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Abstract

Data Selection is a popular step in Machine Translation pipelines. Feature Decay Algo-
rithms (FDA) is a technique for data selection that has shown a good performance in several
tasks. FDA aims to maximize the coverage of n-grams in the test set. However, intuitively,
more ambiguous n-grams require more training examples in order to adequately estimate their
translation probabilities. This ambiguity can be measured by alignment entropy. In this paper
we propose two methods for calculating the alignment entropies for n-grams of any size, which
can be used for improving the performance of FDA. We evaluate the substitution of the n-gram-
specific entropy values computed by these methods to the parameters of both the exponential
and linear decay factor of FDA. The experiments conducted on German-to-English and Czech-
to-English translation demonstrate that the use of alignment entropies can lead to an increase
in the quality of the results of FDA.

1. Introduction

In recent years the amount of data available has increased significantly. Now it
is possible to find vast amounts of data for use as training data in Machine Learning.
The field of Statistical Machine Translation (SMT) is no exception to this phenomenon.
However, as shown in Ozdowska and Way (2009), having more data does not always
lead to better results. In contrast, the performance can increase by limiting the training
data to a smaller but more relevant set. This is why the use of data selection techniques
has become a common step in the creation of an MT pipeline.
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The data selection technique we are using in this paper is Feature Decay Algo-
rithms (FDA) (Bicici and Yuret, 2011; Bigici et al., 2015; Bicici and Yuret, 2015) which
has obtained good results in several Workshops on both MT and quality estimation
tasks. FDA collects a limited set of best sentence pairs for model training from a paral-
lel training corpus using the (source-side) information of the test set. FDA first extracts
features from the test set, and initializes them. Then, for every sentence selection it-
eration, FDA: 1) re-scores these features based on the already selected sentences and
2) selects the best sentence from the parallel corpus given the re-scored features, and
adds it to the selected training data.

There have been previous attempts to improve FDA by using alignment entropies
for unigram features (Poncelas et al., 2016). This makes sentences containing specific
unigrams more (or less) likely to be selected and thus different numbers of occur-
rences of those unigrams are obtained in the final training data.

In this paper we propose two methods that can be used for calculating not only
the alignment entropies of a unigram, but for any n-gram of any size. In addition
we explore the performance of these methods when used to determine the value of
different parameters in the mathematical model of FDA.

We perform experiments on German-to-English and Czech-to-English translation
and show that it is possible to calculate a set of weights that can be used to extend
FDA and obtain better results according to several evaluation metrics.

The remainder of the article is structured as follows. In Section 2 we give an outline
of work that is closely related to this paper. In Section 3 we describe different exten-
sions we propose to improve the performance of FDA. In Section 4 we describe the
experiments we have designed and describe the data that has been used. In Section 5
we analyse the obtained results and perform a comparison for the different proposed
extensions. We conclude in Section 6 and provide avenues for future work.

2. Related Work

The technique of data selection to be used is FDA. This is a method for selecting
a subset from a set of parallel sentences to be used as training data for a Machine
Translation System. This technique performs data selection by iteratively obtaining
the most appropriate sentence pairs from a candidate pool and adding them to a se-
lected pool, which ultimately becomes the training data when the process finishes.

2.1. Feature Decay Algorithms

FDA is a method that aims to maximize the coverage of n-grams in the test set.
It does so by scoring each sentence during sentence selection as a weighted sum of
the words, or more generally n-grams, which that particular sentence covers from the
test set (the document we want to translate). Furthermore, the weight of previously
selected n-grams is decreased in proportion to the number of times the n-gram has
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already been included. This process is called feature decay. Once all the sentences
have been scored, the one with the highest score will be transferred from the candidate
pool and included in the selected pool. This process is iteratively repeated.

The values of the features of the selected sentence are decreased as in (1):

dce()
decay(f) = init(f) ————— 1
Y(0) = it e M)
L is the selected pool, c is the linear decay factor, while d is the exponential decay
factor.!
Cy(f) is the count of the feature f in L, which makes the most frequent features
decay faster, thereby allowing an increase in variability of n-grams in the training
data. The initialization function is defined in (2):

init(f) = log(|Ul/Cu(f))*Ifl* 2

where |U| is the size of the training data, Cy (f) is the count of the feature f in the
training data and |f| is the number of tokens of f.

