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Abstract
In this paper we present QE, an open source framework for machine translation qual-

ity estimation. The framework includes a feature extraction component and a machine learn-
ing component. We describe the architecture of the system and its use, focusing on the fea-
ture extraction component and on how to add new feature extractors. We also include exper-
iments with features and learning algorithms available in the framework using the dataset of
the WMT13 Quality Estimation shared task.

1. Introduction

Quality Estimation (QE) is aimed at predicting a quality score for a machine trans-
lated segment, in our case, a sentence. The general approach is to extract a number of
features from source and target sentences, and possibly external resources and infor-
mation from the Machine Translation (MT) system for a dataset labelled for quality,
and use standard machine learning algorithms to build a model that can be applied
to any number of unseen translations. Given its independence from reference trans-
lations, QE has a number of applications, for example filtering out low quality trans-
lations from human post-editing.

Most of current research focuses on designing feature extractors to capture differ-
ent aspects of quality that are relevant to a given task or application. While simple
features such as counts of tokens and language model scores can be easily extracted,
feature engineering for more advanced information can be very labour-intensive. Dif-
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ferent language pairs or optimisation against specific quality scores (e.g., post-editing
time versus translation adequacy) can benefit from different feature sets.

QE is a framework for quality estimation that provides a wide range of feature
extractors from source and translation texts and external resources and tools (Sec-
tion 2). These range from simple, language-independent features, to advanced, lin-
guistically motivated features. They include features that rely on information from the
MT system that generated the translations, and features that are oblivious to the way
translations were produced, and also features that only consider the source and/or
target sides of the dataset (Section 2.1). QE also incorporates wrappers for a well-
known machine learning toolkit, scikit-learn1 and for additional algorithms (Sec-
tion 2.2).

This paper is aimed at both users interested in experimenting with existing fea-
tures and algorithms and developers interested in extending the framework to incor-
porate new features (Section 3). For the former, QE provides a practical platform
for quality estimation, freeing researchers from feature engineering, and facilitating
work on the learning aspect of the problem, and on ways of using quality predictions
in novel extrinsic tasks, such as self-training of statistical machine translation systems.
For the latter, QE provides the infrastructure and the basis for the creation of new
features, which may also reuse resources or pre-processing techniques already avail-
able in the framework, such as syntactic parsers, and which can be quickly bench-
marked against existing features.

2. Overview of the QE Framework

QE consists of two main modules: a feature extraction module and a machine
learning module. It is a collaborative project, with contributions from a number of
researchers.2 The first module provides a number of feature extractors, including
the most commonly used features in the literature and by systems submitted to the
WMT12–13 shared tasks on QE (Callison-Burch et al., 2012; Bojar et al., 2013). It is
implemented in Java and provides abstract classes for features, resources and pre-
processing steps so that extractors for new features can be easily added.

The basic functioning of the feature extraction module requires a pair of raw text
files with the source and translation sentences aligned at the sentence-level. Addi-
tional resources such as the source MT training corpus and language models of source
and target languages are necessary for certain features. Configuration files are used
to indicate the resources available and a list of features that should be extracted. It
produces a CSV file with all feature values.

The machine learning module provides scripts connecting the feature file(s) with
the scikit-learn toolkit. It also uses GPy, a Python toolkit for Gaussian Processes
regression, which showed good performance in previous work (Shah et al., 2013).

1http://scikit-learn.org/
2See http://www.quest.dcs.shef.ac.uk/ for a list of collaborators.
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Figure 1: Families of features in QE.

2.1. Feature Sets

In Figure 1 we show the families of features that can be extracted in QE. Al-
though the text unit for which features are extracted can be of any length, most fea-
tures are more suitable for sentences. Therefore, a “segment” here denotes a sentence.
Most of these features have been designed with Statistical MT (SMT) systems in mind,
although many do not explore any internal information from the actual SMT system.
Further work needs to be done to test these features for rule-based and other types of
MT systems, and to design features that might be more appropriate for those.

