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Abstract
Neural Networks are prevalent in todays NLP research. Despite their success for different

tasks, training time is relatively long. We use Hogwild! to counteract this phenomenon and
show that it is a suitable method to speed up training Neural Networks of different architectures
and complexity. For POS tagging and translation we report considerable speedups of training,
especially for the latter. We show that Hogwild! can be an important tool for training complex
NLP architectures.

1. Introduction

Many novel Machine Translation (MT) systems make use of Neural Networks
(NNs) of different structure. In contrast to other machine learning methods, NNs are
able to learn the relevant characteristics of the data independently (Bengio et al., 2013)
and thus do not rely on handcrafted features which in turn requires expert knowledge
and extensive study of the data basis. Backed by growing amounts of data available
and increasing computational power, NNs have achieved remarkable results in dif-
ferent disciplines (Goodfellow et al., 2016). NNs have also proven to perform very
well for MT (Cho et al., 2014; Sutskever et al., 2014).

These promising results of adopting NNs for MT and especially their capability of
capturing the semantics of phrases (Cho et al., 2014) led to the emergence of a new
branch of research referred to as Neural Machine Translation (NMT). This approach
addresses the problem of translation with techniques solely based on NNs. A com-
parably simple system has shown that an NMT system is able to reach near state-of-
the-art results and even surpass a matured SMT system (Bahdanau et al., 2014).
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A major drawback of NMT systems attenuating the positive findings is the long
time needed to train the translation models. The most widely used gradient based
optimization algorithms SGD, Adagrad (Duchi et al., 2011) Adadelta (Zeiler, 2012),
Adam (Kingma and Ba, 2014) and RMSprop (Tieleman and Hinton, 2012) show good
convergence properties for optimizing NNs and can be efficiently implemented by
moving the underlying matrix operations to GPUs for heavy parallelization (e.g., with
frameworks like theano (Bergstra et al., 2010) or Tensorflow (Abadi et al., 2016)). This
approach obtains considerable speedups (Brown, 2014). There are several libraries for
programming languages which offer a convenient interface for GPU programming
in the context of NNs. Nowadays, almost all real world applications of bigger NN
models involve computation on GPUs.

Dependent on quantity of training data and model size, which both generally have
a positive effect on the resulting models quality when increased, training NMT sys-
tems reportedly still requires several days. Training times of 3 to 10 days are com-
mon (Cho et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014). In consequence,
other ways to speed up the training are desirable. Besides from using GPUs, a way to
shorten training times is parallelization on a higher level. This is not a trivial task as
all of the optimization algorithms mentioned earlier are inherently sequential proce-
dures. Nevertheless, there are generally two distinct approaches to achieve such par-
allelism, namely model parallelism and data parallelism. These approaches do not restrict
the application of GPUs for the underlying matrix calculations and allow making use
of the combined strength of several GPUs in a cluster.

The method of model parallelism distributes different computations performed on
the same data onto multiple processors. The results are then merged in an appropriate
way by a master process which also handles communication between processors as
they are dependent on the results computed by the other processors. This technique
is well suited for NNs due to their structure and is successfully implemented for the
training of NMT models in (Sutskever et al., 2014). However, the work in hand is not
concerned with model parallel approaches.

Data parallelism pursues a different approach where the processors perform the
same operation on different data. In terms of optimization of NNs, this means that
the training data is divided among the processors while shared parameters of the
network are updated according to a suitable schedule. Data parallel training of NNs
is not a trivial task and the commonly used optimization algorithms for training NNs
are inherently iterative. Nevertheless, there are approaches in a data parallel fashion
that allow parallelization of NN optimization, one of which is Hogwild! (Niu et al.,
2011).

Hogwild! is an instance of a data parallel approach where updates to the global
parameters are applied without locks. In this work we will show that Hogwild! can
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be successfully applied to train NNs for NMT as well as for POS tagging. The main
contribution of this work is the implementation of this algorithm for theano.1

The final results suggest that fitting NMT models with this asynchronous opti-
mization technique has the potential to speed up the training process. It is found that
Hogwild! is well suited for parallelized training of NMT models. As a secondary
finding, an additional experiment shows that the same algorithms can be applied to
NNs of various structures.

2. Approach

In SGD and descendant algorithms, updates are calculated with parameters es-
timated in the previous time step. Therefore these algorithms are sequential in na-
ture. While basically applying the same update rule as standard SGD, in Hogwild!,
separate updates for different batches of data are calculated on each working node
based on parameters shared among all working nodes. These shared parameters are
read and written to without any locks which usually are used to avoid simultaneous
read/write operations on the same data in parallelized programs. As a result, the
parameters possibly lack some updates computed on other processors that are yet
to be applied and occasional overwrites may occur. However, assuming sparsity in
the parameters updated for each training example, Niu et al. (2011) show that these
downsides have negligible impact on the training procedure. With the results pre-
sented in Section 5, we demonstrate that this algorithm is also successfully applicable
to NN training.

