

Siena’s Clinical Decision Assistant
Michael Ippolito, Katherine Small, Clayton Marr,

Steven Gassert, Kylie Small and Sharon Gower Small

Siena College Institute for Artificial Intelligence
515 Loudon Road

Loudonville, NY 12211
mp08ippo@siena.edu, smallk1@hawkmail.newpaltz.edu, clmarr@vassar.edu,
gasserts1@hawkmail.newpaltz.edu, ka12smal@siena.edu, ssmall@siena.edu

Abstract
This paper discusses Siena’s Clinical Decision Assistant’s (SCDA) system and
its participation in the Text Retrieval Conference (TREC) Clinical Decision
Support Track (CDST) of 2015. The overall goal of the 2015 track is to link
medical cases to information that is pertinent to patient care. Participants were
given a set of 30 topics in the form of medical case narratives and a snapshot1 of
733,138 articles from PubMed2 Central (PMC). The 30 topics were annotated
into three major subsets: diagnosis, test and treatment, with ten of each type.
Each topic serves as an idealized representation of actual medical records and
includes both a description, which contains a complete account of the patient
visit, and a summary, which is typically a one or two sentence summary of the
main points in the description. SCDA used several methods to attempt improve
the accuracy of medical cases retrieved. SCDA used the metathesaurus Unified
Medical Language System (UMLS)3 that was implemented using MetaMap
(NIH, 2013), query and document framing (Small and Stzalkowski 2004), a
ranked fusion of document lists and Lucene for initial document indexing and
retrieval. The track received a total of 178 runs from 36 different groups. We
submitted three task A runs where our highest P(10) run was 0.3767 and two task
B runs where our highest P(10) run was 0.4167. The highest P(10) from CDST
TREC 20144 was 0.39. The word described here was performed by, and the
entire SCDA system built by a team of undergraduate researchers working
together for just ten weeks during the summer of 2015. The team was funded
under the Siena College Institute for Artificial Intelligence’s National Science
Foundation’s Research Experience for Undergraduates Grant.

1. Introduction

The Clinical Decision Support Track (Simpson et al., 2014) is a program in the Text
Retrieval Conference (TREC) (Voorhees, 2007). TREC is a program co-sponsored by the
National Institute of Standards and Technology (NIST) and the U.S. Department of
Defense. It focuses on supporting research in information retrieval and extraction, and

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 http://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
2 http://www.ncbi.nlm.nih.gov/pmc/
3 http://www.nlm.nih.gov/research/umls/
4 At this point we can only compare our 2015 results to last year’s as all 2015 results have not been released. The 2014 track only had
Task B runs.
	

increasing the availability of appropriate evaluation techniques. The Clinical Decision
Support Track was run for the second time in 2015. There were two defined tasks for
2015 and participants were allowed to participate in either one or both. Task A required
participants to retrieve documents from the PMC corpus that were relevant to the medical
case narratives; this task is identical to the 2014 TREC track. Task B was new in 2015
and also required the retrieval of relevant documents but the treatment and test topics
were further annotated with a “diagnosis” field.

The highest ranked articles for each topic submitted by the participants were pooled and
judged by medical librarians and physicians trained in medical informatics. In particular,
the judgment sets were created using two strata: all documents retrieved in ranks 1-20 by
any run in union with a 20% sample of documents not retrieved in the first set that were
retrieved in ranks 21-100 by some run. Assessors were instructed to judge articles as
either "definitely relevant" for answering questions of the specified type about the given
case report, "definitely not relevant," or "possibly relevant." The latter judgment may be
used if an article is not immediately informative on its own, but the assessor believes it
may be relevant in the context of a broader literature review.