From the source segments QE can extract features that attempt to quantify the
complexity or translatability of those segments, or how unexpected they are given
what is known to the MT system. From the comparison between the source and target
segments, QE can extract adequacy features, which attempt to measure whether
the structure and meaning of the source are preserved in the translation. Informa-
tion from the SMT system used to produce the translations can provide an indication
of the confidence of the MT system in the translations. They are called “glass-box”
features (GB) to distinguish them from MT system-independent, “black-box” features
(BB). To extract these features, QE assumes the output of Moses-like SMT systems,
taking into account word- and phrase-alignment information, a dump of the decoder’s
standard output (search graph information), global model score and feature values,
n-best lists, etc. For other SMT systems, it can also take an XML file with relevant
information. From the translated segments QE can extract features that attempt to
measure the fluency of such translations.

The most recent version of the framework includes a number of previously under-
explored features that can rely on only the source (or target) side of the segments and
on the source (or target) side of the parallel corpus used to train the SMT system.
Information retrieval (IR) features measure the closeness of the QE source sentences
and their translations to the parallel training data available to predict the difficulty of
translating each sentence. These have been shown to work very well in recent work
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(Biçici et al., 2013; Biçici, 2013). We use Lucene3 to index the parallel training corpora
and obtain a retrieval similarity score based on tf-idf. For each source sentence and
its translation, we retrieve top 5 distinct training instances and calculate the following
features:

• IR score for each training instance retrieved for the source sentence or its trans-
lation

• BLEU (Papineni et al., 2002) and F1 (Biçici, 2011) scores over source or target
sentences

• LIX readability score4 for source and target sentences
• The average number of characters in source and target words and their ratios.
In Section 4 we provide experiments with these new features.
The complete list of features available is given as part of QE’s documentation.

At the current stage, the number of BB features varies from 80 to 143 depending on
the language pair, while GB features go from 39 to 48 depending on the SMT system.

2.2. Machine Learning

QE provides a command-line interface module for the scikit-learn library
implemented in Python. This module is completely independent from the feature
extraction code. It reads the extracted feature sets to build and test QE models. The
dependencies are the scikit-learn library and all its dependencies (such as NumPy
and SciPy). The module can be configured to run different regression and classi-
fication algorithms, feature selection methods and grid search for hyper-parameter
optimisation.

The pipeline with feature selection and hyper-parameter optimisation can be set
using a configuration file. Currently, the module has an interface for Support Vector
Regression (SVR), Support Vector Classification, and Lasso learning algorithms. They
can be used in conjunction with the feature selection algorithms (Randomised Lasso
and Randomised decision trees) and the grid search implementation of scikit-learn
to fit an optimal model of a given dataset.

Additionally, QE includes Gaussian Process (GP) regression (Rasmussen and
Williams, 2006) using the GPy toolkit.5 GPs are an advanced machine learning frame-
work incorporating Bayesian non-parametrics and kernel machines, and are widely
regarded as state of the art for regression. Empirically we found its performance to
be similar or superior to that of SVR for most datasets. In contrast to SVR, inference
in GP regression can be expressed analytically and the model hyper-parameters opti-
mised using gradient ascent, thus avoiding the need for costly grid search. This also
makes the method very suitable for feature selection.

3lucene.apache.org
4http://en.wikipedia.org/wiki/LIX
5https://github.com/SheffieldML/GPy
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3. Design and Implementation

3.1. Source Code

We made available three versions of the code, all available from http://www.
quest.dcs.shef.ac.uk:

• An installation script that will download the stable version of the source code, a
built up version (jar), and all necessary pre-processing resources/tools (parsers,
etc.).

• A stable version of the above source code only (no linguistic processors).
• A vanilla version of the source code which is easier to run (and re-build), as it

relies on fewer pre-processing resources/tools. Toy resources for en-es are also
included in this version. It only extracts up to 50 features.

