kNN at TREC-9

Tom Ault and Yiming Yang

{TOMAULT,YIMING }@CS.CMU.EDU

Language Technologies Institute and Computer Science Department

Newell Simon Hall 3612C, Carnegie Mellon University
Pittsburgh, PA 15213-8213, USA

Abstract

We applied a multi-class k-nearest-neighbor
based text classification algorithm to the adap-
tive and batch filtering problems in the TREC-
9 filtering track. While our systems performed
well in the batch filtering tasks, they did not
perform as well in the adaptive filtering tasks,
in part because we did not have an adequate
mechanism for taking advantage of the rele-
vance feedback information provided by the fil-
tering tasks. Since TREC-9, we have made con-
siderable improvements in our batch filtering
results and discovered some serious problems
with both the T9P and T9U metrics. In this
paper, we discuss these issues and their impact
on our filtering results.

1. Introduction

We participated in the TREC-9 information filtering
track, submitting results for the OHSU and full MeSH
topic sets for the batch and adaptive filtering tasks. We
used a filtering engine based on the multi-class kNN al-
gorithm successfully applied to other text categorization
problems reported in the literature[6, 5]. In adapting
kNN to the TREC-9 filtering tasks, we faced the follow-

ing challenges:

1. Find the optimal per-category decision thresholds,
given that these thresholds vary with the quantity
and quality of the training data.

2. Take advantage of the relevance feedback informa-
tion provided by the TREC filtering tasks.

In our official submissions, we were somewhat successful
in meeting the first challenge, and not at all successful in
meeting the second. As a result, we did well in the batch
filtering tasks, but not as well in the adaptive filtering
ones.

Since TREC-9, we have accomplished the following:

1. Increased the performance of our system for the
batch filtering tasks by improving our threshold cal-

ibration methods and exploring alternative scoring
mechanisms.

2. Discovered problems with the T9U and T9P metrics
used for official evaluation in TREC-9.

3. Developed an effective mechanism for taking advan-
tage of relevance feedback information.

We discuss the first two accomplishments in this pa-
per. Although our new relevance feedback mechanism
is promising, we have just begun to experiment with it,
and so discussion of it is deferred to a future work.

This paper has five sections past the introduction. Sec-
tion 2 describes our filtering system, including the multi-
class kNN classifier and our threshold calibration mech-
anisms; section 3 summarizes our official TREC-9 sub-
missions, while section 4 discusses improvements to our
batch filtering results, and in section 5, we analyze the
problems inherent in the T9P and T9U metrics and sug-
gest an alternative metric for future evaluations. Sec-
tion 6 presents our conclusions and future research goals
for information filtering.

2. System Description
2.1 Multi-class kNN

We used the multi-class kNN algorithm previously ap-
plied by Yang et. al. to the OHSUMED][5] and Reuters
collections[6] for our document filtering experiments. We
chose this version of the algorithm over the single-class
algorithm used in our TDT work because of the large
number of categories in the MeSH topic set. Unlike the
single-class variants, the multi-class kNN algorithm ef-
fectively considers all categories “simultaneously” and is
much more efficient for large topic sets.

Documents are represented using the conventional vec-
tor space model in which each element is a weighted
term corresponding to a token (word) appearing in the
T (title), W (abstract), A (author), and S (source, e.g.
journal) sections of the document. A document is parsed
into a vector of term-weights by breaking the content of
the T, W, A and S sections into tokens!, eliminating stop

! A token is the longest occuring sequence of alphanumeric

words taken from a conventional list, stemming with the
Porter stemmer, and computing term weights using a
variation of the Okapi term-weighting formula[3, 1]:

-

w(t J) = tf(t,d) 1og(0.5 + N — n(t))
) 0.5 4+ 1.5 % %% + tf(t, dj 0.5 4+ n(t) (1)
where

'w(t,ci) is the weight of term ¢ in document ci,

-

tf(t,d) is the within-document frequency of term ¢;
N is the number of documents in the training set;

n(t) is the number of training documents in which ¢
occurs;

len(ci) is the number of tokens in document d after stem-
ming and stop-word removal, e.g. >, stf(t, J}

avg_len is the average number of tokens per document
in the training set, e.g + Zfil len(d;)

The values of N, n(t), and avg_len were computed from the
entire training set, but were not updated as the test set was
processed, because dynamic updating of training set parame-
ters slows down our current, soon-to-be-improved, document
indexing system.

