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Abstract
In this paper we describe the use of QE, a framework that aims to obtain predictions on

the quality of translations, to improve the performance of machine translation (MT) systems
without changing their internal functioning. We apply QE to experiments with:

i. multiple system translation ranking, where translations produced by different MT sys-
tems are ranked according to their estimated quality, leading to gains of up to 2.72 BLEU,
3.66 BLEUs, and 2.17 F1 points;

ii. n-best list re-ranking, where n-best list translations produced by an MT system are re-
ranked based on predicted quality scores to get the best translation ranked top, which
lead to improvements on sentence NIST score by 0.41 points;

iii. n-best list combination, where segments from an n-best list are combined using a lattice-
based re-scoring approach that minimize word error, obtaining gains of 0.28BLEU points;
and

iv. the ITERPE strategy, which attempts to identify translation errors regardless of predic-
tion errors (ITERPE) and build sentence-specific SMT systems (SSSS) on the ITERPE
sorted instances identified as having more potential for improvement, achieving gains
of up to 1.43 BLEU, 0.54 F1, 2.9 NIST, 0.64 sentence BLEU, and 4.7 sentence NIST points
in English to German over the top 100 ITERPE sorted instances.

1. Introduction
QE is a quality estimation framework that offers a wide range of feature ex-

tractors that can be used to describe source and translations texts in order to build
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and apply models to predict the quality of translations. It was developed within QT-
LaunchPad (Preparation and Launch of a Large-Scale Action for Quality Translation
Technology),1 a project aimed at high quality machine translation through, among
other things, the use of novel metrics to systematically measure and estimate transla-
tion quality.

We use QE to predict and improve the quality of MT systems without changing
their internal functioning and evaluate with automatic evaluation methods. In what
follows we describe the experimental settings (Section 2) and results of several ex-
periments focusing on four approaches: (i) multiple system translation ranking (Sec-
tion 3), (ii) n-best list re-ranking and (iii) n-best list combination (Section 4), and (iv)
ITERPE to identify translations with potential for improvement and build sentence-
specific SMT systems (Section 5). SMT performance improvements according to all
these approaches are summarized in Table 16.

2. Experimental settings

2.1. Datasets

The multiple MT system translation ranking experiments in Section 3 use the fol-
lowing datasets where multiple machine translations are available for each source
sentence:
DEAMT09 English to Spanish translations by four SMT systems, denoted by s1-s4,

scored for post-editing effort (PEE) 2 in 1-4 (highest-lowest) in absolute terms (Spe-
cia et al., 2009). 3, 095 sentences are used for training and 906 for testing.

DQET13-HTER English to Spanish translations scored for HTER with 2, 254 sen-
tences for training and 500 for testing (Task 1.1 dataset used in quality estimation
task (QET13) at WMT13 (Bojar et al., 2013)).

DQET13-rank(de-en) German to English set of up to five alternative translations pro-
duced by different MT systems human ranked relative to each other according
to their quality. 7, 098 source sentences and 32, 922 translations are used for
training and 365 source sentences and 1, 810 translations for testing (Task 1.2
dataset in QET13).

DQET13-rank(en-es) English to Spanish DQET13-rank dataset with 4, 592 source sen-
tences and 22, 447 translations for training and 264 source sentences and 1, 315

translations for testing.

The re-ranking and combination experiments in Section 4 use the following datasets:
DQET13-nbest English to Spanish n-best lists provided in Task 1.1 of QET13.

1http://www.qt21.eu
2as perceived by the post-editors
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DFDA13-nbest English to Spanish and Spanish to English distinct 1000-best lists from
Moses (Koehn et al., 2007) SMT systems developed for the WMT13 translation
task using FDA5 (Biçici, 2013a; Biçici and Yuret, 2015), which is developed for
efficient parameterization, optimization, and implementation of state-of-the-art
instance selection model feature decay algorithms (FDA) (Biçici, 2011; Biçici and
Yuret, 2015). FDA try to increase the diversity of the training set by decaying the
weights of n-gram features from the test set.

The ITERPE and SSSS experiments in Section 5 use the following datasets:
DFDA14-train English to German and German to English translations of separate

3, 000 sentences randomly selected from the development sentences available
at WMT14 that are unused when training the Parallel FDA5 Moses SMT sys-
tems (Biçici et al., 2014) with translations obtained using the Parallel FDA5 Moses
SMT systems.

DFDA14-test English to German with 2, 737 sentences and German to English with
3, 003 sentences WMT14 translation task test set with baseline translations ob-
tained with the Parallel FDA5 Moses SMT systems developed for the WMT14
translation task (Biçici et al., 2014).

ParFDA5 WMT14 dataset available at https://github.com/bicici/ParFDA5WMT
provides training data for building Parallel FDA5 Moses SMT systems used. Other
datasets used for the experiments, as well as the QE open source QE toolkit, are
available for download at http://www.quest.dcs.shef.ac.uk/.

2.2. Evaluation metrics

We evaluate the learning performance with root mean squared error (RMSE), mean
absolute error (MAE), relative absolute error (RAE), MAE relative (MAER), mean
RAE relative (MRAER). RAE measures the absolute error relative to the absolute er-
ror of the mean target value, where yi represents the actual target value for instance
i, ȳ the mean of all these instances, and ŷi a prediction for yi:

MAE =

n∑
i=1

|ŷi − yi|

n
RAE =

n∑
i=1

|ŷi − yi|

n∑
i=1

|ȳ− yi|

(1)

We define MAER and MRAER for easier replication and comparability with rela-
tive errors for each instance:

MAER(ŷ,y) =

n∑
i=1

|ŷi − yi|

⌊|yi|⌋ϵ
n

MRAER(ŷ, y) =

n∑
i=1

|ŷi − yi|

⌊|ȳ− yi|⌋ϵ
n

(2)
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MAER is the mean absolute error relative to the magnitude of the target and MRAER
is the mean relative absolute error relative to the absolute error of a predictor always
predicting the target mean assuming that target mean is known. MAER and MRAER
are capped from below3 with ϵ = MAE(ŷ,y)/2, which is the measurement error and
it is estimated as half of the mean absolute error or deviation of the predictions from
target mean. ϵ represents half of the score step with which a decision about a change
in measurement’s value can be made. ϵ is similar to half of the standard deviation,
σ, of the data but over absolute differences. For discrete target scores, ϵ =

step size
2

.
A method for learning decision thresholds for mimicking the human decision pro-
cess when determining whether two translations are equivalent is described in (Biçici,
2013b).