2. TREC 2014 Literature Review

While designing the experimental procedure for this year’s clinical support track the team
reviewed a significant amount of literature from the previous year’s track. The University
of California, Los Angeles (UCLA) implemented the use of a manual run (Garcia-
Gathright, et al., 2014). Their manual run utilized domain experts for query expansion.
Our work utilized domain experts to annotate last year’s queries to improve the
performance of framing for our automatic runs. Similarly to UCLA, we also utilized
MetaMap, UMLS and Lucene (McCandless et al., 2010). MetaMap is used to both relate
biomedical text to the UMLS Metathesaurus and to flag Metathesaurus concepts that are
present within biomedical texts. Lucene is a full text search engine library that is
composed entirely in Java and is used to build the initial indices on the document corpus.

The NovaSearch (Mourão, et al., 2014) team explored both Ranked Fusion and utilizing
the prestige of the retrieved journal to re-rank their results. The prestige of the journal
article was used to increase relevance because they believed that a journal that was highly
recognized for accurate information would be more likely to contain a document relevant
to the query. Term frequency was developed by their domain experts in order to establish
the relevance of different MetaMap semantic types and articles that displayed high
frequency of relevant terms were ranked higher among articles that had lower
frequencies. We utilized a similar methodology in SCDA.

San Francisco State University (Bhandari et al., 2014) also used MetaMap but they
translated their case reports into a list of structured medical concepts. Instead of using
this method, we utilized our framing technique to add structure to the first five
paragraphs of each case report to automatically score the retrieved documents relative to
our query.

3. The SCDA System Main Components

The main focus of the SCDA system was to use framing to create the simplest and most
accurate query to provide to Lucene for a full-text search of the PubMed corpus. This
meant initial manual analysis of the 2014 data by our domain expert to identify what
aspects of the medical case reports were imperative to forming a query to return the
highest quantity of relevant documents. This analysis was utilized to determine what
aspects of the query we should automatically frame for the 2015 task. The remainder of
this paper will discuss the modules of our SCDA system in detail as well as the results of
our NIST evaluation.

3.1 Lucene Baseline
In order to run the initial retrieval on the corpus documents, Apache Lucene 4.0.0 was
utilized to create an index for the corpus. Lucene is an open source search engine, written
in Java, designed to function as a text search engine library.

Lucene was used to generate the baseline run of our system. Lucene has many built-in
querying functions. During the indexing process, each document in the corpus was
broken into four fields: title (including authors), abstract (null if none), body, and
contents (the abstract and the body). When querying Lucene one can search the entire
document or restrict its query to specific fields. Based on results obtained from the 2014
topics, the contents field provided the best results for our queries. Therefore, in our 2015
Task A run, the topic summaries alone were passed as individual queries. The search was
restricted to the contents field and the top 20 documents were used in our baseline run.

In Task B, diagnoses were added to the query. Lucene allows multi-field queries, so a
two-field query was passed. The first part contained the diagnosis and the second
contained the topic summary. These fields can be weighted by certain degrees, but testing
this on the 2014 topics did not change the documents returned, but only their scores.
Likewise, changing the order of the fields in the query did not affect the documents
returned. The Task B queries were not released until after our 10 week program
completed. Therefore our domain expert added the diagnosis field manually and this is
why we tagged that run as manual. It is important to note that the addition of the
diagnosis filed was the only manual interaction in our Task B run.

3.2 The Framing Component

We added structure to our queries and our text passages in our framing component as can
be seen in the example query frame and document passage frame below. Our frame
attributes included: age, gender, time and symptoms. The diagnosis attribute was added
for Task B only. In Figures 1-3 below we show a sample query frame for topic #22,
where our P(10) = 1.0 as well as two data frames, one with a high score and one with a
low score.

Query Frame:
Topic Number 22
Age Aged
Gender Male
Time None
Symptoms productive	 cough,	 round	 opaque	 mass,	 cavity,	 (Coughing	 up	 phlegm)	 or	

(productive	 cough	 NOS),	 Sputum	 production,	 Coughing	 up	 phlegm,	 cavity,	 Dental	
caries-‐free,	 Nursing	 caries,	 Caries	 (morphologic	 abnormality),	 Dental	 caries	
extending	 into	 dentine,	 Gastrointestinal	 Diseases

Figure 1: Topic #22 and its corresponding frame – note the error made in keeping cavity as a symptom

