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Memory-Based Machine Translation and Language Modeling

Antal van den Bosch, Peter Berck

Abstract
We describe a freely available open source memory-based machine translation system, . Its

translation model is a fast approximate memory-based classifier, trained to map trigrams of source-
language words onto trigrams of target-language words. In a second decoding step, the predicted tri-
grams are rearranged according to their overlap, and candidate output sequences are ranked according
to a memory-based language model. We report on the scaling abilities of the memory-based approach,
observing fast training and testing times, and linear scaling behavior in speed and memory costs. e
system is released as an open source soware package¹, for which we provide a first reference guide.

1. Introduction

Recently, several independent proposals have been formulated to integrate discrete classi-
fiers in phrase-based statistical machine translation, to filter the generation of output phrases
(Bangalore, Haffner, and Kanthak, 2007, Carpuat andWu, 2007, Giménez and Màrquez, 2007,
Stroppa, Van den Bosch, and Way, 2007), all reporting positive effects. is development ap-
pears an interesting step in the further development of statistical machine translation. ese
same developments can also be employed to produce simple but efficient stand-alone transla-
tion models.

In this paper, we introduce,memory-basedmachine translation. ememory-based
approach, based on the idea that new instances of a task can be solved by analogy to similar
instances of the task seen earlier in training and stored in memory as such, has been used
successfully before in various NLP areas; for an overview, see (Daelemans and Van den Bosch,
2005).

M is a stand-alone translation model with a simple decoder on top that relies on a
memory-based language model. With a statistical word alignment as the starting point, such

¹http://ilk.uvt.nl/mbmt
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De stemming vindt vanavond plaats .

The vote will take place this evening  .

_ De stemming _ The vote

De stemming vindt The vote will

stemming vindt vanavond vote will take

vindt vanavond plaats

vanavond plaats . take place this

plaats . _ evening . _

this evening .

Figure 1. An example training pair of sentences, converted into six overlapping
trigrams with their aligned trigram translations.

as produced by ++ (Och and Ney, 2003),  is shown to be very fast both in training
and translation.

e overall architecture of the system is described in Section 2. A brief evaluation and
reference guide of the system is provided in Section 3. e language modeling module, also
made available as a separate language modeling toolkit, is described in Section 4. We wrap up
in Section 5.

2. Memory-based machine translation

Memory-based machine translation (Van den Bosch, Stroppa, andWay, 2007) can be char-
acterized as an instantiation of example-based machine translation (), as it essentially
follows ’s basic steps (Carl and Way, 2003): given a sentence in the source language to be
translated, it searches the source side of the corpus for close matches and their equivalent tar-
get language translations. en, it identifies useful source–target fragments contained in those
retrieved examples; and finally, it recombines relevant target language fragments to derive a
translation of the input sentence.

e scope of the matching function implied in the first step is an important choice. We
take a simplistic approach that assumes no linguistic knowledge; we use overlapping trigrams
of words as the working units, both at the source language side and the target language side.

e process of translating a new sentence is divided into a local phase (corresponding to
the first two steps in the  process) in which memory-based translation of source trigrams
to target trigrams takes place, and a global phase (corresponding to the third  step) in
which a translation of a sentence is assembled from the local predictions. We describe the two
phases in the following two subsections.

2.1. Local classification

Both in training and in actual translation, when a new sentence in the source language is
presented as input, it is first converted into windowed trigrams, where each token is taken as
the center of a trigram once. e first trigram of the sentence contains an empty le element,
and the last trigram contains an empty right element. At training time, each source language
sentence is accompanied by a target language translation. We assume that word alignment has
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zin no point in

the sense that

in terms of

this respect ,

no sense to

that sense ,
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geen no point in 151

no sense to 50

no sense in 19

make sense to 11

not want to 10
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...

om no point in 43

no sense to 14
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make sense to 4

not worth our 2

The vote on 6

...
die the sense that 63

this respect , 53

that sense , 47

this regard , 28

this sense , 26

in mind , 13
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zink omdat no point in 1

is meaningless because 1

legal point of 1

, zinc and

or zinc .

on zinc-risk analysis

using calcium-zinc compounds

1

1

1

1

... ...

Figure 2. Excerpt of an mbmt igtree structure, zooming in on the path represented
by the input trigram “geen zin om”, translatable to “no point in”, among others.

taken place, so that we know for each source word whether it maps to a target word, and if
so, to which. Examples are only generated for source words that align to target words. Given
the alignment, each source trigram is mapped to a target trigram of which the middle word
is the target word to which the word in the middle of the source trigram aligns. e le and
right neighboringwords of the target trigramare the centerword’s actual neighbors in the target
sentence. Figure 1 exemplifies the conversion of a training translation to six trigrammappings.

