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Abstract—This paper presents a new approach for the current
acquisition system in motor fault detection applications. This pa-
per includes the study, design, and implementation of a Rogowski-
coil current sensor without the integrator circuit that is typically
used. The circuit includes an autotuning block able to adjust to dif-
ferent motor speeds. Equalizing the amplitudes of the fundamental
and fault harmonics leads to higher precision current measure-
ments. The resulting compact sensor is used as a current probe for
fault detection in induction motors through motor current signal
analysis. The use of a Rogowski coil without an integrator allows a
better discrimination of the fault harmonics around the third and
fifth main harmonics. Finally, the adaptive conditioning circuit is
tested over an induction machine drive. Results are presented, and
quantitative comparisons are carried out.

Index Terms—Current sensor, motor current signal analysis
(MCSA), motor drive, Rogowski.

I. INTRODUCTION

LECTRICAL motors are the most common way to convert
electrical power to mechanical power in the industry.
Among them, induction motor (IM) and permanent magnet
(PM) motor are the most widely used. Of the industrial ap-
plications, 70% use induction machines, but PM ac machines
are increasingly used due to their high performance. Many
industrial applications require high reliability and availability,
which have become the major concerns in processes such as
aeronautics, robotics, machine positioning, and automobiles,
among others. Efficient condition monitoring and accurate
machine fault diagnosis are, thus, desirable in order to reduce
the impact of damage and to improve operational efficiency.
Motor faults can be classified as electrical and mechanical
faults [1], [2]. Among these: 1) bearing; 2) stator or armature
faults; 3) eccentricity-related faults; and 4) broken rotor bar and
end ring faults of induction machines are the most prevalent
ones and, thus, demand special attention.
Quantification of faults is as follows: 41% bearings, 37%
stator faults, 12% eccentricities, and 10% broken rotor bars.

Manuscript received October 31, 2008; revised June 12, 2009. First pub-
lished June 26, 2009; current version published September 16, 2009. This work
was supported in part by the Spanish Ministry of Education and Science under
the DP12007-66688-C02-01 Research Project.

The authors are with the Motion Control and Industrial Applications Group,
Department of Electronic Engineering, Universitat Politecnica de Catalunya,
08222 Terrassa, Spain (e-mail: oscar.poncelas @upc.edu; jcusido @eel.upc.edu;
jaortega@eel.upc.edu; romeral @eel.upc.edu;).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2009.2025715

Significant efforts have been invested in the diagnosis of
motor faults during the last decades, and many techniques have
been proposed [3]-[19]. Several of these fault detection and
identification techniques are based on physical phenomena like
vibration monitoring [4], electromagnetic field monitoring by
means of search coils [5], electrical measurements [6], machine
models [7], or even a combination of different diagnostic
methods, such as mechanical, chemical, and thermal [8].

Although manufacturers and users of electrical machines
initially relied on simple protection against overcurrent, over-
voltage, and earth faults to ensure safe and reliable operation,
nowadays, the tasks performed by these machines have become
increasingly complex, and improvements have also been sought
in the field of fault diagnosis. Recently, new techniques based
on artificial intelligence approaches have been introduced [9],
which use concepts such as fuzzy logic [10], [11], genetic
algorithms [12], and neural networks [13]-[15] to detect, iden-
tify, and diagnose the state of the motor.

Among the different motor fault detection methods, the spec-
tral signature analysis of the stator current known as motor cur-
rent signal analysis (MCSA) is currently considered to be the
most popular fault detection method for online diagnosis [16].
The basis of the MCSA is that the stator current contains
current components directly linked to rotating flux components
caused by electrical or mechanical faults. These harmonic cur-
rent components caused by faults can be used for early failure
detection.

Condition monitoring based on stator currents is advanta-
geous due to its easy and cost-effective implementation. It is
nonintrusive and uses the stator winding as the search coil, and
it is not affected by the type of load and other asymmetries.
The monitoring is usually done in a steady operation state using
classical fast Fourier transform (FFT). However, many drives
are adjustable speed drives, where mechanical speed transients
may be present during a long period of time. The resulting
time-varying supply frequency prevents the use of classical
spectral analysis, and other signal processing methods such as
time—frequency analysis must be used [17]-[19].