The basic multi-class kNN algorithm has three steps:
1. Index the training set
2. For each document Z to be classified, retrieve its & most-
similar documents from the training set (where & is a

parameter of the algorithm). Call this set Rk(f)

3. For each category C, compute its relevance to Z as:

s(C, @)=

deR, (,0)

sim(d, &) (2)

where Ry(Z,C) is the subset of documents in Rx(Z)
that are relevant to C.

We use the standard cosine-similarity metric to compute
similarity between the training and test documents (e.g.

sim(cf7 Z) = cos(ci: Z) = _dE) f e let

<l)

Nirain be the number of documents in the training set
N, be the number of categories being evaluated over
|v| be the size of the training set vocabulary

v be the average number of words per document

¢ be the average number of categories per document

characters, dashes (“-”), or underscores (“_”) followed by an
optional ’s or ’t digraph)

then step (1) takes O(Nirain®) time and space, step (2) takes

O(N”l"f’l"#) time and no additional space, and step (3) takes
O(Ntrainlogk) + O(kc) time and O(k + N.) space. Note that

these complexities do not include the time it takes to convert
a document to its vector space representation.

There are many ways to transform the scores s(C,Z) for a
particular category-document pair into a YES/NO decision
on whether to assign that document to that category. In this
paper, we consider three methods which have been widely
reported in the text categorization literature, which we call
SCut, RCut and PCut respectively[6]:

e SCut: Assign to each category a threshold ¢(C). Assign
a document # to category C if s(C, %) > t(C). How the
category-specific thresholds ¢(C) are set for the multi-
class kNN algorithm is discussed in section 2.2.

o RCut: For each document # in the evaluation set, sort
its scores s(C,) in descending order and assign the top
R-ranking categories in this list to #, where R > 0 is an
integer parameter of the RCut scoring method.

e PCut: For each category C, sort the scores s(C, Z) for
it in descending order. Assign to C the top Np(C)-
ranked documents Z for that category, where Np(C) =
Naoe x K x P(C), Nao is the number of documents in
the evaluation set, K is a user-specified parameter, and
P(C) is the estimated prior probability of category C.
In this paper, we tested our system on two different ways
to compute P(C):

— Uniform: P(C)=1/N.

— Training Set Relative Frequency:
P(C) = 17\7tra¢n(C)/1Vtmm, where 1’\7t,~m‘n(C) is the
number of documents in the training set assigned
to category C.

When necessary to distinguish the two variants, we call
the former “Uniform PCut” and the latter “Propor-
tional PCut.”

The relative strengths and weaknesses of these three scoring
methods are investigated in a separate paper[7]. Because the
PCut method requires scores to be assigned to all documents
in the evaluation set before decisions about category assign-
ments are made, this method is not suitable for use in the
TREC-9 filtering track, given its constraint that category as-
signment decisions must be made on-line. We present results
for this scoring method only for comparison purposes with
the other two methods, RCut and SCut, both of which can
make category assignment decisions in real-time.

2.2 Parameter Calibration

Before the multi-class kNN algorithm can be used, the value
of k must be set. We used standard m-way cross-validation to
set this value; the OHSUMED-87 training data was split into
m partitions, with documents assigned randomly to each par-
tition. For each cross-validation run, m, of these partitions
formed the training subset and myo(= m — my,) partitions
the validation subset. Partitions were rotated between the
training and validation subsets so that each partition was
used my, times for training and m,. times for validation.
Performance was averaged over all m runs to produce a fi-
nal value used for comparison between different values of k.
In our experiments, we considered k& = 10, 50,100, 200 and
settled on k& = 200.

Setting the values of ¢(C) for the SCut method is a little
more tricky, since these values depend on the number and
diversity of examples for each category in the training set, as
well as many other factors. For our TREC-9 experiments, we
explored four different methods for computing ¢(C'):

1. Through Standard Cross- Validation

Use the same m-way cross-validation procedure used to
set k, and average the per-category optimal thresholds
obtained from each of the m cross-validation runs. If
the ratio of m¢, to my, is large enough, then the train-
ing subset used for each cross-validation run should be
sufficiently representative of the complete training data
that the averaged thresholds will be sufficiently close to
the true optimal values.

