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Abstract 
This paper discusses Siena’s Clinical Decision Assistant’s (SCDA) system and 
its participation in the Text Retrieval Conference (TREC) Clinical Decision 
Support Track (CDST) of 2015. The overall goal of the 2015 track is to link 
medical cases to information that is pertinent to patient care. Participants were 
given a set of 30 topics in the form of medical case narratives and a snapshot1 of 
733,138 articles from PubMed2 Central (PMC). The 30 topics were annotated 
into three major subsets: diagnosis, test and treatment, with ten of each type. 
Each topic serves as an idealized representation of actual medical records and 
includes both a description, which contains a complete account of the patient 
visit, and a summary, which is typically a one or two sentence summary of the 
main points in the description.  SCDA used several methods to attempt improve 
the accuracy of medical cases retrieved. SCDA used the metathesaurus Unified 
Medical Language System (UMLS)3  that was implemented using MetaMap 
(NIH, 2013), query and document framing (Small and Stzalkowski 2004), a 
ranked fusion of document lists and Lucene for initial document indexing and 
retrieval. The track received a total of 178 runs from 36 different groups. We 
submitted three task A runs where our highest P(10) run was 0.3767 and two task 
B runs where our highest P(10) run was 0.4167.  The highest P(10) from CDST 
TREC 20144 was 0.39. The word described here was performed by, and the 
entire SCDA system built by a team of undergraduate researchers working 
together for just ten weeks during the summer of 2015.  The team was funded 
under the Siena College Institute for Artificial Intelligence’s National Science 
Foundation’s Research Experience for Undergraduates Grant. 

 
 
1. Introduction 
 

The Clinical Decision Support Track (Simpson et al., 2014) is a program in the Text 
Retrieval Conference (TREC) (Voorhees, 2007). TREC is a program co-sponsored by the 
National Institute of Standards and Technology (NIST) and the U.S. Department of 
Defense. It focuses on supporting research in information retrieval and extraction, and 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/  
2 http://www.ncbi.nlm.nih.gov/pmc/  
3 http://www.nlm.nih.gov/research/umls/ 
4 At this point we can only compare our 2015 results to last year’s as all 2015 results have not been released. The 2014 track only had 
Task B runs. 
	  



increasing the availability of appropriate evaluation techniques. The Clinical Decision 
Support Track was run for the second time in 2015.  There were two defined tasks for 
2015 and participants were allowed to participate in either one or both.  Task A required 
participants to retrieve documents from the PMC corpus that were relevant to the medical 
case narratives; this task is identical to the 2014 TREC track. Task B was new in 2015 
and also required the retrieval of relevant documents but the treatment and test topics 
were further annotated with a “diagnosis” field.    
 

The highest ranked articles for each topic submitted by the participants were pooled and 
judged by medical librarians and physicians trained in medical informatics. In particular, 
the judgment sets were created using two strata: all documents retrieved in ranks 1-20 by 
any run in union with a 20% sample of documents not retrieved in the first set that were 
retrieved in ranks 21-100 by some run. Assessors were instructed to judge articles as 
either "definitely relevant" for answering questions of the specified type about the given 
case report, "definitely not relevant," or "possibly relevant." The latter judgment may be 
used if an article is not immediately informative on its own, but the assessor believes it 
may be relevant in the context of a broader literature review.  
 
2. TREC 2014 Literature Review 
 

While designing the experimental procedure for this year’s clinical support track the team 
reviewed a significant amount of literature from the previous year’s track. The University 
of California, Los Angeles (UCLA) implemented the use of a manual run (Garcia-
Gathright, et al., 2014). Their manual run utilized domain experts for query expansion. 
Our work utilized domain experts to annotate last year’s queries to improve the 
performance of framing for our automatic runs. Similarly to UCLA, we also utilized 
MetaMap, UMLS and Lucene (McCandless et al., 2010). MetaMap is used to both relate 
biomedical text to the UMLS Metathesaurus and to flag Metathesaurus concepts that are 
present within biomedical texts. Lucene is a full text search engine library that is 
composed entirely in Java and is used to build the initial indices on the document corpus.  
 

The NovaSearch (Mourão, et al., 2014) team explored both Ranked Fusion and utilizing 
the prestige of the retrieved journal to re-rank their results. The prestige of the journal 
article was used to increase relevance because they believed that a journal that was highly 
recognized for accurate information would be more likely to contain a document relevant 
to the query. Term frequency was developed by their domain experts in order to establish 
the relevance of different MetaMap semantic types and articles that displayed high 
frequency of relevant terms were ranked higher among articles that had lower 
frequencies. We utilized a similar methodology in SCDA.  
 

