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Abstract
We present a multilingual preordering component tailored for a commercial Statistical Ma-

chine translation platform. In commercial settings, issues such as processing speed as well as
the ability to adapt models to the customers’ needs play a significant role and have a big im-
pact on the choice of approaches that are added to the custom pipeline to deal with specific
problems such as long-range reorderings.

We developed a fast and customisable preordering component, also available as an open-
source tool, which comes along with a generic implementation that is restricted neither to the
translation platform nor to the Machine Translation paradigm. We test preordering on three
language pairs: English→Japanese/German/Chinese for both Statistical Machine Translation
(SMT) and Neural Machine Translation (NMT). Our experiments confirm previously reported
improvements in the SMT output when the models are trained on preordered data, but they
also show that preordering does not improve NMT.

1. Introduction

Statistical Machine Translation (SMT) is still the most widely used machine transla-
tion paradigm in commercial translation services. Unlike previous approaches, SMT
models can be trained very fast and do not require any language-specific knowledge,
but only parallel bilingual data. Translation quality in SMT typically depends on the
quality and quantity of the training data, but also on the syntactic and morphological
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differences between the source and the target languages. One of the most common
and well analysed problems in SMT is how to place translated words in the correct
order with respect to the target language. Often, when the source language (SL) and
the target language (TL) have a different syntax, SMT places the TL words in incorrect
positions or even omits them. The former case hinders translation fluency, but usually
does not strongly affect the meaning of the translation. The latter case, however, dam-
ages translation adequacy and may have a negative effect on the conveyed meaning,
because specific information given in the source may be missing in the translation.

One of the simplest, yet most effective ways to deal with reordering problems in
SMT is to move the words in the SL to positions that are typical of the TL prior to
training and translation. This approach, called preordering, is performed using rules
which describe movements of words or word sequences, typically expressed in terms
of part-of-speech (POS) tags or syntactic subtrees. Preordering decreases the syn-
tactic differences between SL and TL sentences and allows for a correct alignment
of words in discontiguous phrases. By making the SL and TL look more similar, the
long-range reorderings, which are troublesome for automatically-learnt lexicalised re-
ordering models, become much less problematic. The work published on preordering
(see Section 2) reports very impressive improvements in the translation quality.

In this paper, we describe the design and the implementation of a preordering ap-
proach as well as its integration into KantanMT1, a commercial custom MT platform.
Both the implementation and the integration need to observe the following set of re-
quirements: (i) the implementation must be customisable according to the clients’
needs; (ii) the integration of preordering into the training and translation pipelines of
the platform should happen seamlessly and sustain backward compatibility; and (iii)
the newly integrated preordering component should add as little overhead as possi-
ble to the total training/translation time. We focus on the extendible implementation
of a preordering component and show how it can be tailored to each user’s individ-
ual needs. We tested our preordering component on three language pairs: English
(EN)→German (DE)/Japanese (JA)/Chinese (ZH)2, and report results gained when
different parsers are used. Despite the fact that our preordering component is in-
spired by SMT, it can seamlessly be applied to NMT as well. Our experiments will
however show that preordering does not improve NMT.

The remainder of the paper is structured as follows. Section 2 briefly outlines the
relevant previous work and motivates the development of the preordering component
in the present work. In Section 3, we present the reordering rules for the language
pairs under consideration. In Section 4, we describe in detail the implementation of
the preordering component. In Section 5, we evaluate its effects within the extended
MT platform. Finally, we draw conclusions in Section 6.

1https://kantanmt.com/

2By Chinese, we mean Simplified Mandarin Chinese.
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2. Related work

Many approaches have been proposed to deal with reordering problems within
SMT. One of the simplest, yet most effective methods is preordering, which involves a
modification of the SL data prior to training and translation. The reordering rules are
usually defined on the basis of POS tags and/or syntactic node labels in the source
language parse trees. The rules may be hand-crafted or automatically derived from
the word-aligned parallel texts. They may be deterministic (i.e., leading to a single
reordered variant of the given source sentence) or non-deterministic (i.e., leading to
several variants of the source sentence). An extensive overview of different preorder-
ing approaches is presented by Bisazza and Federico (2016).