2. Through Linear Regression with Respect to Training Set
Size
Perform m-way cross-validation with at least three dif-
ferent ratios of m:, to m. For each category, fit a straight
line using linear regression to the (ratio, optimal thresh-
old) pairs for that category, and use this straight line to
predict the optimal threshold for the full OHSUMED-87
training set. If the thresholds for a category are not suf-
ficiently linear, use the threshold from the largest ratio
as a fallback value.

3. Through Linear Regression with Respect to Number of
Ezamples
Perform m-way cross-validation with at least three dif-
ferent ratios of m;, to m, and record the number of ex-
amples of each category in the training subset for each
cross-validation run. Fit a straight line via linear regres-
sion to the Nrqtios X m data points for each category,
and use the straight line to predict the optimal threshold
for a category as a function of the number of examples
of that category in the complete training set.

4. Through a Modified Leave-One-Out Cross- Validation Al-
gorithm
Perform a variation of leave-one-out cross-validation on
the training data. For each document d in the train-
ing set, use every other document in the training set

-

to assign scores s(C,d) via the multi-class kNN algo-
rithm. Then set the values of ¢(C) to be those which
produce optimal performance over this set of scores.
This method has the advantage of deriving the values
of t(C) from a data set that is as close as possible to the
actual training data.

Only thresholding methods (1) and (2) had been developed
when the official submissions for the TREC-9 filtering track
were due, and hence our official submissions presented in sec-
tion 3 reflect the performance of these two methods. Thresh-
olding methods (3) and (4) were developed after the TREC-9
submission deadline to improve the performance of our batch
filtering systems, and their impact is discussed in section 4.

The values of R for the RCut scoring method and K for the
PCut scoring method can also be set using either method (1)
or method (4). Because of time constraints, we use method
(4) to set these values in this paper, and defer comparison of
the two methods to a later work.

3. Official TREC-9 Submissions

We submitted six runs for the TREC-9 filtering track, four
baseline and two combinationruns. The baseline submissions

(runs CMUCAT1-4 in Table 1) represent our best attempt
at tuning the parameters of our basic system, while the com-
bination runs (CMUCATS and CMUCAT6 in Table 1) are
an attempt to improve performance on the OHSU query set
by using a weighted linear combination of the output of the
multi-class kNN algorithm on two different views of the doc-
uments in the training and evaluation sets, one view in which
the abstracts were left unmodified, and another view in which
the abstracts had been replaced with the definitions of the
MeSH subject headings appearing in the .M section of the
document. All runs used & = 200 and the SCut scoring
method, but none of them, including those submitted for the
adaptive filtering task, made use of relevance feedback in-
formation; only the initial training data was used to filter
documents.

The following summarizes our official results

e Baseline Batch Filtering
Thresholds for the baseline batch filtering runs (CMU-
CAT1 and CMUCAT4) were set using method (2). The
poor performance of the baseline run on the OHSU
queries (CMUCAT4) can be explained by the lack of lin-
earity with training set size of the thresholds for these
categories. Of all 63 categories in this set, only 11 were
sufficiently linear with training set size to predict a good
threshold for the full training set. In contrast, 3790
(77%) of the 4904 MeSH topics were sufficiently linear
with training set size to predict a good threshold. If we
use method (1) with a m¢,:my, ratio of 19:1, TP for
CMUCATH4 leaps to 0.241, which is comparable to the
scores for the other runs.

o Baseline Adaptive Filtering Runs
Thresholds for the adaptive filtering runs (CMUCAT?2,
CMUCATS3, and CMUCATS5) were set using a version
method (1) modified to account for the limited available
training data. This variation always keeps the adap-
tive filtering training documents in the training subset
and rotates the remainder of the OHSUMED-87 data
set through the validation subset.

e Comparison of Baseline Runs

Multi-class kNN performed better on the batch filter-
ing task than on the adaptive filtering one, which is
expected since the former has more training data than
the latter. The algorithm also performed much better
on the MeSH topics than on the OHSU queries. This
may also be because of the larger number of training
documents on average per category for the MeSH topics
than for the OHSU queries for both tasks (an average
of 236.82 documents/topic for MeSH vs. 50.87 docu-
ments/topic for OHSU for the batch filtering task, and
4 documents/topic for MeSH vs. 2 documents/topic for
OHSU for the adaptive filtering task).

o Combination Runs Combining scores from classifying
different views of a document seems to improve perfor-
mance by 1-2% in T9P over the corresponding baseline
run (when appropriate thresholding is used).

