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     ABSTRACT 

Since 1992, the National Institute of Standards and Technology (NIST) has been annually hosting the Text 
Retrieval Conference (TREC). One of the newest tracks, which started in 2011, is the Microblog Track, 
which uses a well-known social network site, Twitter[10], as its source of microblog data. Twitter allows 
its users to post 140 character length tweets to share messages with their followers, posting personal 
updates, and share major media stories from around the world. In order to evaluate information retrieval on 
microblog data, groups were provided with a file of about 16 million tweet IDs from January 24th to 
February 8th, 2011. This allowed us to download the tweet content of each ID for a total of 16,141,812 
tweets. Participating teams were given a set of topics to test their retrieval process, and their program would 
return relevant tweets about that topic. The Siena College Institute of Artificial Intelligence expanded on 
STIRS, Siena’s Twitter Information Retrieval System. The results for our adhoc run showed STIRS’ best 
run to be at 18.08% precision, while the average of the median from all participating teams was 14.86%.  

 

1. The Microblog Track 
 
Continuing into its second year, TREC’s Microblog Track continues to be one of the most popular tracks. 
Twitter, a social networking site, provided a 2011 tweet corpus1. This was reused for the 2012 runs and it 
consists of 16,141,812 tweets obtained from January 24th to February 8th, 2011. The tweet information we 
downloaded included user ids, dates, query times and the actual tweet content. NIST also provided a set 
of test topics that would be used as input queries to a participating team’s system.  The goal was to return 
only tweets relevant to the query topic.  
 
One of the most important concepts was that information returned by each system could not be older than 
the moment of the query time; any older tweets would be automatically judged as irrelevant. Groups 
submitted up to four different runs, each run consisting of a set of ordered tweets for each of the fifty 
topics. Different from the 2011 task, this year’s runs were divided into two distinct categories: filtering 
and adhoc.  
 

 

                                                                 
1 NIST provided teams with a list of tweet ids and the tools needed to download the text of the tweets. Actual tweets were not 

provided. 
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1.1 Adhoc Task 

The adhoc task was similar to the Microblog 2011 task. Participants were asked to retrieve results for 60 
new queries. For each query, participants were asked to send back the top 10,000 tweet results they found. 
However, only the top 1000 tweets for each query were to be judged. For each result there were four 
fields required to be submitted to NIST. These four fields were the topic number, tweetID, score, and run 
name. Each judged tweet would be ranked as either relevant or non-relevant.  

 
1.2 Filtering Task 

The filtering task was completely new to participants of this year’s track. This task reused the 49 topics 
that were provided by NIST in the 2011 Microblog Track. For this track each participant was provided 
with two time stamps: the earliest relevant tweet found and the oldest relevant tweet found as judged 
during the 2011 Microblog Track. Participants needed to return tweets between these two time stamps. In 
addition, we were asked to submit whether the system determined a tweet to be relevant or not. This was 
either a “yes” response which indicated a tweet to be relevant or a “no” response which indicated a tweet 
not to be relevant. Overall there were 5 fields for each result submitted. These were the topic number, 
tweetID, score, decision of relevance, and the run tag. Only “yes” tweets were considered in scoring 
results. Of the 49 topics judged last year, NIST set aside 20% for training data. The other 80% of the data 
was sent for scoring. 
 

1.3 The System 

Our team utilized an 8 core processor, 64-bit Dell Precision 490 for downloading the corpus, developing 
STIRS, and executing various experiments.  Each processor is an Intel Xeon 3.00 GHz CPU, each having 
a two CPU core.  This server has 16 GB of memory and 2.25 TB of hard drive space.  It is running 
Redhat Linux Enterprise Version 4.  
 