Document	 Passage	 =	 A	 22-‐year-‐old	 unmarried	 man	 presented	 to	 the	 chest	 outpatient	 department	
with	 a	 history	 of	 productive	 cough	 of	 two-‐month	 duration.	 He	 also	 complained	 of	 pain	 and	 swelling	
on	 the	 anterior	 aspect	 of	 right	 side	 of	 chest	 of	 one-‐month	 duration.	 Imaging	 studies	 of	 the	 thorax,	
including	 chest	 roentgenography	 and	 computerized	 tomography,	 revealed	 an	 unruptured	 lung	
abscess	 which	 had	 herniated	 into	 the	 chest	 wall.	 Culture	 of	 pus	 aspirated	 from	 the	 chest	 wall	 swelling	
grew	 Mycobacterium	 tuberculosis.	 He	 was	 diagnosed	 to	 have	 a	 tuberculous	 lung	 abscess	 which	 had	
extended	 into	 the	 chest	 wall,	 without	 spillage	 into	 the	 pleural	 cavity	 or	 the	 bronchial	 tree.	
Antituberculosis	 drugs	 were	 prescribed,	 and	 he	 responded	 to	 the	 treatment	 with	 complete	 resolution	
of	 the	 lesion.	

Topic Number 22
Score 50.96
Document ID 3213720
Age Adult
Gender male
Time Null
Symptoms 22-‐year-‐old	 unmarried	 man,	 history,	 productive	

cough,	 unruptured	 lung	 abscess,	 aspirated,	 chest	
wall	 swelling,	 diagnosed,	 tuberculous	 lung	
abscess,	 lesion,	 pain

Figure 2: Topic #22 high scoring data frame

	
	
	

	
Document	 Passage	 =	 This	 case	 series	 suggests	 that	 chronic	 candidal	 bronchitis	 is	 associated	 with	
significant	 morbidity	 and	 responds	 well	 to	 treatment.	 Such	 patients	 may	 benefit	 from	 extended	
antifungal	 therapy.	 Guidelines	 for	 the	 treatment	 of	 Candida	 in	 pulmonary	 secretions	 should	 be	
reevaluated.	

Low Scoring Frame:
Topic Number 22
Score 0.0
Document ID 3527895
Age ND
Gender Null
Time Chronic
Symptoms candidal bronchitis

Figure 3: Topic #22 low scoring data frame

In order to create frames from queries and passages of text, the text was taken through a
number of different steps. First, MetaMap was used on the text to generate a list of
negated concepts. For example, upon processing the phrase “cardiac arrest was ruled
out”, the function would add to the negated list any concept triggered in metamap for the
frame “cardiac arrest”. Later, any concept in the candidate target concept list that
matched a concept negated in the same phrase was removed.	 The text was further
automatically modified to replace potentially problematic phrases, especially those that
would cause problems for the parser (for example, the Latinate medical terminology
“status post” was replaced with “after”) based on a dictionary we generated from 2014
analysis.

The text was then run through the Stanford Parser, in order to detect semantic roles and
relationships. The parser's output was stored as a set of hierarchical clauses. This clausal
hierarchy was searched for words that triggered concepts using MetaMap. Using the
typology of “semantic types” employed by MetaMap to categorize triggered concepts. If
trigger concepts were found with one of eight designated types, the relevant concept was
added to the symptom list variable for the frame of the larger given area of text. For	
example,	 the	 sentence	 “64-year-old woman with uncontrolled diabetes, now with an
oozing, painful skin lesion on her left lower leg” would have, among its many triggered
concept referents from Metamap’s database, a concept referent for skin lesions, likely
classed under the semantic class [anab] (Anatomical Abnormalities). Since [anab] is one
of the designated semantic types for denoting symptoms, the noun clause containing it,
“oozing, painful skin lesion” is added to the symptoms list.

Referring to the temporality typology suggested by the medical professionals employed
by the UCLA team in 2014, our frame's time attribute functions to classify conditions
into classes of “acute”, “progressive” and “chronic”. The text of each triggered symptom
clause was searched for temporal wording describing the symptom, and if it was found,
the appropriate time class was saved to the frame's time attribute.