Xu et al. (2009) and Nakagawa (2015) proposed preordering methods which can be
applied to many different language pairs. In a multilingual environment, such meth-
ods are certainly very convenient. Moreover, the method advanced by Nakagawa
(2015) is very fast, as it does not require any linguistic preprocessing (e.g., tagging
or parsing) of the training data. Thus, it additionally fits the speed requirements of
commercial MT software. However, the approach discussed by Nakagawa (2015) is
non-deterministic: a single source sentence is transformed into a number of different
reordered variants. As such, it requires lattice-based tuning and decoding which is
not supported by the in-house pipeline that we aim to extend. When many different
rules can be applied to a single sentence, it also becomes difficult to track errors in
the MT output which may be caused by incorrect reordering rules. In the context of
commercial settings, however, we need to have the possibility to (manually) improve
the rules in order to further increase the quality of the generated translations.

To allow for modification and adaptation of the reordering rules, and encouraged
by the simplicity of the deterministic preordering approaches as well as by the im-
provements reported for the deterministic rules, we present the implementation and
integration of the deterministic preordering approach into a commercial, multilingual
MT platform. Like Xu et al. (2009), we work with a single source language (English)
which translates into three different target languages: German, Japanese and Chi-
nese. Our method relates to the approaches proposed by Gojun and Fraser (2012) for
EN→DE and Lee et al. (2010) for EN→JA translation. Both approaches use a set of
deterministic hand-crafted reordering rules and apply them to the source-side (i.e.,
English) constituency parse trees. Both works report on significant improvements in
the MT outputs.

3. Reordering rules

Our rule sets are hand-crafted by the language-pair experts taking into account
the rules described by Gojun and Fraser (2012) and Lee et al. (2010).

English-German. The main syntactic difference between English and German is the
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position of the verbs. Depending on the clause type, the verbs in German may be in
the second position (SVO) or in the last position (SOV) in a clause, while in English
the sentence structure is always SVO. Our rule set is based on the rules described by
Gojun and Fraser (2012). We defined nine reordering rules which move the verbal
elements of the English verbal phrases, as well as the negation particle not. The rules
are conditioned by the clause types (e.g., S, SBAR) since the position of the German
verbs depends on the type of clause in which they occur.

English-Japanese. English and Japanese differ in many syntactic aspects: the order of
the clauses is different, as well as the order of the words within the clauses. An exten-
sive overview of the differences on various syntactic levels can be found in Bisazza
and Federico (2016). The rule set for Japanese is taken from Lee et al. (2010). We
only applied context-free grammar (CFG) rules and omitted context-sensitive gram-
mar (CSG) rules, since the information required for such rules is not given in our parse
trees. In total, we defined seven reordering rules which change the position of specific
subordinate clauses and parts-of-speech (i.e., verbs or conjunctions). Additionaly, we
defined one insertion rule to handle null subjects in Japanese.

English-Chinese. To our knowledge, there is no previous work on preordering for
EN→ZH. Wu (2016) manually inspected Chinese SMT output and categorised errors
related to reordering problems. Relying on this work, as well as on the work on pre-
ordering for ZH→EN proposed by Wang et al. (2007), we defined a set of rules which
include clause movements, such as moving subordinate clauses before main clauses,
as well as various phrase movements. However, this set of rules did not lead to satis-
fying results and, after further investigation, we reduced the set to only two different
rules: (i) moving all PPs before the modifying noun, (ii) moving only PPs with the
preposition of in front of the modifying noun (this is a subset of the movements de-
fined by the preceding rule). We report results for using either rule (i) or rule (ii)).

4. Implementation

The KantanMT platform is based on the SMT Moses toolkit (Koehn et al., 2007).
The preordering component acts as part of the data preprocessing step in the training
and translation pipelines.3 It is applied to the training/testing data before all the other
corpus-processing steps, such as lowercasing, cleansing, etc. Preordering is invoked
only if reordering rules for the given language pair are provided. Otherwise, the
processing pipeline simply skips the preordering step.