During translation, source trigrams are matched against the training set of stored source
trigrams with a known mapping to a target trigram. e matching is carried out as a dis-
crete classification. To this purpose we make use of ² (Daelemans, Van den Bosch, and
Weijters, 1997), which compresses a database of labeled examples into a lossless-compression
decision-tree structure that preserves the labeling information of all training examples. Fig-
ure 2 displays a fragment of the decision tree trained on the translation of Dutch trigrams
to English. It highlights one path in the tree, representing the Dutch trigram “geen zin om”
(translatable, among others, into “no point in” and “no sense to”). e tree encodes all possi-
ble trigram translations of, respectively, the middle word “zin”, the bigram “geen zin”, and the
full trigram. is order reflects the information-gain weights of the three words with respect
to predicting the output class.

During translation, ’s classification algorithm traverses the decision tree, matching
the middle, le, and right words of each new trigram to a path in the tree. Two outcomes are
possible: (1)  finds a complete matching path, upon which it returns the most probable
output trigram; (2)  fails to match a value along the way, upon which it returns the most
probable output trigram given the matching path so far. Instead of the most probable path, it
is also possible for  to return the full distribution of possible trigrams at the end of a
matching path.

When translating new text, trigram outputs are generated for all words in each new source
language sentence to be translated, since our system does not have clues as to which words
would be aligned by statistical word alignment.

²http://ilk.uvt.nl/timbl
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2.2. Global search

To convert the set of generated target trigrams into a full sentence translation, the overlap
between the predicted trigrams is exploited. Figure 3 illustrates a perfect case of a resolution
of the overlap (drawing on the example of Figure 1), causing words in the English sentence to
change position with respect to their aligned Dutch counterparts. e first three English tri-
grams align one-to-one with the first three Dutch words. e fourth predicted English trigram,
however, overlaps to its le with the fih predicted trigram, in one position, and overlaps in
two positions to the right with the sixth predicted trigram, suggesting that this part of the En-
glish sentence is positioned at the end. Note that in this example, the “fertility” words take and
this, which are not aligned in the training trigram mappings (cf. Figure 1), play key roles in
establishing trigram overlap.

In contrast to the ideal situation sketched in Figure 3, where one translation is produced, in
practice many different candidate output sequences can be generated due to two reasons: first,
each (potentially partially or fully incorrect) trigram may overlap with more than one trigram
to the le or right, and second, the classifier may produce more than one output trigram at a
single position, when it reaches a non-ending node with equally-probable trigram classes.

To select the most likely output among the potentially large pool of candidate outputs, we
employ a memory-based target language model (Van den Bosch, 2006). is model, called
, described in more detail in Section 4, is a word prediction  system trained on
a monolingual target language corpus, which produces perplexity scores for each candidate
output sequence presented to it.

W provides the language model in a different way than most standard models do. Most
models, like for example  (Stolcke, 2002), estimate probabilities of words in context and
build a back-off model containing n-grams to unigrams. W uses a trigram model (it is
not limited to trigrams, it could use any size and any context) but, because it uses the 
algorithm, stores exceptions to default values rather than all n-grams. Other language models
could be used, but we prefer to use  because it uses the same  model also used
as the core translation engine in the  system. e model is described in more detail in
Section 4.

As the number of possible output sequences may be large,  currently applies Monte
Carlo sampling to generate candidate output sequences to be scored by . is sampling
is subject to a patience threshold p that halts the generation of new candidates when no im-
provement in perplexity scores is observed for p sample steps. By default, p = 100.

3. Evaluation and an Annotated Example

For the purpose of a brief evaluation, we first focus on the translation of Dutch to En-
glish, using the  corpus, part of the Opus open source parallel corpus³. e  corpus
contains documents from the European Medicines Agency⁴. Texts in this corpus are of a re-

³http://urd.let.rug.nl/tiedeman/OPUS/ – downloaded in June 2008.
⁴http://www.emea.europa.eu/
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this evening .

_ The vote

The vote will

vote will take

take place this

evening . _

Figure 3. Producing a global solution by resolving the overlap between six
trigrams. Italicized words are not aligned with source words.

stricted genre, consisting of quite formal, exact, and largely controlled language. We used the
first 749,602 lines of text (approximately 9.0 million English and Dutch words). e corpus
was split into a final 1,000-sentence test set and a training set containing the remainder of the
data. e training sets were word-aligned using the ++ algorithm (Och and Ney, 2003).
No decapitalization was performed. e -based language model used for translation is
a single model trained on the first 112 million words of the Reuters RCV1 corpus.