2.2. Alignment Entropy of Unigram as Extension of FDA

FDA treats all n-grams equally, the default parameters of (2) are static. It does
not distinguish according to how ambiguous the translation of an n-gram is. But in-
tuitively, more ambiguous n-grams require more training examples in order to ade-
quately estimate their translation probabilities. For example, proper names like
”Smith” that can be unambiguously translated require fewer occurrences in a train-
ing set. Therefore the importance of this feature should decay faster than other words
such as “for” or “at” which can have several possible translations.

A method for measuring how ambiguous the translations are for a given n-gram
is to use alignment entropy. Entropy measures uncertainty, as defined in 3:

entropy(x) = — 3 _p(x:) * log(p(x:) 3)

The alignment entropy can be calculated by using the alignment probabilities in
(3). These alignment probabilities can be retrieved from word-alignment models like
FastAlign (Dyer et al., 2013) or GIZA++ (Och and Ney, 2003).

Let s be an n-gram in the source language and t an n-gram in the target language.
We can define A as the set of n-grams in the target language that are potential trans-

]Strictly speaking, for ¢ in the range (0, 1), ¢, in the denominator of formula (1), adds decay that is sub-
linear in Cy (f), while for ¢ in the range (1, c0) it adds decay that increases faster than linear, though not
exponential. However, in the experiments in this paper, c is in the range (0, 1), so the effect the factor
involving c is at most linear, so we just refer to it as “linear” for simplicity.
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lations of s, and p(s, t) be the probability of s being translated as t. Accordingly, the
alignment entropy of s can be calculated as in (4):

. 2 iea, Pls,t) xlog(p(s,t))
alignEnt(s) Tog (AL 4)

In order to have alignment entropies in the [0, 1] range, the entropies are divided
by the the log of the number of possible translations, log(|A|), which is the maximum
possible entropy.

The score obtained in (4) can be used in (1) as the value of one of the decay factors,
d or c. As aresult the alignment entropy can have an influence on the decay.

In (Poncelas et al., 2016) experiments were carried out using unigrams as features
and changing the parameter d in (1). The alignment probabilities were obtained
by using FastAlign and GIZA++, showing that probabilities calculated by GIZA++
achieved better results.

3. Computing and Applying Alignment Entropies

In this paper we propose two possible alternatives for estimating the alignment
entropy of a any order n-gram. In addition, we want to explore the performance when
extending the different decay factors.

3.1. Extending the Exponential and Linear Decay in FDA

In FDA, the decay function (1) has two parameters: the linear decay factor c in the
range [0, co) with a default value of 0.0, and exponential factor d, in range (0, 1] with
a default value of 0.5. We are interested in exploring the impact in the performance
when changing these values. The aim is to analyze the three possible combinations:
change exponential decay exclusively, linear decay exclusively, and both the expo-
nential and linear decay. Note that when changing both decay factors we are using
the same set of weights in both parameters.

3.2. Computing 3-gram Alignment Entropy in FDA

While the unigram alignment entropy can be computed by using the conditional
probabilities retrieved from FastAlign or GIZA++ (because they are already word-
to-word translation probabilities), computing an n-gram alignment is not straightfor-
ward. It is not reasonable to expect that, for example, a 3-gram in the source language
should be mapped to a 3-gram in the target language as well.

In order to estimate the alignment entropy for any size n-grams we propose the
following two alternative entropy instantiations:

A mean-of-unigram method: Compute the alignment entropy of the unigrams using

an alignment tool. For the words whose alignments could not be retrieved, we
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assign them an entropy equal to the mean of the entropies of the rest of the
words. Then we can estimate the entropy of the n-gram as the mean of the
entropies of the words in the n-gram.

B ngram-to-unigram method: Assume that for every sentence pair (ls, 1), an n-
grams s in the source sentence 1, is only aligned to a single word (unigram)
chosen from the target sentence 1 with which it appears. Furthermore, assume
all these alignments are equally likely. Then to compute the alignment entropy
for s:

1) Extract from the parallel corpora the set L of line-pairs (1, 1) that contain
s in in the source side: L = {(15,lt) : s € 15}
2) Compute a multiset S, of translation tuples containing s:
For every line-pair (ls,1¢) € L, for every word wy € 1, extract an n-gram
alignment tuple (s,w¢). (Assuming every words w in the target side is a
potential translation candidate for s)
3) Compute the alignment probability distribution Ps from S using relative
frequence estimation.
4) Finally, compute the entropy over the thus computed distritutions Ps.
We expect n-grams with lower entropies to be aligned to a lower variety of words
on the target side. This provides us with an estimation of how difficult is to find
a translation. In addition n-grams that tend to appear in in-domain contexts will
have less translation candidates and therefore lower entropies. The probabilities
calculated using this method can be used in (4) for computing the alignment
entropy of the n-gram.