3A simplified version of the preordering component is freely available for research purposes:
https://github.com/KantanLabs/KantanPreorder.
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4.1. Pipeline overview

The preordering component is implemented as a three-step process that uses the
training, tuning and testing data in the SL (English) as input data, and reorders it
sentence by sentence. The processing steps are illustrated in Figure 1. For a general
sentence ω, we first generate the constituent parse tree Tω. We then apply the tree
modifications according to our reordering rules to generate the reordered tree Tr

ω.
Finally, we read out the reordered sentence ωr from the modified tree Tr

ω.

PARSING

parse
tokenise

Tsurgeon

NP
SBARNP
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NP VP

VBZ VP
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rules−en−zh.xml
The letter
that I am
writing
is almost
finished

rules−en−de.xml

rules−en−ja.xml

move np $− sbar
NP=np > NP $+ SBAR=sbar

REORDERING RULE
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𝑟
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Figure 1. Pipeline for the multilingual preordering. The figure shows tree modification for
one of the rules used for Japanese.

Parsing of SL data. Our approach employs reordering of English constituent parse
trees. We use the Stanford Shift-Reduce (SR) constituency parser (Zhu et al., 2013) to
generate these trees mainly because of its speed (see Section 5). But our implementa-
tion also works with two other parsers: the Charniak-Johnson parser (Charniak and
Johnson, 2005) and the Stanford PCFG constituency parser (Klein and Manning, 2003).
The preordering component does not parse nor reorder sentences that are longer than
60 words, shorter than 5 words or contain many special characters. We impose this
restriction because parsers may generate incorrect parse trees or take too long to parse
such sentences.

Tsurgeon-based reordering. For modifications of the parse trees, we employ Tsur-
geon (Levy and Andrew, 2006) – a tool for parse tree editing based on regular ex-
pressions. Tsurgeon first uses a pattern, defined as a Tregex expression, to identify
specific subtrees. These expressions make use of relational dependencies between
tree nodes, such as immediate dominance and precedence. Once a subtree matches the
pattern, Tsurgeon applies basic tree transformations to it (e.g., move, insert, etc.). An
example is given in Figure 1: the applied rule shows the movement (move np $- sbar)
of the relative clause under the SBAR node (SBAR=sbar) in front ($-) of the modifying
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noun phrase (NP=np). Before applying reordering rules to a parse tree, we modify the
tree to ensure that reordering operations will not cross the clause boundaries. That
is to say, no word movement will place a word outside of the corresponding clause.
Afterwards, we apply the language-pair specific reordering operations.

Reading out the reordered sentences. Given the modified parse trees, the reordered
sentences are read out by gathering the terminal nodes. Subsequently, the entire
source language data undergoes the tokenisation and lowercasing steps.

4.2. Optimised performance and scalability

Training and translation speeds are crucial for a commercial MT system’s quality of
service. To perform preordering efficiently, we developed the preordering component
with a distributed software architecture, and optimised both the parser and Tsurgeon.

First, we run the parser as a simple web service on the machine used for training
or translation. This ensures that the parsing model is loaded into the memory prior to
parsing any sentence. Furthermore, running the parser as a simple web service makes
the implementation independent from the parsing software used. Next, we modify
Tsurgeon and introduce a limited-depth search in order to avoid infinite loops and
ensure that the reordering of a single sentence will always terminate. In case either
the parser or Tsurgeon fails, we output the original sentence. This way, we preserve
coherence within the training/translation data.

Our preordering component uses GNU parallel (Tange, 2011) to distribute the
workload on all available cores. In particular, we divide the data into as many parts
as the CPUs and run preordering for each part in parallel and asynchronously. The
GNU parallel tool orchestrates the execution and ensures that the output is serialised
correctly. The parallel architecture leads to a substantially lower reordering time as
compared to the non-parallel implementation. In a particular test case for EN→DE,
involving the reordering of 5000 segments with the Stanford shift-reduce parser, the
parallel implementation on 8 cores took 46.10s, whereas the serial took 263.24s.