Additionally, acc (accuracy) represents the percentage of source sentences for which
the first-ranked translation by the ranker model agree with humans. For correlation
with human judgments, we use Kendall’s τ (Bojar et al., 2013). Translation perfor-
mance is evaluated using BLEU (Papineni et al., 2002), F1 (Biçici and Yuret, 2011; Biçici,
2011), 1-WER (WER for word error rate), and averaged sentence-level scores BLEUs 4

and NISTs (sentence NIST (Doddington, 2002)). F1 has been shown to correlate with
human judgments better than TER (Biçici and Yuret, 2011; Callison-Burch et al., 2011).
Predicting F1 also allowed us to achieve top results in DQET13-rank (Biçici, 2013b).

2.3. Algorithms

We use Support Vector Regression (SVR) (Smola and Schölkopf, 2004) as the learn-
ing algorithm and also use Partial Least Squares (PLS) or feature selection (FS). Fea-
ture selection is based on recursive feature elimination (RFE) (Guyon et al., 2002;
Biçici, 2013b). We use scikit-learn5 implementation. Some of the results may be
rounded with round(.) function from python6 and some with numpy.round() function
from numpy7, which may cause differences at the least significant digit8.

2.4. QE Quality Estimation Features

QE offers a number of MT system- and language-independent features, of which
we explore two sets:

3We use ⌊ . ⌋ϵ to cap the argument from below to ϵ.
4If an n-gram match is not found, the match count is set to 1/2|T ′| where |T ′| is the length of the transla-

tion.
5http://scikit-learn.org/
6https://www.python.org/
7http://www.scipy.org/
8For instance, round(0.8445, 3) = 0.845 and numpy.round(0.8445, 3) = 0.84399999999999997.
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IR Source Translation Source and Translation
Retrieval 15 15 0

Readability LIX 1 1 0
Word 1 1 1

Table 1. Counts of features in IR set.

• BL: 17 baseline features. These include sentence and average token lengths,
number of punctuation symbols, LM probability, average number of transla-
tions per source word, and percentage of low or high frequency words.9

• IR: 35 information retrieval and readability features. Information retrieval fea-
tures measure the closeness of the test source sentences and their translations to
the parallel training data available indexed with Lucene (The Apache Software
Foundation, 2014) to predict the difficulty of translating each sentence or find-
ing their translations (Biçici et al., 2013; Biçici, 2013b). For the top five retrieved
instances, retrieval scores, BLEU, and F1 scores over the source sentence or its
translation are computed quantifying the closeness of the instances we can find
or their similarity to the source sentence or their translation. Readability fea-
tures attempt to capture the difficulty of translating a sentence by computing
the LIX readability score (Björnsson, 1968; Wikipedia, 2013) for source and tar-
get sentences, the average number of characters in source and target words, and
their ratios. Table 1 shows the number of features in IR categorized according
to information source.

The combined feature set, BL+IR, contains 52 features.
For experiments in Section 4, we only consider IR on the translations, since the

source sentence is the same for all translation candidates. These results in 18 features,
derived for each translation, using retrieval scores, BLEU, and F1 scores over the top
five instances retrieved and three LIX readability features. In that case, the combined
feature set, BL+IR, contains 35 features. In those experiments, we also use Moses SMT
model-based features, which are obtained from the n-best lists generated, adding 15
more features (6 for lexical reordering, 1 for distortion, 1 for language model, 1 for
word penalty, 1 for phrase penalty, 4 for the translation model, and 1 for the overall
translation score). This feature set is referred to as SMT. IR+SMT contains 33 features,
while BL+IR+SMT contains 50 features.

3. Multiple System Translation Ranking
In multiple MT system translation ranking, we rank translations produced by dif-

ferent MT systems according to their estimated quality. System combination by mul-
tiple MT system translation ranking can lead to results that are better than the best

9http://www.quest.dcs.shef.ac.uk/quest_files/features_blackbox_baseline_17.
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DEAMT09 DQET13-HTER
BL IR BL+IR BL IR BL+IR

target F1 F1
RMSE 0.1356 0.0868 0.0847 0.1754 0.1777 0.1743
MAE 0.1012 0.0535 0.0521 0.1173 0.122 0.1193
RAE 0.8514 0.4499 0.4383 0.9217 0.9589 0.9377

MAER 0.5077 0.3073 0.3068 0.6771 0.7356 0.7211
MRAER 0.8066 0.4778 0.4612 0.7737 0.8045 0.8055
target PEE HTER
RMSE 0.718 0.775 0.6772 0.1771 0.1888 0.1778
MAE 0.5727 0.6291 0.5356 0.1426 0.154 0.1431
RAE 0.7045 0.7738 0.6588 0.9512 1.0268 0.9544

MAER 0.3209 0.3538 0.2912 1.0149 1.0865 0.9967
MRAER 0.7103 0.7732 0.6758 0.9144 0.9816 0.9467

Table 2. Prediction results on the DEAMT09 and DQET13-HTER datasets using a single
general SVR.

MT system performance (Biçici and Yuret, 2011; Biçici, 2011). Some of the results in
this Section are also presented in (Specia et al., 2013). For DEAMT09, we predict F1
scores and PEE and for DQET13-HTER, F1 and HTER. Table 2 presents the prediction
results on DEAMT09 for translations from all four systems s1-s4 and on DQET13-
HTER using a single general SVR model, i.e., a model combining translations from all
MT systems. RAE decreases with the addition of the IR; F1 is easier to predict than
PEE when IR is included.