In addition, the latest development version of the code can be accessed on GitHub.6

3.2. Setting Up

Once downloaded, the folder with the code contains all files required for running
or building the application. It contains the following folders and resources:

• src: java source files
• lib: jar files, including the external jars required by QE
• dist: javadoc documentation
• lang-resources: example of language resources required to extract features
• config: configuration files
• input: example of input training files (source and target sentences, plus quality

labels)
• output: example of extracted feature values

3.3. The Feature Extractor

The class that performs feature extraction is shef.mt.FeatureExtractor. It han-
dles the extraction of glass-box and/or black-box features from a pair of source-target
input files and a set of additional resources specified as input parameters. Whilst the
command line parameters relate to the current set of input files, FeatureExtractor
also relies on a set of project-specific parameters, such as the location of resources.
These are defined in a configuration file in which resources are listed as pairs of
key=value entries. By default, if no configuration file is specified in the input, the
application will search for a default config.properties file in the current working
folder (i.e., the folder where the application is launched from). This default file is
provided with the distribution.

Another input parameter required is the XML feature configuration file, which
gives the identifiers of the features that should be extracted by the system. Unless

6https://github.com/lspecia/quest
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a feature is present in this feature configuration file it will not be extracted by the
system. Examples of such files for all features, black-box, glass-box, and a subset of
17 “baseline” features are provided with the distribution.

3.4. Running the Feature Extractor

The following command triggers the features extractor:
FeatureExtractor -input <source file> <target file> -lang
<source language> <target language> -config <configuration file>
-mode [gb|bb|all] -gb [list of GB resources]

where the arguments are:
• -input <source file> <target file> (required): the input source and target

text files with sentences to extract features from
• -lang <source language> <target language>: source and target languages

of the files above
• -config <configuration file>: file with the paths to the input/output, XML-

feature files, tools/scripts and language resources
• -mode <gb|bb|all>: a choice between glass-box, black-box or both types of fea-

tures
• -gb [list of files]: input files required for computing the glass-box features.

The options depend on the MT system used. For Moses, three files are required:
a file with the n-best list for each target sentence, a file with a verbose output of
the decoder (for phrase segmentation, model scores, etc.), and a file with search
graph information.

3.5. Packages and Classes

Here we list the important packages and classes. We refer the reader to QE
documentation for a comprehensive list of modules.

• shef.mt.enes: This package contains the main feature extractor classes.
• shef.mt.features.impl.bb: This package contains the implementations of

black-box features.
• shef.mt.features.impl.gb: This package contains the implementations of

glass-box features.
• shef.mt.features.util: This package contains various utilities to handle in-

formation in a sentence and/or phrase.
• shef.mt.tools: This package contains wrappers for various pre-processing

tools and Processor classes for interpreting the output of the tools.
• shef.mt.tools.stf: This package contains classes that provide access to the

Stanford parser output.
• shef.mt.util: This package contains a set of utility classes that are used

throughout the project, as well as some independent scripts used for various
data preparation tasks.
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• shef.mt.xmlwrap: This package contains XML wrappers to process the output
of SMT systems for glass-box features.

The most important classes are as follows:
• FeatureExtractor: FeatureExtractor extracts glass-box and/or black-box fea-

tures from a pair of source-target input files and a set of additional resources
specified as input parameters.

• Feature: Feature is an abstract class which models a feature. Typically, a Fea-
ture consist of a value, a procedure for calculating the value and a set of depen-
dencies, i.e., resources that need to be available in order to be able to compute
the feature value.

• FeatureXXXX: These classes extend Feature and to provide their own method
for computing a specific feature.

• Sentence: Models a sentence as a span of text containing multiple types of in-
formation produced by pre-processing tools, and direct access to the sentence
tokens, n-grams, phrases. It also allows any tool to add information related to
the sentence via the setValue() method.

• MTOutputProcessor: Receives as input an XML file containing sentences and
lists of translation with various attributes and reads it into Sentence objects.

• ResourceProcessor: Abstract class that is the basis for all classes that process
output files from pre-processing tools.

• Pipeline: Abstract class that sets the basis for handling the registration of the
existing ResourceProcessors and defines their order.

• ResourceManager: This class contains information about resources for a partic-
ular feature.