We implemented Hogwild! for the Theano framework using Python’s multipro-
cessing module. After initializing the weights and defining the model’s computa-
tional graph, several worker processes are spawned and local copies of the graph are
compiled for each. This is necessary due to Theano functions not being thread safe.
The subprocesses read batches of training data from a queue and when a new batch
of data is processed, the globally shared variables are read and updates are calculated
accordingly. These updates are then sent back to be applied to the shared parameters.
In accordance with the update scheme of Hogwild! the shared parameters are read
and written to without any locking. For more detail we refer the interested reader to
our source code.

Especially in the case of using GPUs, data transfer to and from device memory
may slow down training. However, in our experiments we did not find this to have a
strong impact. Rather, due to Theano’s GPU capabilities it is easy to utilize GPUs as
working nodes and benefit from their strengths for matrix calculations.

1Our implementation of Hogwild! for Theano can be found at http://github.com/valentindey/async-
train.
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3. Related Work

Introducing the algorithm, Niu et al. (2011) compare Hogwild! to a version thereof
with locking and the asynchronous optimization strategy presented by Langford et al.
(2009) and demonstrate that Hogwild! obtains improved speed for several problems.
The positive findings make it a natural choice for us to apply this algorithm to prob-
lems of NLP. However the examined tasks in the original paper only give little indi-
cation for applicability of Hogwild! for optimization of NNs as they are mostly used,
especially in NLP.

The single machine C implementation of word2vec released as part of the work
of Mikolov et al. (2013) also uses lock-free updates in the style of Hogwild!.2 This
method is clearly useful in this setting, as the problem typically is very sparse with
large vocabulary sizes and only a few words affected at each update. Training word
embeddings this way is based on a relatively simple NN architecture. We train more
complex models with Hogwild! without such a clear notion of sparsity, and our ap-
proach allows us to use Hogwild! with flexibly defined complex NN architectures.

Feng et al. (2016) present an evaluation of different optimization algorithms on
question answering tasks. Among other algorithms, implementations of EASGD/
EAMSGD (Zhang et al., 2015) and Downpour SGD (Dean et al., 2012) are evaluated.
While showing promising results for parallelized gradient based optimization, their
study lacks comparison with Hogwild! which we find is a suitable method for opti-
mizing NNs.

Building on Hogwild!, Noel and Osindero (2014) introduce an optimization tech-
nique working on computing clusters like multiple CPU cores, multiple GPUs, or
several machines. They implemented this for the Caffe framework (Jia et al., 2014)
and show brief benchmarks on the MNIST (Lecun et al., 2009) and ImageNet (Deng
et al., 2009) data sets, depicting promising results for applications using NNs. Inter
alia, we take these findings as basis for porting Hogwild! to NLP problems.

The NMT systems marian3 and OpenNMT4 comprise implementations of asyn-
chronous update strategies similar to Hogwild!. As marian is written in C++ and
OpenNMT is built with the lua framework torch it is of interest to have a point of
reference for a system implemented with Theano in python. Additionally, we are
able to attain better speedup properties when increasing the number of used GPUs
compared to the benchmarks listed on the website of marian.

2Their published results used the DistBelief framework (Dean et al., 2012) which follows a different
parallelization paradigm since one of the goals is to overcome the constraint of having only small RAM in
GPUs.

3https://marian-nmt.github.io
4http://opennmt.net
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4. Tasks

POS Tagging Part of speech tagging is one of the most fundamental problems in
NLP and can also be used to improve machine translation systems (Ueffing and Ney,
2003).

We study a German POS Tagging task using a self-defined NN model. Similar to
Ling et al. (2015), our model represents words by the concatenation of a word em-
bedding and a character-based word representation. The latter is computed with a
bidirectional LSTM (BiLSTM) from the word’s character sequence. Characters occur-
ring only once and words occurring less than 10 times are replaced by a special sym-
bol UNK. The forward/backward character LSTM processes the word suffix/prefix
of length 10. The suffix/prefix is padded with padding symbols if the word length is
below 10. The final states of the forward and backward LSTMs and the word embed-
ding are concatenated. The resulting sequence of word representations is processed
by a second BiLSTM whose forward and backward states are concatenated at each
position. Each positional representation obtained in this way is linearly projected to
an output layer with a softmax activation function over possible POS tags.

We use character embeddings of size 100, word embeddings of size 800, a character
BiLSTM of size 400 for both directions and a deep word BiLSTM of size 800 for both
directions with two layers of equal size. The training maximizes the log-likelihood of
the correct tags. We decrease the initial learning rate of 0.03 by 0.0135 after each epoch.
The character BiLSTMs are processed in parallel for all input words, but otherwise no
batch processing is applied.

We trained our model on the German TIGER corpus (Brants et al., 2002) which is
annotated with fine-grained POS tags that include additional annotations (e.g., num-
ber, gender, and case for nouns). We train on 40472 sentences and evaluate our models
on 5,000 sentences held out from training.

Neural Machine Translation NMT systems working on the sentence level make use
of the so-called encoder-decoder architecture which transforms input sentences into
vector representations via an encoder RNN and decodes the target sentences with a
decoder RNN (Sutskever et al., 2014; Cho et al., 2014).

