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Abstract
Neural machine translation (NMT) has shown large improvements in recent years. The cur-

rently most successful approach in this area relies on the attention mechanism, which is often
interpreted as an alignment, even though it is computed without explicit knowledge of the
target word. This limitation is the most likely reason that the quality of attention-based align-
ments is inferior to the quality of traditional alignment methods. Guided alignment training
has shown that alignments are still capable of improving translation quality. In this work, we
propose an extension of the attention-based NMT model that introduces target information
into the attention mechanism to produce high-quality alignments. In comparison to the con-
ventional attention-based alignments, our model halves the Aer with an absolute improvement
of 19.1% Aer. Compared to GIZA++ it shows an absolute improvement of 2.0% Aer.

1. Introduction

The field of machine translation has seen a drastic shift in recent years since it
has been demonstrated that end-to-end neural machine translation (NMT) models
(Bahdanau et al., 2015) are able to outperform traditional phrase-based systems on
numerous tasks. A key component of the approach introduced by Bahdanau et al.
is the attention mechanism, which has been subject to a lot of research (Luong et al.,
2015; Tu et al., 2016; Mi et al., 2016a; Sankaran et al., 2016; Feng et al., 2016; Cohn et al.,
2016). The attention mechanism produces a distribution over the source sentence for
every decoding step. This distribution is often interpreted as a soft alignment between
the source and target sentence. It has been shown that incorporating alignment in-
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formation during training as an additional objective function can improve the overall
performance of the system (Chen et al., 2016). This indicates that the alignment prob-
lem is still relevant.

The relation between attention and alignments provides the motivation for this
work, which aims at using the attention-based NMT approach to generate word align-
ments. However, the attention mechanism has a disadvantage compared to regu-
lar word alignment methods. While the word alignment is computed including the
knowledge of the whole source and target sentence, the neural network knows only
previously seen words on the target side. To remove this disadvantage, we extend
the standard attention computation by introducing knowledge of the target word to
which we want to align.

2. Related Work

Based on the NMT approach by Bahdanau et al. (2015) researchers have tried to im-
prove the translation quality by modifying the attention mechanism. Most methods
add various features to the attention computation (Tu et al., 2016; Mi et al., 2016a;
Sankaran et al., 2016; Feng et al., 2016; Cohn et al., 2016), while others attempt to
change the attention mechanism itself (Zhang et al., 2016). External alignments have
been utilized to teach the network to mimic them by adding them to the objective
function during training (Chen et al., 2016; Mi et al., 2016b).

Even though most of these approaches interpret the attention as a soft alignment,
to the best of our knowledge, there have been only four publications that empirically
measure the impact of their approach on the alignment quality (Tu et al., 2016; Mi
et al., 2016a,b; Sankaran et al., 2016). These investigations use the Saer (Tu et al., 2016),
Aer (Och and Ney, 2003) and F1 metrics to measure the alignment quality. All authors
noticed an improvement in alignment quality by applying their extensions to the at-
tention mechanism, but as Mi et al. (2016b) report, there is still a significant qualitative
difference to state-of-the-art alignments.

A method to create alignments using posterior regularization was presented by
Ganchev et al. (2010) and Tamura et al. (2014) which used a special purpose recurrent
neural network to create alignments.

3. Neural Machine Translation

The neural machine translation approach, as introduced by Bahdanau et al. (2015),
is composed of three main components: The encoder, the attention mechanism, and
the decoder (Figure 1). The encoder is a bidirectional recurrent neural network (RNN)
which is applied to the input sentence fJ1 to produce the source representation hJ

1,
where J is the sentence length. In each decoder step i = 1, . . . , I the encoder state for
each source position j = 1, . . . , J is used to compute the attention energies α̃ij. For this
a single hidden layer with weights Wa, Ua and an additional transformation vector
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Figure 1. The unmodified attention-based NMT model (Bahdanau et al., 2015)

va is applied to the previous decoder state si−1 and the relevant source representation
hj.

α̃ij := vTa tanh(Wasi−1 +Uahj) (1)

The energies are converted into the attention weights αij by normalization with a
softmax function over all j = 1, . . . , J. These weights are used to compute the context
vector ci as a weighted sum of the encoder representations hJ

1.
This context vector ci is handed over to the decoder which generates the output

word ei while taking the previously generated output ei−1, the old decoder state si−1

and the context vector ci as inputs. At the end of each decoding step, the hidden
decoder state si is updated w.r.t. the previous hidden state si−1, the context vector ci
and the generated output word ei.