• LanguageModel: LanguageModel stores information about the content of a lan-
guage model file. It provides access to information such as the frequency of
n-grams, and the cut-off points for various n-gram frequencies necessary for
certain features.

• Tokenizer: A wrapper around the Moses tokenizer.

3.6. Developer’s Guide

A hierarchy of a few of the most important classes is shown in Figure 2. There are
two principles that underpin the design choice:

• pre-processing must be separated from the computation of features, and
• feature implementation must be modular in the sense that one is able to add

features without having to modify other parts of the code.
A typical application will contain a set of tools or resources (for pre-processing),

with associated classes for processing the output of these tools. A Resource is usually
a wrapper around an external process (such as a part-of-speech tagger or parser), but
it can also be a brand new fully implemented pre-processing tool. The only require-
ment for a tool is to extend the abstract class shef.mt.tools.Resource. The imple-
mentation of a tool/resource wrapper depends on the specific requirements of that
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particular tool and on the developer’s preferences. Typically, it will take as input a file
and a path to the external process it needs to run, as well as any additional parameters
the external process requires, it will call the external process, capture its output and
write it to a file.

The interpretation of the tool’s output is delegated to a subclass of
shef.mt.tools.ResourceProcessor associated with that particular Resource.
A ResourceProcessor typically:

• Contains a function that initialises the associated Resource. As each Resource
may require a different set of parameters upon initialisation, ResourceProces-
sor handles this by passing the necessary parameters from the configuration file
to the respective function of the Resource.

• Registers itself with the ResourceManager in order to signal the fact that it
has successfully managed to initialise itself and it can pass information to be
used by features. This registration should be done by calling ResourceMan-
ager.registerResource(String resourceName). resourceName is an arbitrary
string, unique among all other Resources. If a feature requires this particular
Resource for its computation, it needs to specify it as a requirement (see Sec-
tion 3.7).

• Reads in the output of a Resource sentence by sentence, retrieves some informa-
tion related to that sentence and stores it in a Sentence object. The processing of
a sentence is done in the processNextSentence(Sentence sentence) function
which all ResourceProcessor-derived classes must implement. The informa-
tion it retrieves depends on the requirements of the application. For example,
shef.mt.tools.POSProcessor, which analyses the output of the TreeTagger, re-
trieves the number of nouns, verbs, pronouns and content words, since these
are required by certain currently implemented features, but it can be easily ex-
tended to retrieve, for example, adjectives, or full lists of nouns instead of counts.

A Sentence is an intermediate object that is, on the one hand, used by Resour-
ceProcessor to store information and, on the other hand, by Feature to access this
information. The implementation of the Sentence class already contains access meth-
ods to some of the most commonly used sentence features, such as the text it spans,
its tokens, its n-grams, its phrases and its n-best translations (for glass-box features).
For a full list of fields and methods, see the associated javadoc. Any other sentence
information is stored in a HashMap with keys of type String and values of generic
type Object. A pre-processing tool can store any value in the HashMap by calling set-
Value(String key, Object value) on the currently processed Sentence object. This
allows tools to store both simple values (integer, float) as well as more complex ones
(for example, the ResourceProcessor).

A Pipeline defines the order in which processors will be initialised and run. They
are defined in the shef.mt.pipelines package. They allow more flexibility for the
execution of pre-processors, when there are dependencies between each other. At
the moment QE offers a default pipeline which contains the tools required for the
“vanilla” version of the code and new FeatureExtractors have to register there. A
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more convenient solution would be a dynamic pipeline which automatically identifies
the processors required by the enabled features and then initialises and runs only
them. This functionality is currently under development in QE.

3.7. Adding a New Feature

In order to add a new feature, one has to implement a class that extends
shef.mt.features.impl.Feature. A Feature will typically have an index and a
description which should be set in the constructor. The description is optional,
whilst the index is used in selecting and ordering the features at runtime, there-
fore it should be set. The only function a new Feature class has to implement is
run(Sentence source, Sentence target). This will perform some computation
over the source and/or target sentence and set the return value of the feature by call-
ing setValue(float value). If the computation of the feature value relies on some
pre-processing tools or resources, the constructor can add these resources or tools in
order to ensure that the feature will not run if the required files are not present. This is
done by a call to addResource(String resource_name), where resource_name has to
match the name of the resource registered by the particular tool this feature depends
on.