Table 3 presents the prediction results on the DEAMT09 datasets using separate
SVR models for each translation system. In Section 3.2, we observe that building sep-
arate SVR models for each translation system achieves better performance than build-
ing a single model over all of the training set available. Table 3 shows that translation
system s4 is the easiest to predict. This is the MT system with the lowest transla-
tion performance (Table 4). IR achieve better performance when predicting F1, but
slightly worse performance when predicting PEE scores. Individual models perform
better than using a general model during prediction and as we see in Section 3.1, also
when ranking alternative translations for the same source sentence.
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s1 s2 s3 s4
target BL IR BL+IR BL IR BL+IR BL IR BL+IR BL IR BL+IR

F1

RMSE .1478 .0963 .0930 .1383 .0901 .0871 .1336 .0912 .0883 .0905 .0593 .0585
MAE .1147 .0607 .0584 .1061 .0562 .0540 .1012 .0564 .0545 .0671 .0371 .0370
RAE .9161 .4850 .4663 .8875 .4704 .4516 .9055 .5040 .4870 .9217 .5099 .5081

MAER .5330 .3272 .3201 .5136 .3132 .3082 .5222 .3287 .3229 .4887 .2989 .3028
MRAER .8962 .5074 .4864 .8387 .4774 .4595 .8698 .5244 .5066 .9420 .5367 .5344

PEE
RMSE .6177 .6173 .5817 .6764 .675 .6499 .6679 .6538 .6243 .6792 .6026 .5822
MAE .4490 .4712 .4428 .5423 .5456 .5215 .5280 .5238 .4976 .3448 .3216 .3162
RAE .8669 .9099 .855 .7960 .8009 .7655 .7828 .7765 .7377 .6903 .6439 .6331

MAER .1979 .2094 .1901 .2741 .2706 .2579 .2645 .2601 .2449 .1556 .1605 .1621
MRAER .5267 .5882 .5735 .7653 .7837 .7581 .7855 .7800 .7553 .4085 .4109 .4106

Table 3. Prediction performance of individual SVR models on the DEAMT09 dataset.

3.1. 1-best Translations
In this section the goal is to rank al-
ternative translations based on their
predicted quality to select the best
MT system for each translation. For
comparison, Table 4 shows the indi-
vidual performance of each MT sys-
tem and oracle MT system selection
results based on true sentence-level
scores (PEE, BLEU, and F1). Oracle
selection using PEE (human) scores
obtains worse scores than s1, the top
system, which indicates that PEE
does not correlate well with BLEU
or F1.

System BLEUs BLEU F1
s1 0.3521 0.3795 0.3723
s2 0.3156 0.3450 0.3361
s3 0.2905 0.3145 0.3137
s4 0.1600 0.1910 0.2148
oracle PEE 0.3362 0.3678 0.3574
oracle BLEU 0.3941 0.4132 0.4014
oracle F1 0.3932 0.4130 0.4020

Table 4. Performance of systems in DEAMT09.

The predicted scores for each alternative translation of a given source sentence are
used to rank these alternatives. For the DQET13-HTER dataset we treat relative 5-
way rankings as absolute scores in [1, 5] (best-worst). The absolute scores, [1 − 4] for
DEAMT09 and [1−5] for DQET13-HTER, are referred to as PEE scores. We also predict
each translation’s F1 score where y is calculated using the reference translations.

Table 5 presents the 1-best translation results for the DEAMT09 dataset obtained by
ranking translations from each system based on the predictions produced by a single
general SVR model or individual SVR models (Specia et al., 2010), i.e., a model built
for each SMT system. In case of ties, we randomly pick among the equally scoring
system outputs. As a baseline, we compute acc-best (accuracy of best-system), which
is the percentage of source sentences for which the best system on average (s1) actually
provides the best translation. We achieve gains up to 2.72 BLEU, 3.66 BLEUs, and

49



PBML 103 APRIL 2015

General Individual
Target Evaluation BL IR BL+IR BL IR BL+IR

F1 BLEU 0.3621 0.4037 0.4067 0.3792 0.4052 0.4052
PEE BLEU 0.3500 0.4003 0.4001 0.3792 0.3819 0.3819
F1 F1 0.3499 0.3930 0.3940 0.3661 0.3933 0.3935

PEE F1 0.3432 0.3886 0.3882 0.3650 0.3715 0.3715
F1 BLEUs 0.3316 0.3839 0.3849 0.3512 0.3848 0.3851

PEE BLEUs 0.3209 0.3793 0.3777 0.3503 0.3585 0.3585
F1 acc 0.6998 0.7296 0.7351 0.8300 0.7583 0.7660

PEE acc 0.6623 0.7318 0.7384 0.8311 0.8344 0.8466
F1 acc-best 0.4724 0.5000 0.4989 0.9724 0.5828 0.5894

PEE acc-best 0.3256 0.5243 0.5011 0.9437 0.9415 0.9437

Table 5. 1-best translation results on DEAMT09 using general or individual SVR models
predicting either F1 or PEE. Top results are in bold.

2.17 F1 points compared to the top MT system. QE is also able to achieve higher
accuracy than the previously reported 0.77 (Specia et al., 2010).

3.2. Correlation with Human Judgments

Here we rank the translations accord-
ing to the predicted scores and evaluate
their correlation with the human rank-
ings. Table 6 presents the results for the
DEAMT09 dataset using a single general
prediction model and individual models
for each MT system. The results show
that PEE predictions generally correlate
better with human judgments than F1
predictions.

τ Target BL IR BL+IR

General F1 0.6732 0.6064 0.6382
PEE 0.6787 0.6124 0.7034

Individual F1 0.7719 0.6743 0.6853
PEE 0.7719 0.7922 0.8070

Table 6. Kendall’s τ between the
predicted ranks and human judgments

for DEAMT09.