4. Experiments

The goal of the designed experiments is to test the effect on the performance of
the different aligment entropies (explained in Section 3.2) used when changing dif-
ferent decay factors (explained in Section 3.1). We will refer to this modified factor as
entropy-modified decay. Therefore, the designed experiments are the following:

* Baseline experiment: Execute FDA with the default values in the parameters.

* mean-of-unigram experiment: Use as alignment entropy H the mean of the align-
ment entropy retrieved by GIZA++ of its containing words (method A in the
section 3.2). Substitute H for c (linear decay), d (exponential decay) or both.

» ngram-to-unigram experiment: Calculate the alignment entropy H as if the n-
grams were aligned to a single word in the target side (method B in the section
3.2). Substitute H for c (linear decay), d (exponential decay) or both.

We are interested in observing the effect of these variants in different languages
and using features of different sizes. Therefore each of these experiments were car-
ried out using German (a language with a relatively strict word order), and Czech
(a language with free word order) as source languages. In addition, we used FDA1
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(using unigram as features) and FDA3 (features of up to 3-grams, which is what FDA
computes by default).

The data sets used in the experiments are based on the ones used in the work of
Bicici (2013) and Poncelas et al. (2016): (i) Languages: German-to-English and Czech-
to-English; (ii) Training data: The training data provided in the WMT 2015 (Bojar et al.,
2015) translation task setting a maximum sentence length of 126 words (4.5M sen-
tence pairs, 225M words, in German-to-English corpus and 11M sentence pairs, 355M
words, in Czech-to-English corpus); (iii) Tuning data: We use 5K randomly sampled
sentences from development sets from previous years; (iv) Language Model: 8-gram
Language Model (LM) built using the target-language side of the selected data via the
KenLM toolkit (Heafield, 2011) using Kneser-Ney smoothing; (v) Selected sentences: Se-
lect 66.4 million words in total (source- and target-language sides) in each experiment;
(vi) Test set: Documents provided in the WMT 2015 Translation Task.

We train SMT systems on the selected data using the Moses toolkit (Koehn et al.,
2007) with the standard features and using GIZA++ for word alignment. We include
several evaluation metrics: BLEU (Papineni et al., 2002), NIST (Doddington, 2002),
TER (Snover et al., 2006), METEOR (Banerjee and Lavie, 2005) and CHRF (Popovic,
2015). These scores give an estimation of the quality of the output of the experiment
when comparing to a translated reference. In general, the higher the score is, the better
the translation is estimated to be (except for TER, which is a translation error measure
and so lower is better).

5. Results

In Table 1 and Table 2 we present the mean of 4 MERT (Och, 2003) tuning execu-
tions for the different experiments. In the columns we show the baseline (FDA with
default values, d = 0.5 and ¢ = 0.0), exponential decay (FDA substituting the en-
tropies for d and keeping ¢ = 0.0), linear decay (FDA substituting the entropies for ¢
and keeping d = 0.5) and linear and exponential decay (substituting the entropies for
both ¢ and d). In Table 1 and Table 2 we also compute statistical significance at level
p=0.01 when compared with the baseline using Bootstrap Resampling (Koehn, 2004)
for BLEU, TER and METEOR scores.

We can observe that choosing good alignment entropies combined with chang-
ing the proper decay factors can obtain better results than the default baseline. In
this section we compare the performance of the extensions for FDA1 and FDA3, the
comparison of changing different decay factors, and the comparison of the obtained
alignment entropies.

5.1. Comparison of FDA1 with FDA3

Considering that the features extracted in FDA1 are a subset of the ones from FDA3
one would expect to have better results when using features of larger order n-grams.
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baseline entropy- entropy- entropy-
modified modified modified
exponential linear linear and
decay decay exponential
decay
FDA1 | FDA3 || FDA1 | FDA3 | FDA1 [ FDA3 [ FDA1l | FDA3
de — en
BLEU 0.2285 | 0.2282 || 0.2170 | 0.2235 || 0.2276 | 0.2307*| 0.2198 | 0.2232
NIST 6.9407 | 6.9237 || 6.7984 | 6.8734 || 6.9124 | 6.9573 || 6.8345 | 6.8825
TER 0.5966 | 0.5955 || 0.6035 | 0.5982 || 0.5989 | 0.5918*| 0.6002 | 0.5981