4. Benchmarking

In this section we briefly benchmark QE using the dataset of the main WMT13
shared task on QE (subtask 1.1) using all our features, and in particular the new
source-based and IR features. The dataset contains English-Spanish sentence trans-
lations produced by an SMT system and judged for post-editing effort in [0,1] using
TERp,7 computed against a human post-edited version of the translations (i.e. HTER).
2, 254 sentences were used for training, while 500 were used for testing.

As learning algorithm we use SVR with radial basis function (RBF) kernel, which
has been shown to perform very well in this task (Callison-Burch et al., 2012). The
optimisation of parameters is done with grid search based on pre-set ranges of values
as given in the code distribution.

For feature selection, we use Gaussian Processes. Feature selection with Gaus-
sian Processes is done by fitting per-feature RBF widths. The RBF width denotes the
importance of a feature, the narrower the RBF the more important a change in the
feature value is to the model prediction. To avoid the need of a development set to
optimise the number of selected features, we select the 17 top-ranked features (as in
our baseline system) and then train a model with these features.

For given dataset we build the following systems with different feature sets:
• BL: 17 baseline features that have been shown to perform well across languages

in previous work and were used as a baseline in the WMT12 QE task

7http://www.umiacs.umd.edu/~snover/terp/
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(a) The Feature class

(b) A particular feature extends the
Feature class and is associated with
the Sentence class

(c) An abstract Resource class acts as a wrapper for external processes

(d) ResourceProcessor reads the output of a tool and stores it in a Sentence object

Figure 2: Class hierarchy for most important classes.
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• AF: All features available from the latest stable version of QE, either black-
box (BB) or glass-box (GB)

• IR: IR-related features recently integrated into QE (Section 2.1)
• AF+IR: All features available as above, plus recently added IR-related features
• FS: Feature selection for automatic ranking and selection of top features from

all of the above with Gaussian Processes.
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are used to

evaluate the models. The error scores for all feature sets are reported in Table 1. Bold-
faced figures are significantly better than all others (paired t-test with p ≤ 0.05).

Feature type System #feats. MAE RMSE

BB

Baseline 17 14.32 18.02
IR 35 14.57 18.29
AF 108 14.07 18.13

AF+IR 143 13.52 17.74
FS 17 12.61 15.84

GB AF 48 17.03 20.13
FS 17 16.57 19.14

BB+GB   AF 191 14.03 19.03
FS 17 12.51 15.64

Table 1: Results with various feature sets.

Adding more BB features (systems AF) improves the results in most cases as com-
pared to the baseline systems BL, however, in some cases the improvements are not
significant. This behaviour is to be expected as adding more features may bring more
relevant information, but at the same time it makes the representation more sparse
and the learning prone to overfitting. Feature selection was limited to selecting the
top 17 features for comparison with our baseline feature set. It is interesting to note
that system FS outperformed the other systems in spite of using fewer features.

GB features on their own perform worse than BB features but the combination of
GB and BB followed by feature selection resulted in lower errors than BB features only,
showing that the two features sets can be complementary, although in most cases BB
features suffice. These are in line with the results reported in (Specia et al., 2013; Shah
et al., 2013). A system submitted to the WMT13 QE shared task using QE with
similar settings was the top performing submission for Task 1.1 (Beck et al., 2013).

5. Remarks

The source code for the framework, the datasets and extra resources can be down-
loaded from http://www.quest.dcs.shef.ac.uk/. The project is also set to receive
contribution from interested researchers using a GitHub repository. The license for
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the Java code, Python and shell scripts is BSD, a permissive license with no restrictions
on the use or extensions of the software for any purposes, including commercial. For
pre-existing code and resources, e.g., scikit-learn, GPy and Berkeley parser, their
licenses apply, but features relying on these resources can be easily discarded if nec-
essary.
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