2. STIRS Module One: Scraping URLs 
2.1 Motivation 
NIST assessors were allowed to follow URLs within a tweet and utilize the subsequent web page content 
to judge whether a tweet was relevant or not. Therefore, we decided to scrape the website content of 
URLs included in each tweet and utilize that content to help judge whether a tweet was relevant or not. 
Throughout the course of this research, we utilized the 5.5 million English tweet corpus2. Of these 5.5 
million tweets, we automatically detected that approximately 1.3 million contained hyperlinks utilizing 
regular expressions. Of those hyperlinks, 1.1 million hyperlink pages3 were able to be downloaded using 
web scrapers called Jericho(1) and Jsoup(2).  We utilized Lucene[3] to index and then search the content 
from the retrieved hyperlink pages which allowed us to rank each tweet based on how well their hyperlink 
page scored.  
 

 

                                                                 
2  Non- English tweets were judge irrelevant by NIST, therefore we filtered non-english tweets from our corpus. 
3 .2 million were “dead” links – no page found, etc. 



2.2 Method 

After analysis of our results and continued experiments from last year we saw that a combination of both 
information from our baseline Lucene results and information from URL pages were best at retrieving 
relevant tweets. To begin the process, two Lucene searches were performed on the two different indices.  
The first index used was built using the text of the tweets themselves.  The second index was built using 
the text from the web pages linked in tweets.  Each of these searches created a ranked list of tweet results.  
We improved results by merging these two lists into a single list by using a process we refer to as a 
"ranked join."  The first step in the merge was to normalize the scores of both lists. All unique tweets 
were then merged into a single list based on their normalized scores. If there were duplicates, meaning the 
same tweet was in both list, the tweet score from the URL list was used. 
 

3. STIRS Module 2: Feature Modeling with WEKA 
3.1 Motivation 
Utilizing our work done for the 2011 Microblog track, we continued experimentation with machine 
learning models. We modified our approach slightly utilizing a different set of attributes to learn on. i.e. 
adding part-of-speech information. We tagged each tweet using Apache OpenNPL[9]. The four parts of 
speech we used for our model were nouns, verbs, adjectives, and adverbs. 

 
3.2 Method 
For this year’s task we used the 2011 judged set provided to us by TREC for training and testing our 
models. In total there were ~60,000 judged tweets from last year’s track where over 2000 tweets were 
judged as relevant or highly relevant4. For our experiment we created a set of data that would contain half 
relevant tweets and half non-relevant tweets. Once the data was properly formatted and our set was 
created we proceeded to extract the attributes of the tweets.  
 

3.3 Preparing the Data 

We included a wide range of attributes in our learning experiments. The attribute values were either 
represented as a boolean, a percentage, or a whole integer. Our following attributes and their categories 
are listed below: 

Boolean Values (representing existence of the item): 

1. URL    

2. Hashtag  

3. Asterisks  

4. Emoticons 

Percentage Values: 

1. Number of Capital Letters vs Total number of letters 

2. Number of Vowels vs Total number of letters 

                                                                 
4 The 2011 Microblog Track had three possible judgments: not relevant, relevant and highly relelvant. 
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3. Number of Constants  vs Total number of letters 

4. Numbers vs total number of words 

5. Noun vs total number of words 

6. Verb vs total number of words 

7. Adjective vs total number of words 

8. Adverbs vs total number of words 

 

Integer Values: 

1. Number of Question marks and Exclamation Points 

2. Length: Number of characters in the tweet 
 

3.4 Experimentation: 

For our experiments we tried different power sets of the traits we had listed in the prior section on a Bayes 
Network Model.  We used 10 fold cross when testing our data. After testing we discovered that the most 
effective data to use was the URL, Hashtag, Asterisk, Emoticons, number of question marks and 
exclamation marks, and the percentage of a tweet that contains a number. Overall we were able to classify 
64.9% tweets correctly with these characteristics.  
 

4. Query Expansion 
4.1 Introduction 
Using query expansion is a popular method used in information retrieval. The basic idea is to expand on 
the original query, using a variety of techniques, i.e looking for synonyms of the query words. One of our 
STIRS query expansion modules took each individual query term, omitted stopwords, and found its 
Wikipedia page. Finding a corresponding Wikipedia page for each word is as simple as concatenating the 
word to the end of a Wikipedia URL. For example, given the query term “golf,” the Wikipedia target page 
URL would be http://en.wikipedia.org/wiki/golf. 
 