Frame Scorer

After the Framing process was complete, SCDA had to rank each frame created by a
document passage in order of its relevance to the query frame created by the topic. Our
first scoring algorithm simply looked for equality of the contents of each frame attribute.
The total score of the frame was then calculated as the average of the scores from each
individual frame attribute.

Example of 1st Scoring algorithm:

Query Frame:
Gender Female
Age Child
Symptoms Cough, Chest Pain, Left Lung Mass

Document Frame:
Gender Undetected Gender Score: 0
Age Child Age Score: 100
Symptoms Cough, Chest Pain, Left Lung Mass Symptoms Score: 100
 Total Score: 75

After several rounds of error analysis on the 2014 data we made a modification to our
scoring algorithm. The improvement that we made to our scoring algorithm lies in the
way we treated frames when certain data types were not populated. For example in the
initial version of our scoring algorithm when the query frame detected the gender of the
patient, and the document we were scoring it against did not mention a gender (or our
frame builder failed to locate it), we would assign a score of 0 for the score for that frame
attribute. In the updated version we did not assign a score of 0 to that data type but rather
did not include that data type in the calculation of the final overall score for that frame.

Example of Revised Scoring algorithm:

Query Frame:
Gender Female
Age Child
Symptoms Cough, Chest Pain, Left Lung Mass

Document Frame:
Gender Undetected Gender Score: null
Age Child Age Score: 100
Symptoms Cough, Chest Pain, Left Lung Mass Symptoms Score: 100
 Total Score: 100

3.3 Fusion
“Fusion” here refers to the creation of a new ranking of relevant documents by using
multiple previous relevancy lists. If the elements of the latter set of lists were compiled
using effective but diverse methods, it can be expected that (if done well), a fused result
list would be at least more accurate than the average, and in some cases the list produced
from fusion may in fact be more accurate than any of the lists component to its creation.
This may occur due to the “chorus effect” (Mourão, et al., 2013): if a document is listed

as highly relevant by various lists that were compiled differently, it is highly likely that it
is indeed much more relevant, compared to a document that was judged to be highly
relevant by only one method, which is more likely to have been so judged in error.

There are many different methods to fuse relevancy lists. Among these, we chose to use
Reciprocal Rank Fusion (henceforth RRF) and the log ISR Fusion method (Mourão, et
al., 2013).

Reciprocal Rank Fusion (RRF)
RRF has the dual advantage of being both effective and simple, being an unsupervised
fusion method not requiring any machine learning, complex voting algorithm or reference
to global information. All one needs to perform a reciprocal rank fusion is a set of lists
organized in descending order by relevance. At the same time, it has been shown to
outperform most comparable fusion methods(Cormack, et al., 2009).

Before creating the final fused list, RRF assigns a score to each document involved. This
score is calculated as the summation of that document's score for each participating list.
The document's score for a given list is 1 / (k + r) where k is a constant and r is the at
document's rank on the given list. We set the value of k equal to 60.0, which has been
previously found to be optimal (Cormack, et al., 2009).

Logarithm ISR Fusion (LISRF)
The ISR Fusion method, and its logISR variant, were tested by (Mourão, et al., 2013) in
TREC 2013. While not as popular as RRF, it shares a lot of the same qualities, being both
simple and effective, and is calculated similarly. LISRF's method of generating a
document's score for a given list differs however, being calculated as log(nHits) / r2,
where nHits is the total number of participating lists that include the given document, and
r is the document's rank in the list currently being scored for.

Ultimately, in NovaSearch's performance at TREC 2013, while LISRF was slightly
outperformed by RRF for P(10) .366 to RRF's .37, it consistently outperformed RRF in
that paper with regards to discounted cumulative gain.

