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ABSTRACT 

Indexing is a crucial technique for dealing with the massive amount of data present on the web. 

In our third participation in the web track at TREC 2012, we explore the idea of building an 

efficient query-based indexing system over Web page collection. 

 Our prototype explores the trends in user queries and consequently indexes texts using 

particular attributes available in the documents. This paper provides an in-depth description of 

our approach for indexing web documents efficiently; that is, topics available in the web 

documents are discovered with the assistance of knowledge available in Wikipedia. The well-

defined articles in Wikipedia are shown to be valuable as a training set when indexing 

Webpages. Our complex index structure also records information from titles and urls, and pays 

attention to web domains.  

Our approach is designed to close the gaps in our approaches from the previous two 

years, for some queries. Our framework is able to efficiently index the 50 million pages available 

in the subset B of the ClueWeb09 collection. Our preliminary experiments on the TREC 2012 

testing queries showed that our indexing scheme is robust and efficient for both indexing and 

retrieving relevant web pages, for both the ad-hoc and diversity task. 

 

1 INTRODUCTION 

The rapid growth and massive quantities of data on the Internet have increased the importance 

and complexity of information retrieval systems. The amount and the diversity of the web data 

introduce shortcomings in the way search engines rank their results. 

In this work, we propose to push search engine behaviour in a new direction, away from 

link analysis and toward actual content and topic analysis of web pages. Typically, the current 
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approach of content-based indexing does not scale well for phrasal queries, because the positions 

of the words need to be recorded, requiring a lot of storage space. On another hand, indexing 

without considering word location for proximity search causes two documents to seem similar if 

they have some words in common even when they are on different in topics. Term frequency is 

important for determining the topic of the documents; but this is not case for all document 

configurations, because documents may contain different topics located on different parts. 

 In order to experiment with a new intelligent search model for the web, we evaluate our 

algorithm by using the queries/topics made available by NIST in 2012, as part of TREC web 

search track. The advantage of using these queries is that NIST made available expected 

solutions, called relevance judgments, consisting of lists of documents that are relevant answers 

to each query; therefore we can evaluate our proposed model. In TREC 2012, we focused on two 

tasks: the classic text retrieval task called adhoc retrieval, and the diversity task.  

 The rest of our paper describes each component in our system. Section 2 describes our 

indexing approach. Section 3 describes the query processing steps. Section 4 describes query 

expansion. Section 5 explains the experimental results for our run. Finally, section 6 closes this 

paper with our conclusion regarding this approach. 

2 OUR APPROACH 

Indexing is crucial for the task of finding relevant information on the Web. Various indexing 

methods are used in a wide range of applications, such as Home-page finding, Entity finding, and 

Web pages classification. The design of highly-scalable indexing algorithms is needed, 

especially with an estimate of one billion pages currently accessible on the web. Previous work 

classifies indexing of web documents in two types: word-based and phrase-based indexing [6].  

In our entry in TREC 2012, we built an index that handles phrases and concepts with 

different length using two references: Wikipedia articles and the Million Query Track
1
 data. Our 

index is structured as a core distributed search files. It uses sub-trees of a fixed length; each 

internal node has one leaf that contains documents relevant to that node. The depth from the root 

to each leaf corresponds to the word or phrase which is two nodes for each word or phrase (we 

use the first term from each phrase for labelling the first level in the index; whereas the 

                                                           
1
 http://trec.nist.gov/data/million.query.html 



3 
 

remaining terms are used for labelling the second level). The subsequent nodes from the root to 

the leaves map all index words or phrases. Each leaf in the index holds all indexed documents 

regarding a particular topic, and the path name from the root to each leaf corresponds to a 

possible query terms. Since our index from last year’s system could not find relevant results for 

some queries, we addressed this drawback in this model.  

We used a pool of five index classes. The index nodes in each class use a regular name 

instead of the coding names that we used in previous versions of our system. Each class contains 

a particular type of indexed data, as listed and shown in the figure below: 

1- Wiki: index class that holds all Wikipedia documents. 