The NMT model used for this work is based on the dl4mt material5. It uses gated
recurrent units (GRUs) as introduced by Cho et al. (2014) with 1,000 units for both,
the encoder and the decoder, and applies an attention mechanism (Bahdanau et al.,
2014). All data is tokenized in a preprocessing step with the tokenizing script from
Moses (Koehn et al., 2007). The 15,000 most common words of the source and target
languages are mapped to embeddings of size 100. All other words are treated as
unknown and mapped to a shared embedding. We ignore sentences longer than 50

5The original dl4mt code can be found at https://github.com/nyu-dl/dl4mt-tutorial and the code for
our adapted version lives at https://github.com/valentindey/pnmt
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Figure 1: Training POS tagging models

words. We use about 1.6 million sentences from the French/English Europarl corpus
(Koehn, 2005) for training and an additional 10,000 sentences from the same corpus
held out from training to monitor the training procedure (e.g. for early stopping). We
maximize the log-likelihood of the training data with an initial learning rate of 0.1
that is not decreased throughout training. Gradients larger than 1.0 are clipped. For
our NMT experiments, we use a batch size of 64.

5. Experimental Results

POS Tagging We trained the POS tagging model described in the previous section
for 2 epochs on a machine running Ubuntu 16.04 equipped with Nvidia GeForce GTX
1080 units. As Figure 1 shows, this short training period is sufficient to show the
performance gains through applying Hogwild!.

For comparison we also train the model with Adam on one GPU with the com-
monly used default hyperparameter values recommended by Kingma and Ba (2014).

Figure 1 shows the trajectories of training error and accuracy on the held-out data
during training. There is a clear speedup when increasing the number of working
nodes, and training with Hogwild! quickly becomes superior to training with Adam.
The notches of training error in Figure 1a result from the decrease of learning rate
after the first epoch. It is interesting to see that Adam fails to decrease the loss during
training from a certain point on, probably oscillating around a local minimum while
the models trained with Hogwild! decrease the loss further. The common strategy
of initial training with an advanced optimization algorithm like Adam followed by
SGD for fine tuning (e.g. Sercu et al., 2016) is thus no longer necessary when using
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Figure 2: Training NMT models

number time (h) train loss BLEU score
of GPUs held out data
1 26.89 68.4441 14.42
2 16.56 64.5328 14.46
3 9.24 64.1065 14.32
4 6.96 64.2586 14.40

Table 1: performance of NMT models after 90,000 updates

Hogwild! and near optimal parameters are still found faster than when only using
SGD.

Machine Translation The previous findings support the use of Hogwild! for the
somewhat smaller problem of POS tagging where training is relatively fast. In the
case of the more complex problem of NMT where training times of several days are
common (Bahdanau et al., 2014; Sutskever et al., 2014; Cho et al., 2014) we see an even
more marked improvement due to parallelization with Hogwild!.

The numbers in Table 1 exemplify the achieved speedup by listing the times needed
for 90,000 updates and the respective model performance for different levels of con-
currency. As expected, the time required to perform a fixed number of updates is
decreasing approximately linearly dependent on the number of working nodes, i.e.,
GPUs. This indicates little to no influence of the negative side effects of Hogwild!
discussed in Section 2. The models’ performance in terms of BLEU scores is almost
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unchanged and we can train competitive models in substantially shorter time. Apply-
ing Hogwild! for this problem in our eyes shows the most gain as this kind of model
usually takes a very long time to train. However Figure 2 also suggests that there is
an upper bound to the gains through parallelization which is almost reached when
working on four GPUs, the same as with the POS tagging model.

Summary of NLP Results With Hogwild! we can speed up the training for both of
the problems we considered, including different kinds of models. We can also see that
using more GPUs has less impact on the training progress with each increment, which
indicates an upper bound for positive effects from increased concurrency. Using three
or four GPUs works very well for appropriately sized models and complex problems.

6. Conclusion

We have shown that Hogwild! is useful for training NNs of different architectures
faster. It is meaningful to train models on multiple GPUs and CPU cores. The ad-
verse effects of Hogwild! discussed in Section 2 are at a negligible level for the stated
problems and show that the algorithm is suitable for training NNs for NLP tasks. We
find that running Hogwild! on three to four GPU devices gives viable results for POS
tagging and NMT.

With the release of our source code, we provide the means to easily use Hogwild!
for other systems implemented in Theano. The seq2seq module in Tensorflow pro-
vides the GPU parallelization in a layerwise manner automatically when the LSTM
consists of multiple layers. Hogwild! can be deployed on top of this setting easily as
well.

Recently typical GPU environments have changed drastically. The Nvidia PASCAL
architecture provides bigger graphics memory at a cheaper price point. This means
that setups with four GPUs (or even eight or sixteen) are becoming widely accessible,
an interesting contrast with massive CPU parallelization (Dean et al., 2012). In the
computer vision community, parallel GPU architectures like the server we used are
heavily used, while in the NLP community they are rare. Our results show that the
NLP community should more strongly consider training with multiple parallel GPUs.
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