Waterloo (Cormack) Participation in the TREC 2015 Total Recall Track

Gordon V. Cormack, University of Waterloo Maura R. Grossman, Wachtell, Lipton, Rosen & Katz*

January 24, 2016

In the course of developing tools for the 2015 Total Recall Track, co-coordinators Cormack and Grossman created an autonomous continuous active learning ("CAL") system, which was provided to participants as the baseline model implementation ("BMI") [http://plg.uwaterloo.ca/~gvcormac/trecvm/]. BMI essentially employs the approach described by Cormack and Grossman [http://arxiv.org/abs/1504.06868]; the only difference is that BMI employs logistic regression implemented by Sofia ML [https://code.google.com/p/sofia-ml/] instead of SVMlight [http://svmlight.joachims.org/].

The Waterloo (Cormack) team submitted runs using BMI for each of the five 2015 Total Recall test collections. The only change that was made to BMI was to add a provision to "call our shot" – that is, to indicate to the assessment server when we believed the run to be reasonably complete. Although the Track provided three milestones – "70recall," "80recall," and "reasonable" – we made no attempt to quantify the recall of our runs, and instead used the three milestones to indicate graduated levels of completeness, which one might interpret as "good," "better," and "best."

We investigated two methods for determining the completeness of our efforts:

- The knee-finding method: We employed a simple geometric algorithm to identify a "knee" or negative inflection point in the gain curve [http://www1.icsi.berkeley.edu/~barath/papers/kneedle-simplex11.pdf]. We then computed the slope of the curve (i.e., marginal precision) before and after the knee, and determined the review to be complete when the ratio of these slopes exceeded a given threshold: $\rho = 3.0$, $\rho = 6.0$, and $\rho = 10.0$, respectively, for our "70recall," "80recall," and "reasonable" stopping criteria. As we were concerned about the volatility of the slope estimates at low levels of effort, we configured our knee method to delay calling its shot until at least β documents had been retrieved: Knee100 always retrieved and reviewed at least $\beta = 100$ documents for review before employing the knee-finding algorithm; Knee1000 always retrieved and reviewed at least $\beta = 1000$ documents before employing knee-finding.
- The 2399 method: In electronic discovery, much emphasis has been placed on the use of sampling to ensure adequate recall, and a sample size of 2,399 documents has been widely embraced (due to the fact that a sample of 2,399 allows one to estimate a proportion with a margin of error of $\pm 2\%$ and a confidence level of 95%). Such a sample is of little use in computing recall when the prevalence of relevant documents in the corpus is low, as we expected it to be for many of the 2015 Total Recall topics. We hypothesized that the effort to review an additional 2,399 documents would be better spent to review more documents so as to improve recall, rather than in a potentially futile effort to measure recall. To this end, we programmed our submission to call its shot once $N = \alpha r + 2399$ documents had been submitted for assessment, where r was the number of the N documents assessed relevant, and $\alpha = 1.0$, $\alpha = 1.1$, and $\alpha = 1.2$, respectively, for our "70recall," "80recall," and "reasonable" methods.

The results shown in Tables 1 through 3 show the results of the knee-finding and the 2399 methods for the 30 topics of the "athome1," "athome2," and "athome3" collections employed for the At Home task. The results shown in Tables 4 through 6 show the results of only the 2399 method for the 30 topics of the Sandbox task; resource constraints prevented us from testing the knee-finding method for this task.

Our results indicate that both methods were generally conservative when the highest values of the parameters α , β , and ρ were used, yielding very high recall levels. Knee-finding appears to have stopped prematurely for a few low-prevalence topics, and appears to have required unreasonably high levels of effort in some circumstances that appear to represent "difficult" topics, where initial precision was low and no clear knee formed. The 2399 method appeared much more stable, almost always achieving high recall. For low prevalence topics, it (by design) showed low precision; for example, when there were 23 relevant documents, the method would necessarily achieve no better than 1% precision. In many circumstances, however, it may nevertheless be worthwhile to review this many documents in order to ensure oneself that high recall has been achieved.

^{*}The views expressed herein are solely those of the author and should not be attributed to her firm or its clients.