2- Domains: index class that holds all domain names; as well as all their titles and urls. 

3- Title: index class that holds all documents that we indexed using phrases from their titles. 

4- Words Combination Index: index class such that the nodes are labeled with keywords 

selected from urls and titles; the content of nodes holds vectors of significant terms.  

      5- Topical Index: index class that holds all other documents except Wikipedia pages and 

homepages. The documents in this class are indexed based on our collective phrases selected 

from Wikipedia and One Million Query Track. 

Figure 1 shows the architecture of our system. In the following sections, we will describe 

each index class in more details. 

 

Figure 1: The Architecture of Our Index Structure 
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2.1 Wikipedia Repository Index 

Wikipedia contains approximately 5 million articles in English. The data in each article is 

structured into several fields, and sometimes it has a relationship with other articles using tags or 

links to expand a certain topic. Each document has a unique vocabulary name and identifier; 

each article has multi-faceted vocabulary terms to describe the same article's content. To 

efficiently index Wikipedia documents, we used three equivalent methods for grouping and 

indexing similar articles, in terms of reducing the index size and the time required for indexing 

and searching. 

2.1.1 Using Common Tags (Vocabularies) 

Each document in Wikipedia has a unique vocabulary name and identifier. Sometimes, 

Wikipedia articles use different vocabulary terms to describe the same article. This means that 

some articles are repeated many times with different vocabulary names and the TREC identifiers 

used in the ClueWeb data.  All similar articles must be grouped and bounded together in a cluster 

of similar articles. To accomplish this, our system scanned through the content of each article 

and gathered all the significant tags and vocabulary terms (those that were in bold fonts). Each 

article name is used for creating and titling the index node; whereas the significant tags are 

stored together in the content node. Overall, during the scanning all Wikipedia documents, 

documents that share the same tags must share the same contents. Thus, the content of any node 

in the index aggregates all the similar articles.  

2.1.2 Using Terms’ Impact 

Not all Wikipedia articles are real articles. In our investigation, there are 50% of articles 

categorized as short; they contain only a few words. Also, some topics are covered more 

comprehensively than others. We propose to use term impact again rather than a term frequency. 

We investigate new ways to compute term impact, as explained later on. After computing the 

weights/impact value for each term in the documents, the terms with high weights are selected to 

be representative to their documents. We used a strict cut-off (threshold) value of impact in the 

range of [2.5-5.5]. The candidate terms are built and used to label the index nodes (if they were 

not built previously), while the document identifiers are stored in the content of corresponding 

nodes. Therefore, each node in the index could store a cluster of documents that imply equal or 

close terms impact. 
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2.1.3 Using the CRC-Dictionary 

To save time for indexing and to reduce the size of the index, we used a checksum algorithm 

(CRC16) to group the documents that have high similarity (they are redundant). We also avoided 

repeating the computation of term frequency in similar documents. To do so, the system scanned 

through each document’s content in the Wikipedia corpus and computed the CRC16 for the 

header paragraph. We selected the header paragraphs, because some articles have little changes 

in other paragraphs. The generated CRC16 values were used for represent the keys of a 

dictionary D (a hash table), whereas the values of the keys contain all the document identifiers 

(TREC identifiers). Overall, during the scanning all Wikipedia documents, documents that share 

the same contents must share the same CRC values. Thus, the content of any key in the 

dictionary aggregates all the similar articles. Finally, the dictionary D was transferred to the 

index pool. 

2.2 Home Pages Indexing 

We used two complementary methods for indexing the Home Pages. The first method stores the 

indexed data at a high level stage in the index, whilst the second method stores the indexed data 

at a low level stage in the index. Both results are combined together in the class of home pages 

located in the index pool. 