San Francisco State University (Bhandari et al., 2014) also used MetaMap but they 
translated their case reports into a list of structured medical concepts. Instead of using 
this method, we utilized our framing technique to add structure to the first five 
paragraphs of each case report to automatically score the retrieved documents relative to 
our query.  
  
 
 



3. The SCDA System Main Components 
 

The main focus of the SCDA system was to use framing to create the simplest and most 
accurate query to provide to Lucene for a full-text search of the PubMed corpus. This 
meant initial manual analysis of the 2014 data by our domain expert to identify what 
aspects of the medical case reports were imperative to forming a query to return the 
highest quantity of relevant documents. This analysis was utilized to determine what 
aspects of the query we should automatically frame for the 2015 task. The remainder of 
this paper will discuss the modules of our SCDA system in detail as well as the results of 
our NIST evaluation. 
 
3.1 Lucene Baseline 
In order to run the initial retrieval on the corpus documents, Apache Lucene 4.0.0 was 
utilized to create an index for the corpus. Lucene is an open source search engine, written 
in Java, designed to function as a text search engine library.  
 

Lucene was used to generate the baseline run of our system. Lucene has many built-in 
querying functions. During the indexing process, each document in the corpus was 
broken into four fields: title (including authors), abstract (null if none), body, and 
contents (the abstract and the body). When querying Lucene one can search the entire 
document or restrict its query to specific fields. Based on results obtained from the 2014 
topics, the contents field provided the best results for our queries.  Therefore, in our 2015 
Task A run, the topic summaries alone were passed as individual queries. The search was 
restricted to the contents field and the top 20 documents were used in our baseline run.  
 

In Task B, diagnoses were added to the query. Lucene allows multi-field queries, so a 
two-field query was passed. The first part contained the diagnosis and the second 
contained the topic summary. These fields can be weighted by certain degrees, but testing 
this on the 2014 topics did not change the documents returned, but only their scores. 
Likewise, changing the order of the fields in the query did not affect the documents 
returned. The Task B queries were not released until after our 10 week program 
completed.  Therefore our domain expert added the diagnosis field manually and this is 
why we tagged that run as manual.  It is important to note that the addition of the 
diagnosis filed was the only manual interaction in our Task B run. 
 
3.2 The Framing Component 
 

We added structure to our queries and our text passages in our framing component as can 
be seen in the example query frame and document passage frame below. Our frame 
attributes included: age, gender, time and symptoms. The diagnosis attribute was added 
for Task B only. In Figures 1-3 below we show a sample query frame for topic #22, 
where our P(10) = 1.0 as well as two data frames, one with a high score and one with a 
low score. 
 
 
 
 
 



 

 
 
Query Frame: 
Topic Number 22 
Age Aged 
Gender Male 
Time None 
Symptoms productive	   cough,	   round	   opaque	   mass,	   cavity,	   (Coughing	   up	   phlegm)	   or	  

(productive	  cough	  NOS),	  Sputum	  production,	  Coughing	  up	  phlegm,	  cavity,	  Dental	  
caries-‐free,	   Nursing	   caries,	   Caries	   (morphologic	   abnormality),	   Dental	   caries	  
extending	  into	  dentine,	  Gastrointestinal	  Diseases 

 
 

Figure 1: Topic #22 and its corresponding frame – note the error made in keeping cavity as a symptom 
 
 
 
Document	   Passage	   =	   A	   22-‐year-‐old	   unmarried	  man	   presented	   to	   the	   chest	   outpatient	   department	  
with	  a	  history	  of	  productive	  cough	  of	  two-‐month	  duration.	  He	  also	  complained	  of	  pain	  and	  swelling	  
on	   the	   anterior	   aspect	   of	   right	   side	  of	   chest	   of	   one-‐month	  duration.	   Imaging	   studies	   of	   the	   thorax,	  
including	   chest	   roentgenography	   and	   computerized	   tomography,	   revealed	   an	   unruptured	   lung	  
abscess	  which	  had	  herniated	  into	  the	  chest	  wall.	  Culture	  of	  pus	  aspirated	  from	  the	  chest	  wall	  swelling	  
grew	  Mycobacterium	  tuberculosis.	  He	  was	  diagnosed	  to	  have	  a	  tuberculous	  lung	  abscess	  which	  had	  
extended	   into	   the	   chest	   wall,	   without	   spillage	   into	   the	   pleural	   cavity	   or	   the	   bronchial	   tree.	  
Antituberculosis	  drugs	  were	  prescribed,	  and	  he	  responded	  to	  the	  treatment	  with	  complete	  resolution	  
of	  the	  lesion.	  
 