		Topic(R) - Athome1 Collection										
Topic:	100	101	102	103	104	105	106	107	108	109		
# Relevant docs:	(4542)	(5836)	(1624)	(5725)	(227)	(3635)	(17135)	(2375)	(2375)	(506)		
Knee $\beta = 100~\rho = 3$	0.9203	0.9854	0.8744	0.9836	0.8150	0.7593	0.0067	0.9571	0.8766	0.0059		
	7703	7704	2567	6982	498	5730	131	3479	3847	112		
Knee $\beta=100~\rho=6$	0.9679	0.9978	0.9310	0.9958	0.8855	0.8316	0.9974	0.9802	0.9735	0.0059		
	11396	9374	3847	8499	887	9374	24750	4698	7704	112		
Knee $\beta = 100~\rho = 10$	0.9813	0.9988	0.9581	0.9974	0.9163	0.8856	0.9977	0.9878	0.9764	0.0059		
	15257	11397	5730	10337	1233	15258	27255	6326	8499	131		
Vrac 2 1000 c 2	0.9207	0.9947	0.8966	0.9827	0.9119	0.7618	0.9929	0.9512	0.4577	0.9704		
Knee $\beta = 1000 \ \rho = 3$	7703	8499	2842	6982	1106	5730	20403	3479	1233	2090		
Knee $\beta = 1000 \ \rho = 6$	0.9661	0.9976	0.9304	0.9951	0.9119	0.8393	0.9972	0.9827	0.4577	0.9763		
Knee $\beta = 1000 \ \beta = 0$	11396	9374	3847	8499	1106	10337	24750	5189	1233	2317		
Knee $\beta = 1000 \ \rho = 10$	0.9830	0.9991	0.9483	0.9976	0.9119	0.8809	0.9978	0.9861	0.9764	0.9802		
Ninee $\beta = 1000 \ p = 10$	16811	11397	5189	10337	1106	15258	27255	5730	8499	3145		
$2399 \ \alpha = 1.0$	0.8989	0.9950	0.9360	0.9948	0.9692	0.7447	0.9935	0.9832	0.9251	0.9802		
$2599 \alpha - 1.0$	6981	8499	4252	8499	2842	5189	20403	5189	4698	3145		
$2300 \alpha - 1.1$	0.8989	0.9974	0.9360	0.9963	0.9692	0.7590	0.9965	0.9832	0.9389	0.9802		
$2399 \ \alpha = 1.1$	6981	9374	4252	9374	2842	5730	22473	5189	5189	3145		
$2399 \ \alpha = 1.2$	0.9194	0.9979	0.9360	0.9963	0.9692	0.7590	0.9973	0.9857	0.9389	0.9802		
ω ω ω ω ω ω	7703	10337	4252	9374	2842	5730	24750	5730	5189	3145		

Table 1: Athome1 Collection: Recall and Effort (italics) for various different stopping criteria.

	Topic (R) – Athome2 Collection											
Topic:	2052	2108	2129	2130	2134	2158	2225	2322	2333	2461		
# Relevant docs:	(265)	(661)	(589)	(2299)	(252)	(1256)	(182)	(9517)	(4805)	(179)		
Knee $\beta = 100~\rho = 3$	0.9245	0.8941	0.8625	0.8434	0.7659	0.0892	0.6209	0.9407	0.9523	0.3799		
	497	1373	1233	7704	708	131	152	16812	8499	131		
Knee $\beta = 100 \ \rho = 6$	0.9698	0.9622	0.9677	0.9361	0.9008	0.0892	0.8736	0.9767	0.9773	0.3799		
Rulee $\beta = 100 \ p = 0$	792	2317	2317	13846	1527	131	390	24750	11397	131		
Knee $\beta=100~\rho=10$	0.9811	0.9758	0.9847	0.9622	0.9405	0.0892	0.9231	0.9841	0.9881	0.3799		
	990	3145	3479	20403	2317	131	631	30011	15258	131		
Knee $\beta = 1000 \ \rho = 3$	0.9849	0.8548	0.8353	0.8695	0.8611	0.9761	0.9560	0.9408	0.9517	0.9162		
Knee $\beta = 1000 \ \beta = 3$	1105	1233	1106	8499	1106	1697	1106	16812	8499	1106		
Knee $\beta = 1000 \ \rho = 6$	0.9849	0.9637	0.9660	0.9356	0.8810	0.9873	0.9560	0.9766	0.9779	0.9162		
Table $\rho = 1000 \ \rho = 0$	1105	2317	2317	13846	1373	2317	1106	24750	11397	1106		
Knee $\beta = 1000 \ \rho = 10$	0.9849	0.9788	0.9796	0.9604	0.9405	0.9881	0.9560	0.9862	0.9875	0.9385		
Knee $\beta = 1000 \ p = 10$	1105	3145	3145	20403	2317	2842	1106	33043	15258	1373		
$2399 \ \alpha = 1.0$	0.9925	0.9728	0.9830	0.6759	0.9524	0.9881	0.9835	0.8167	0.9193	0.9888		
$2555 \alpha = 1.0$	2841	2842	3145	4252	2842	3847	2842	10337	6982	2842		
$2399 \ \alpha = 1.1$	0.9925	0.9728	0.9830	0.6759	0.9524	0.9881	0.9835	0.8446	0.9386	0.9888		
$2399 \alpha = 1.1$	2841	2842	3145	4252	2842	3847	2842	11397	7704	2842		
$2399 \ \alpha = 1.2$	0.9925	0.9818	0.9830	0.7086	0.9524	0.9881	0.9835	0.8800	0.9534	0.9888		
ω ω ω ω ω	2841	3479	3145	4698	2842	4252	2842	12563	8499	2842		