4. n-Best List Re-ranking and Combination

In this section we describe the use of QE to obtain predictions on the quality
of translations in n-best lists in order to re-rank these lists to have the best predicted
translation ranked first, or combine translations in these lists to generate a new, bet-
ter translation. Translation quality improvements using re-ranking or combination
allow SMT system independent gains. Re-ranking is done at the sentence-level by us-
ing quality predictions to rank translations from n-best lists and select the top ones.
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Features Setting BLEU F1 BLEUs NISTs 1-WER
1-best 0.1710 0.1725 0.1334 1.6445 0.1825

Re
-r

an
ki

ng

50-best oracle 0.2033 0.2087 0.1686 1.8168 0.2340
BL FS 0.1627 0.1684 0.1222 *1.6486 0.1069
IR FS 0.1705 0.1712 0.1323 1.6414 0.1739

BL+IR 0.1668 0.1696 0.1275 *1.6449 0.1576
100-best oracle 0.2105 0.2160 0.1769 1.8479 0.2485

BL FS 0.1639 0.1687 0.1233 1.6383 0.0919
IR FS 0.1691 0.1692 0.1309 1.6368 0.1714

BL+IR PLS 0.1696 0.1697 0.1293 1.6409 0.1564

W
or

d
C

om
bi

na
tio

n 250-best list oracle 0.2196 0.2253 0.1873 1.8816 0.2609
BL 0.1705 0.1721 0.1323 *1.6455 *0.1850
IR FS 0.1703 0.1718 *0.1337 1.6403 *0.1931

BL+IR 0.1707 0.1721 *0.1354 1.6433 *0.1945
1000-best oracle 0.2360 0.2412 0.2052 1.9472 0.2783

BL PLS 0.1707 0.1719 *0.1353 1.6328 *0.1949
IR PLS *0.1716 0.1723 *0.1355 1.6363 *0.1965

BL+IR PLS *0.1715 0.1718 *0.1362 1.6384 *0.1992

Table 7. DQET13-nbest results. * achieve improvements; top results are in bold.

Combination is done at the word-level by using lattice re-scoring to obtain combined
translations from translation hypotheses that minimize overall word error.

Re-ranking results show that we can improve over 1-best results, with 100-best lists
leading to the best results. Word-level combination results show that the performance
increase as we increase n and the best results are obtained with 1000-best lists where
1000 is the largest n we experimented with. We predict F1 scores and retain the top
results among different settings achieving improvements according to F1 or overall.

Word-level combination is obtained by converting each n-best list into a word lat-
tice and finding the word-level combination of translation hypotheses that minimizes
WER. A word lattice is a partially ordered graph with word hypotheses at the nodes
(Mangu et al., 2000). An n-best lattice rescoring (Mangu et al., 2000) functionality is
provided by the SRILM (Stolcke, 2002) toolkit. Each hypothesis in a given n-best list
is weighted with the predicted scores, converted into a word lattice format, aligned,
and the best hypothesis minimizing the WER is selected as the consensus hypothesis.
As we see in the results, the word-level combination approach is able to improve the
performance more than sentence-level re-ranking due to reasons including (Mangu
et al., 2000): (i) lattice representation is able to consider alternative translations, (ii)
pruning of the lattices minimizes word errors and leads to better modeling of word
posterior probabilities, (iii) WER minimization may be a good target to optimize for
translation performance.
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Features Setting BLEU F1 BLEUs NISTs 1-WER
English-Spanish 1-best 0.2690 0.2673 0.2228 2.3278 0.3920

100-best oracle 0.3560 0.3667 0.3351 2.6493 0.4940

Re
-r

an
ki

ng

BL FS 0.2535 0.2456 0.1947 2.2702 0.3187
IR PLS 0.2516 0.2457 0.2010 2.2339 0.3817

SMT PLS 0.2569 0.2498 0.2008 2.2804 0.3451
BL+IR 0.2567 0.2465 0.2011 2.2614 0.3610

IR+SMT PLS 0.2576 0.2495 0.2024 2.2796 0.3574
BL+IR+SMT 0.2564 0.2482 0.2012 2.2741 0.3585

W
or

d
C

om
b. BL FS 0.2676 0.2653 0.2208 2.3212 *0.3925

IR FS 0.2682 0.2661 0.2216 2.3207 *0.3936
SMT 0.2672 0.2648 0.2196 2.3197 *0.3928

BL+IR PLS 0.2676 0.2651 0.2204 2.3198 0.3927
IR+SMT PLS 0.2677 0.2647 0.2196 2.3179 0.3915

BL+IR+SMT 0.2677 0.2652 0.2198 2.3195 0.3926
Spanish-English 1-best 0.2816 0.2816 0.2335 2.3696 0.4064

100-best oracle 0.3763 0.3902 0.3554 2.6858 0.5154

Re
-r

an
ki

ng

BL PLS 0.2656 0.2614 0.2112 2.3441 0.3663
IR FS 0.2646 0.2553 0.2025 2.2888 0.3819

SMT FS 0.2602 0.2578 0.2052 2.3094 0.3559
BL+IR FS 0.2660 0.2573 0.2051 2.2932 0.3849

IR+SMT PLS 0.2616 0.2552 0.2031 2.2940 0.3692
BL+IR+SMT FS 0.2662 0.2572 0.2045 2.2922 0.3827

W
or

d
C

om
b. BL PLS *0.2818 0.2803 0.2315 2.3686 *0.4124

IR *0.2818 0.2801 0.2314 2.3642 *0.4127
SMT PLS *0.2817 0.2795 0.2301 2.3628 *0.4116

BL+IR FS 0.2815 0.2792 0.2298 2.3673 *0.4128
IR+SMT FS 0.2815 0.2793 0.2304 2.3652 *0.4131

BL+IR+SMT PLS 0.2816 0.2797 0.2304 2.3636 *0.4127

Table 8. DFDA13-nbest results with 100-best lists. Top results are in bold.