All of these techniques share the need for data acquisition.
To perform the MCSA, stator currents are measured by current
meters, digitalized, and stored by time domain. The time do-
main is not suitable for the representation of current signals;
thus, frequency or time—frequency domains are applied to the
analysis of signals. After signal decomposition, signal features
must be extracted and entered into a pattern classification
model, which performs diagnosis and prognosis to detect a
failure in advance.
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Different current sensing methods can be used to obtain a
signal equivalent to the current. Among them, shunt techniques,
Hall effect sensors, and current transformers are the most
frequently used.

Another possible sensor used to measure the current is the
Rogowski coil, which was first introduced in 1912 to measure
magnetic fields. Lately, Rogowski coils have been proposed to
measure acs [20]—[22] and for fault detection [23].

A Rogowski coil, named after its inventor, is a uniformly
wound coil on a nonmagnetic former of constant cross-sectional
area formed in a closed loop. The coil surrounds the primary
current to produce a voltage that is proportional to the time
derivative of the primary current and the mutual inductance of
the coil. The coil output is then integrated by an integrator to
recover the primary current signal. It can be used to measure acs
of tens of amperes or greater through the principles described
by Faraday’s law.

Signals from the transducer have a high signal-to-noise ratio
at these values, allowing the use of simple amplification and
filtering techniques and resulting in ac measurement systems
with better linearity, versatility, and cost compared to con-
ventional instruments. Moreover, Rogowski coils do not have
ferromagnetic material in their cores, which means that the
coils will never be saturated. Other advantages of Rogowski
transducers include the following: nonintrusiveness, full isola-
tion, good linearity, high bandwidth, ease of use (can be thin
and flexible), no consequences from dc saturation effects, and
relative simplicity and inexpensiveness to manufacture.

When a Rogowski coil is placed around a current-carrying
conductor, according to Faraday’s law, the output signal is
proportional to the time derivative of the measured current.

To obtain a signal that is proportional to the monitored
current, the output signal of the coil must be integrated. This
is the reason why it is necessary to use an integrator circuit to
obtain the stator current with the traditional Rogowski current
transducer [24]. This is a disadvantage when measurements are
carried out in an inverter drive. Due to modulation, the inverter
can introduce a dc component on common mode that causes
saturation in the integrator circuit. Also, in the case of active
analog integration, the integrator adds a dc offset component
that generates a ramp which will ultimately increase to be a
significant error in the output signal, demanding either the use
of a high-pass filter that needs to be well tuned in order not
to alter signal data [25] or an additional circuit to reset the
integrator to zero when the current through the Rogowski coil
is equal to zero [26], which complicates the sensor and makes
it more expensive.

This paper presents the study, design, and implementation
of a Rogowski-coil current sensor as a sensor for MCSA fault
detection without the integration block that is typically used.
Instead of using analog or digital integration, the sensor directly
provides the derivative of the measured current. In this way, the
current acquisition system can take advantage of the inherent
Rogowski coil characteristic: amplification of the current har-
monics by a frequency.

By using a bandpass filter to diminish main harmonic and
cutoff switching high frequencies, the acquisition system can be
tuned to the frequency range that contains the more interesting
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fault harmonics. This compact sensor can be used as a current
probe for MCSA fault detection in electrical motors. This paper
is an extended version of another one presented at the 2008
IEEE International Symposium on Industrial Electronics [27].
It has been enhanced with the following elements.

1) The introduction has been updated with the most recent

journal references.

2) A theoretical background of fault currents has been in-

cluded.

3) Adaptive electronics have been developed to tune the

sensor operation to the motor speed.

4) Experimental results are now clearer and more accurate.

5) Conclusions of this paper have been reviewed and

improved.

Following this introduction, Section II presents the sensor
block details and sensor characterization. Section III deals with
the experimental results obtained from the faults staged on the
IM tested by measuring the currents with the proposed sensor.
Finally, in Section IV, the summary and conclusions drawn
from this study are presented.

II. MOTOR CURRENT ACQUISITION SYSTEM

As stated in Section I, MCSA is considered as the most
promising noninvasive fault detection method, as it allows the
detection of several common machine faults through simple
measurements and the processing of the stator current under
normal operation of the machine.