Fusion algorithms in application
Two of our runs employed fusion, one for Task A and one for Task B (where diagnosis
was already given). In Task B, we employed a reciprocal rank fusion on the baselines for
Task A and B to generate another run for Task B. For Task A, the fusion was a more
complicated, three step fusion. First, two auxiliary runs were fused using RRF. Both of
these runs used methods not used elsewhere: one was essentially a baseline run with a
weighted query was generated by a framing method that rewarded rare symptoms and
temporal info, and gave a lower weight to demographic information and more common
symptoms, while the other was a similarly boosted query that used MetaMap instead of
framing to produce the list of search items. The fusion of these two was then fused using
the log ISR method with the baseline Lucene search results, and this fusion list was in
turn fused using RRF with the results of the run that employed framing of document
abstracts.
3.4 UMLS Synonym Finder

SCDA used UMLS to augment our symptoms field with their synonyms in both the query
frame and our document frames. Additionally, our domain expert generated a list of
common symptoms that we would not want to expand on after analyzing the 2014 data.
UMLS offers an easy to use API that allowed our team to effectively retrieve the
synonyms of symptoms. After inserting the synonyms our P@10 tests on the 2014 data
raised slightly.

4. The SCDA Architecture
In a standard run, we used Lucene as described above to generate a list of the top 20
documents for a topic. This list, containing document id’s and scores, is passed to the
Framer. The topic is framed to create a Query Frame, and each returned document’s
abstract is framed and then scored against the Query Frame. The Framer returns a second
re-ranked list of the highest scoring documents based on their frame’s score. Finally, the
baseline Lucene list and the Framed list are passed to the Ranked Fusion component to
generate one more ranked list.

Figure4: SCDA Architecture
	

5. TREC Evaluations

The track received a total of 178 runs from 36 different groups. This set includes 92
automatic Task A runs, 11 manual Task A runs, 62 automatic Task B runs and 13 manual
Task B runs. Task B runs used Task A topics (Figure 5) where the 20 test and treatment
topics were augmented with a diagnosis field (Figure 6).

Figure 5: Topic 11 for Task A

Figure 6: Topic 11 for Task B, augmented with the diagnosis field

SCDA Results
Our team submitted three automatic Task A runs and two manual Task B runs. The only
feature of our Task B runs that were manual was the addition of the diagnosis field. We
were required to add ours manually as our summer work ended prior to the official
release of the Task B topics. Our domain expert augmented the Task A topics to add the
diagnosis field. Our Task A runs consisted of our Lucene Baseline run: P(10) = 0.3767,
our Framed Document Run: P(10) = .2667 and our Fusion Run: P(10) = .2900. Our Task
B runs consisted of our Lucene Baseline run: P(10) = .4167 and our Fusion Run: P(10) =
.4067.

Task A
Lucene Baseline:

1. Generate list of topic summaries
2. Run a Lucene search using each summary as a query to the Corpus index
3. Translate Lucene list of documents and scores into ranked list
4. Return ranked list as baseline

Framed Document Run:
Query frames were first built from each of the TREC topics. This frame would include
age, gender, time and symptoms. The top 20 documents from the Lucene run that were
retrieved for that topic would then also be processed. A frame would be created for each
document based on its abstract. We would process the abstract and extract out the age,

gender, time and symptoms. Finally, the query frame and the document frame would be
compared and the document frames scored as described above. The more similar the
frames are the higher the score and the more relevant the document is to that particular
topic. The documents were ranked based on their frame’s score.

Fusion Run:
First, two auxiliary runs were fused using RRF. Both of these auxiliary runs used
methods not used elsewhere: 1) a baseline run with a weighted query was generated by a
framing method that rewarded rare symptoms and temporal info, and gave a lower weight
to demographic information and more common symptoms, and 2) was a similarly
boosted query that used MetaMap instead of framing to produce the list of search items.
The fusion of these two was then created using the log ISR method with the results of the
Lucene Baseline run, and this fusion list was in turn fused using RRF with the results of
the Framed Document run.

Task B
Lucene Baseline:
The diagnosis field was added as a query to our summary. Both were weighted equally.