Table 7 presents 1-best translation baseline, oracle translation according to F1, and
the 1-best translation results after sentence-level re-ranking according to the predicted
F1 scores using 50-best or 100-best lists, and after word-level combination using 250-
best or 1000-best lists on the DQET13-nbest dataset. QE is able to improve the
performance on all metrics, with IR or BL+IR feature sets obtain the best results. F1 is
also improved with word-level combination using a 100-best list (Specia et al., 2014).
We obtain up to 0.28 points increase in BLEUs with the word-level combination using
a 1000-best list. With sentence-level re-ranking, we are able to improve only the NISTs
scores using a 50-best list.

With sentence-level re-ranking, we observe that performance decrease as we in-
crease n from 50 to 1000. Results for different n-best lists with increasing n are pre-
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sented in (Specia et al., 2014). With word-level combination, performance increase as
we increase n on DQET-nbest and on DFDA13-nbest, we observe increasing perfor-
mance on some metrics with increasing n where the best results are obtained with
100-best lists.

Table 8 presents the corresponding results on the DFDA13-nbest English-Spanish
and Spanish-English datasets using 100-best lists. Sentence-level re-ranking does not
yield improvements. With word-level combination, we are able to achieve improve-
ments according to BLEU and 1-WER. The performance gains are larger on DFDA13-
nbest and the addition of SMT features improve the performance slightly. The IR
feature set and other feature sets containing IR lead to the best results. Previous re-
sults such as (Blatz et al., 2004) could not improve the BLEU scores with n-best list
re-scoring, but obtained some improvements in NISTs scores.

With word-level combination, performance increase as we increase n for NISTs
in general and for 1-WER when translating from English to Spanish. We observed
a slight decrease in 1-WER when translating from Spanish to English. NIST favors
more diverse outputs by weighting less frequent n-grams more, which can explain
the increase in NISTs scores with increasing n.

5. ITERPE and SSSS for Machine Translation Improvements

In these experiments we use quality estimation to identify source sentences whose
translations have potential for improvement such that building sentence-specific SMT
systems (SSSS) may improve their translations and the overall SMT performance. Our
goal is to find instances that have suboptimal translations and for which a better trans-
lation is possible by building SSSS. In domain adaptation, we show that Moses SMT
systems built with FDA-selected 10, 000 training sentences are able to obtain F1 results
as good as the baselines that use up to 2 million sentences and better performance
with Moses SMT systems built with FDA-selected 50, 000 training sentences (Biçici,
2015). In fact, SSSS built using as few as 5, 000 training instances for each source
sentence can achieve close performance to a baseline SMT system using 2 million
sentences (Biçici, 2011). In Table 14, we show that we can achieve better NIST per-
formance using SSSS built with FDA5-selected 5, 000 training instances. The ITERPE
model allows us to identify which sentences have more potential for improvement by
re-translation and we demonstrate performance improvements with SSSS. An ITERPE
sorting of the translation instances can be used to group them into different quality
bands for different purposes, for instance, for re-translation or for post-editing.

5.1. ITERPE: Identifying Translation Errors Regardless of Prediction Errors

We use the IR feature set to build two QE systems: QuEstS and QuEst(S,T ′),
where the former uses only the source sentence S and the latter uses both S and its
translation T ′ when predicting the quality score. QuEst(S,T ′) is a more informed pre-
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Dataset BLEU F1 ŷ ŷS ŷ− ŷS |ŷ− ŷS| F̄1S − F1 F̄1T − F1

en-de DFDA14-train 0.2223 0.2360 0.2283 0.2436 -0.0153 0.1069 0.1734 0.1554
DFDA14-test 0.1761 0.2093 0.2147 0.1800 0.0347 0.0738 0.1194 0.1545

de-en DFDA14-train 0.2570 0.2580 0.2578 0.2649 -0.0071 0.0096 0.1094 0.1478
DFDA14-test 0.2410 0.2580 0.2529 0.2663 -0.0259 0.1535 0.0400 0.1248

Table 9. Training and testing average statistics and ITERPE results. y is F1.

dictor. Biçici et al. (2013) obtained better results than QE using only the source
sentences with the machine translation performance prediction system.

We consider two types of errors: prediction error or translation error. Prediction
errors are errors due to the prediction model, while translation errors are errors due
to mistranslations by the MT engine. We want to fix translation errors regardless of
potential prediction errors. Having a precise estimator (low MAE) is important for
identifying the score differences. Also, if the prediction reaches the top possible tar-
get score, topScore, where y ≤ topScore then we do not expect to be able to further
improve the translation. Let ŷS = QuEstS(S) and ŷ = QuEst(S,T ′)(S, T

′) represent the
prediction from QE using only the source S and using both S and T ′ and ty be a
positive threshold on the prediction. When predicting which instances to re-translate,
we compare two strategies, which sort instances according to d:
MEAN: d = ¯̂ŷ̄ŷ̄y − ŷ̂ŷy. Selects instances whose expected performance is lower than

the expected mean performance, which attempts to improve lower performing
instances.

ITERPE: d = ŷ̂ŷy − ŷ̂ŷyS. Selects instances according to differences in predictions from
different predictors, which attempts to identify the translation errors regardless
of prediction errors (ITERPE).

The ITERPE strategy relies on the performance prediction of the quality of a sen-
tence translation task by two separate predictors, one using only the source sentence
and one using both the source sentence and the translation. ITERPE invention (Biçici,
2014) works as follows:

• If ŷS > ŷ and ŷS < topScore, then by looking at S, we expect a better translation
performance. So, T ′ is not optimal.

• If ŷS = ŷ, then either the quality score is the same for both or T ′ is not giving us
new information. If (ŷ − ŷS) ≤ ty and ŷS < topScore, then we assume that T ′

is not optimal.
• If (ŷ− ŷS) > ty, then T ′ may be close to the possible translation we can obtain.