Table 2: Athome2 Collection: Recall and Effort (italics) for various different stopping criteria.

Topic: 3089 3133 3226 3290 3357 3378 3423 3431 3481 3484 $\#$ Relevant docs: (255) (113) (2094) (26) (629) (66) (76) (1111) (2036) (23) (23) (24) (25) (25) (25) (25) (25) (25) (25) (25					Topic ((R) - Ath	ome3 Co	llection			
Knee $\beta = 100 \ \rho = 3$ Knee $\beta = 100 \ \rho = 6$ Knee $\beta = 100 \ \rho = 10$ Knee $\beta = 100 \ \rho = 10$ Knee $\beta = 1000 \ \rho = 10$ Knee $\beta = 1000 \ \rho = 3$ Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 10$ Note $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 10$ Note $\beta = $	Topic:	3089	3133	3226	3290	3357	3378	3423	3431	3481	3484
Knee $\beta = 100$ $\rho = 3$	# Relevant docs:	(255)	(113)	(2094)	(26)	(629)	(66)	(76)	(1111)	(2036)	(23)
Knee $\beta = 100$ $\rho = 6$ Knee $\beta = 100$ $\rho = 6$ Knee $\beta = 100$ $\rho = 6$ Knee $\beta = 100$ $\rho = 10$ Knee $\beta = 100$ $\rho = 10$ Knee $\beta = 1000$ $\rho = 10$ Knee $\beta = 1000$ $\rho = 3$ Knee $\beta = 1000$ $\rho = 6$ Knee $\beta = 1000$ $\rho = 10$ 0.9961 0.9912 0.9666 0.99	Knee $\beta = 100~\rho = 3$	0.4353	0.8496	0.6829	0.6923	0.9269	0.8636	0.4474	0.9820	0.9332	1.0000
Knee $\beta = 100$ $\rho = 6$		130	131	1884	112	1106	112	112	1106	2842	112
$ Knee \ \beta = 1000 \ \rho = 10 $ $ Knee \ \beta = 1000 \ \rho = 3 $ $ Knee \ \beta = 1000 \ \rho = 6 $ $ Knee \ \beta = 1000 \ \rho = 10 $ $ Knee \ \beta = 1000 \ \rho = 6 $ $ Knee \ \beta = 1000 \ \rho = 10 $ $ Knee \ \beta = 1000 \ \rho = 10 $ $ Knee \ \beta = 1000 \ \rho = 6 $	Know $\beta = 100$ $\alpha = 6$	0.4353	0.8584	0.9790	0.6923	0.9523	0.8636	0.4474	0.9847	0.9465	1.0000
Knee $\beta = 100 \ \rho = 10$ Knee $\beta = 1000 \ \rho = 3$ Knee $\beta = 1000 \ \rho = 3$ Knee $\beta = 1000 \ \rho = 3$ Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 10$ $0.9961 \ 0.9912 \ 0.9666 \ 1.0000 \ 0.9523 \ 1.0000 \ 0.9523 \ 1.0000 \ 0.5263 \ 0.9892 \ 0.9470 \ 1.0000 \ 0.9823 \ 1.0000 \ 0.9634 \ 1.0000 \ 0.5263 \ 0.9892 \ 0.9470 \ 1.0000 \ 0.9823 \ 1.0000 \ 0.9634 \ 1.0000 \ 0.5263 \ 0.9892 \ 0.9504 \ 1.0000 \ 0.9666 \ 1.0000 \ 0.9634 \ 1.0000 \ 0.9634 \ 1.0000 \ 0.5263 \ 0.9892 \ 0.9504 \ 1.0000 \ 0.9823 \ 1.0000 \ 0.9841 \ 1.0000 \ 0.6184 \ 0.9991 \ 0.9499 \ 1.0000 \ 0.9961 \ 1.0000 \ 0.9823 \ 1.0000 \ 0.9841 \ 1.0000 \ 0.6184 \ 0.9991 \ 0.9499 \ 1.0000 \ 0.9841 \ 0.9961 \ 0.9961 \ 0.9961 \ 0.9961 \ 0.9961 \ 0.9961 \ 0.9982 \ 0.9852 \ 1.0000 \ 0.9841 \ 0.9991 \ 0.9499 \ $	Knee $\beta = 100 \ \rho = 0$	130	152	4252	112	1527	131	112	1233	3847	112