Topic Number 22 
Score 50.96 
Document ID 3213720 
Age Adult 
Gender male 
Time Null 
Symptoms 22-‐year-‐old	  unmarried	  man,	  history,	  productive	  

cough,	  unruptured	  lung	  abscess,	  aspirated,	  chest	  
wall	  swelling,	  diagnosed,	  tuberculous	  lung	  
abscess,	  lesion,	  pain 

 
Figure 2: Topic #22 high scoring data frame 

 
	  
	  
	  



	  
Document	   Passage	   =	   This	   case	   series	   suggests	   that	   chronic	   candidal	   bronchitis	   is	   associated	  with	  
significant	   morbidity	   and	   responds	   well	   to	   treatment.	   Such	   patients	   may	   benefit	   from	   extended	  
antifungal	   therapy.	   Guidelines	   for	   the	   treatment	   of	   Candida	   in	   pulmonary	   secretions	   should	   be	  
reevaluated.	  
 
Low Scoring Frame: 
Topic Number 22 
Score 0.0 
Document ID 3527895 
Age ND 
Gender Null 
Time Chronic 
Symptoms candidal bronchitis 
 

Figure 3: Topic #22 low scoring data frame 
 
In order to create frames from queries and passages of text, the text was taken through a 
number of different steps. First, MetaMap was used on the text to generate a list of 
negated concepts. For example, upon processing the phrase “cardiac arrest was ruled 
out”, the function would add to the negated list any concept triggered in metamap for the 
frame “cardiac arrest”. Later, any concept in the candidate target concept list that 
matched a concept negated in the same phrase was removed.	   The text was further 
automatically modified to replace potentially problematic phrases, especially those that 
would cause problems for the parser (for example, the Latinate medical terminology 
“status post” was replaced with “after”) based on a dictionary we generated from 2014 
analysis. 
 

The text was then run through the Stanford Parser, in order to detect semantic roles and 
relationships. The parser's output was stored as a set of hierarchical clauses. This clausal 
hierarchy was searched for words that triggered concepts using MetaMap. Using the 
typology of “semantic types” employed by MetaMap to categorize triggered concepts. If 
trigger concepts were found with one of eight designated types, the relevant concept was 
added to the symptom list variable for the frame of the larger given area of text. For	  
example,	   the	   sentence	   “64-year-old woman with uncontrolled diabetes, now with an 
oozing, painful skin lesion on her left lower leg” would have, among its many triggered 
concept referents from Metamap’s database, a concept referent for skin lesions, likely 
classed under the semantic class [anab] (Anatomical Abnormalities). Since [anab] is one 
of the designated semantic types for denoting symptoms, the noun clause containing it, 
“oozing, painful skin lesion” is added to the symptoms list. 
 

Referring to the temporality typology suggested by the medical professionals employed 
by the UCLA team in 2014, our frame's time attribute functions to classify conditions 
into classes of “acute”, “progressive” and “chronic”. The text of each triggered symptom 
clause was searched for temporal wording describing the symptom, and if it was found, 
the appropriate time class was saved to the frame's time attribute.  
 
 
Frame Scorer 



After the Framing process was complete, SCDA had to rank each frame created by a 
document passage in order of its relevance to the query frame created by the topic. Our 
first scoring algorithm simply looked for equality of the contents of each frame attribute. 
The total score of the frame was then calculated as the average of the scores from each 
individual frame attribute. 
 
Example of 1st Scoring algorithm: 
 
Query Frame: 
Gender Female 
Age Child 
Symptoms Cough, Chest Pain, Left Lung Mass 
 
Document Frame: 
Gender Undetected Gender Score: 0 
Age Child Age Score: 100 
Symptoms Cough, Chest Pain, Left Lung Mass Symptoms Score: 100 
  Total Score: 75 
 

 
After several rounds of error analysis on the 2014 data we made a modification to our 
scoring algorithm.  The improvement that we made to our scoring algorithm lies in the 
way we treated frames when certain data types were not populated. For example in the 
initial version of our scoring algorithm when the query frame detected the gender of the 
patient, and the document we were scoring it against did not mention a gender (or our 
frame builder failed to locate it), we would assign a score of 0 for the score for that frame 
attribute. In the updated version we did not assign a score of 0 to that data type but rather 
did not include that data type in the calculation of the final overall score for that frame. 
 