We performed a learning curve experiment on the  training set. We start at a training
set size of 100,000 tokens, and increment with steps of 100,000 until 1 million tokens; then,
we increment with steps of 1 million tokens up to the maximal training set size of 9 million
tokens. e learning curve experiment serves to get an idea of the scaling abilities of 
in terms of performance; we also measure training and testing speeds and memory footprint.
e learning curve experiment on the  corpus produced performance curves of which we
combine two in the le graph of Figure 4: the  and  (exact) scores. Both curves
show a steady but somewhat weakening increase when the dataset doubles in size (note that
the x axis is logarithmic).

Second, the middle graph of Figure 4 displays the number of seconds it takes to construct
a decision tree, and to test. Testing occurs in a few seconds (up to eight seconds for 1,000 sen-
tences, with an approximately linear increase of one second of testing timewith each additional
million training examples); the test graph virtually coincides with the x axis. Training times are
more notable. e relation between training times and number of training examples appears
to be linear; on average, each additional million of training examples makes training about 130
seconds slower.

ird, the right graph of Figure 4 shows a similar linear trend of the memory footprint
needed by  and its decision tree, in terms of Megabytes. At 9 million training examples,
the decision tree needs about 40 Mb, an average increase of 4.4 Mb per additional million
examples.

As a second evaluation, we compare against the performance and training and testing times
of  on the  corpus at the maximal training set size. Table 1 lists the performance
on the test data according to word error rate, position-independent word error rate, ,
Meteor, and . As is apparent from the results,  performs at a markedly higher level
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Figure 4. Learning curves on the emea corpus in terms of MT evaluation (bleu and
meteor, left, with a logarithmic x-axis), seconds to train and test (middle; the test

graph virtually coincides with the x axis), and memory needed (right), with
increasing amounts of training material available.

of performance, but does so at the cost of a longer translation time:  is about 20 times
as fast. Training  is about 10 times as fast as training ; in both cases, the ++
process has already been performed and is not included here.

System WER PER BLEU Meteor NIST Training (h:m:s) Test (m:s)
 72.7 63.6 0.238 0.460 4.97 20:17 0:08
 46.6 39.4 0.470 0.650 7.06 3:10:06 2:51

Table 1. Comparing mbmt agains moses on the emea corpus, in terms of five MT
evaluation metrics, and training and testing times (elapsed wallclock time).

Annotated Example

e  soware assumes a ++-style A3 file, i.e. a word alignment file containing
all aligned source and target training sentences, as training material. e soware will convert
this training file into an  decision tree, and is then capable of translating a raw text file in
the source language (tokenized, one sentence per line) into a translated raw text file in the tar-
get language (also one sentence per line). e commandline functionality is currently limited
to the identification of the A3 training file, and the source-language test text, plus the optional
setting of the patience threshold to a non-default setting, e.g. p = 50, with the -p switch:

mbmt -t EMEA.9m.train.A3.final -t EMEA-dutch.test.txt -p50

During runtime,  generates several intermediary files. First, the A3 file is converted to
a training file suited for , mapping source-language trigrams to aligning target-language
trigrams (cf. Figure 1). Subsequently, this file is compressed into an  decision tree, at
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a typical compression rate of about 95%. e test set is also converted into trigram instances
(one instance per word), which are then classified by . is output is stored in a file of
which the first line looks as follows:

na de behandeling ? after_the_end { after_the_end 3.00000,
,_the_rate 3.00000, after_the_treatment 3.00000 }

eDutch trigram na de behandeling (“aer the treatment”) is classified by  as map-
ping to three equally likely trigram translations. ese three translations will be carried along
to the final phase, where all predicted trigrams are used to generate possible translations, using
a Monte Carlo sampling method with a halting criterion governed by the patience parameter
p. Each candidate output sequence is scored by , the memory-based language model.

4. Memory-based language modeling

e  system generates a candidate number of translations for each input sentence.
e typical approximate solution to picking the best translation is to use a language model to
determine which translation fits best in the target language, e.g. selecting the candidate string
with the lowest perplexity score.