4. Improved Batch Filtering Performance

4.1 Improved Threshold Calibration For SCut

Increases in the performance of our batch filtering meth-
ods come from the development of improved threshold cal-
ibration methods for the SCut method and the applica-
tion of alternative transformations (RCut and PCut) from

Table 1: Official Submissions by CMU-CAT for the TREC-9 Filtering Track

Topic Use .M Single or

Run ID Task Set Field? Combination? TIP
CMUCATI1 Batch MeSH No Single 0.436
CMUCAT1* Batch MeSH-SMP No Single 0.443
CMUCAT?2 | Adaptive MeSH No Single 0.303
CMUCAT?2* | Adaptive | MeSH-SMP No Single 0.304
CMUCAT3 | Adaptive OHSU No Single 0.213
CMUCAT4 Batch OHSU No Single 0.100
CMUCAT5 | Adaptive OHSU Yes Combination 0.224
CMUCATS6 Batch OHSU Yes Combination 0.261
*The CMUCATI and CMUCAT?2 runs were used for both the full and

“sampled” MeSH topic sets; the CMU-CAT group did not have separate

submissions for these two topic sets.

2.5

Optimal threshold

6 8 10 12 14 16 18
Number of examples of OHSUAO in training set

Figure 1. Optimal threshold vs. number of examples in train-
ing set for OHSU40

document-category pairs scores to assignment decisions for
that category. Figure 1 shows the motivation for thresh-
old calibration method (3). Most, but not all, categories
from both the OHSU and MeSH topic sets have optimal
thresholds which are linear with the number of examples
of that category in the training set. We can use the
(number of examples, optimal threshold) pairs gathered from
different cross-validation runs to build a linear predictor of
the optimal threshold for a category given the number of ex-
amples of it currently in the training set.

Threshold calibration method (4) was motivated by the ob-
servation that the larger the ratio of m;, to m,, used for
threshold calibration method (1), the better the thresholds
predicted by this method. If we want to classify a docu-
ment in the training set, the most representative subset of
the training data we can use consists of every document in
the training set except the one being classified. After scoring
every document in the training set in this fashion, we can set
the per-category thresholds to be those which yield optimal
performance on these scores.

Sometimes this method computes very low thresholds that
perform very poorly on both the training and test data. This
typically occurs for categories that have few representative
examples in the training set, and thus those examples are
assigned low scores during the training set self-evaluation.
However, since any non-zero T9P, no matter how small, is
better than than a zero T9P, method (4) will set the “op-
timal” threshold for any such category to the score of its
highest-ranked positive example, even though that threshold
will recall far too many false-alarms when applied to the test

data.

To compensate for this behavior, we have added fallback val-
ues to threshold calibration method (4). If the performance
of the “optimal” threshold computed by method (4) for a
category over its set of scores falls below a specified value,
then we use the score of the Nyp-th ranked document for
that category as its threshold instead. How Ny is computed
depends on the fallback method chosen. We examined three
fallback methods in our post-TREC-9 filtering work: FBR,
FBP and FBPcut.

1. FBR: Nyu(C) = y, where y is a constant rank specified
by the user for all categories. If y exceeds the number
of documents with scores for a category, the score of the
lowest-ranked document is used. This method is also
called “fallback to constant rank.”

2. FBP: N§u(C) = p* Naoc(C), where Ngoc(C) is the num-
ber of documents in the training set with scores for cat-
egory C and p is a proportion between 0 and 1 assigned
by the user. This method is also called “fallback to pro-
portional rank.”

3. FBPCut: N§(C) = K # Ngoc * P(C) (e.g. the same
forumula used for the PCut scoring method)7 where Ngoe
is the number of documents in the training set, X is a
nonnegative user-specified constant, and P(C) is one of
the two distributions (uniform or proportional) used by
the PCut method in section 2.1. This method is also
called “PCut fallback.”

Table 2 shows the potential gains possible from adding fall-
backs to method (4). For both topic sets, FBPcut and FBR
made similar gains in performance while FBP showed no im-
provement over the no fallback condition. Note that the pa-
rameters are the ones that produce optimal performance on
the test data rather than the training data, and thus repre-
sent potential rather than actual gains. The parameters for
FBP, FBR and FBPCut are sensitive to overfitting, and we
are exploring effective ways to set them from the training
data.