The run-time depends on the complexity of the sentences, number of the rules, the
parser, as well as parsing model used, etc. Analysis of the effects of these factors on
the efficiency is out of the scope of this paper and shall be addressed in future work.

4.3. Customisability

Since the tree modifications are based on Tsurgeon, they are independent of the
language pair for which the reordering is to be performed (as long as there is a corre-
sponding constituent parse tree). Thanks to the well-defined syntax of the rules, it is
easy to extend and/or modify the existing rule sets. In order to add reordering for a
new target language (and English as the source language), it is only necessary to spec-
ify the new reordering rules. That is, no further adaptation of the training/translation
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pipelines is needed. Applying reordering to a new source language would, however,
require the pipelines to be adapted and new parsers or models to be incorporated. In
principle, this is an easy task thanks to the generic implementation of the preorder-
ing component.4 Furthermore, since some rules are shared across languages, there
are cases where already existing rules can be re-used for new language pairs. For in-
stance, a rule for moving verbs at the end of the clause can be used for all SVO-SOV
language pairs. Rules can be developed by anyone familiar with Tsurgeon syntax.
However, language proficiency and translation experience are required in order to
create a valid set of rules.

5. Evaluation

We evaluated our preordering component in different settings and examined the
benefit of preordering on both SMT and NMT. All models were trained on the same
sets of data from the legal domain. The German models were trained on 1,018,738 par-
allel sentences, while for Japanese and Chinese, the training data consisted of 213,592
and 387,275 sentences, respectively. The models were tuned and tested on 500 in-
domain sentences. The MT quality is evaluated in terms of BLEU (Papineni et al.,
2002), TER (Snover et al., 2006) and F-Measure (Melamed et al., 2003). In addition, we
give the time required to preorder the SL data used to build the translation models.

5.1. Preordering and SMT

The models were trained with the SMT Moses toolkit (Koehn et al., 2007). We
used Moses default settings, including the lexicalised reordering model with distor-
tion limit of 6 words. The 5-gram language models were trained with the target side
of the parallel training data. We used fast_align for word alignment (Dyer et al., 2013).
Model weights were tuned with MERT (Och, 2003) with a maximum of 25 iterations.

The evaluation results, as well as the total training time (including reordering and
tuning time), are given in Table 1. The scores show that the quality of the transla-
tions varies when different parsers are used. For all target languages, the MT output
improves for all parsers. The highest MT improvement for German (+1,39 BLEU) is
obtained when the BLLIP parser is used, while the Japanese translations improve the
most when reordering is performed on the output produced through the SR parser
(+1,89 BLEU). The Chinese MT output profits the most from the reordering of of -PPs
in the PCFG trees (+0,13 BLEU).

Parsing accuracy depends on the domain and type of training data (Kummerfeld
et al., 2012). It may thus be interesting to extend the preordering component with
domain-dependent parsing software, as well as domain-specific parsing models.

4In Section 5, we present our experiments with two different parsers and three different models, which
is evidence of the extendibility of our tool.
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Baseline SR PCFG BLLIP
TER F BLEU tt TER F BLEU tr tt TER F BLEU tr tt TER F BLEU tr tt

EN→DE 51.73 64.21 40.1 187 49.57 65.53 40.74 97 254 49.7 65.57 41.17 372 579 50.45 64.6 41.49 1279 1468
EN→JA 54.02 78.22 49.44 135 51.87 76.34 51.33 25 155 52.04 77.43 50.29 413 544 54.54 76.04 51.33 372 492
EN→ZH 66.1 60.55 24.4 50 245 65.97 61.01 24.47 252 460 66.76 60.75 24.66 627 819(ppNP)
EN→ZH 66.27 61.04 24.99 197

66.69 61.50 25.09 49 240 66.11 61.53 25.22 269 464 67.32 61.36 25.05 633 820(ofPP)

Table 1. Automatic evaluation scores (given as percentages) for the SMT models
together with the time (given in minutes) for reordering (tr) and the total training time
(tt), including tuning. The run times relate to the 8-core CPU machines. Parsers: SR:

Stanford shift-reduce parser, PCFG: Stanford PCFG parser, BLLIP: Charniak/Johnson parser.