Knee $\beta = 1000 \ \rho = 3$ Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 10$ Signature $\beta = 1000 \ \rho = 10$ $0.9961 \ 0.9912 \ 0.6882 \ 1.0000 \ 0.9316 \ 1.0000 \ 0.5263 \ 0.9838 \ 0.9224 \ 1.0000 \ 0.9106 \ 1.00000 \ 0.9106 \ 1.00000 \ 0.9106 \ 1.00000 \ 0.9106 \ 1.00000 \ 0.9106 \ 1.00000 \ 0.9$	Knee $\beta=100~\rho=10$	0.4353	0.9912	0.9790	0.6923	0.9523	0.8636	0.4605	0.9847	0.9514	1.0000
Knee $\beta = 1000 \ \rho = 3$ Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 10$ $1105 1106 1884 1106 1106 1106 1106 1106 1000$ Knee $\beta = 1000 \ \rho = 10$ $1105 1106 3479 1106 1527 1106 1106 1233 3479 1106$ $1105 1106 3479 1106 1527 1106 1106 1233 3479 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 3479 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $1105 1106 3847 1106 1884 11000 0.6184 0.9991 0.9499 1.0000$ $1105 1106 3847 4698 2567 3145 2567 2567 3847 4698 2567$ $1106 110000 1.0000 1.0000 1.0000 1.0000 1.0000$ $1105 1106 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000$		130	344	4252	112	1527	131	152	1233	5189	112
Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 10$ Knee $\beta = 1000 \ \rho = 10$ $2399 \ \alpha = 1.0$ $2399 \ \alpha = 1.1$ $2399 \ \alpha = 1.2$ $2399 \ \alpha = 1.2$ $105 \ 1106 \ 1884 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 1233 \ 3479 \ 1106 \ 1106 \ 1106 \ 1233 \ 3479 \ 1106 \ 1106 \ 1106 \ 1233 \ 3479 \ 1106 \ 1106 \ 1106 \ 1233 \ 4252 \ 1106 \ 1105 \ 1106 \ 1106 \ 1233 \ 4252 \ 1106 \ 1106 \ 1106 \ 1233 \ 4252 \ 1106 \ 1106 \ 1106 \ 1233 \ 4252 \ 1106 \ 1106 \ 1106 \ 1233 \ 4252 \ 1106 \ 1106 \ 1106 \ 1233 \ 4252 \ 1106 \ 110000 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 1106 \ 110000 \ 1106 \ 110000 \ 110000 \ 110000000000$	V 0 1000 - 9	0.9961	0.9912	0.6882	1.0000	0.9316	1.0000	0.5263	0.9838	0.9224	1.0000
Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 6$ Knee $\beta = 1000 \ \rho = 10$ Note $\beta = 1000 \ \rho = 10$ $0.9961 \ 0.9912 \ 0.9733 \ 1.0000 \ 0.9634 \ 1.0000 \ 0.5263 \ 0.9892 \ 0.9504 \ 1.0000 \ 0.9823 \ 1.0000 \ 0.9841 \ 1.0000 \ 0.6184 \ 0.9991 \ 0.9499 \ 1.0000 \ 0.9841 \ 0.9961 \ 0.9961 \ 1.0000 \ 0.9823 \ 1.0000 \ 0.9841 \ 1.0000 \ 0.6184 \ 0.9991 \ 0.9499 \ 1.0000 \ 0.9841 \ 0.9961 \ $	Knee $\beta = 1000 \ p = 3$	1105	1106	1884	1106	1106	1106	1106	1106	2567	1106
Knee $\beta = 1000 \ \rho = 10$ $0.9961 0.9912 0.9733 1.0000 0.9634 1.0000 0.5263 0.9892 0.9504 1.0000 0.9999 0.99999 0.99999 0.9999999999$	$K_{100} \beta = 1000 \alpha = 6$	0.9961	0.9912	0.9666	1.0000	0.9523	1.0000	0.5263	0.9892	0.9470	1.0000