Generally speaking, three-phase currents under fault condi-
tions can be expressed as follows:

N
ig(t) = V21 R sin 2w f1t + \/iz ITrn sin(27 frt — ©rn)

n=0

is(t) =V 2Igsin(2nm fit — 27/3)
N
+ V2 Isnsin(2m fut — psn — 27/3)
n=0
ir(t) = V2Ipsin(27 fit — 47/3)

N
+ V2> Ipnsin(2m fut — or, — 47/3) (1)

n=0

where Ir = Ig = I = I are the rms values of the fundamental
component of the line current; Ir,, Is,, and I, are the rms
values of the fault components; and ¢ r,,, ©sn, and @1, are the
angular displacements of the fault components.

The space vector is referring to the stator reference frame
is obtained by applying the transformation of the symmetrical
components
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Fault frequencies fi,...,n are related to different faults in
the induction machine [2], such as air-gap eccentricity (3),
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shorted turns (4), and broken rotor bars

fecc:fl _1:|:m<1_8>_ (3)
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L p _

where m is the harmonic order, f; is the main frequency, s is
the slip, p is the number of paired poles, and £ = 0,1,3,5....
Fault harmonic position is directly dependent on the slip value,
and slip is directly dependent on the motor load. Higher load
produces higher slip, and, hence, a fault harmonic could be
easier distinguished.

Shorted turns could also be detected, analyzing additional
harmonics at the medium band of the spectra [28], which
depend on the number of rotor slots Z5

1—3)]. ©)
p

As stated, abnormal harmonics f,,, which appear in a stator
current, are functions of a number of variables due to the
magnetomotiveforce distribution and the permeance-wave rep-
resentation of the air gap. In a variable speed drive, a current
control algorithm may exist that tries to provide symmetric
stator currents through the application of asymmetrical stator
voltages in order to reach this goal in spite of the fault’s ab-
normal harmonics. Therefore, it is important to assure that the
abnormal harmonic frequencies considered in fault detection
are beyond the cutoff frequency of the drive’s control transfer
function.

The stator current of the IM machine under fault conditions
is a combination of different frequency components as it can
be seen in (2). If this current is measured with the proposed
Rogowski sensor, without the integrator, (2) will take the fol-
lowing form:

fstn = f1 {1 tmZy (

dist(t) =271 f1V/2I g cos 2 fit
n=0
diz t(t) = 97 f1/2Is cos (27 frt — 2/3)
T
n—=0
digt(t) = 21 121y cos(2m fit — 47 /3)

N
+ \/52 (27 fr Iy, cOS(27 firt — o — 47/3)] .
n=0
(7

The derivative operator is linear, i.e., it changes the modules
and phases of the sine components, but it does not create new
frequencies.
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Fig. 1. (a) Block diagram of the traditional acquisition system. (b) Block

diagram of the proposed acquisition system.

For the purpose of fault detection with MCSA, we have
considered the spectral analysis of the stator current, and the
phase has not been relevant. The difference with the traditional
transducer is that, with the proposed Rogowski sensor, the
frequency harmonics increase their amplitude since they are
scaled by their respective w(2 f). This helps the harmonic in
the presence of noise, particularly at high frequencies.

It must be noted that fault detection is usually better per-
formed at high frequencies, either by analyzing the spectra
around the main harmonics or by injecting high-frequency
voltage test frequencies or by reading the corresponding current
harmonics [29], [30]. In conclusion, a Rogowski coil without an
integrator enhances high current frequencies, which aids fault
detection through MCSA.

The traditional block diagram for current measurement with
a Rogowski coil is shown in Fig. 1(a). This paper’s pro-
posal uses a Rogowski coil without the integrator circuit
[Fig. 1(b)].

A. Rogowski Without Integrator Transducer

As we have seen before, the use of an integrator is prob-
lematic since it is difficult to adjust and it shows a tendency
to saturation. The power supply of the induction machine
usually comes from a power inverter. This type of power source
generates high-frequency signals that may be nonsymmetrical,
i.e., signals have different negative and positive parts, and the
nonzero average can saturate the integrator circuit.

At the output of the Rogowski coil, we obtain an output
signal that is proportional to current changes

_ ponAdi _ di
T 2mr dt T dt

®)

where 19 = 47 x 1077 H/m is the permeability of free space,
n is the number of turns, A is the cross-sectional area in square
meters, and r is the radius of the coil in meters. The constant
term M represents the mutual inductance of the Rogowski coil.

