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Abstract 

Indexing is a crucial technique for dealing with the massive amount of data present on the web. 
Indexing can be performed based on words or on phrases. Our approach aims to efficiently index 
web documents by employing a hybrid technique in which web documents are indexed in such a 
way that knowledge available in the Wikipedia and in meta-content is efficiently used. Our 
preliminary experiments on the TREC dataset have shown that our indexing scheme is a robust 
and efficient method for both indexing and for retrieving relevant web pages. We ranked term 
queries in different ways, depending if they were found in Wikipedia pages or not. This paper 
presents our preliminary algorithm and experiments for the ad-hoc and diversity tasks of the 
TREC 2011 Web track. We ran our system on the subset B (50 million web documents) from the 
ClueWeb09 dataset. 
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Introduction 

Indexing is crucial for the task of finding relevant information on the Web. Various indexing 
methods are used in a wide range of applications, such as Home-page finding, Entity finding, and 
Web pages classification. The design of highly-scalable indexing algorithms is needed, 
especially with an estimate of one billion pages currently accessible on the web. Previous work 
classifies indexing of web documents in two types: word-based and phrase-based indexing [1].  

In word-based indexing, single words are used to build an index table and to find a set of 
relevant pages according to some computations. In order to find key-phrases that are important 



for each topic, a set of articles can be assembled from a particular dictionary. This was used 
recently for document clustering, entity finding, or document classification in small collections 
of documents, but it has not been used on the large scale webpage indexing. 

Moreover, the current approach of word-based indexing does not scale well for phrasal queries, 
because the positions of the words need to be recorded, requiring a lot of storage space. On 
another hand, indexing without considering word location for proximity search causes two 
documents to seem similar if they have words in common, even if they are on different in topics. 
Term frequency is important in determining the topic of documents; but this is not case for all 
documents configurations, because documents may contain different topics located on different 
parts. Only a few systems consider this aspect, for example by using a sliding window for each 
topic [2]. Using phrases in the index in addition to words is another way to deal with this 
problem. 

1  Building the Index 

In this section, we describe the idea behind our indexing method for handling phrases and 
concepts (Wikipedia categories in our case). Our technique is robust and allows the retrieval of 
documents relevant to a specific topic. Our inverted index is structured as a core distributed 
hash-search tree. Our method overcomes the problems that appear when using hash tables for 
indexing a very large collection of web documents. Currently, a centralized index leads to slow 
query response time, unless it is used in a distributed environment e.g., Map-Reduce [3]. Our 
index, although centralised, allows for fast retrieval. 

The idea for an index that stores data in an efficient way is inspired by the block-oriented storage 
contexts used by file systems. We avoid the rebalancing issues of some indexing trees, e.g., 
binary trees. Our index uses sub-trees in a fixed interval. Each internal node has sixteen children 
and the leaf nodes contain the information about the documents relevant to the index term. The 
depth from the root to each leaf corresponds to a concept in our index, and it is eight nodes for 
each concept (index term). This means that the subsequent nodes from the root to the leaves can 
map all vocabulary terms (concepts / categories) from Wikipedia. Each vocabulary term has a 
fixed interval (8 bits). Each node was assigned one digit in the interval of 16 bits, 1-F; the value 
of a digit was assigned to each node, depending on the location of the node in the tree and the 
encoding stage of each vocabulary term. As a result, the volume of our index for all vocabulary 
terms from Wikipedia is 0xffffffff or 4,294,967,296 nodes. The encoding algorithm that 
generated the serial number or hash code for each concept or vocabulary term for drawing the 
path from the root to the leaf used a Cryptographic Hash Algorithm. Each leaf in the index holds 
a file of all indexed documents regarding a particular topic, and the label (path) should match a 
query term for that class (leaf). We used tree types of leaves for each concept or vocabulary 
term; each leaf holds similar types of documents structured as a table of vectors with a certain 
number of dimensions. The three categories are: a table for all Wikipedia documents, a table for 
all home pages, and a table for other web documents. An example of index entries is shown in 
Figure 1. 
 