METEOR|| 0.2864 | 0.2851 || 0.2804 | 0.2827 || 0.2842 | 0.2859%*|| 0.2819 | 0.2832
CHREF3 50.124 | 49.937 || 49.001 | 49.528 || 49.854 | 49.884 | 49.321 | 49.743
CHRF1 50.727 | 50.705 || 49.841 | 50.265 || 50.553 | 50.836 || 50.077 | 50.301

cs — en
BLEU 0.2127 | 0.2184 || 0.2102 | 0.2146 || 0.2121 | 0.2190 || 0.2073 | 0.2137
NIST 6.6518 | 6.6983 || 6.6295 | 6.6375 || 6.6408 | 6.7004 || 6.5740 | 6.6247
TER 0.5973 | 0.5955 || 0.6221 | 0.6205 || 0.6202 | 0.6152 || 0.6252 | 0.6200

METEOR|| 0.2805 | 0.2827 || 0.2815 | 0.2806 || 0.2805 | 0.2832 || 0.2790 | 0.2796
CHREF3 48.178 | 48.578 || 48.078 | 48.316 || 48.029 | 48.605 || 47.647 | 48.160
CHRF1 49.250 | 49.604 || 49.145 | 49.245 || 49.201 | 49.589 | 48.822 | 49.161

Table 1. Results of the average of the scores after 4 tuning executions for the baseline,
and mean-of-unigram experiment. The results in bold indicate an improvement over the
baseline. The asterisk means the result is statistically significant.

However, we observe that it is not always the case. An example of this is the German-
to-English translation for the default FDA. As we can see in the baseline column in
Table 1 or Table 2 the results when using features of size 1 are better than those of size
3 for the BLEU, NIST, METEOR, CHFR3 and CHFR1 evaluation scores.

We also observe that the extensions proposed in this paper affect FDA3 and FDA1
differently. Extensions that improve an evaluation metric in FDA1 do not necessar-
ily translate into improvements in FDA3. The METEOR score for Czech-to-English
translation in Table 1 (entropy-modified exponential decay column) increases from
0.2805 (the baseline) to 0.2815, while the same evaluation score in FDA3 decreases
from 0.2875 to 0.2806. The opposite is also true, not all the extensions yielding im-
provements with FDA3 do the same with FDA1.

5.2. Exponential Decay vs Linear Decay

Looking at Table 1 and Table 2, we observe that it is not necessarily preferable
to change one decay factor over the other. Different sets of weights perform better
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baseline entropy- entropy- entropy-
modified modified modified
exponential linear linear and
decay decay exponential
decay
FDA1 | FDA3 || FDA1 | FDA3 | FDA1 | FDA3 || FDA1 | FDA3
de — en
BLEU 0.2285 | 0.2282 || 0.2271 | 0.2297 || 0.2247 | 0.2286 || 0.2278 | 0.2305*
NIST 6.9407 | 6.9237 || 6.9270 | 6.9618 || 6.9107 | 6.9284 || 6.9367 | 6.9713
TER 0.5973 | 0.5955 || 0.5997 | 0.5974 || 0.5982 | 0.5967 || 0.5982 | 0.5966

METEOR]| 0.2864 | 0.2851 || 0.2851 | 0.2869*|| 0.2846 | 0.2849 || 0.2856 | 0.2867*
CHREF3 50.124 | 49.937 || 50.075 | 50.221 || 49.957 | 49.771 || 50.070 | 50.263
CHRF1 50.727 | 50.705 || 50.640 | 50.826 || 50.517 | 50.679 || 50.721 | 50.857

cs — en
BLEU 0.2127 | 0.2184 || 0.2088 | 0.2202%| 0.2145* 0.2197 || 0.2142* 0.2211*
NIST 6.6518 | 6.6983 || 6.5560 | 6.7224 | 6.6712 | 6.7136 || 6.6630 | 6.7447
TER 0.6187 | 0.6154 || 0.6296 | 0.6140 || 0.6182 | 0.6152 || 0.6184 | 0.6127*

METEOR]| 0.2805 | 0.2827 || 0.2799 | 0.2844*|| 0.2816* 0.2832 | 0.2817*| 0.2851*
CHRE3 48.178 | 48.578 || 47.866 | 48.768 || 48.293 | 48.666 || 48.365 | 48.827
CHRF1 49.250 | 49.604 || 48.950 | 49.736 || 49.344 | 49.630 || 49.392 | 49.850

Table 2. Results of the average of the scores after 4 tuning executions for the baseline,
and ngram-to-unigram experiment. The results in bold indicate an improvement over the
baseline. The asterisk means the result is statistically significant

changing different decay factors. For example, in FDA3, the scores obtained in the
mean-of-unigram experiment work better for most of the scores when changing the
linear decay factor, while in ngram-to-unigram experiment changing the exponential
decay performs better for almost every score.