The output voltage of the coil must be integrated to provide
the current. For our purpose, the Rogowski coil is designed
with the shape of a polyethylene toroid core with n = 500,
A = 64 mm?, and » = 10 mm. With these values, the mutual
inductance is about M = 640 nH. Axial return wire design is
used, and gaps and overlaps in the winding have been mini-
mized to reduce sensitivity to external disturbances. The signal
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Fig. 2. Sensor output. (a) Output voltage of (+) a commercial transducer and
(o) a traditional Rogowski-coil transducer. (b) Output voltage of the Rogowski-
coil transducer without an integrator, (+) theoretical and (0) measured.

gain block is a noninverting amplifier with a gain of 60 dB. The
bandpass filter block is discussed in detail in Section II-B.

The bandpass filter block is discussed in detail in
Section II-B, and the analog-to-digital converter (ADC) block
is a standard microprocessor-based signal acquisition with 12-b
resolutions, with a sample frequency of f; = 10 000 Hz.

Several tests have been performed to evaluate the operation
of the transducer. The value of M has been obtained by mea-
suring Z parameters with a Rohde & Schwarz ZVRE network
analyzer. A value of 669.4 nH is obtained. The whole current
transducer proposed has been tested with a conductor carrying
a current of 0.2 A obtained through a function generator in-
strument. The output of the Rogowski transducer without an
integrator has been compared with the outputs of a commercial
transducer and a traditional Rogowski transducer.

The commercial transducer is the Tektronix A622 that uses
a Hall effect current sensor to provide a voltage output. It can
measure acs/dcs from 50 mA to 100 A peak over a frequency
range of dc to 100 kHz.

The traditional Rogowski transducer was manufactured us-
ing the same coil as the Rogowski transducer without an
integrator. It is designed to measure currents up to 10 A, over
a frequency range from 10 up to 500 Hz.

Fig. 2(a) shows the output voltage of the commercial trans-
ducer and the traditional Rogowski coil with an integrator. We
can see that, at frequencies higher than 500 Hz, the traditional
Rogowski coil acts as a low-pass filter. This is done by the
integrator circuit.

Fig. 2(b) shows the output of the Rogowski coil without an
integrator, with its theoretical and experimental results. One
can see how the harmonics increase its amplitude with the
frequency.

Another test to validate the transducer is to put a conductor
carrying a square current through the coil. At the output of the
transducer, all the harmonics must have the same amplitude.
The harmonic decomposition of the square signal is

i(t) = % > (i sin(n - wot)) )
n=1

where V' is the amplitude of the square signal, wq is the
fundamental frequency, and n are the odd numbers.
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Fig. 3. Current spectrum of a square signal measured with a commercial

transducer and with the proposed Rogowski transducer.
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Fig. 4. Block diagram of the bandpass filter.

The harmonic decomposition at the output of the Rogowski
transducer is

y(t):M@:MZLV

a =M 1o

NE

(we cos(n - wot)) .

n=1

This should be corroborated by the results obtained in Fig. 3.
To the left, we can see the output of a commercial current
transducer, and, to the right, we can see the output of the
suggested Rogowski transducer.

Using the proposed Rogowski transducer is a good solution
to monitor the harmonics at frequencies above the main har-
monic since the harmonics take more amplitude regarding the
main harmonic.

A combination of the reduced main harmonic (due to the
filter) and the amplified fault harmonics (due to lack of integra-
tion) will produce a similar amplitude for all harmonics passing
the filter and, thus, better use of the acquisition system dynamic
range.

B. Proposed Acquisition Circuit for Variable
Operating Conditions

When we consider variable conditions, the bandpass filter
block is comprised by the blocks in Fig. 4. The main part is
an adaptive filter using a switched-capacitor filter.

The idea is to measure the first harmonic as well as the
harmonics that appear due to the fault near the fifth harmonic.
The magnitude of the fault harmonics near the fifth harmonic
with respect to the fundamental harmonics is about 40 dB
below.

The proposed method is based on the attenuation of the
fundamental harmonic and the amplification of the band of the
fault harmonics, obtaining a theoretically similar amplitude for
the fundamental and the fifth harmonics.

In this paper, we want to measure the fault harmonics due
to broken rotor bar faults and eccentricity faults. In order
to detect broken bar faults, the classical method of analysis
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Fig. 5.

Proposed Rogowski sensor with the adaptive filter.

through MCSA uses the first harmonic, observing the fault
near fi(1 =+ 2s). Other studies propose evaluating the side
of the fifth harmonic, finding the fault near f;(5 — 4s) and
fl (5 - 68)

To detect eccentricities, any harmonic given by the expres-
sion can be evaluated (3). In this paper, we have considered the
side of the third harmonic.