 
Figure 1. Example of index entries 

 
 
1.1 Assembling the Titles of the Nodes 
 
Our index was pre-designed before indexing the collection (Wikipedia documents, home pages, 
and other documents). The titles of our index nodes use knowledge from Wikipedia articles. 
Interestingly, Wikipedia is well structured for describing the topics; for instance the 
abbreviations and bolded terms are almost always important for the content. Technically, not all 
pages in the Wikipedia are important for indexing, for instance �“Disambiguation�” and �“File�” 
pages; as a consequence, they were removed from our consideration. We also removed all non-
textual pages or non-article pages. We extracted the following terms from the remaining 
Wikipedia articles:   

 All abbreviation terms. 
 All bold terms or phrases available on the head of the content. 
 All phrases on the headers. 
 All titles of pages. 
 All terms or phrases located between brackets or split by any punctuation characters. 
 All phrases and terms split by conjunction words such as �“or�”, �“and�”. 



Stop-words were removed from the content in a pre-processing step. Then, we obtained three 
types or terms: single words or abbreviations (such as �“AVP�”, �“Diana�”), two-word phrases (such 
as �“Martha Stewart�”), and longer key-phrases (such �“President United States�”). These terms 
were used initially for building our index nodes and giving them titles accordingly. 

1.2 Vector Generation 

In this section, we describe our representation for a given document. The most-used 
representation in information retrieval is based on the vector space model, in which a document 
is treated as n-dimensional vector, and each dimension represents to a specific type of 
information. We add more functions in each vector; dimension �“i�” is assigned to function �“i�”. As 
we mentioned, we used three types of tables, and each type is organized by a similar number of 
dimensions: 
 

  ; where  represents n documents indexed in the Wikipedia-Table, w 
  ; where  represents n documents indexed in the Home Page-Table, H 
  ; where  represents n documents indexed in the Other-Table; which 

means all the collection except the Wikipedia articles and home-pages documents. 
Each leaf in the index is a file that holds three such tables; its name is selected from the names of 
Wikipedia articles. A few operations were performed on the names of the articles before using 
them for giving titles to our index nodes or leaves; for instance all stop-words, symbols, and, 
numbers were removed. 
 

2 Indexing the Repository 
 

As we mentioned, we categorized the documents in our repository index into three types: 
Wikipedia articles, home pages, and other documents. Each type holds a particular type of 
document. In this section we will describe the indexing algorithm that we used for each category.  
 
2.1 Wikipedia Repository Indexing 

Wikipedia is a collective knowledge source of approximately 5 million articles in English. The 
data in each article is structured into several fields, and sometimes it has a relationship with other 
articles using tags or links to expand a certain topic. Each article has a unique vocabulary name 
(identifier or ID); sometimes Wikipedia uses different faceted vocabulary terms to describe the 
same article. We extracted the important information (key-phrases) from each article and used it 
as setup information to rank each leaf node in our customized index. Our system scanned 
through the whole Wikipedia repository (the version that is included in the ClueWeb collection) 
and computed the following normalized vectors for each document: 

 Words-occurrences (frequencies); we assigned a threshold value to exclude all low 
frequency terms and to keep the ones with frequency higher than the threshold. 

 Outgoing-links occurrence frequencies; outgoing-links are all URLs that point internally 
to other Wikipedia articles. For us, if an article points to other articles frequently, at more 
than one position in the content, then all these articles are related or similar in topic.  



 All external URLs. 

HTML markups, ads, navigation links, and stop-words were removed. As a result, the outputs 
were transformed and represented as vectors of the following structure: 

   

where  is a document url,  is a TREC identifier (TREC-ID),  is represents the 
outgoing-link frequencies (for the links that are repeated frequently at more positions in the 
content),  refers to all external links, and  represents all terms that occurred with high 
frequency. Thus, all documents in Wikipedia repository are transformed into several tables of 
vectors available in the leaves of the index.  

2.2 Home Pages Indexing 

The use of page content for home-page finding is problematic for several reasons. Often the first 
page in a site is a home page which mostly contains navigational links for sitemap. Some 
potentially useful evidence for home page finding is query-dependent. This includes the presence 
of query words in the document�’s text, which is referring to anchor texts, or in the document�’s 
URL. It is known that full-text relevance ranking is not particularly effective for home page 
finding [4]. Other potentially useful evidence is query-independent. This was demonstrated in the 
TREC-2001 home page finding task [4]. The best run was submitted by Westerveld et al. from 
UTwente/TNO [5] and used the pages URLs as evidence. Generally, query-dependent and query-
independent are not the case for all situations of home-page finding, because URLs sometimes 
use shortcuts or abbreviation terms to represent some underlying meanings beyond the domain 
name, e.g., �“nist.com�”. We used different representations when we processed URLs for home-
pages. We used two basic methods for the home-page finding task: the first method is standard 
and it uses the structure of URL names, and the second method is suitable for most abbreviated 
and embedded terms. 