Fusion Run:
We used a reciprocal rank fusion to fuse the result lists of our respective Lucene Baseline
runs for Task A and Task B, essentially using the fusion to assimilate the new
information from the given diagnosis field into the old Lucene results list.

6. Conclusions

Framing
The complexity of this component and our ten-week time frame did not enable us to
improve on this module following its initial implementation. We are currently
performing a detailed error analysis on the 2015 data to determine how to improve on our
framing component. This component should perform better than the baseline after our
error analysis is complete and the component improved upon based on these findings.

Lucene Baseline
The Lucene queries over-performed based on the experiments we ran on the 2014 topics.
Overall, the baseline list generated by the initial query was the best output of the system.

Five topics in the baseline did not return any relevant documents. Due to the nature of the
system, in the situation where Lucene generates no relevant documents framing and
ranked fusion cannot improve the output, (specifically, topics 18, 19, 20, 24, and 25).

In error analysis, topics with P(10) less than 0.3 were considered unsuccessful runs and
anything with P(10) greater than 0.7 were considered successful. The five topics where
P(10)=0.0 were examined first. A common thread between these topics was the use of
semi-complex medical terminology: dyspnea, bilateral edema, basilar crackles (18),
dyspnea (19), myoclonic (20), dullness to percussion (24), osteolytic lesion, tachycardia,
urinary incontinence (25). When compared with topics 22 and 26 (P(10) = 1.0), the five

worst performing topics contain much more complex terminology. This is a common
theme when examining the higher performance topics against the lower performing ones.
For example, in topics 2 and 12(P(10) = 0.1), Lucene had to query with words such as
immunosuppressed, intranuclear, nuchal rigidity, and bronchoaveolar with little to no
other key terms. This is in heavy contrast to higher scoring topics such as 4 (p(10) = 0.7)
and 19 (p(10) = 0.9) which include better querying terms like human papilloma virus,
hypertension, and acute stabbing chest pain despite their included medical terms.

 With the current architecture design, some relevancy needs to be established for each
topic in order to later improve the score. It is possible that the version of Lucene used in
our system (version 4.0.0) is not suited to handle some of these terms as it is not the latest
release and was built to run with Java 6. Using a more recent release of Lucene could
yield better results. Furthermore, the use of other indexing/querying software such as
Indri might be very helpful. If other querying software yielded different ranked lists, this
could be extremely helpful for ranked fusion and would add diversity to framing. The
cost of adding more documents to be framed, scored, and compared (as well as the time
necessary to re-index the Corpus) needs to be weighed against the convenience of having
the system work with one software. Finally, returning a larger list of ranked documents in
Lucene could improve the framing score but would greatly increase the time needed to
frame and score documents. Lucene can be set to return any number of documents for a
query. Therefore, if time allowed for the framing and scoring of the top 100 documents
we may have found relevance after framing for our lower scoring topics – especially
those with P(10) = 0.000.

Fusion
Our fusion method underperformed expectations based on the experiments we ran on
2014 data, and only outperformed the baseline on one topic (#7).

Overall, the Task A Fusion run compared:
-significantly (p=0.0004) worse than the baseline Lucene run (1 topic better, 15 worse, 14
the same)
-significantly (p=0.016) better than the abstract-frame-scored run (8 topics better, 1
worse, and 21 the same)

Because the reciprocal ranked fusion did worse (0.29) than its P(10) score when
experimentally tested on the 2014 data (0.34), while the Lucene baseline improved from
(0.31 to 0.3767), would suggest that the three-step RRF algorithm may have been overfit
to the 2014 data. In 2015, while it did worse than the average Task A run and worse than
the baseline, it did (likely) do better than the average of its ingredients, suggesting it
wasn’t a complete failure. At the same time, though, it failed the central goal of list
fusion, to perform better than all the ingredients. What went wrong is most likely that the
fusion was not given enough ingredients, and that its ingredients were not diverse
enough. Reciprocal rank fusions perform best when they are given a much larger set of
lists, and when these lists are compiled using diverse (but effective) methods. All the
methods fused except the baseline used very similar methods, centering around the
extraction of medically relevant information from the topic summary, and the ranking of
document relevancy by the occurrence of these terms. In addition, all three of these

methods employed Lucene at some point in their processes. For better performance, one
could propose additional inclusion of lists compiled by methods that did not rely on
Lucene and/or center on medical term occurrence.