The high-pass switched-capacitor filter selects the analyzed
frequency band. Additionally, this filter equalizes the amplitude
of the main harmonic which, then, has similar amplitude to the
fifth harmonic. With these requirements, the cutoff frequency
of the switched-capacitor filter is 2f; (f; is the fundamental
frequency of the stator current). This cutoff frequency is ad-
justed externally by a clock signal. With a fourth-order filter
and 2f7 cutoff frequency, the attenuation at f; is always one
octave. Resolution of the proposed sensor is enough to detect
the fault harmonics with the amplitude lower than the threshold
arbitrarily established in 40 dB below the main harmonic.

As we can see in Fig. 4, the main part of the adaptive
system is the switched-capacitor filter. This is comprised by two
second-order parts based on the LTC1068 component of Linear
Technology, comprising a fourth-order high-pass filter.

An RC' network is used to avoid aliasing in the switched-
capacitor filter. Before ADC, a low-pass filter is used to avoid
aliasing in the digital acquisition system. The cutoff frequency
of an antialiasing filter is 400 Hz.

Fig. 5 shows a picture of the developed Rogowski sensor.
With the method that has been proposed, the MCSA is per-
formed by comparing the fundamental frequency to the fault
harmonics and observing the time evolution. Fig. 6 depicts
the frequency response of the bandpass filter for two different
working points.

III. EXPERIMENTAL RESULTS
A. Test Bench

To check the transducer for fault detection in an IM, several
tests have been done with a three-phase 1.1-kW 400/230-V
50-Hz 1410-r/min four-pole IM.

First, the behavior of the healthy motor was studied, and,
after motors with eight rotor bars, damaged and eccentricity
faults were analyzed. The motor nameplate is shown in Table I.
The motor under test is controlled with a voltage—frequency
control implemented in a TMS320F2812 digital signal proces-
sor manufactured by Texas Instruments.

The current has been measured by two transducers: a tra-
ditional Rogowski sensor with the integrator hardware and
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Fig. 6. Frequency response of the bandpass filter for a main stator current
harmonic of 50 and 33 Hz, () theoretical and (0) measured.

TABLE 1
SPECIFICATIONS OF IM-TYPE MODEL
Induction Motor Value
Rated power 1.1kW. Star: 380V/2.6A
Number of poles 4
Nominal speed 1410 rev/min
Cos @ 0.81

Fig. 7.

IM test bench for fault detection.

the Rogowski transducer proposed in this paper (Fig. 6). The
traditional Rogowski sensor measures the currents up to 20 A,
from 10 to 500 Hz, and with a sensibility of 148 mV/A.

The fully analyzed band ranges from 0 to 400 Hz with a
resolution of 0.2 Hz for FFT analysis, which is enough to cover
the significant band of an induction machine and to distinguish
the harmonics due to a fault.

The test rig and the data are shown in Fig. 7. Load control has
been implemented by using an IM and a commercial inverter,
where variable load order was introduced.

B. Fourier Analysis of Motor Stator Currents for Different
Operating Conditions

Fig. 8 illustrates the stator current spectrum of a healthy
motor measured with a traditional Rogowski coil and with the
proposed Rogowski sensor.

We can observe how the fundamental harmonic takes similar
amplitude to the third and fifth harmonics if the current is mea-
sured with the proposed Rogowski sensor. If we compare the
two graphs, we can see that the harmonics of high frequencies
are higher with the proposed Rogowski sensor than with the
traditional Rogowski sensor.
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Traditional Rogowski sensor
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Fig. 8. Stator current spectrum of a healthy IM supplied with 50 Hz.

(a) Traditional Rogowski sensor. (b) Rogowski sensor without an integrator.
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Fig. 9. Stator current spectrum of a healthy IM supplied with 33 Hz.

Fig. 9 depicts the current spectrum of the same motor sup-
plied with a different current frequency. The adaptive filter
changes the cutoff frequency to a new one adapted to the new
conditions. Again, it is easy to see that the harmonics with high
frequencies take more amplitude if they are measured with the
proposed Rogowski sensor. Fig. 10 shows the detail near the
fifth harmonic of the current spectrum of an IM with eight
broken bars (right side) as opposed to the current spectrum of a
healthy motor (left side). Both motors have been supplied with
50 Hz. All the graphs are normalized to O dB at the peak of the
fundamental frequency.