2.2.1 Processing URL Structures 

According to the general structure of URLs, we classified them into five categories (after 
stripping off all the symbols, numbers, and all the trailing terms such as index, default, and 
welcome), depending on the location of the term in the URL: 

o If a term is located in the main domain section, e.g., �“www.diana.com/�”. 
o If a term is mixed or embedded with other terms, such as Air France in �“airfrance.ca�”.  
o If a term is represented as a shortcut or an abbreviation, e.g., �“www.uottawa.ca�”. 
o If a term is located in the sub-domain section, e.g., �“trec.nist.com/�”. 
o  Any an URL was ended at document�’s name and preceded by a symbol �“~�”, e.g., 

�“www.uottawa.ca/~cadams�”. 

Thus, we have only five possibly evidences in the URL forms. We used different scores for each 
status; we assigned the ranking value �“1�”, �“2�”, or �“3�” for a term that is located on the main-
domain, sub-domain, and document-name, respectively. 

Home-page finding methods require finding equivalent pages by converting hyperlinks might to 
a canonical form, for example: �“http://bmo.com�”, �“http://www.bmo.com/�”, 



�“http://www.bmo.com:80/�”, �“http://www.bmo.com/index.htm/�”, 
�“http://www.bmo.com/welcome/�”, �“http://www.bmo.com/default�”, �“http://www.bmo.com/ 
(language code)/ index.html�”, should be all represented as �“www.bmo.com/�”. 

2.2.2 Embedded Keyword Extraction 
 
URL keywords or terminology extraction is a challenging task. Researchers employed different 
algorithms, such as a statistical �“n-grams�” [5] or natural language processing methods for 
tokenizing and analyzing URL data to extract keywords that can be utilized to index content. 
Besides web page popularity, we exploit using query log files assembled by Alexa.com1 for 
finding out the original keywords behind the embedded keywords in domain names. Alexa.com 
computes traffic for all popular search engines. We used the tf method for computing the 
occurrence of frequent queries in log file. The log file contains the important queries for each site 
accessed by users; for instance �“airfrance�”, �“uottawa�”, and �“nist�” are defined in log file as 
queries: �“Air France�”, �“University of Ottawa�”, and �“National Institute of Standards and 
Technology�”, respectively.  
 
Our method was tested for home page finding for the TREC 2011 web track topics. For example 
the query �“jax chemical company�” involved retrieving all home pages available in the corpus; 
therefore our system was obtained a precision p@5=1.0 and p@10=1.0 for this query.  
 
2.3 Other Collection Indexing 

Usually, web pages are indexed using their content, but not all pages are useful for indexing their 
content, for instance multimedia pages may contain videos, sound, or images; home-pages 
sometimes contain little text; other web pages may contain topical content such as programming 
code or navigational links which are useless for indexing. Generally, we used two types of index 
structures: word based index and key-phrase based index. 

2.3.1 Word Based Index 

Often the meaning of a document is conveyed by words located in meta-content (such as URLs, 
titles, and headers). Normally, there is at least one term shared between meta-content and the 
document content. If we can represent the shared word by a short vector and the document 
content by another vector, it is possible compute the similarity and the impact of that term in the 
document. Basically, meta-content is available in three fields (�“title�”, �“headers�”, and �“URL�”) and 
it is necessary to manipulate all these fields together, because (i) we assume that not all 
documents contain important terms in alone of these fields (ii) usually keywords in the title, 
headers, and URL are complementary to each other. If the header h1 is not available or it is 
similar to the title, we chose �“h2�” or �“h3�”. A very short meta-text may not contain enough 
information and a long text may contain unnecessary or redundant information. Also, it is 
necessary to index the main content in order to provide a comprehensive indexing. We use meta-
keywords to trigger the document�’s topic, and then to go inside the index for other query terms. 