4.2 Alternative scoring methods RCut and
PCut

Until recently, we believed that SCut was the top-performing
scoring method regardless of the corpus or evaluation con-
ditions. Recent work by Yang[7] has shown that this is not

Table 2: Comparison of Different Fallback Methods

Topic Optimal
Method Set Parameter(s) TIP
FBP OHSU p= 0.05 0.278
FBR OHSU y= 10 0.313
FBPCut | OHSU P=1.1 0.305
FBP MeSH p= 0.05 0.462
FBR MeSH y= 10 0.475
FBPCut | MeSH | P= 4,TrainRF 0.474

true. Of the three common scoring methods (PCut, RCut
and SCut), which one is better varies with the corpus and
the desired ability to make trade-offs between recall and pre-
cision. Consequently, we applied the RCut and PCut scoring
methods to our TREC-9 batch filtering results to see if they
would produce better results than SCut. The results are
shown in Table 3.

4.3 Analysis

Except for RCut, all of the methods we explored in this sec-
tion outperformed SCut with threshold calibration method
(2), which we used for our official batch filtering submissions.
RCut performed poorly because of its inability fine-tune the
number of assignments made by the system, forcing it to
draw too many false-alarms or not enough correct documents.
PCut performed extrordinarily well, outperforming our best
SCut thresholding strategy (method 4) by 7% for the OHSU
queries!? Unfortunately, as mentioned in section 2.1, PCut
cannot be used to make real-time assignments.

For the OHSU queries, threshold calibration methods (3) and
(4) give equal performance, even though they use very dif-
ferent means to compute the set of optimal thresholds. This
suggests that we have found the best possible thresholds from
the training data for categories with good performance, and
we need to concentrate our efforts on low-performing cate-
gories. The improvements in T9P from using fallback thresh-
olds with method (4) support this claim. On the other hand,
there is slight but significant improvement between methods
(3) and (4) for the MeSH categories, suggesting that further
improvement in threshold optimization is possible even for
well-performing categories in this topic set.

5. Problems with T9P and T9U

Systems participating in the TREC-9 filtering track were
evaluated by one or both of two measures, TP or T9U, which
are defined for a category as:

A
TopP = maz(A+ B, a) 3)

79U = maz(2A — B, minU) (4)

where

A is the number of relevant documents assigned to that
category

2A program bug discovered at the last minute prevented
us from evaluating the MeSH topic set using the PCut
method.

B is the number of false-alarms for that category

« 1s a constant parameter indicating the desired number
of documents to be retrieved for that category. Systems
which retrieve less than o documents for the category
are penalized by having the remanining o — (A + B)
documents considered to be false-alarms.

minU 1s a constant parameter representing the mini-
mum value of the T9U measure. This is to keep large
negative utility scores from dominating the system-wide
average of T9U.

For TREC-9, o was fixed at 50 for all categories, and minU
was fixed at -100 for all categories in the OHSU query set
and at -400 for all categories in the MeSH topic set. The
overall value of T9P or T9U for a filtering system is the un-
weighted average of its T9P or T9U values for the individual
categories (also known as the macro-average of T9P or TOU
in the information retrieval literature).

Both T9P and T9U can be rewritten in terms of the num-
ber of relevant documents for the category (Ny), and the
widely-known information retrieval metrics recall® (r) and
precision® (p):

if r >= 1\?__,_17

TP = {p (5)

Ny oo .
—tr 1fr<N+p

B 1 .)
ToU — {mm(f\+r(3 5);minlU) if p >0 (©)

Some value in [minlU,0) ifp=0

(Note that if p =0, A =0 and the value of B becomes unre-
coverable; hence, in this case, T9U will have some negative
value not directly computable from r, p and Ny)

5.1 T9P

Several problems with T9P are immediately visible from an
examination of equation 5 and the isocurves of T9P plotted
in figures 2 through 4 for < Ny, a = Ny and a > Ni
respectively. Specifically:

e In spite of its name, T9P actually measures recall if
r < x-p, and thus the macro-average of TP is ac-

tually a mix of recall and precision values, depending

Recall is defined for a category as the ratio of relevant
documents assigned to the category to the number of relevant
documents for that category, e.g. A/Ny.