Knee $\beta = 1000 \ \rho = 10$ $2399 \ \alpha = 1.0$ $2399 \ \alpha = 1.1$ $2399 \ \alpha = 1.2$ $1105 1106 3847 1106 1884 1106 1106 1233 4252 1106$ $0.9961 1.0000 0.9823 1.0000 0.9841 1.0000 0.6184 0.9991 0.9499 1.0000$ $2841 2567 4698 2567 3145 2567 2567 3847 4698 2567$ $2399 \ \alpha = 1.2$ $0.9961 1.0000 0.9823 1.0000 0.9841 1.0000 0.6184 0.9991 0.9499 1.0000$ $2841 2567 4698 2567 3145 2567 2567 3847 4698 2567$ $0.9961 1.0000 0.9852 1.0000 0.9841 1.0000 0.6184 0.9991 0.9504 1.0000$	Knee $\beta = 1000 \ \rho = 0$	1105	1106	3479	1106	1527	1106	1106	1233	3479	1106
$2399 \ \alpha = 1.0$ $2399 \ \alpha = 1.1$ $2399 \ \alpha = 1.2$ $1005 \ 1106 \ 3847 \ 1106 \ 1884 \ 1106 \ 1106 \ 1233 \ 4252 \ 1106 \ 1000 \ 1233 \ 4252 \ 1106 \ 1000 \ 1233 \ 4252 \ 1106 \ 10000 \ 1233 \ 4252 \ 1106 \ 10000 \ 1233 \ 4252 \ 1106 \ 10000 \ 1233 \ 4252 \ 1106 \ 10000 \ 1233 \ 4252 \ 1106 \ 10000 \ 1233 \ 4252 \ 1106 \ 10000 \ 1233 \ 4252 \ 1106 \ 10000 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \ 1233 \ 4252 \$	$K_{\text{100}} \beta = 1000 \ a = 10$	0.9961	0.9912	0.9733	1.0000	0.9634	1.0000	0.5263	0.9892	0.9504	1.0000
$ 2399 \ \alpha = 1.0 $ $ 2841 \ 2567 \ 4698 \ 2567 \ 3145 \ 2567 \ 2567 \ 3847 \ 4698 \ 2567 $ $ 2399 \ \alpha = 1.1 $ $ 2841 \ 2567 \ 4698 \ 2567 \ 3145 \ 2567 \ 2567 \ 3847 \ 4698 \ 2567 $ $ 2399 \ \alpha = 1.2 $ $ 2399 \ \alpha = 1.2 $ $ 29961 \ 1.0000 \ 0.9852 \ 1.0000 \ 0.9841 \ 1.0000 \ 0.6184 \ 0.9991 \ 0.9504 \ 1.0000 $	Knee $\beta = 1000 \ p = 10$	1105	1106	3847	1106	1884	1106	1106	1233	4252	1106
$ 2399 \ \alpha = 1.1 $ $ 2399 \ \alpha = 1.2 $ $ 2841 \ 2567 \ 4698 \ 2567 \ 3145 \ 2567 \ 2567 \ 2567 \ 3847 \ 4698 \ 2567 $ $ 2399 \ \alpha = 1.2 $	$2300 \circ -10$	0.9961	1.0000	0.9823	1.0000	0.9841	1.0000	0.6184	0.9991	0.9499	1.0000
$ 2399 \alpha = 1.1 $ $ 2841 2567 4698 2567 3145 2567 2567 3847 4698 2567 $ $ 2399 \alpha = 1.2 $ $ 0.9961 1.0000 0.9852 1.0000 0.9841 1.0000 0.6184 0.9991 0.9504 1.0000 $	$2399 \alpha = 1.0$	2841	2567	4698	2567	3145	2567	2567	3847	4698	2567
$ 2399 \ \alpha = 1 \ 2 $ $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2200 \circ -11$	0.9961	1.0000	0.9823	1.0000	0.9841	1.0000	0.6184	0.9991	0.9499	1.0000
$2399 \alpha = 1.2$	$2399 \alpha = 1.1$	2841	2567	4698	2567	3145	2567	2567	3847	4698	2567
$2535 \times 2567 \times $	$2300 \circ - 1.2$	0.9961	1.0000	0.9852	1.0000	0.9841	1.0000	0.6184	0.9991	0.9504	1.0000
,	$\omega \sigma \sigma \alpha = 1.2$	2841	2567	5189	2567	3145	2567	2567	3847	5189	2567