1 http://www.alexa.com



Two documents from different sites might have meta-content with different impact, even they 
have similar meta-content. Documents whose content has higher similarity to its meta-content 
should be judged more relevant. Our model was modeled to measure the closeness of any 
document content to its meta-content, by computing the cosine similarity between the document 
content and the meta-content, with the cosine similarity between two vectors [8]: 

SC( =        (1) 

where Wj is the weight of each term j in the document, Mj is a weight of each term j in the meta-
content (the value of each meta term is equal to the weight of that term in the document,  if it is 
available; otherwise the value is 0), t is the number of document terms. 

In fact, the cosine similarity was used individually for each term in the meta content; therefore 
each term in the meta content has one similarity value with the document. To compute the 
similarity measure for each term in meta-content, we processed the document content as follows: 

 Stripping off all the html codes from the content of the document 
 Removing stop words, symbols, and numbers, 
 Removing stemming characters from each term.  
 Computing the occurrence tf, of each term in the document content. 

Once the tf value of each term was computed, we used equation (2) for computing the impact of 
each term from the meta-content. Each meta-term is assigned its cosine similarity measure with 
the document content. To determine which meta-term is significant, we use a specific threshold 
value to choose the best terms and ignore others. On other hand, as we mentioned before, not all 
terms in the document are available in the meta-content; likewise it is rare to find all the query 
terms located in meta-content. Therefore, it is impractical to rank web documents only by their 
meta-contents; we need to add the term frequencies in the content of the document. To reduce 
the storage needs, we ignored all the terms that occurred only once. Each term in meta-content 
has a vector with a certain dimension; including the cosine measure, and the significant terms 
frequencies, in addition to the �“docID�” and the �“termID�”.  Document relevance is computed by 
adding the cosine similarity for the first query term which is available in the meta-content; 
otherwise, only terms frequencies are computed. Sometimes, queries contain digits when looking 
for more precise results, e.g., �“hp mini 2140�”; therefore we address this issue by adding one extra 
dimension to the vector to yield document�’s title. Hence, the meta-content of �“n�” terms is broken 
down to �“n�” vectors; and then each vector is transmitted to a corresponding node in the index, as 
shown below: 

{docID}{TermID}{SC (Term)}{<t1, f><t2, f><t3, f>�… <tn,f>}{Title} 

2.3.2 Key-Phrase Based Index 

Our method does not employ computations for the terms that occurred only once; but they can 
still be used for phrasal queries. Some documents are based on a fixed interval of sequence 



terms; these terms could occur only once or could be repeated in the document�’s content. Terms 
do not need to occur at more than one position in the content; for instance the query �“map of 
brazil�” is sometimes located once at one position in the document; hence terms occurrences are 
not important for the document�’s relevance. However, our method uses the key-phrase index 
with the respect of computing terms frequencies for all the terms in the content. For example, the 
query �“Martha Stewart and imclone�” requires to compute the proximity search for all terms; 
computing the term frequency for the term �“imclone�” and the key-phrase frequency for the 
phrase �“Martha Stewart�” is important for computing document�’s relevance. To compute the key-
phrase frequency, first we strip off all stop-words, symbols, characters, and single letters from 
the document content. Next, we compute the frequency of single terms, double contiguous terms, 
then length three, four, etc., as far as terms occurred together frequently. Then, for each key-
phase we compose a vector of fixed dimension, as shown below: 

{docID}{Key-phraseID, f}{<t1,f><t2,f><t3,f>�….<tn,f>}{Title} 

where key-phraseID is a hash key that is generated using the same algorithm that generated the 
hash keys for each node in our index. 

3 Enhancing the Ranking Results 

Traditional methods for ranking documents are not optimal in terms of search engine 
optimization (SEO). Smoothing ranked list and changing documents positions in our search 
results was used based on a number of factors designed to provide end-users with helpful and 
accurate search results. In our method, we used two strategies based on human references to 
improve our rankings. 

3.1 Using alexa.com 

With the massive amount of data available on the web, not all data are reliable and valuable. 
There are a lot of sites with untruth full content that might be ranked high by our model.  
Navigational queries, for example, are always looking for reliable and valuable information; this 
information is usually available in sites that can be trusted. Summarizing, site reputation, ranked 
locally and globally, is important in our relevancy algorithm. We used this factor for enhancing 
our ranking algorithm by filtering out all the poor sites. We exploited the information from 
www.alexa.com by assembling all reputation values for the main domains in our corpus.  