In FDA1 the use of our novel extension is even more unclear, as the only statistically
significant improvement occurs in Czech-to-English translation when changing the
linear decay (BLEU and METEOR rows in Table 2).

5.3. Changing One Decay Factor vs Changing Both Decay Factors

In Section 5.2, we have concluded that the performance of the decay factor depends
on the set of weights used as inputs. Note that in these experiments we change both
factors with the same values, so we propose as future work a more fine-grained eval-
uation of the performance using different entropies in each decay factor. Despite the
dependency on the weights, we find that, in FDA3, it is possible to find a set (Table
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de — en cs —en
mean | std mean | std
mean-of-unigram 0.6008 | 0.2035 || 0.5333 | 0.1926
ngram-to-unigram || 0.7450 | 0.1244 | 0.7314 | 0.1310

Table 3. Mean and standard deviation of the aligment entropies distribution for FDA3.

2, last column) that can improve the baseline for almost every score?, and it is the
only extension in obtaining statistically significant improvement for more than one
evaluation metric in both languages.

5.4. Comparison of mean-of-unigram method and ngram-to-unigram method

Density plot of alignment entropies. German to English

Density
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|
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T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Alignment entropy

Figure 1. Density plot of the alignment entropies obtained in mean-of-unigram (grey) and
ngram-to-unigram (black) experiments for FDA3 and for German-to-English translation.

In The ngram-to-unigram experiment we are assuming that every word in the target
language may be a potential candidate translation for a given n-gram. Therefore we
expect it to produce a set of higher entropies.

In order to have a deeper understanding of the distributions of the entropies in
the experiments, in Figure 1 and Figure 2 we show the distribution for German-to-
English and Czech-to-English translations, respectively. In Table 5.4 we also include

2The single case where the score is not improved, is the TER score for German-English translation.
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Density plot of alignment entropies. Czech to English
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Figure 2. Density plot of the alignment entropies obtained in mean-of-unigram (grey) and
ngram-to-unigram (black) experiments for FDA3 and for Czech-to-English translation.

the statistics of these distributions. They confirm our hypothesis that distribution for
ngram-to-unigram is centered in higher entropies: 0.745 and 0.7314. In contrast, for
mean-of-unigram they are 0.6008 and 0.5333. Note also that none of the entropies in
ngram-to-unigram experiment have a value below 0.3. This makes de values of the
features in ngram-to-unigram experiment decay slower.

We can observe that the results obtained by the ngram-to-unigram experiment for
FDA3 are generally better than those of mean-of-unigram. While in the first case (Table
1) only one extension performs better than the baseline, in the second case (Table 2)
in every extension we obtain improvements for at least two evaluation metrics.

For FDA1, even if the results are not equally satisfactory, we can observe statis-
tically significant improvements in the ngram-to-unigram experiment for two of the
extensions in Czech-to-English translation.

6. Conclusions and Future Work

In this work we have tried to improve the results of FDA by setting new, n-gram-
specific, weights in the decay function, that depend on the uncertainty of the n-grams.
In order to do that we proposed two methods for calculating the uncertainty. These
methods give an insight into the amount of occurrences an n-gram needs in the train-
ing data, based on how ambiguous the translation is. We observe that different
weights work better for different parameters. Accordingly, finding a good set of val-
ues is not enough; it is also necessary to find which parameter performs better. How-
ever we demonstrated that it is possible to find a combination that can have a positive

254



A. Poncelas et al. N-gram Alignment Entropy to Improve FDA (245-256)

impact on the output. Our findings have proven to be useful both for German-to-
English and Czech-to-English translation. An additional finding in this work is that
when using unigram features in the default FDA set-up, the output can be as good as
(or even better than) using higher order n-gram features.

In the future, we intend to conduct experiments to explore whether having differ-
ent distributions of the entropies (e.g. more left or right skewed, or different standard
deviations) can improve the results. The entropies used in this work where the same
for exponential and linear decay factors. Having different sets of weights for each pa-
rameter might be beneficial. In addition we want to analyse the outcome when using
alignment entropies as input to the init function as well. The source languages used
in this work are morphologically richer than the target language. We are also inter-
ested in knowing if the improvements are preserved when performing the translation
in the reverse direction.

Finally, we want to find a method for obtaining an optimal size of the selected
training data.
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