5.2. ITERPE Learning Results

ty can be optimized to improve the overall F1 performance on the training set.
Table 9 shows the average English to German (en-de) and German to English (de-en)
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ŷ − ŷS ≤ n y MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

en
-d

e

-0.1642 86 0.0893 0.0356 0.1517 0.3688 2.0522 0.3306 1.0422 0.2467 0.2533
-0.0153 1920 0.1726 0.0639 0.1123 0.3624 0.8543 0.4582 0.8612 0.199 0.1935
0.0 123 0.2206 0.0841 0.0866 0.4393 0.4636 0.5577 0.5816 0.1578 0.1531
0.1335 434 0.2751 0.0636 0.0731 0.2623 0.263 0.3745 0.4361 0.1246 0.1077
0.2823 130 0.4382 0.0613 0.1973 0.1598 0.4306 0.2433 0.7727 0.1122 0.0067
0.4311 102 0.6125 0.0579 0.3607 0.0912 0.5781 0.1372 0.9219 0.1188 -0.0274
0.5799 71 0.8007 0.0826 0.5447 0.0971 0.6757 0.1357 0.9633 -0.0054 -0.0948
1.0 21 0.9272 0.0683 0.6713 0.0743 0.7223 0.1006 0.9721 -0.1211 -0.0841

de
-e

n

-0.1422 228 0.1057 0.034 0.1563 0.3457 1.8446 0.3097 1.0179 0.2026 0.2645
-0.0071 1781 0.2076 0.0719 0.1125 0.3373 0.6719 0.4556 0.7979 0.1404 0.1843
0.0 54 0.2357 0.0527 0.0544 0.2525 0.2627 0.4006 0.4155 0.1099 0.1608
0.128 565 0.2871 0.0484 0.0588 0.199 0.2079 0.3018 0.3713 0.0621 0.1085
0.2631 183 0.4328 0.0514 0.1736 0.1345 0.3869 0.2118 0.7291 0.008 0.0002
0.3983 99 0.6079 0.06 0.341 0.0981 0.5514 0.1574 0.9173 -0.0177 -0.0778
0.5334 56 0.7869 0.0889 0.5148 0.1163 0.6417 0.1593 0.9521 -0.1157 -0.123
1.0 20 0.9064 0.094 0.636 0.103 0.6996 0.1442 0.9805 -0.1924 -0.1686

Table 10. DFDA14-train instances binned according to their deviation from d̄ using
ITERPE. y is F1.

training set and test set statistics. In this case, the target, y, is the F1 score. MAE is for
ŷ and MAES is for ŷS. ⌈yS⌉ and ⌈yT ⌉ are the source and target performance bounds
on y calculated based on synthetic translations (Biçici et al., 2013). Score differences
to bounds show a measure of how close are the translations to the bounds.

We cumulatively and separately bin instances according to their deviation from
the mean of d, d̄, in σd steps and evaluate the prediction performance of different
strategies. Table 11 shows the cumulatively binning performance on the training set
where predictions are obtained by cross-validation and Table 10 show the training
results within separate bins. n is the number of instances in the score range. Table 11
also shows that ITERPE is able to identify hard to translate instances using only the
prediction information.

Table 12 and Table 13 show the cumulatively binning of the performance of the
test set instances according to their deviation from d̄ for both the en-de and de-en
DFDA14-test sets. We observe that lower d corresponds to instances with lower F1
scores (compared to ȳ) and higher potential for improvements according to ⌈yS⌉ − y

and ⌈yT ⌉ − y. Until about d ≤ d̄ + 2σd, MAES is lower, which indicates that for
these instances, we can trust ŷS more than ŷ and therefore, since ŷS > ŷ when d < 0,
these instances correspond to the instances that have some potential for improvement.
Including the confidence of predictions in the decision process may also improve the
performance.
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d ≤ n ȳ MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

en
-d

e

-0.1642 86 0.0893 0.0356 0.1517 0.3688 2.0522 0.3306 1.0422 0.2467 0.2533
-0.0153 2006 0.1691 0.0627 0.1139 0.3626 0.9056 0.4527 0.869 0.2011 0.1961
0.0 2129 0.172 0.0639 0.1124 0.3671 0.8801 0.4588 0.8524 0.1986 0.1936
0.1335 2563 0.1895 0.0639 0.1057 0.3493 0.7756 0.4445 0.7819 0.186 0.179
0.2823 2693 0.2015 0.0638 0.1101 0.3402 0.759 0.4348 0.7815 0.1825 0.1707
0.4311 2795 0.2165 0.0635 0.1193 0.3311 0.7524 0.4239 0.7866 0.1802 0.1635
0.5799 2866 0.231 0.064 0.1298 0.3253 0.7505 0.4168 0.791 0.1756 0.1571
1.0 2887 0.236 0.064 0.1338 0.3235 0.7502 0.4145 0.7923 0.1734 0.1553

de
-e

n

-0.1422 228 0.1057 0.034 0.1563 0.3457 1.8446 0.3097 1.0179 0.2026 0.2645
-0.0071 2009 0.196 0.0676 0.1175 0.3383 0.805 0.4391 0.8229 0.1475 0.1934
0.0 2063 0.1971 0.0672 0.1158 0.336 0.7908 0.438 0.8122 0.1465 0.1925
0.128 2628 0.2164 0.0632 0.1036 0.3066 0.6655 0.4087 0.7174 0.1283 0.1745
0.2631 2811 0.2305 0.0624 0.1081 0.2954 0.6473 0.3959 0.7182 0.1205 0.1631
0.3983 2910 0.2433 0.0623 0.116 0.2887 0.6441 0.3878 0.725 0.1158 0.1549
0.5334 2966 0.2536 0.0628 0.1236 0.2854 0.644 0.3835 0.7292 0.1114 0.1497
1.0 2986 0.258 0.063 0.127 0.2842 0.6444 0.3819 0.7309 0.1094 0.1475

Table 11. DFDA14-train instances cumulatively binned based on deviation from d̄
using ITERPE. y is F1.