3.2 Using Wikipedia 

As we mentioned earlier in this paper, documents that are classified as home pages or documents 
that are important articles in the Wikipedia might change their rank in our final ranking list. 
Human references are robust arguments to bias the ranking towards some documents. Since we 
previously indexed all the important external references to Wikipedia articles, the ranking 
algorithm will make a match between the ranked list and the archived indexed documents that 
existed in each node for the search query. As a result, the matching documents will get higher 
positions in the final list.  



4 Query Expansion 

Search engines use query expansion to increase the quality of the search results. It is assumed 
that users do not always formulate search queries using the best terms. The goal of query 
expansion in to increase recall, without decreasing too much the precision, by including in the 
result pages which are more relevant (higher quality), or at least equally relevant. By ranking the 
occurrences of both the user entered words and synonyms and alternate morphological forms, 
documents with a higher density (high frequency and close proximity) tend to migrate higher up 
in the search results, leading to a higher quality of the search results near the top of the final 
ranked list. 

The trade-off between precision and recall is one of the problems of query expansion. However, 
to improve retrieval performance in our system, we used query expansion for those queries that 
were classified as Wikipedia articles; anchor terms or phrases that frequently occurred in each 
article were used to expand the query topic (anchor terms have been indexed previously); for 
instance, the topic �“all men are created equal�” that ranked our system as high precision P@5=0.8 
and P@10=0.7, because the query was expanded with the phrases �“Gettysburg Address�” and 
�“Declaration of Independence�”, and in this way the system succeeded to retrieve document that 
did not contain the query term but they were highly relevant. 

5 Query Processing 

Query processing is an important processing step and it includes: detecting the type of the query, 
query normalization and query expansion. Basically, we have five types of queries according to 
the: title, domain, frequency.  

 Title: this means that relevant pages contain all query terms in core positions, as full 
keyphrases, e.g. �“arkadelphia health club�” or �“map of brazil�”. 

 Domain: this means that relevant documents are located in a particular site or domain, 
e.g., �“jax chemical company�”.  

 Occurrence: this means that relevant documents were judged using the occurrences of 
query terms in the document, e.g., �“fact of uranus�” or �“Martha stewart and imclone�”. 

A few examples of queries and how they are processed in our system are shown in Figure 1.  
Each query is processed using the index with three types of leaves. We use overlapped term 
positions besides the priority factor for each term in the query. Our system uses the following 
criteria for processing a query: 

o If the query length is one term, searching is done in two indexes: the home-page index 
and the word-based index, because a one-term query could look for a home page, e.g., 
�“uottawa�”, or, the term could be frequent in a document�’s content, regardless if it is a 
home page or not, e.g., �“afganistan�”. 

o If the query length is two or three terms, searching occurs in three indexes: the home-
index, the word-based index, and the key-phrase based index, e.g., �“Map of Brazil�” or 
�“Ralph Owen Brewster�”. 



o If the query length is four or more, searching occurs in two indexes: the word-based 
and the key-phrase based index, e.g., �“Ritz Carlton Lake Las Vegas�”. In the case of 
keyphrase-based index, the query would be searched as: �“Ritz Carlton Lake Las 
Vegas�”, �“Ritz Carlton lake Las�”, and �“Ritz Carlton Lake�”; whereas in case of the word-
based index, first, a node �“Ritz�” is located and the system goes through each document 
vector to find the other query terms. Next, a node �“Carlton�” is located and then the 
system walks through each document vector to finding other query terms; and so on, 
regarding other terms query. The results from all the search situations are aggregated in 
one list, without duplication. 

o If the query involves a prepositional or conjunctional term, then the first term and the 
single term that occurred before or after the conjunction is weight more than other 
terms in the query, for example the terms �“uplift�” and �“Yellowstone�” on the query 
�“uplift at Yellowstone national park�”; or a term �“french�” and �“casino�” in a query 
�“french lick resort and casino�”. 

 6 Document Ranking 

In this section, we explain our custom model for ranking webpages which uses an extended for 
of the cosine measure similarity. As we said, not all query terms have equal impact or weight. 
For each query, there is one term has more impact than others; for instance the query, “Martha 
stewart and imclone” is focused on a term �“imclone�” more than on the other terms. Describing 
our method for finding the important or prominent term in each query requires more details 
which are out the scope of this paper. However, the following equation is used to rank each 
document regarding the above query, for example. 