Example of Revised Scoring algorithm: 
 
Query Frame: 
Gender Female 
Age Child 
Symptoms Cough, Chest Pain, Left Lung Mass 
 
Document Frame: 
Gender Undetected Gender Score: null 
Age Child Age Score: 100 
Symptoms Cough, Chest Pain, Left Lung Mass Symptoms Score: 100 
  Total Score: 100 
 
3.3 Fusion 
“Fusion” here refers to the creation of a new ranking of relevant documents by using 
multiple previous relevancy lists. If the elements of the latter set of lists were compiled 
using effective but diverse methods, it can be expected that (if done well), a fused result 
list would be at least more accurate than the average, and in some cases the list produced 
from fusion may in fact be more accurate than any of the lists component to its creation. 
This may occur due to the “chorus effect” (Mourão, et al., 2013): if a document is listed 



as highly relevant by various lists that were compiled differently, it is highly likely that it 
is indeed much more relevant, compared to a document that was judged to be highly 
relevant by only one method, which is more likely to have been so judged in error.  
 
There are many different methods to fuse relevancy lists. Among these, we chose to use 
Reciprocal Rank Fusion (henceforth RRF) and the log ISR Fusion method (Mourão, et 
al., 2013). 
 
Reciprocal Rank Fusion (RRF)  
RRF has the dual advantage of being both effective and simple, being an unsupervised 
fusion method not requiring any machine learning, complex voting algorithm or reference 
to global information. All one needs to perform a reciprocal rank fusion is a set of lists 
organized in descending order by relevance. At the same time, it has been shown to 
outperform most comparable fusion methods(Cormack, et al., 2009).  
 
Before creating the final fused list, RRF assigns a score to each document involved. This 
score is calculated as the summation of that document's score for each participating list. 
The document's score for a given list is 1 / (k + r) where k is a constant and r is the at 
document's rank on the given list. We set the value of k equal to 60.0, which has been 
previously found to be optimal (Cormack, et al., 2009). 
 
Logarithm ISR Fusion (LISRF) 
The ISR Fusion method, and its logISR variant, were tested by (Mourão, et al., 2013) in 
TREC 2013. While not as popular as RRF, it shares a lot of the same qualities, being both 
simple and effective, and is calculated similarly. LISRF's method of generating a 
document's score for a given list differs however, being calculated as log(nHits) / r2, 
where nHits is the total number of participating lists that include the given document, and 
r is the document's rank in the list currently being scored for.  
 
Ultimately, in NovaSearch's performance at TREC 2013, while LISRF was slightly 
outperformed by RRF for P(10) .366 to RRF's .37, it consistently outperformed RRF in 
that paper with regards to discounted cumulative gain.  
 
Fusion algorithms in application  
Two of our runs employed fusion, one for Task A and one for Task B (where diagnosis 
was already given). In Task B, we employed a reciprocal rank fusion on the baselines for 
Task A and B to generate another run for Task B. For Task A, the fusion was a more 
complicated, three step fusion. First, two auxiliary runs were fused using RRF. Both of 
these runs used methods not used elsewhere: one was essentially a baseline run with a 
weighted query was generated by a framing method that rewarded rare symptoms and 
temporal info, and gave a lower weight to demographic information and more common 
symptoms, while the other was a similarly boosted query that used MetaMap instead of 
framing to produce the list of search items. The fusion of these two was then fused using 
the log ISR method with the baseline Lucene search results, and this fusion list was in 
turn fused using RRF with the results of the run that employed framing of document 
abstracts. 
3.4 UMLS Synonym Finder 



SCDA used UMLS to augment our symptoms field with their synonyms in both the query 
frame and our document frames. Additionally, our domain expert generated a list of 
common symptoms that we would not want to expand on after analyzing the 2014 data. 
UMLS offers an easy to use API that allowed our team to effectively retrieve the 
synonyms of symptoms. After inserting the synonyms our P@10 tests on the 2014 data 
raised slightly.  
 
4. The SCDA Architecture 
In a standard run, we used Lucene as described above to generate a list of the top 20 
documents for a topic. This list, containing document id’s and scores, is passed to the 
Framer. The topic is framed to create a Query Frame, and each returned document’s 
abstract is framed and then scored against the Query Frame. The Framer returns a second 
re-ranked list of the highest scoring documents based on their frame’s score. Finally, the 
baseline Lucene list and the Framed list are passed to the Ranked Fusion component to 
generate one more ranked list. 
 