Furthermore, that the baseline performed best suggests that Lucene may have done all the
necessary term relevancy preening by itself. All of these methods employed Lucene and
then modified its search or its results, meaning they were actually decreasing the score by
doing so.

Two topics stand out for unusual results. The first is topic 21, arguably the worst
performance of the fused list.

Figure 7: Topic 21 Task B

This is the only topic where the fused list scored worse (P(10) = 0.0) than the abstract-
frame-scored list (P(10)= 0.1), both being under the baseline (0.4). The fused list scoring
0 here would suggest that the relevant documents returned by each of the other two were
not the same ones and were also absent from the auxiliary ingredient lists
FrameBoostedQuery and MetaBoostedQuery, as otherwise they would have made into
the fused list. This would be the worst-case scenario for an RRF, which is built based on
ingredient consensus: all the ingredient lists are so different they have no consensus at all
(as opposed to being significantly different but having notable points of consensus, the
best-case-scenario), causing the RRF to fail to make a list that is better than its
ingredients. This analysis would also be consistent with the high variance of responses
among different TREC participants for topic 21. In topic 7, meanwhile, the RRF
outperforms the baseline.

Figure 8: Topic 7 Task A

This was also the only topic where the framed list outperformed the baseline. Whether
this is to be seen as a success of the RRF or not depends on the scores of the auxiliary

ingredients: if they were similarly better than the baseline, this would be a “success”
attributable to the semantic framing theories employed by the three modified ingredient
runs, whereas if they are not, it can be seen as a case where the RRF optimally fused its
ingredients. Further analysis needs to be done.

7. References
Bhandari, Aayush, James Klinkhaer and Anagha Kulkarni. 2014. San Francisco State University at TREC
2014: Clinical Decision Support Track and Microblog Track. In Proceedings of The Twenty-Third Text
Retrieval Conference (TREC 2014).

Cormack, G. V., Clarke, C. L. A., and Buttcher, S. 2009. Reciprocal Rank Fusion outperforms Condorcet
and Individual Rank Learning Methods.

Garcia-Gathright, Jean I., Frank Meng and William Hsu. 2014. UCLA at TREC 2014 Clinical Decision
Support Track: Exploring Language Models, Query Expansion, and Boosting. In Proceedings of The
Twenty-Third Text Retrieval Conference (TREC 2014).

Mourão, André, Flávio Martins and João Magalhães. 2014. NovaSearch at TREC 2014 Clinical Decision
Support Track. In Proceedings of The Twenty-Third Text Retrieval Conference (TREC 2014).

Mourão, André, Flávio Martins, and João Magalhães. 2013. NovaSearch at TREC 2013 Federated Web
Search Track: Experiments with rank fusion. In Proceedings of The Twenty-Second Text Retrieval
Conference (TREC 2013).

McCandless Michael, Erik Hatcher and Otis Gospodnetic. 2010. Lucene in Action. Second Edition.
Manning Publications.

National Library of Medicine (NLM). 2013. MetaMap- A Tool For Recognizing UMLS Concepts in Text.
Software.

Simpson, Matthew S., Ellen M. Voorhees and William Hersh. 2014. Overview of the TREC 2014 Clinical
Decision Support Track. In Proceedings of The Twenty-Third Text Retrieval Conference (TREC 2014).

Small,	 Sharon	 and	 Tomek	 Strzalkowski.	 2004.	 HITIQA:	 A	 Data	 Driven	 Approach	 to	 Interactive	
Analytical	 Question	 Answering.	 Proceedings	 of	 Human	 Language	 Technology	 Conference.	 Boston,	
Massachusetts.	

Voorhees, Ellen M. 2007. Overview of TREC 2007. In Proceedings of The Sixteenth Text Retrieval
Conference (TREC 2007).