An extension to the standard training procedure for NMT models is introduced
by guided alignment training (Chen et al., 2016; Mi et al., 2016b). This approach is
designed to benefit from state-of-the-art alignments by defining an additional cost
function that gives feedback explicitly to the components of the attention mechanism.
This second loss function is computed for a set of N training samples as the cross-
entropy between the soft alignment αij extracted from the attention mechanism and
a given target alignment Aij, provided by e.g.GIZA++ (Och and Ney, 2003):

Lal(A,α) := −
1

N

∑
n

I(n)∑
i=1

J(n)∑
j=1

A
(n)
ij logα

(n)
ij (2)
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Figure 2. Attention-based NMT with target foresight, the dotted lines show how the
current target word is feedback to the alignment computation.

To integrate this additional error measure into the traditional training process a new
network loss function is defined as the weighted sum of the standard decoder cost
function and the introduced alignment cost function.

4. Target Foresight

Since the introduction of the IBM models (Brown et al., 1993), alignments have
always been important for statistical machine translation. And even though the at-
tention mechanism (Bahdanau et al., 2015) does not explicitly generate an alignment,
approaches like guided alignment training (Chen et al., 2016) and the analysis by Tu
et al. (2016) indicate that the information encoded in the attention weights is related
to an alignment from source to target side.

The aim of this work is to explore the alignment capabilities of the attention-based
NMT model and to create alignments that are optimized for NMT. The latter is im-
portant since the attention mechanism does not assign weights to the source words,
but to the encoder representation that is generated from these words. This represen-
tation may consequently encode information about neighboring words in the source
sentence.

Nevertheless, we interpret the attention weights as a soft alignment for the re-
maining sections of this work and try to improve the alignment quality compared to
the standard attention mechanism. We follow the example of traditional alignment
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methods and use the knowledge of the target reference sentence êÎ1 to improve the
alignment quality of the attention. Therefore, we introduce the target word of the
current decoding step êi as additional input for the attention energy computation:

α̃ij = vTa tanh(Wasi−1 +Uahj + Vaêi). (3)

We refer to this approach as target foresight (TF), since the network is allowed to use
the foresight of the target word êi to determine the corresponding source position
that should be aligned to êi. Figure 2 shows the additional connection added to the
NMT model.

To further investigate the target foresight approach, we propose three different
methods to be applied during training. First we add random noise to the value of
α̃ij, which is supposed to prevent the encoding of target-word information in the at-
tention weights. The second approach is to freeze the values of all weight matrices
except for the attention parameters in the update steps of the training. The last ap-
proach is to train target foresight using guided alignment training (Chen et al., 2016;
Mi et al., 2016b). This approach works by enforcing the network not to diverge too far
from a given alignment. It allows however to chose a different alignment point if the
improvement in the translation cost is large enough.

5. Experiments

To evaluate the effectiveness of our approach we compare it to GIZA++ (Och and
Ney, 2003), the BerkeleyAligner1, fast_align (Dyer et al., 2013), and an unmodified
attention-based model.

5.1. Setup

The translation models we use for all experiments in this work are based on the
attention-based NMT approach by Bahdanau et al. (2015). We use a word-embedding
size of 620 for the projection layer and a 30K shortlist of the most frequent words. The
decoder and both directed RNNs of the bi-directional encoder are implemented as
gated recurrent units. These RNNs as well as the attention layer have an internal di-
mension of 1000 nodes. For decoding, we use a beam-size of 12. Our implementation
is based on the Blocks framework (Van Merriënboer et al., 2015) and the deep-learning
library Theano (Bergstra et al., 2010).

To evaluate the alignment quality of our models, we use a set of 504 bilingual sen-
tence pairs that were extracted from the Europarl (Koehn, 2005) German-to-English
task and manually aligned by human annotators. We use this test set to evaluate the
alignment quality on Aer (Och and Ney, 2003) and Saer (Tu et al., 2016). To evaluate
the soft alignment with Aer, we convert it into a hard alignment by extracting the

1https://code.google.com/archive/p/berkeleyaligner
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Figure 3. Attention weight matrices visualized in heat map form. Generated by the NMT
Baseline, GIZA++, target foresight with freezed encoder and decoder parameters (TF +

freezed) and target foresight with guided alignment training (TF + GA)

position with the largest alignment weight in both directions and merged them by
applying Och’s refined method (Och and Ney, 2003).

The network was trained on the Europarl corpus (Koehn, 2005) excluding the test
set using AdaDelta (Zeiler, 2012) for learning rate adaption. Excluding the test data
is done to evaluate the performance of the attention-based model on unseen data as
it is the case when used for translation. It also shows that target foresight can easily
be used to align unseen data without the need to retrain the model, while still out-
performing traditional methods that have been trained including the test data. The
training data consists of 1.2 million bilingual sentences of 32 and 34 million running
words in German and English, respectively. The training is performed for 250K iter-
ations with a batch-size of 40 and evaluated every 10K iterations. The development
set of the IWSLT2013 German→English shared translation task2 is used to select the
best performing model which is then evaluated on the IWSLT2013 test as well as on
the Europarl alignment test set.