 

 
 

Figure4: SCDA Architecture 
	  

 
5. TREC Evaluations 



The track received a total of 178 runs from 36 different groups.  This set includes 92 
automatic Task A runs, 11 manual Task A runs, 62 automatic Task B runs and 13 manual 
Task B runs.  Task B runs used Task A topics (Figure 5) where the 20 test and treatment 
topics were augmented with a diagnosis field (Figure 6). 

 
Figure 5: Topic 11 for Task A 

 

 
Figure 6: Topic 11 for Task B, augmented with the diagnosis field 

 
 
SCDA Results 
Our team submitted three automatic Task A runs and two manual Task B runs. The only 
feature of our Task B runs that were manual was the addition of the diagnosis field.  We 
were required to add ours manually as our summer work ended prior to the official 
release of the Task B topics.  Our domain expert augmented the Task A topics to add the 
diagnosis field.  Our Task A runs consisted of our Lucene Baseline run: P(10) = 0.3767, 
our Framed Document Run: P(10) = .2667 and our Fusion Run: P(10) = .2900. Our Task 
B runs consisted of our Lucene Baseline run: P(10) = .4167 and our Fusion Run: P(10) = 
.4067. 
 
Task A 
Lucene Baseline: 

1. Generate list of topic summaries 
2. Run a Lucene search using each summary as a query to the Corpus index 
3. Translate Lucene list of documents and scores into ranked list 
4. Return ranked list as baseline  

 
Framed Document Run: 
Query frames were first built from each of the TREC topics. This frame would include 
age, gender, time and symptoms. The top 20 documents from the Lucene run that were 
retrieved for that topic would then also be processed. A frame would be created for each 
document based on its abstract. We would process the abstract and extract out the age, 



gender, time and symptoms. Finally, the query frame and the document frame would be 
compared and the document frames scored as described above. The more similar the 
frames are the higher the score and the more relevant the document is to that particular 
topic. The documents were ranked based on their frame’s score. 
 
Fusion Run: 
First, two auxiliary runs were fused using RRF. Both of these auxiliary runs used 
methods not used elsewhere: 1) a baseline run with a weighted query was generated by a 
framing method that rewarded rare symptoms and temporal info, and gave a lower weight 
to demographic information and more common symptoms, and 2) was a similarly 
boosted query that used MetaMap instead of framing to produce the list of search items. 
The fusion of these two was then created using the log ISR method with the results of the 
Lucene Baseline run, and this fusion list was in turn fused using RRF with the results of 
the Framed Document run.  
 
Task B 
Lucene Baseline: 
The diagnosis field was added as a query to our summary. Both were weighted equally. 
 
Fusion Run: 
We used a reciprocal rank fusion to fuse the result lists of our respective Lucene Baseline 
runs for Task A and Task B, essentially using the fusion to assimilate the new 
information from the given diagnosis field into the old Lucene results list. 

6. Conclusions 

Framing 
The complexity of this component and our ten-week time frame did not enable us to 
improve on this module following its initial implementation.  We are currently 
performing a detailed error analysis on the 2015 data to determine how to improve on our 
framing component.  This component should perform better than the baseline after our 
error analysis is complete and the component improved upon based on these findings. 
 
Lucene Baseline 
The Lucene queries over-performed based on the experiments we ran on the 2014 topics. 
Overall, the baseline list generated by the initial query was the best output of the system. 
 
Five topics in the baseline did not return any relevant documents. Due to the nature of the 
system, in the situation where Lucene generates no relevant documents framing and 
ranked fusion cannot improve the output, (specifically, topics 18, 19, 20, 24, and 25). 
 
In error analysis, topics with P(10) less than 0.3 were considered unsuccessful runs and 
anything with P(10) greater than 0.7 were considered successful. The five topics where 
P(10)=0.0 were examined first. A common thread between these topics was the use of 
semi-complex medical terminology: dyspnea, bilateral edema, basilar crackles (18), 
dyspnea (19), myoclonic (20), dullness to percussion (24), osteolytic lesion, tachycardia, 
urinary incontinence (25). When compared with topics 22 and 26 (P(10) = 1.0), the five 



worst performing topics contain much more complex terminology. This is a common 
theme when examining the higher performance topics against the lower performing ones. 
For example, in topics 2 and 12(P(10) = 0.1), Lucene had to query with words such as 
immunosuppressed, intranuclear, nuchal rigidity, and bronchoaveolar with little to no 
other key terms. This is in heavy contrast to higher scoring topics such as 4 (p(10) = 0.7) 
and 19 (p(10) = 0.9) which include better querying terms like human papilloma virus, 
hypertension, and acute stabbing chest pain despite their included medical terms. 
 