Using this technique would net favorable results, unless a disambiguation page was found because the 
word was not unique enough to redirect to a single page. A disambiguation page is a Wikipedia page that 
lists possible topics related to a user’s search if one specific topic cannot be found for the user’s search. If 
a disambiguation page was found instead of a single topic page, we could use the disambiguation page 
itself for query expansion; instead of choosing a potentially erroneous page from the disambiguation page. 
The text found on the disambiguation page could be used for query expansion the same way a regular 
Wikipedia topic page would be used. The text on disambiguation pages contain short summaries of each 
term and contain terms relevant to the topic. One of the terms on the disambiguation page is the correct 
topic, and overlap of related terms from other topics would help select the proper tweets. Once each 
Wikipedia page for each query term is found and tags are stripped, the top four most common 
words/phrases on each individual page, excluding stop words, are compiled into a list. We then compare 
each of these lists from the unique pages to all the other page’s lists, looking for the top four most 
common phrases between the lists. If there is a tie for the number of times a word appears between the 



pages and four common words have not already been found, the word that appears earlier on the page that 
was processed first is taken. The four words are then appended to the end of the query. An example query 
and its expansion would be:  
 “Tiger Woods PGA win” =>“Tiger Woods PGA win golf tournament Masters victory.” 
 
We also experimented with a second technique for query expansion. We noticed that many of the test 
query topics appeared to have very good results when doing a Google search using the full query. For 
example, one of the NIST supplied test queries was “Keith Olbermann new job.” The top Google results 
mentioned his departure from the cable news network MSNBC and that Olbermann was hired by 
CurrentTV. We cross-checked these against the tweets in our corpus and noted that valuable terms like 
MSNBC, fired, and CurrentTV were in many of the tweets. We hypothesized that adding these terms to 
the original query would help find these tweets.  We implemented a module for these pages similar to our 
Wikipedia module.  
 

Figure 1: STIRS System Architecture Diagram 

 

5. STIRS 
We incorporated all three of our twitter modules with other necessary modules, i.e. Query Processor, 
Lucene Processor, TREC formatter etc., into a fully automated end-to-end STIRS system, Figure 1.  Our 
Query Processor module converted the TREC XML formatted queries into Lucene format.  Our Lucene 
processor module returned a Ranked Tweet List (RTL) for a given input query.  The TREC formatter 
converted our RTLs into the standard TREC format.  STIRS was developed such that any given module 
could be easily turned on or off to allow for multiple combinations of experiments, i.e. QueryExpansion   
-> URLRetrieval: run the query expansion module followed by the URL ranking module. 
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6. STIRS Submission 
For the adhoc task we submitted the baseline results for Lucene and one for each of the three modules we 
had created. The following is the list of the modules we submitted from highest precision to lowest 
precision:  

1) Baseline: Raw Lucene score based on tweet content 

2) TM1: Our module that utilized URLs within the tweets and baseline results 

3) TM2: Machine Learning Module 

4) TM3: Internal Query Expansion  
 

7. Filtering Task Experiments 
We chose to evaluate tweets and score them based upon Lucene’s real-time indexing. For each topic 
a relevance score was first computed using our baseline Lucene run. Our RankedJoin run and our 
Machine Learning run utilized the baseline scores to generate their final results. Our URL run used 
only the scores from the index built on our scraped web pages.  
 