5.2. Preordering and NMT

Training setting. Our NMT models are built on the same data as our SMT mod-
els, after removing duplicates of source-target sentences. We used the open-source
toolkit OpenNMT (Klein et al., 2017) to train a single RNN (Recurrent Neural Net-
work) encoder-decoder model (Cho et al., 2014; Sutskever et al., 2014) with attention
mechanism (Bahdanau et al., 2014). We used a word-segmentation with byte pair en-
coding (BPE) (Sennrich et al., 2016) of 25,000 operations for English and German. We
built the BPE dictionary from normal-cased (i.e., lower- and upper-cased) tokens by-
passing the requirement for a recasing model. For Chinese and Japanese, we used a
character-based segmentation (Chung et al., 2016). Each network was trained on one
GPU (NVIDIA K520, 4GB RAM) for a maximum of 15 epochs, using the ADAM (King-
ma and Ba, 2015) learning optimisation function with initial learning rate of 0.005.

We need to highlight that our NMT pipeline is optimised for speed (e.g., EN→JA
models are built in less than 8 hours); within the scope of this work, we did not aim
to build NMT models that perform better than SMT (according to the automatic met-
rics), but rather to explore the impact of preordering on NMT.

Automatic evaluation. The evaluation scores are presented in Table 2. In addition
to TER, F-Measure and BLEU, we also give the models’ perplexity during training to
assess the effect of reordering on NMT engines. The scores indicate that, overall, pre-
ordering does not improve the quality of NMT models. On the contrary, all metrics,
including perplexity, are better for the baseline models. However, we ought to note
that the EN-ZH (ofPP) NMT model has the highest BLEU score for EN→ZH. This
result, although episodic for our data, indicates that preordering can have a positive
effect under certain conditions. This calls for further, in-depth analysis, which we
plan to address in future work.

Human evaluation. Automatic evaluation metrics often tend to misjudge NMT qual-
ity (Shterionov et al., 2017). Therefore, we carried out human evaluation tests on
Chinese (80 sentences) and German (250 sentences) MT output. For each of the two
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Baseline SR
Perplexity TER F BLEU Human te Perplexity TER F BLEU Human te

EN-DE 2.83 54.63 63.07 38.26 49.2 123 2.94 54.84 61.42 36.74 50.8 123
EN-JA 1.41 27.44 84.54 67.66 – 31 1.5 35.28 80.62 60.77 – 31
EN-ZH (ppNP) 3.46 63.34 61.01 27.65 36.9 91 3.71 67.15 59 26.67 30.7 91
EN-ZH (ofPP) 3.66 65.48 60.37 28.75 32.4 91

Table 2. Scores (given in percentages) together with training time (given in minutes) for
one epoch (te) for the baseline and reordered NMT models. The human evaluation
indicates the percentage of sentences for which the translation is deemed better.

EN The Commission may, in any case, withdraw such products or substances in accordance with Article37(2).
ENr The Commission may, in any case, such products or substances in accordance with Article37(2) withdraw.
B Die Kommission kann in jedem Fall diese Produkte oder Stoffe gemäß Artikel37 Absatz2 zurückziehen.
R Die Kommission kann in jedem Fall solche Erzeugnisse oder Stoffe gemäß Artikel37 Absatz2 zurückziehen.
REF Kommission kann in jedem Fall solche Erzeugnisse oder Stoffe gemäß Artikel37 Absatz2 zurückziehen.