ŷ − ŷS ≤ n y MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

M
EA

N

-0.1035 91 0.192 0.1106 0.1202 0.475 0.9383 1.0233 0.9838 0.1738 0.2155
0.0 1792 0.2013 0.0854 0.1025 0.5055 0.7783 0.8717 1.1362 0.1256 0.1522
0.0 1792 0.2013 0.0854 0.1025 0.5055 0.7783 0.8717 1.1362 0.1256 0.1522
0.1035 2449 0.2086 0.094 0.1064 0.5802 0.7722 0.9338 1.1267 0.1172 0.1503
0.2069 2609 0.2095 0.0992 0.1065 0.6291 0.7691 1.0152 1.1211 0.1175 0.1513
0.3104 2673 0.2094 0.1038 0.107 0.6732 0.7723 1.0691 1.1197 0.1185 0.1524
0.4139 2703 0.2093 0.107 0.1071 0.7021 0.7738 1.1087 1.1184 0.119 0.1535
1.0 2737 0.2093 0.1125 0.1075 0.747 0.7764 1.173 1.119 0.1195 0.1548

IT
ER

PE

-0.129 54 0.2217 0.1215 0.1294 0.4418 0.8893 1.0072 1.1438 0.1209 0.1647
-0.0202 1874 0.2036 0.0856 0.1041 0.4963 0.7788 0.8894 1.1932 0.1168 0.1467
0.0 2053 0.2046 0.0878 0.105 0.5225 0.7846 0.8941 1.1761 0.1166 0.1477
0.0885 2438 0.2083 0.0942 0.1065 0.5791 0.7737 0.9385 1.1394 0.1161 0.1497
0.1972 2606 0.2093 0.0992 0.1065 0.6257 0.767 1.0161 1.1285 0.117 0.1513
0.306 2671 0.2092 0.1036 0.1067 0.6682 0.7696 1.0733 1.1276 0.1181 0.1523
0.4147 2704 0.2093 0.1071 0.1072 0.6998 0.7715 1.1057 1.1252 0.1186 0.1534
1.0 2737 0.2093 0.1125 0.1075 0.7414 0.7728 1.1735 1.1258 0.1192 0.1546

Table 12. DFDA14-test instances cumulatively binned based on deviation from d̄ for
en-de comparing different strategies. y is F1.
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ŷ − ŷS ≤ n y MAE MAES MAER MAERS MRAER MRAERS ⌈yS⌉ − y ⌈yT ⌉ − y

M
EA

N

-0.1065 87 0.2668 0.1552 0.1299 0.4913 0.663 1.1651 0.8625 0.0633 0.1363
-0.0 2090 0.2553 0.1023 0.1033 0.4303 0.5538 0.9059 0.9115 0.0344 0.1146
0.0 2090 0.2553 0.1023 0.1033 0.4303 0.5538 0.9059 0.9115 0.0344 0.1146
0.1065 2720 0.2559 0.1053 0.1041 0.4863 0.56 0.9321 0.9067 0.0383 0.1205
0.2131 2860 0.2559 0.1094 0.1044 0.5201 0.5605 0.9921 0.9077 0.0396 0.1222
0.3196 2922 0.2567 0.1122 0.1046 0.5379 0.5585 1.0357 0.906 0.0397 0.1226
0.4262 2963 0.257 0.1155 0.105 0.561 0.5605 1.0695 0.9062 0.0402 0.1238
1.0 3003 0.258 0.1205 0.1059 0.5896 0.561 1.1067 0.9045 0.04 0.1247

IT
ER

PE

-0.126 114 0.2829 0.1408 0.1154 0.4528 0.6344 1.2341 1.0201 -0.0163 0.0774
-0.014 2019 0.2565 0.1023 0.1035 0.4232 0.5549 0.9101 0.9206 0.0314 0.1121
0.0 2204 0.2564 0.1029 0.1042 0.4343 0.5569 0.9049 0.9165 0.0324 0.1137
0.098 2708 0.2558 0.1052 0.1042 0.4851 0.5615 0.9325 0.9092 0.0384 0.1202
0.2101 2863 0.2561 0.1094 0.1045 0.5183 0.5603 0.9956 0.9085 0.0395 0.1221
0.3221 2930 0.2567 0.1129 0.1047 0.5437 0.5605 1.041 0.906 0.0399 0.1228
0.4341 2966 0.2569 0.116 0.1049 0.5645 0.561 1.0785 0.9058 0.0404 0.1239
1.0 3003 0.258 0.1205 0.1059 0.59 0.5616 1.1097 0.9044 0.0401 0.1247

Table 13. DFDA14-test instances cumulatively binned based on deviation from d̄ for
de-en comparing different strategies. y is F1.
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Figure 1. ITERPE sorted MAE histogram and d vs. MAE plot for en-de (top) and de-en
(bottom) on the DFDA14-test test set. The increase in MAE is visible.
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Figure 2. ITERPE sorted MAER vs. MAERS plot for de-en test set.
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Figure 3. ITERPE sorted MRAER vs. MRAERS plot for en-de test set.

We observe that the difference with the upper bounds increase with decreasing d,
which indicates that we are able to identify instances that have the highest potential
for increase in their performance. ITERPE is able to consistently identify instances
with higher potential difference to the bounds. Figure 1 plots ITERPE sorted MAE
histogram and d vs. MAE plot for en-de and de-en on the DFDA14-test test set.