We ran three experiments with our different modules based on several hypotheses. Our first 
experiment was with our RankedJoin module. For this module, 50% of the score was based on how 
well the tweet did on its baseline run while 50% of the tweet’s score was based on how well it did 
based on the URL information. We performed our experiment this way because our hypothesis was 
that information from both sources were equally important and should be valued the same. 
Therefore, each factor would be given equal scoring strength. If a tweet did not have a URL, its 
URL score would be zero.  For our machine learning experiment we generated a Bayes Net model 
using Weka. Anything ranked under 0.5 by our Bayes Net model was considered irrelevant. This 
threshold was determined based on manual analysis of test runs. All of our baseline scores were 
then increased by the value of the Bayes Net score that was over our threshold of 0.5. This run was 
based on the hypothesis that the relevance score of a tweet generated from our learning model 
would be a positive factor to determine a tweet’s overall relevance. Our URL only module was 
based solely upon the index built on our scraped web pages. This experiment was based on our final 
hypothesis, that information from URLs alone could predict relevance.   
 

The Filtering Task required us to indicate our system’s belief as to whether a tweet was relevant or 
not.  Each tweet needed to be tagged with a “yes” or a “no” to indicate our system’s relevance 
judgment. Through manual analysis on our test results we discovered a threshold of 1.0 worked best 
to indicate the relevance of a tweet. Therefore, if the tweet score was above our threshold we would 
give a relevance decision of “yes”.  Any other scores would be given a decision of “no”.    
  

 

 



7.1 NIST Filtering Task Scoring Metrics  
For the 2012 track NIST used different scoring metrics for the filtering task and the adhoc task. The 
adhoc task had three scoring metrics. These were ranked based on precision, ROC curve, and recall. 
However, since there was no single summary value for the ROC measure we will only report 
precision@30 in our results for this track.  
 

The filtering task had 4 different scoring metrics. All the metrics were based on the pool of “yes” tweets 
submitted. The metrics were precision, recall, F-Score, and the T11SU utility measurement. A reference 
to how these measures were used in the past can be found in the paper “The TREC 2002 Filtering Track 
Report” [8].  
 

 

8. Official NIST Results 
The official scoring for our filtering run showed our best score to have a T11SU of 35.88%. However due 
to an error or in our algorithm, we needed to rerun and rescore our filtering modules. We generated our 
new results and scored these using the filtering script provided to us by NIST. We discovered that our 
URLOnly module performed the best. The URLOnly module had a precision of 22.81%, recall of 44.36%, 
F-Score of 20.41%, and T11SU of 15.42%. Even though several other modules had higher recall, our 
URLOnly module showed the highest T11SU, which is an indicator of how useful our system might be to 
a potential user. The reported average of the median from all runs from the other participating teams 
showed precision of 17.6%, recall of 33.4%, F-Score of 35.70%, and T11SU of 20.7%. Our F-Score was 
not significantly different from the median while our recall and precision were significantly above the 
average. 

The judging for the adhoc run showed our best run to be 18.08% for precision@30. This was from the 
RankedJoin list module. The reported average of the median from all runs from the participating teams 
was 14.86%. Our run did 22% better than this average. 
 

9. Future Work 
 

One of our future goals is to experiment with integrating our modules together to improve our results. 
These modules are machine learning, query expansion, and our RankedJoin list. We believe that better 
results may be achieved by generating the best results of each module and then combining them 
effectively together. We plan to experiment more and combine the modules together more efficiently to 
boost results. In addition we wish to do more work on improving our query expansion.  
 

10. APPENDIX 

10.1 Sample Query(Adhoc Task) 
<top> 
<num> Number: MB01 </num> 
<query> Wael Ghonim </query> 
<querytime> 25th February 2011 04:00:00 +0000 </querytime> 
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<querytweettime> 3857291841983981 </querytweettime> 
</top> 
 

10.2 Sample Query (Filtering Task) 
<top> 
<num> Number: MB01 </num> 
<title> Wael Ghonim </title> 
<querytime> 25th February 2011 04:00:00 +0000 </querytime> 
<querytweettime> 3857291841983981 </querytweettime> 
<querynewesttweet> 3857291841993981 </querynewesttweet> 
</top> 
 

10.3 Sample Submission (Adhoc Task) 
MB01 3857291841983981 1.999 myRun 
 

10.4 Sample Submission (Filtering Task) 
MB01 3857291841983981 1.999 no myRun 
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