Rank (Di,Q) = +     

where  is the cosine similarity (equation 1 above) for query term �“imlcone�” in 
document Di, Wji is the weight of query term j in document i; and, t is the number of query terms.  
We added the sum of all the weights of query terms not only the term �“imclone�” is important in 
the query, but other terms are also important. That is, we used the cosine similarity for the term 
that has more impact than others in the query, plus the sum of the weights if all the query terms 
(the value is divided by 100 is to find the percentage value). Finally, our system biases the final 
ranking list by the site�’s reputation and the Wikipedia preferences.  

7 Spam Documents Filtering 

The ClueWeb09 collection contains a lot of spam documents. We filtered out spam documents 
that would hurt the quality of our retrieval. Cormack et al. [7] studied the spam filtering in the 
�“ClueWeb�” collection and showed that the spam filtering could significantly improve the 
performance of a system. Therefore, computing term frequency and cosine term similarity in our 
system could detect spam documents that use many junk words that affect the impact of each 
term (the cosine term similarity in our method). We assigned a threshold value of total term 



frequencies for each document retrieved, as well as a threshold value for cosine term similarity. 
If the cosine term frequency is lower than the threshold, the document is considered spam. On 
the other side, junk documents hurt the ranking list, too, if they are appear. The junk documents 
may contain only a little information and scattered words. Therefore, we used another specific 
threshold value for removing these types of documents. 

8 Experimental Results 

We submitted one run for the adhoc and the diversity tasks of the web track. Our run was based 
on the collection of document Category B of the ClueWeb09 corpus (50 million documents). For 
some queries, the precision was zero because relevance judgements contained only documents 
selected from the other part of the collection (Category A). For other queries, our method was 
not able to model the topics of the queries.  Table 1 and 2 list the results of different metrics for 
both the diversity and the adhoc metrics as average for the 50 test queries. 
 

Run nDCG@5 nDCG@10 nDCG@20 P-IA@5 P-IA@10 P-IA@20 
DFalah11 0.4418 0.4727 0.5020 0.2963 0.2546 0.2198 

Run NRBP MAP-IA@20 ERR-IA@20 strec@20 -- -- 
DFalah11 0.3699 0.0726 0.4058 0.7370 -- -- 

Table 1: Diversity task results 

Run NDCG@20 ERR@20 P@5 P@10 P@20 MAP 
DFalah11 0.2044 0.1219 0.3320 0.2960 0.2750 0.0794 

Table 2: Adhoc task results 
 

9 Comparison to other systems 

Our submitted run was considered only for the ad-hoc task. We can compare our result with 
other systems that worked with the subset of the data collection named category B. It is not fair 
to compare to the systems that used the whole data collection (category A), because some 
documents that were in the excepted solution could not be retrieved by our system since they 
were not in the reduced dataset. Table 8 presents the comparative results, according to the track�’s 
overview paper [9].  
 

Group Run Cat ERR@2
0 

nDCG@20 P@20 MAP 

N-A  srchvrs11b B 0.131 0.233 0.298 0.110 
Univ. of Ottawa DFalah11 B 0.122 0.204 0.275 0.079 
Univ. of Amsterdam (Kamps)  UAmsM705tiLS B 0.119 0.202 0.273 0.085 

Table 3: Comparison of our system with other systems from Web Track 2011. 

 



 

10 Conclusion 

Overall, our method used our own custom indexing and ranking model based on Wikipedia 
knowledge. This model provides a variety of analytic capabilities, including: concept extraction, 
concept correlation, text summarization, spam filtering, and term to document similarity. 

We addressed some drawbacks of our 2010 system. Now we kept stop words in the key-phrase 
index.  This allowed us to successfully process queries such as �“to be or not to be, that is the 
question�”. The conjunctions and prepositions also allowed us to separate important terms in 
some queries, e.g., for the queries �“Martha Stewart and imclone�” and �“earn money at home�”, the 
important terms are �“imclone�” and �“home�”, respectively. Our results in 2011 are improved when 
compared to our results from last year; despite the fact that many topics of this year are 
underspecified (i.e., multi-faceted) and traditional Web search engines have difficulty with 
queries of these types, as mentioned on the track�’s webpage2. 
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