2.2.1 Using Domain Names 

Our system indexed all domain names and created a new class in the index pool for each home 

page. Each node in the index’s class is named by the domain’s name; additionally, all urls that 

belong to each site are stored as vectors in that node. Our system is built to index nodes from the 

domain names regardless of the type of extension. The contents of the nodes contain the 

documents’ ids and their urls. However, we assigned a different ranked value for each extension. 

2.2.2 Using Wikipedia External Links 

Wikipedia is often a good reference for most homepages. The external links in the Wikipedia 

repository are used for the homepage finding task and potentially work better than searching in 

anchor texts of web pages [14]. Our system scanned the content of each article and indexed the 

home page from the external link section. In general, Wikipedia writers used different terms for 
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introducing a home page, i.e. "website", "homepage", "official", etc. To tackle this situation, we 

used regular expressions for extracting the home pages from Wikipedia documents. 

2.3 Document Titles Index 

We notices that phrases in the titles are often connected together by using conjunction words, 

i.e., "or" , "and" , "at" , "in" , "on" , "by" , "with" , "from" , or "for"; or punctuation characters, 

i.e., ":" , "|" , "(" , ")" , "-" , ","  , or "&". Thus, segmenting the titles of documents into phrases is 

essential to know the most important key-phrases that the document content focuses on. We used 

these characters and words for partitioning the titles into list of terms and phrases.  

On the other side, not all these terms or phrases have equal impact in their document’s 

content. To compute the impact of the extracted terms and phrases, our system computed the 

cosine similarity between a vector that represented each item (term or phrase) and a vector that 

represented the document's content. Finally, the extracted items were used for creating and 

labeling the nodes in the index class; whilst the contents of nodes include: the TREC identifiers, 

and the impact values.  

2.4 Terms Combination Index 

Usually, queries refer to terms that are available in different positions in documents; for instance 

some terms are located in the urls; whereas the remaining terms are located in the content. A 

combination index class, however, focuses on this type of query.  

To build the class, first, the frequency of each term in the documents collection was 

computed. Second, the three terms that were the most frequent in each document were selected. 

Finally, for each keyword in the url and title of document, the index node was created and named 

as the name of that keyword; whereas the content of node held the three terms that most frequent. 

An example for the link “http://www.opm.gov/oca/pay/HTML/02maxgs2.asp , the most frequent 

terms in this document’s content are: "GS", "pay", and "rate"; the terms "opm", "oca", and "pay" 

extracted from the URL; and the terms "MAXIMUM", "GENERAL", "SCHEDULE", and "LIMITATIONS" 

extracted from the title were used for creating the index nodes. The content of each node holds a 

list of the most frequent terms ("GS", "pay", and "rate"), in addition to the document identifier. 

2.5 Topical Dictionary-Based Index 

http://www.opm.gov/oca/pay/HTML/02maxgs2.asp
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Our final technique for building the phrasal index aims at detecting the main topics of 

documents. It is composed by three mutual hash tables, such that each hash table has a unique 

and specific topic. All hash tables are built on-the-fly before mapping them to the physical 

storage. We used two phases during the creating of this index:  

 Phase 1 - Document-topic investigation 

The first step in this phase is investigating the most important topic in the document. We used 

three hash tables that work cooperatively. The topics of documents were turned out from the title 

of Wikipedia articles and from the list of queries available in the file "Million Query Track”
2
. 

After scanning through the Web documents, each document was assigned to a particular topic. 

Thus, each node contains a set of documents that involved the same topic; as shown here as an 

example:["angular cheilitis”, {document-1, url | .... |document-n,url}] 

 

 Phase 2 -Computing Topics’ Weights 

Usually, if a site focuses on a topic "civil right movement", all documents that belong to that site 

probably contain the phrase "civil right movement". As a consequence, the content of such index 

node should contain most documents that belong to that site. In this section, we will focus on 

computing the two impacting factors, in the document and in the site (domain), for computing 

the documents topics. 