 With the current architecture design, some relevancy needs to be established for each 
topic in order to later improve the score. It is possible that the version of Lucene used in 
our system (version 4.0.0) is not suited to handle some of these terms as it is not the latest 
release and was built to run with Java 6. Using a more recent release of Lucene could 
yield better results. Furthermore, the use of other indexing/querying software such as 
Indri might be very helpful. If other querying software yielded different ranked lists, this 
could be extremely helpful for ranked fusion and would add diversity to framing. The 
cost of adding more documents to be framed, scored, and compared (as well as the time 
necessary to re-index the Corpus) needs to be weighed against the convenience of having 
the system work with one software. Finally, returning a larger list of ranked documents in 
Lucene could improve the framing score but would greatly increase the time needed to 
frame and score documents. Lucene can be set to return any number of documents for a 
query. Therefore, if time allowed for the framing and scoring of the top 100 documents 
we may have found relevance after framing for our lower scoring topics – especially 
those with P(10) = 0.000. 
 
Fusion 
Our fusion method underperformed expectations based on the experiments we ran on 
2014 data, and only outperformed the baseline on one topic (#7).    
 
Overall, the Task A Fusion run compared: 
-significantly (p=0.0004) worse than the baseline Lucene run (1 topic better, 15 worse, 14 
the same) 
-significantly (p=0.016) better than the abstract-frame-scored run (8 topics better, 1 
worse, and 21 the same) 
 
Because the reciprocal ranked fusion did worse (0.29) than its P(10) score when 
experimentally tested on the 2014 data (0.34), while the Lucene baseline improved from 
(0.31 to 0.3767), would suggest that the three-step RRF algorithm may have been overfit 
to the 2014 data. In 2015, while it did worse than the average Task A run and worse than 
the baseline, it did (likely) do better than the average of its ingredients, suggesting it 
wasn’t a complete failure. At the same time, though, it failed the central goal of list 
fusion, to perform better than all the ingredients. What went wrong is most likely that the 
fusion was not given enough ingredients, and that its ingredients were not diverse 
enough. Reciprocal rank fusions perform best when they are given a much larger set of 
lists, and when these lists are compiled using diverse (but effective) methods. All the 
methods fused except the baseline used very similar methods, centering around the 
extraction of medically relevant information from the topic summary, and the ranking of 
document relevancy by the occurrence of these terms. In addition, all three of these 



methods employed Lucene at some point in their processes. For better performance, one 
could propose additional inclusion of lists compiled by methods that did not rely on 
Lucene and/or center on medical term occurrence.  
 
Furthermore, that the baseline performed best suggests that Lucene may have done all the 
necessary term relevancy preening by itself. All of these methods employed Lucene and 
then modified its search or its results, meaning they were actually decreasing the score by 
doing so.  
 
Two topics stand out for unusual results. The first is topic 21, arguably the worst 
performance of the fused list.  

 
Figure 7: Topic 21 Task B 

 
This is the only topic where the fused list scored worse (P(10) = 0.0) than the abstract-
frame-scored list (P(10)= 0.1), both being under the baseline (0.4).  The fused list scoring 
0 here would suggest that the relevant documents returned by each of the other two were 
not the same ones and were also absent from the auxiliary ingredient lists 
FrameBoostedQuery and MetaBoostedQuery, as otherwise they would have made into 
the fused list. This would be the worst-case scenario for an RRF, which is built based on 
ingredient consensus: all the ingredient lists are so different they have no consensus at all 
(as opposed to being significantly different but having notable points of consensus, the 
best-case-scenario), causing the RRF to fail to make a list that is better than its 
ingredients. This analysis would also be consistent with the high variance of responses 
among different TREC participants for topic 21. In topic 7, meanwhile, the RRF 
outperforms the baseline.  

 
Figure 8: Topic 7 Task A 

 

This was also the only topic where the framed list outperformed the baseline. Whether 
this is to be seen as a success of the RRF or not depends on the scores of the auxiliary 



ingredients: if they were similarly better than the baseline, this would be a “success” 
attributable to the semantic framing theories employed by the three modified ingredient 
runs, whereas if they are not, it can be seen as a case where the RRF optimally fused its 
ingredients. Further analysis needs to be done. 
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