In the  system,  is the language model. It is a word predictor based on ,
trained to predict the next word in a sentence (Van den Bosch, 2006). To calculate the per-
plexity of a sentence, we feed it to  and see which words it predicts for each word in the
sentence. e perplexity is calculated from the estimated probabilities of each prediction. A
prediction is a classification by  based on a local context of preceding words. In con-
trast with how  is used in the  translation module, the word predictor classifier
in  produces class distributions (with more than one class if the classification occurs at a
non-ending node).

us,  usually returnsmore than one word for a given sequence, together with a prob-
ability based on frequency counts. is distribution of possible answers is used to calculate a
perplexity value. ere are three possibilities: (1) If the distribution returned by  con-
tains the correct word, we take the probability of the word in the distribution; (2) If the dis-
tribution does not contain the correct word, we check if it is in the lexicon. If it is, the lexical
probability is taken; (3) If it is not in the lexicon, a probability for unseen items is used that is
estimated through Good-Turing smoothing. W calculates the sum of−p log2(p) of all the
probabilities (one for each word in the sentence), and divides this by the number of words to
obtain the average over the sentence. e perplexity value is two to the power of this sum.

Annotated Example

Besides its language modeling functionalities of predicting words and measuring perplex-
ities,  also provides the necessary tools to prepare the data, create datasets and train its
prediction models. e following shows how a memory-based language model can be created
starting from plain text data. Let us assume the file is called corpus1.txt. W commands
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generally have two parameters. e first one, -r tells  which subroutine or tool to run.
e second parameter, -p is a comma separated list of keyword:value pairs which specify
the different parameters.

As a first step,  is used to create a lexicon, which in this case is a list of words and
their frequency in the corpus. It also generates a list with “counts of counts”, which is used in
Good-Turing smoothing of probabilities.

wopr -r lexicon -p filename:corpus1.txt

W creates output file names based on the input file name and the command that is ex-
ecuted. In this case, it creates two files called corpus1.txt.lex and corpus1.txt.cnt.
Next, we generate our windowed dataset. In this example we use a window size of three previ-
ous words. e resulting file is called corpus1.txt.ws3.

wopr -r window_s -p filename:corpus1.txt,ws:3

We want to discard words with a frequency of five or less from our data set, and replace
them with a special token <unk>. is is done with the following command:

wopr -r hapax -p filename:corpus1.txt.ws3,lexicon:corpus1.txt.lex,
hpx:5

We then train our instance base. W is used as a wrapper in this case, and most of the
work is done by . is could take some time, depending on the size of the data, but once
the decision tree has been created and saved, it can easily be read in and used again.

wopr -r make_ibase -p corpus1.txt.ws3.hpx5,timbl:"-a1 +D"

Now we are ready to run our word predictor on a test file. e command to do this is as
follows:

wopr -r pplxs -p filename:test1.txt.ws3.hpx5,ibasefile:
corpus1.txt.ws3.hpx5.ibase,timbl:"-a1 +D"

e test data is prepared in the same way as the training data. e following shows a line
of output from . It shows an instance (I would like), the following word (to) and the
–in this case correct– guess from the predictor, to.

I would like to to -0.351675 1.8461 1.27604 65 [ to 768 the 34
a 20 it 12 an 12 ]

is is followed by a number of statistics. e logprob of the prediction is -0.351675. e
entropy of the distribution returned by  is 1.8461 (−

∑
p log2(p)). e third number
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shows the word level perplexity (2−logprob). e last number shows the number of elements
in the distribution, in this case 65. is is followed by a top 5 of the distribution returned (with
counts).

It is also possible to run  in server mode, communicating over a socket connection
with a client; in fact, this is how it is incorporated in the  system. In server mode, 
will wait for a connection by another program and process the data it receives. e answer is
sent back over the same connection.

5. Discussion

We have released , a straightforward translation model based on a fast approxima-
tion of memory-based classification. e approach fits into the  framework; it models
the mapping of sequences of word spans (here, word trigrams) in the source language to word
trigrams in the output language. We showed that  scales well to increased amounts of
learning material. Within the current experiments we observed that training time and mem-
ory storage costs are approximately linear in the number of training examples. Translation
speed on unseen data is very fast; our test set of 1,000 sentences was processed within seconds.
Based on these results, we conclude for now that memory-based machine translation systems
may be relevant in cases in which there is a need for fast and memory-lean training and/or
classification. e low memory footprint may be additionally interesting for implementations
of such systems in limited-capacity devices.

As a separate component of  we have released the memory-based language model
soware package , which can also be used in isolation for general language modeling
purposes. W offers its functionality through command line options, but can also run in
server mode; this is how  uses .
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