1. Document-Topic Weighting 

This step checks the phrase distribution in the documents contents using an online "HTTP 

request"
3
. If the phrase is available in the correct distribution, the weight of document is 

computed using the cosine similarity between two vectors, the first vector represents the 

phrase in each node and the second vector represents the document's content. The result is 

stored in the memory as: [Document #, url, phrase-id, score]. 

2. Site-Topic Weighting 

                                                           
2
http://trec.nist.gov/data/million.query.html 

3
http://msdn.microsoft.com/en-us/library/system.web.httprequest.aspx 
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We applied a top-down traversal algorithm
4
 for computing the weights of the sub-trees in 

each site. To make the content of the index nodes optimal for the number of documents, our 

system used an automatic cut-off value. The cut-off value is changeable and relies on the 

number of documents in each sub-tree; this means the value is low if the sub-tree holds a few 

numbers of indexed documents (children) and vice versa; however, the sub-trees that have 

little contributions are cut off from their parents. If the index node contains a large number of 

documents, the cut-off starts at 1 and grows up whenever the number of remaining 

documents in the final list is higher than 200. We chose a threshold of 200 to keep a balance 

between the precision and recall values. However, the remaining tree is compressed and 

bounded to a new tree.   

After reducing the size of the tree, the total weight of each document is recomputed by 

using the following formula:         

Rank (D) = (Site-Topic Weighting * Document-Topic Weighting)/100 

 

3 QUERY PROCESSING 

Query processing is an essential step for any search engine. The query processor is the portion of 

server that accepts, parses, and executes the query syntax. A query processor has the following 

duties: 

 Query goals (detecting the type of query). 

 Distribute the queries over indexes. 

 Query execution. 

 Query optimization (query expansion and normalization). 

In our experiments, we categorized queries into four types (each type processed by specific index 

classes):  

 Title: this means that relevant pages contain all the query terms in core positions, as full 

key-phrases, e.g.., “Ron Howard" or "Sore Throat". 

• Domain: this means that relevant documents are located in a particular site or domain, 

e.g., “University of Phoenix” or "Churchill Downs".  

                                                           
4
http://www.cs.umd.edu/~hjs/pubs/SametPAMI85b.pdf 
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• Occurrence: this means that relevant documents are weighted using the occurrence of 

query terms in documents content, e.g., “Fibromyalgia" or "Lipoma". 

• Combining: this type of query is processed using primitive keywords from urls and/or 

titles that imply important weights in the documents content, e.g., "gs pay rate" or 

"brooks brother’s clearance". 

The first step of the query processor is looking for the query in the cached results available in the 

index repository. If such result is not available, the query will be forwarded to a pertinent index 

class. The forwarding relies on the class priority. Our system uses the following priorities for 

detecting the pertinent index class for each type of query: 

• If the query length is one word, searching will occur in the home-page index and the 

dictionary-based index, because one word queries often refer to the home pages, e.g., 

“arkansas”, or refer to the terms that are most frequent in document’s contents, regardless  

the documents are home pages or not, e.g., “grilling”. 

• If  the query length is two words or more, searching will occur in four index classes:  

o The home-page index class (domain name), e.g., the queries “churchill downs”, "quit 

smoking", and “newyork hotels". The pre-processing removes the spaces before 

searching, i.e., www.churchilldowns.com, “www.newyorkhotel.com”, or inserts dashes, 

i.e., “www.quit-smoking.com” or "www.newyork-hotel.com", respectively. A simple 

form of stemming is used, too. The home-page index class (Wikipedia external links) 

holds the home pages for other queries, too, e.g., “california franchise tax board”. 

o The term-combination-index class, e.g., a query like "becoming a paralegal".   

o The title-based index class, e.g., "old coins" in "www.ancientcoins.ca", or a query like 

“gs pay rate" in “www.gspay.com”; in which the term "rate" was extracted from the 

content; or it refers to the site www.opm.gov/oca/pay/; in which the terms "gs" and 

"rate" were processed from the content. Another example, for the query "brooks 

brothers clearance", refers to the site "brooksbrothers.com"; the term "clearance" was 

processed in the content. 

o The dictionary-based index class, e.g., query like "black history", "septic system 

design", "dogs clean up bags" or "furniture for small spaces". 