*Precision is defined for a category as the ratio of relevant
documents assigned to the category to the total number of
documents assigned to that category, e.g. A/(A+ B)

Table 3: Improved Batch Filtering Results for TREC-9

Offical | Method (3) | Method (4) PCut
Topic Set | TIP TIP TIP RCut Priors TIP
OHSU 0.100 0.277 0.278 0.013 | Training | 0.348
MeSH 0.436 0.441 0.463 0.292 | Training *

*An unfortunate program bug that kept us from evaluating the MeS

topics

was discovered the night the paper was due.

on where the operating point of each category lies in
recall-precision space!

e The isocurves of T9P impose a harsh tradeoff between
recall and precision. When the operating point lies
above the line r = -p, only improvements in preci-

sion will be of any benefit. When below this line, only
improvements in recall will have any effect.

e From figure 2, if o < N4, then T9P imposes an effective

maximum recall of 2% Increasing recall past this point
will be of no benefit to the system.

o Likewise, from figure 4, if & > Ny, then T9P imposes
an effective maximum precision of A;—"' Furthermore,
this value is also the maximum value of T9P for the
category, and so the macro-average T9P of a perfect fil-
tering system over a set that includes categories with
this property will not be 1.0, but some value possibly
much less. For example, the full MeSH topic set has a
maximum macro-average T9P of 0.99, but the OHSU
query set has a maximum of 0.73! This has strong im-
plications for comparisons of macro-average T9P across
topic sets.

e The properties of T9P are heavily dependent on the
number of relevant documents for a category and thus
are not consistent from category to category. This makes
the macro-average of T9P an especially confusing and
counter-intuitive metric.

Most of the problems with T9P come from the harsh, discon-
tinuous trade-off between recall and precision that occurs at
the line r = J\?—_'_p. A metric with a smoother trade-off would

not have these problems. While the other metric used for
TREC-9, T9U does have a smooth trade-off between recall
and precision, it has other problems, which we discuss in the
next section.

5.2 T9U

Figure 5 shows the isocurves for the T9U metric. Almost im-
mediately, one can see that T9U is a better metric than T9P
because its isocurves have a smooth continuous trade-off be-
tween recall and precision. Nor does T9U become insenstive
to changes in recall or precision except in two regions:

e When p= 1/3, T9U becomes insensitive to changes in
recall because for every correct document assigned, two
false-alarms are also assigned.

minU §2
vy) (557)
(if minU < 0) or in the region on or below that curve
(if minU > 0), T9U = minU regardless of the value of

recall or precision.

o In the region on or above the curve r = (

However, T9U is not without its problems, most of which are
discussed in the final report for the TREC-8 filtering track[2]
and summarized here:

¢ The minimum value of T9U (minU) is arbitrary
value reflecting a particular user’s tolerance of poor-
performance by the system.

e The maximum value of T9U depends on N4, the num-
ber of relevant documents for a topic, which presents a
problem for macro-averaging across topics, since topics
with many relevant documents will dominate the aver-
age. While T9U could be scaled to fall within the same
range for all topics, such scaling has problems of its own,
which are discussed in [2].

o In the region where T9U is negative (p < 1/3), an in-
crease in recall actually results in a decrease in T9U,
making it possible for one system to have a higher T9U
than a second system which has higher recall and preci-
sion.

o A system which recalls no relevant documents (or any
documents at all) may have a higher TOU than a sys-
tem that recalls a few correct documents and many false-
alarms. However, if we assume that the user ignores any
category for which too many false-alarms are returned,
then a system which returns a few relevant documents
among many irrelevant documents, a system which re-
turns no relevant documents, and a system which re-
turns no documents at all are equally “useful” to the
user, and T9U should reflect this with an equal value
for for all three systems.

While one might attempt to avoid the problems with T9U by
setting minU = 0 and thus avoiding the entire region of nega-
tive utility where most of the problems occur, this would have
the undesirable side-effect of obscuring large performance dif-
ferences between systems. What is needed is a metric which
has the same smooth trade-off between recall and precision
in its isocurves that T9U has, but without the undesirable
behavior exhibited by T9U when it becomes negative. We
examine such a metric in the next section.

