current query. Our first

Table 2: Result overview for all runs in terms of nDCG @10,
considering those documents relevant to the whole topic of
the session. The highest score for each experimental condi-
tion is indicated in bold.

Run RL1 RL2 RL3 RIL4
UvAmodeling 0.337 0337 0.349 0412
UvAsemantic 0.285 0.305 0.355 0.329
UvAlearning 0.321 0.324 0.400 0.293

strategy, based on probabilistic session modeling, was the
best performing strategy.

Our second strategy, based on semantic query modeling,
did less well than we expected, likely due to topic drift from
excessively aggressive query expansion. We expect that per-
formance of this strategy would improve by limiting the
number of terms and/or improving the probability estimates.

With respect to our third strategy, based on learning from
feedback, we found that learning weights for linear weighted
combinations of features from an external collection can be
beneficial, if characteristics of the collection are similar to
the current data. Feedback available in the form of user
clicks appeared to be less beneficial. Our run learning from
implicit feedback did perform substantially lower than a run
where weights were learned from an external collection with
explicit feedback using the same learning algorithm and set
of features.

Acknowledgments

This research was partially supported by the European
Union’s ICT Policy Support Programme as part of the Com-
petitiveness and Innovation Framework Programme, CIP
ICT-PSP under grant agreement nr 250430, the PROMISE
Network of Excellence co-funded by the 7th Framework
Programme of the European Commission under grant agree-
ment nr 258191, the LiMoSINe project co-funded by the 7th
Framework Programme of the European Commission under
grant agreement nr 288024, the Netherlands Organisation
for Scientific Research (NWO) under project nrs 612.061.-
814, 612.061.815, 640.004.802, 380-70-011, 727.011.005,
the Center for Creation, Content and Technology (CCCT),
the Hyperlocal Service Platform project funded by the Ser-
vice Innovation & ICT program, the WAHSP project funded
by the CLARIN-nl program, under COMMIT project Infiniti
and by the ESF Research Network Program ELIAS.

6 References

[1] Carterette, B., Pavlu, V., Fang, H., and Kanoulas, E.
(2010). Million query track 2009 overview. In The Eigh-
teenth Text Retrieval Conference Proceedings (TREC
2009). NIST. Special Publication.

[2] Cormack, G. V., Smucker, M. D., and Clarke, C. L. A.
(2010). Efficient and effective spam filtering and re-
ranking for large web datasets. Information Retrieval,
pages 1-25.

[3] Hofmann, K., Whiteson, S., and de Rijke, M. (2011a).
Balancing exploration and exploitation in learning to rank
online. In ECIR 2011: 33rd European Conference on
Information Retrieval.

[4] Hofmann, K., Whiteson, S., and de Rijke, M. (2011b).
A probabilistic method for inferring preferences from
clicks. In 20th ACM Conference on Information and
Knowledge Management (CIKM 2011).

[5] Joachims, T. (2002). Optimizing search engines using
clickthrough data. In KDD ’02, pages 133-142.

[6] Lavrenko, V. and Croft, W. B. (2001). Relevance based
language models. In SIGIR ’01: Proceedings of the 24th
annual international ACM SIGIR conference on Research
and development in information retrieval.

[7] Meij, E. and de Rijke, M. (2010). Supervised query
modeling using Wikipedia. In SIGIR ’10: Proceedings
of the 33rd international ACM SIGIR conference on Re-
search and development in information retrieval.

[8] Meij, E., Weerkamp, W., and de Rijke, M. (2012).
Adding semantics to microblog posts. In Proceedings of
the fifth ACM international conference on Web search and
data mining (WSDM 2012).

[9] Sculley, D. (2009). Large scale learning to rank. In NIPS
2009 Workshop on Advances in Ranking.

[10] Shen, X., Tan, B., and Zhai, C. (2005). Context-
sensitive information retrieval using implicit feedback. In
SIGIR, pages 43-50. ACM.

[11] Zhang, T. (2004). Solving large scale linear prediction
problems using stochastic gradient descent algorithms. In
ICML °04, pages 116+. ACM.