 

http://www.churchilldowns.com/
http://www.gspay.com/
http://www.opm.gov/oca/pay/
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4 QUERY EXPANSION 

The previous section introduced a wide range of phrasal indexing mechanisms and established 

that phrasal indexing has the potential to improve retrieval effectiveness. Now we focus on query 

expansion, User’s feedback is utilized implicitly by computing the behaviour of some users who 

adapted the preferences in the dynamic properties of Wikipedia collection. We used two 

algorithms for query expansion: the shared-links and the manner of titling similar articles. 

4.1 Using Shared-Links 

Wikipedia articles could expand the current articles to other articles by using shared links. 

Usually, the target articles also point backward to the source articles. We assume that if an article 

(A) has a link that points to an article (B), and the article (B) has a link that points backward to 

the article (A), the two articles A and B are related. Therefore, our system gathered all links for 

each article and built a hash-table in which the articles names represent the keys of table and the 

gathered links are stored in the content of subsequent keys. 

4.2 Using Titling Variation Aspect 

As we mentioned earlier, Wikipedia articles often use term variants. Some similar articles have 

different titles, and these variants should be used to expand queries that match any title of article. 

For example, an article "lipoma" is titled by Wikipedia writers as: "fatty tumor", "fatty lipoma", 

"lypoma", "lipom at ousneoplasm", "lipomas", and "lipomatosis". These variations are gathered 

by our system during the indexing of the Wikipedia articles; that is, each title in the Wikipedia is 

a key in the dictionary, whilst the other titles were stored in the content of that key. 

 

5 EXPERIMENTAL RESULTS 

We submitted the results of our model for two tasks, the adhoc and the diversity tasks of the web 

track. For some queries, our precision was zero because many documents retrieved for those 

queries were ranked as spam in the TREC relevance judgments. The spam detection for the 

TREC collection was done automatically by using the University of Waterloo IR system [12]. 

We believe that some of the documents that are ranked as spam in the TREC collection are not 

really spam. 
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We present our results in comparison to the best results over all the 48 runs submitted by 

all the participants for the test queries (50). Despite the fact that we participated in TREC using 

only the subset B of the very large web collection, we compare with all the submissions. TREC 

uses general criterion for making comparison based on ERR values for all participants, 

regardless if the group used the subset A or B. The tables 1 and 2 below show our position in the 

top 8 runs in TREC 2012, according to the track`s overview paper [13]. If comparing only with 

the systems that used the subset B, we obtained the best results. If comparing with all systems, 

we were in the third position for the ad-hoc task and in second position for the diversity task.  

Figure 1 shows more details for the results of our system. 

 

 

Table 1: Top adhoc task results ordered by ERR@20 for the best runs over 48 runs [13] 

 

 

Table 2: Top diversity task results ordered by ERR-IA@20 for the best runs over 48 runs [13]  
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Figure 2: Web Track 2012 diversity and adhoc summary results for our system 

 

6 CONCLUSIONS 

This paper described our system for the TREC 2012 web track. We explained how the query 

volume and phrase index can efficiently support the finding of relevant results with low disk 

overhead. Our method used our own custom indexing and ranking model based on topics 

identification in the documents’ content through the investigation of query structures. This model 

provides a variety of analytic capabilities, including: phrase extraction, concept correlation, Web 

page topic finding, topics classification, documents grouping, and document/site weighting. This 

method is more sophisticated than our previous methods and more robust for processing all types 

of queries. We addressed some drawbacks of our methods from 2010 and 2011; for example, we 

kept the stop words in the key-phrase index.  This allowed us to successfully process queries that 

contain stopwords, such as “becoming a paralegal” or "furniture for small spaces", by breaking 

him into phrases and giving them equal weights since they have the same importance in the 

query. 
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