5.3 A Proposed Alternative To T9P and T9U

Figure 6 shows the isocurves for van Rijsbergen’s Fjg-measure
[4]
(8% + 1)pr
Bp+r
with 8 = 1. Like T9U, Fjg’s isocurves have a smooth, contin-

uous trade-off between recall and precision. However, Fs has
several nice properties not found in T9P or T9U, specifically:

g =

e Fz exhibits its smooth, continuous trade off throughout
the entire recall-precision space, never becoming com-
pletely insensitive to changes in recall or precision.

Recall

Recall

Recall

0.9

o8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

o8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

o8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Nl
!
L - o@®
T9P=0.50
[T9P=0.30
[T9P=0.10
o O‘.l O‘.Z 013 0‘.4 0.5 O.‘G O.‘7 0‘8 O.‘9 :‘l
Precision

Figure 2. Tsocurves of T9P for alpha/Ny < 1

L T9P=0.80

TO9P=0.50

T9P=0.30

TOP=0.10

o 0.1 0.2 0.3 0.4

T
I

0.5 0.6 0.7 0.8 0.9 1
Precision

Figure 3. Isocurves of T9P for alpha/Ny =1

TOP=0.50

T9P=0.40

T9P=0.30

T9P=0.20

,0(%/7

T9P=0.10

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

Figure 4. Isocurves of T9P for alpha/Ny > 1

By adjusting the value of 3, one can adjust the recall-
precision trade-off of the isocurves to favor recall (8 > 1)
or precision (8 < 1). Moreover, this trade- off will be
the same for all categories, regardless of the number of
relevant documents or other category-dependent prop-
erties.

Expanding on the above item, the range and interpreta-
tion of Fj3 have no category-dependent properties, and
thus there are no problems in interpreting its macro-
average value.

In contrast to TOU, systems which return no documents
and systems which return only irrelevant documents
both have the minimum Fjs of zero.

Fs with 8 = 1 is a commonly used metric in informa-
tion retrieval research, and thus the use of the Fs mea-
sure would make the results of the TREC filtering tracks
more comparable to other published results in the infor-
mation retrieval literature.

o9

o8

0.7

o6

=
Qo5 *)
& g /&
s 5
0.4 ul Z) 9/ =
>/ =/ 7 =
S/ T u/) &
0z a9 S
F 4/ 5 <
A=A
4
oz} =
0.1 o
o ‘ ‘ ‘ ‘ ‘
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision
Figure 5. Isocurves of T9U
.
0.9~
sl
o7l
0.6~
s
Qosr
o

0.4

Fbeta= 0 50

0.3

0.2

o1 Fbeta= 0.10

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision

Figure 6. Isocurves of Fjg with 8 =1

6. Conclusions and Future Work

We have made considerable progress towards applying the
multi-class kNN algorithm to the TREC batch and adap-
tive filtering tasks. We have developed improved threshold-
ing methods and a promising relevance feedback mechanism.
We have also discovered serious problems with the T9P and
T9U metrics, and proposed the use of the Fperq metric in-
stead. Our efforts in the coming year will focus on explor-
ing the properties of our new relevance feedback mechanism
and discovering new ways to tune paramters for our fallback

thresholds.

References

[1] M. Franz and S. Rouikos. Trec-6 ad-hoc retrieval. In Pro-
ceedings of the Sizth Text REtrieval Conference (TREC-
6), 1994.

[2] David A. Hull and Stephen Robertson. The trec-8 filter-

ing track final report. In D.K. Harmon, editor, Proceed-

ings of the Eighth Text REtrieval Conference (TREC-8),

1999.

S. E. Robertson, S. Walker, S. Jones, M.M. Hancock-
Beaulieu, and M. Gatford. Okapi at trec-3. In D.K.
Harmon, editor, Proceedings of the Third Text RFEtricval
Conference (TREC-3), 1994.

Butter-

C.J. van Rijsbergen. Information Retrieval.

worths, London, 1979.

Y. Yang. An evaluation of statistical approach to text cat-
egorization. In Technical Report CMU-CS-97-127, Com-
puter Science Department, Carnegie Mellon University,
1997.

[6] Y. Yang. An evaluation of statistical approaches to
text categorization. Journal of Information Retrieval,
1(1/2):67-88, 1999.

[7] Yiming Yang. A study on thresholding strategies for text
categorization. In The Twenty-Fourth Annual Interna-
tional ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR’01), New York,
(submitted). The Association for Computing Machinery.