Harmonics that appear due to the fault are inside the ovals. In
the graphs, we can appreciate how these harmonics concerning
the main harmonic increase their amplitude if they are measured
with the proposed Rogowski sensor.

The amplitude of these harmonics measured with the pro-
posed transducer is more than 25 dB higher than the harmonics
obtained with the traditional Rogowski sensor. This means that
the fault can easily be detected and that it is possible to use an
ADC with less resolution in the acquisition hardware.

Fig. 11 shows the same motor supplied with 33 Hz. The fault
harmonics are inside an oval again. In this situation, the fault
harmonics measured with the proposed Rogowski sensor are
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an integrator.
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Fig. 11. Stator current spectrum of an IM supplied with 33 Hz. Fifth har-
monic sideband. (a) Healthy motor measured with a traditional Rogowski
sensor. (b) Healthy motor measured with a Rogowski sensor without an
integrator. (c) Motor with broken bars measured with a traditional Rogowski
sensor. (d) Motor with broken bars measured with a Rogowski sensor without
an integrator.

detected, whereas, with the traditional one, they are so small
that they are difficult to differentiate from noise.

Similar results have been obtained with a motor with lower
damage level, i.e., with one broken bar, not shown here for the
sake of readability.

The proposed Rogowski sensor is also useful for the detec-
tion of other faults, such as eccentricity. Fig. 12 illustrates the
current spectrum of an IM with an eccentricity fault, supplied
with 50 Hz. The harmonics inside an oval are the harmonics
that appear due to the fault. The figure depicts how these fault
harmonics take more amplitude with the proposed Rogowski
Sensor.
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Fig. 12.  Stator current spectrum of an IM with eccentricity supplied with
50 Hz. (a) Traditional Rogowski sensor. (b) Rogowski sensor without an
integrator.
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Fig. 13. Stator current spectrum of an IM with eccentricity supplied with

50 Hz. Third harmonic sideband. (a) Healthy motor measured with a traditional
Rogowski sensor. (b) Healthy motor measured with a Rogowski sensor without
an integrator. (c) Motor with broken bars measured with a traditional Rogowski
sensor. (d) Motor with broken bars measured with a Rogowski sensor without
an integrator.

Fig. 13 shows the detail near the third harmonic for the motor
with an eccentricity fault (right side) as opposed to the healthy
motor (left side) supplied with 50 Hz.

The fault harmonics are inside an oval. Fig. 14 depicts the
third-harmonic detail for the motor with an eccentricity fault as
opposed to the healthy motor for a current supply of 33 Hz. As
we can see, the fault harmonics are better detected with nominal
speed.

These experimental results allow us to confirm that the
Rogowski transducer without the integrator is suitable for
MCSA.

The results obtained from the proposed Rogowski sensor
have been compared with those obtained with the traditional
Rogowski sensor.

With the proposed Rogowski transducer, the harmonics of
high frequency take more amplitude than the same harmonics
obtained with the other transducers. This effect is not important
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Fig. 14. Stator current spectrum of an IM with eccentricity supplied with
33 Hz. Third harmonic sideband. (a) Healthy motor measured with a traditional
Rogowski sensor. (b) Healthy motor measured with a Rogowski sensor without
an integrator. (c) Motor with broken bars measured with a traditional Rogowski
sensor. (d) Motor with broken bars measured with a Rogowski sensor without
an integrator.

at frequencies around 50 Hz, but, at higher frequencies, the am-
plitude of the harmonics obtained with the Rogowski transducer
without an integrator is clearly higher, and it can be used for
fault detection at medium-to-high frequencies.

IV. CONCLUSION

This paper has presented an implementation of a Rogowski
coil for fault detection in an IM. To increase the reliability of
the acquisition system, it is suggested to remove the integrator
that is characteristic in this kind of current probes. In this way,
the proposed Rogowski transducer simplifies the electronics;
it prevents adjustment problems with integrator circuits, and
it performs better at high frequencies. Moreover, the proposed
acquisition system has used an adaptive filter to attenuate the
fundamental harmonic in order to achieve better use of the
dynamic range of the digital acquisition system.

Theoretical analyses and experiments support this paper, and
results have shown that this Rogowski transducer without an
integrator can be used as an improved sensor for fault detection
through stator current readings in electrical motors.
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