Figure 2 compares the MAER and MAERS distributions on de-en DFDA14-test
test set instances sorted according to ITERPE and Figure 3 compares the MRAER and
MRAERS distributions on en-de DFDA14-test test set.
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5.3. SSSS with ITERPE Sorted Instances

We build SSSS over the en-de and de-en DFDA14-test set instances using up to
25, 000 training instances selected specifically for each source sentence using FDA5 (Biçici
and Yuret, 2015). The results are presented in Table 14, which show that using train-
ing set of 1, 000 instances for building SSSS does not lead to better results on all of
DFDA14-test. However, SSSS with 1, 000 training instances each can obtain as close
results as 1 F1 point in en-de and shows that this level of parallelism is possible with
SMT. en-de translation performance also improves with SSSS where each use 5, 000

training instances.
We also run sentence-specific SMT experiments over the top instances that have

more potential for improvement according to their ITERPE sorting. Table 14 also
presents the results for the top 100 or 200 instances compared to baseline transla-
tion performance on those instances. Improvements of up to 1.43 BLEU, 0.54 F1, 2.9
NIST, 0.64 BLEUs, and 4.7 NISTs points are obtained over the top 100 ITERPE sorted
instances for en-de. Compared to baseline results, ITERPE sorting is able to obtain
up to 1.43 BLEU points improvement over the top 100 instances by being able to iden-
tify the top instances that have more potential for improvement by re-translation with
SSSS.

Figure 4 plots ITERPE sorted accumulative average performance improvement
compared with the baseline over the top 500 instances in en-de and de-en on the
DFDA14-test test set. Maximum accumulative gain with SSSS on the DFDA14-test
test set over the top 100 ITERPE sorted instances is visible in Figure 4 and can reach
4.4 BLEUs points and 3.7 F1 points for en-de, and 9.1 BLEUs points and 7.2 F1 points
for de-en. Maximum instance gains with SSSS on the DFDA14-test test set over the
top 100 ITERPE sorted instances are presented in Table 15.

6. Conclusions

We described several ways to use quality predictions produced by the QE frame-
work in order to improve SMT performance without changing the MT systems’ inter-
nal functioning. In all cases, promising results were found, leading us to believe that
quality predictions produced by the state of the art approaches can help in the process
of achieving the high quality translation goal. Table 16 summarizes our main findings
when we use quality predictions towards improving machine translation quality.
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Figure 4. ITERPE sorted accumulative average F1, BLEUs, or NISTs performance
improvement compared with the baseline over the top 500 instances in en-de (left)

and de-en (right) on the DFDA14-test test set.
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Baseline ITERPE + SSSS
n # train BLEU F1 NIST BLEUs NISTs BLEU F1 NIST BLEUs NISTs

en
-d

e

100

1000

0.1614 0.2048 4.6227 0.1406 1.9119

0.1609 0.1893 4.6152 0.1271 1.7847
5000 0.1757 0.2102 4.9111 0.147 1.9587
10000 0.1633 0.1974 4.8022 0.1309 1.9314
25000 0.1647 0.1942 4.7821 0.1323 1.9192

200

1000

0.1569 0.1952 4.9408 0.1284 1.9558

0.1444 0.18 4.9064 0.1102 1.8408
5000 0.1577 0.1937 5.1326 0.1278 1.9715
10000 0.1542 0.1872 5.0878 0.1191 1.9587
25000 0.1574 0.1909 5.1462 0.1226 1.9982

2737 1000 0.1761 0.2093 5.9602 0.1435 2.0366 0.1632 0.199 5.9596 0.1295 1.9277
2737 5000 0.1725 0.2035 6.072 0.1378 1.9821
1500 10000 0.1726 0.2017 5.8253 0.1373 2.1071 0.1678 0.1958 5.9166 0.1314 2.0702
750 25000 0.1741 0.1998 5.6429 0.1364 2.0981 0.1747 0.198 5.7945 0.1341 2.109

de
-e

n

100
1000

0.2831 0.2842 5.8797 0.2446 2.5136
0.2402 0.2509 5.3697 0.1935 2.2959

5000 0.2672 0.2749 5.7442 0.2246 2.4365
10000 0.2602 0.2611 5.7401 0.2103 2.4243

200
1000

0.2849 0.2918 6.337 0.2476 2.5262
0.2421 0.263 5.7436 0.2022 2.3065

5000 0.2625 0.2759 6.1281 0.2234 2.4169
10000 0.2599 0.2703 6.1347 0.2168 2.4199

3003 1000 0.241 0.258 7.2325 0.198 2.3194 0.2007 0.233 6.4235 0.1663 2.0358
1250 5000 0.2516 0.2623 7.0413 0.2095 2.4641 0.2269 0.2465 6.7374 0.1897 2.3049
700 10000 0.267 0.2752 6.8915 0.2269 2.5233 0.2438 0.2592 6.6454 0.2072 2.3977

Table 14. ITERPE + SSSS results on DFDA14-test over the top n ITERPE sorted
instances. We build SSSS for each instance.

ITERPE + SSSS
# train BLEUs F1 NISTs

en
-d

e 1000 24.6 18.8 78.4
5000 27.7 21.4 105.8
10000 21.1 18.9 126.4
25000 49.3 44.9 120.3

de
-e

n 1000 31.4 26.9 99.8
5000 54.2 51.1 124.2
10000 32.0 27.1 113.3

Table 15. Maximum instance improvement points with ITERPE + SSSS on DFDA14-test
test set over the top 100 ITERPE sorted instances.
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Improvement Points BLEU F1 NIST BLEUs NISTs
multiple system translation ranking 2.72 2.17 3.66

n-best list re-ranking 0.41

n-best list combination 0.06 0.28 0.31

ITERPE (en-de, n = 100) 1.43 0.54 2.9 0.64 4.7

Table 16. Summary of improvement points over the baseline obtained using QuEst for
high quality machine translation.

The ITERPE model can obtain robust sortings of the translations allowing us to an-
swer questions about which translations do not have much potential for improvement
and which may need to be re-translated or maybe post-edited. We build sentence spe-
cific SMT systems on the ITERPE sorted instances identified as having more potential
for improvement and obtain improvements in BLEU, F1, NIST, BLEUs, and NISTs.
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