2http://www.iwslt2013.org
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Alignment Test
Model Aer % Saer %
fast_align 27.9 33.0
GIZA++ 21.0 26.8
BerkeleyAligner 20.5 26.4
Attention-Based 38.1 63.6
+ Guided alignment 29.8 38.0
+ Target foresight with fixed en-/decoder 33.9 55.6
+ Target foresight with guided alignment 19.0 34.9

+ converted to hard alignment 19.0 24.6

Table 1. Comparison of target foresight with the pure attention-based approach (with
and without guided alignment) and other alignment methods.

5.2. Results

Table 1 shows that GIZA++ creates a far better alignment than fast_align and that
the BerkeleyAligner creates an even slightly better result. In comparison the attention
mechanism produces an Aer of 17.6% worse than the BerkeleyAligner.

Interpreting the attention of the attention-based approach as an alignment results
in 38.1% Aer. If we train the network using guided alignment, we can reduce the Aer
to 29.8%.

Using the target foresight directly to create an alignment produces no usable re-
sults. The network does not learn any meaningful alignment, but uses the attention
weights to encode the target word êi. It is in nearly all cases able to reproduce the tar-
get word on the output layer, even though êi is only given to compute the alignment.
Furthermore the computed alignment has no meaningful correlation with the correct
alignment. To prevent this behavior, we try to make it harder to encode the target
word into the attention weights, by applying noise to the alignment weights and the
outputs of the corresponding network components. We also tried to initialize the en-
coder and decoder using the weights from our trained baseline network. We omitted
these numbers since unfortunately none of these techniques gave usable results and
used the following methods instead.

Fixing the encoder and decoder weights of our baseline network and training the
attention layer for just additional 2000 iterations results in an improvement of 4.2%
Aer and 8.0% Saer.

Pairing the guided alignment training with the target foresight training yields an
Aer of 19.0%. This is an improvment of 10.8% compared to only using guided align-
ment. Compared to the BerkeleyAligner it improved by 1.5% and by 2.0% compared
to GIZA++. Note the latter two still perform better considering the Saer score.

An expalaination for this behavior is that the design of Saer makes it easier for
systems with hard-alignments to perform well than system using soft-alignments.
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To elaborate this point: Even if the soft and the hard-alignment create the correct
alignment, the soft-alignment would most likely receive a lower score since is very
unlikely that it predicts the correct point with 100% certainty. Most alignment points
are predicted correctly by our systems in this task. This allows the hard-alignments
to produce a perfect score at most points. The soft-alignments gives these points also
the highest probability, but distributes its probability mass more evenly and recives
therefore a lower score than the hard-alignment.

To solve this we compute the Saer score also using the hard-alignment that we
use to compute the Aer score. This gave us a corresponding Saer score that is 10.3%
better than its soft equivalent. Using this comparison, the generated alignment out-
performs all baseline methods on both evaluation metrics. We obtain an alignment
which is superior to the baseline alignments and also to the standard guided align-
ment approach.

To verify that the obtained alignments can be used to improve the performance
of an NMT, system we evaluate the guided alignment training on the IWSLT2013
task. We apply our NMT alignment model to produce a soft alignment for the Eu-
roparl training corpus and use it in guided alignment training. The resulting score of
18.8% Bleu was an improvement of 0.4% Bleu compared to a model trained using the
GIZA++ alignment and 2.8% compared to the NMT baseline system. We also observe
an improvement of 1.3% Aer.

6. Conclusion

This work shows that attention-based models are capable of generating alignments
that improve the BerkeleyAligner alignments by 1.5% Aer. Using target foresight we
are able to improve the Aer by 19.1% compared to the baseline attention mechanism
and outperform the GIZA++ alignments by 2.0% Aer absolute and 9.5% relative us-
ing training with guided alignment. Additionally, we have shown that the new align-
ments can be used to improve the training of NMT models. The approach presented
in this work shows also that it is possible to train one model and reuse it to align
unseen data with a precision that outperforms the classical alignment methods.

Training the network to produce high quality alignments proves to be a hard task.
The network seems to encode the knowledge of the target word in the attention weights
and produces a non-usable alignment, but guided alignment training seems to coun-
teract this effectively. In future work, we plan to find a way to achieve the same strong
alignment without using guided alignment training.
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