Table 3: Athome3 Collection: Recall and Effort (italics) for various different stopping criteria.

	Topic (R) – Kaine Collection								
Topic:	Open	Restricted	Record	VA Tech					
# Relevant docs:	(131698)	(14341)	(166118)	(20083)					
$2399 \ \alpha = 1.0$	0.3839	0.6809	0.4550	0.8600					
$2599 \alpha - 1.0$	53412	12652	78361	20402					
$2399 \ \alpha = 1.1$	0.6280	0.7168	0.7940	0.9011					
$2599 \alpha - 1.1$	94894	13846	153054	22473					
$2399 \ \alpha = 1.2$	0.6605	0.7440	0.8801	0.9507					
$2399 \alpha - 1.2$	104421	15259	185276	27256					

Table 4: Kaine Collection: Recall and Effort (italics) for various different stopping criteria.

	Topic (R) – MIMIC II Collection [Part I]										
Topic:	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	
# Relevant docs:	(5881)	(3867)	(15101)	(7826)	(6123)	(5081)	(19182)	(11256)	(8706)	(8741)	
2399 $\alpha = 1.0$	0.7432	0.8474	0.8125	0.6481	0.6335	0.5869	0.9819	0.7980	0.6986	0.7599	
	6981	5730	15258	7704	6326	5730	22473	11397	8499	9374	
$2399 \ \alpha = 1.1$	0.7779	0.8663	0.8643	0.6875	0.6681	0.5869	0.9926	0.8762	0.7864	0.8009	
	7703	6326	16812	8499	6982	5730	24750	13846	10337	10337	
2399 $\alpha = 1.2$	0.8109	0.8836	0.9548	0.7313	0.7013	0.6215	0.9949	0.9087	0.8256	0.8396	
	8498	6982	20403	9374	7704	6326	27255	15258	11397	11397	

Table 5: MIMIC II Collection,part I: Recall and Effort (italics) for various different stopping criteria.

Topic:	C11	C12	C13	C14	C15	C16	C17	C18	C19
# Relevant docs:	(180)	(2579)	(3465)	(2143)	(5143)	(8047)	(11117)	(16827)	(6828)
2399 $\alpha = 1.0$	0.9889	0.6506	0.5328	0.7354	0.9903	0.4710	0.6930	0.6749	0.6328
	2842	4252	4252	4252	7704	6326	10337	13846	6982
2399 $\alpha = 1.1$	0.9889	0.6506	0.5671	0.7354	0.9979	0.5103	0.7784	0.7696	0.6659
	2842	4252	4698	4252	8499	6982	12563	16812	7704
$2399 \ \alpha = 1.2$	0.9889	0.6758	0.5957	0.7485	0.9994	0.5469	0.8239	0.8585	0.6995
$2599 \ \alpha = 1.2$	2842	4698	5189	4698	9374	7704	13846	20403	8499

Table 6: MIMIC II Collection, part II: Recall and Effort (italics) for various different stopping criteria.