Table 3. Example of baseline (B) and reordered (R) translation of a sentence EN and its
reordered version ENr. The verbs are indicated in italic, while the differing object NPs are

given in bold. The German reference is indicated as REF.

languages, two reviewers compared randomly selected MT sentence pairs (obtained
using reordered (R) and baseline (B) training data). For EN-DE they had to indicate
which of the two translations was better or whether they were the same; for EN-ZH
they had to compare three translations (B, ppNP and ofPP) and score each of them on
the scale of 1 to 5. We mainly notice: (i) the translation quality of the B translations is
slightly better than that of the R translations, (ii) reordering does not seem to impact
the placement of (single) words in the NMT output, but it may lead to syntactically
completely different translations, as well as different lexical choices, and (iii) often the
B models already correctly translate sentences which our preordering aims to correct.
Discussion. Bentivogli et al. (2016) showed that NMT deals very well with word
order issues for EN→DE. Mainly, this is because the RNN encoder-decoder model
encapsulates knowledge of the complete input sentence. That is, a complete input
sentence is mapped to a complete output sentence, contrary to phrase-based SMT
where one sentence is handled phrase by phrase. This allows NMT to deal with both
short- and long-distance order issues much more efficiently. Despite showing great
improvement when compared to SMT, NMT still makes some mistakes in relation
to the placement of words in the translations. We applied preordering on NMT to
examine the possibility to reach further improvement in the NMT quality. Our ex-
periments showed that preordering is not beneficial for NMT based on RNNs. This
may be explained by the fact that preordering is applied on some, but not all source
sentences (depending on the parser’s accuracy and coverage of the preordering rules),
which leads to noisy training data. Although adding noise to a neural network may
improve the generalisation abilities of the network (Jim et al., 1994; Bishop, 1995), in
our experiments we did not use any technique to accommodate any excessive noise
introduced by the reordering, which may result in a lower network performance.

69



PBML 108 JUNE 2017

For future works, we plan to investigate in depth this hypothesis, and upgrade
our preordering component to address performance issues, aiming to improve the
translation quality of NMT models.

5.3. Processing time vs. translation quality improvement

Since the processing time plays an important role for commercial MT, we ought
to investigate whether the improvements reported in Section 5.1 justify the longer
processing time. Given the baseline training time (see Table 1), the total training time
increases by 36% for EN→DE and 15% for EN→JA when the fastest parser (SR parser)
is used. BLEU improvements, and even more importantly, positive feedback of our
clients, justify longer processing time for both language pairs. For Chinese, the in-
crease is 24% for EN→ZH (ofPP) and 22% for EN→ZH (ppNP). On the other hand,
the PCFG (4-6 hours) and BLLIP (6-20 hours) parsers lead to a non-acceptable in-
crease of the training time, although for German and Chinese, the best translations
are obtained using the BLLIP and PCFG parser, respectively. Future work will aim at
making these parsers faster so as to be usable within our commercial SMT platform.

In some settings, however, an increase of processing time may be acceptable if it
promises high-quality translations. For example, for translation via API, where only a
few segments are translated at once, the increase in time is negligible. Furthermore, if
a single model is to be used for many decoding iterations, one could consider training
it using a slower, but better parser. Ultimately, it is up to the clients to decide how fast
the translations of the provided test sets are to be generated. Given the evaluation
results and the training times of the SMT models, we suggest employing the fastest
SR parser.

6. Conclusion

We presented a generic component for preordering that is integrated in the corpus
preprocessing step for a commercial MT platform. Reordering of the SL sentences is
based on Tsurgeon, a tool for editing parse trees based on regular expressions. Thanks
to the well-defined syntax of the Tsurgeon expressions, the preordering component
is easy to maintain and to extend to other language pairs.

We implemented deterministic rule-based reordering because it performs well,
and we can control and adapt it, if needed, to maximise the translation quality. Fur-
thermore, due to its deterministic character, we are not forced to choose between dif-
ferent reorderings of a single sentence or to modify the pipeline into which the pre-
ordering component has been integrated.

We described how to achieve preordering speeds that can satisfy the high perfor-
mance demands of commercial MT software. We showed that a single preordering
pipeline can successfully be applied to three different language pairs. Furthermore,
the EN→ZH language pair has not been handled this way before. Our experiments
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confirmed previously reported improvements for combining preordering with SMT.
Additionally, we applied preordering to NMT and observed that NMT does not gen-
erally benefit from the reordering of the source training data. In the future work, we
will further investigate impact of the preordering approach on NMT.
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