
Vulnerabilities of Passive Internet Threat Monitors
Yoichi Shinoda

Information Science Center
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa 923-1219 Japan
shinoda@jaist.ac.jp

Ko Ikai
National Police Agency, Japan

http://www.cyberpolice.go.jp/english/

Motomu Itoh
Japan Computer Emergency Response Team Coordination Center (JPCERT/CC)

http://www.jpcert.or.jp/english/

Abstract
Passive Internet monitoring is a powerful tool for mea-
suring and characterizing interesting network activity
like worms or distributed denial of service attacks. By
employing statistical analysis on the captured network
traffic, Internet threat monitors gain valuable insight into
the nature of Internet threats. In the past, these monitors
have been successfully used not only to detect DoS at-
tacks or worm outbreaks but also to monitor worm prop-
agation trends and other malicious activities on the Inter-
net. Today, passive Internet threat monitors are widely
recognized as an important technology for detecting and
understanding anomalies on the Internet in a macro-
scopic way.

Unfortunately, monitors that publish their results on
the Internet provide a feedback loop that can be used
by adversaries to deduce a monitor’s sensor locations.
Knowledge of a monitor’s sensor location can severely
reduce its functionality as the captured data may have
been tampered with and can no longer be trusted. This
paper describes algorithms for detecting which address
spaces an Internet threat monitor listens to and presents
empirical evidences that they are successful in locating
the sensor positions of monitors deployed on the Inter-
net. We also present solutions to make passive Internet
threat monitors "harder to detect".

1 Introduction
Back in the good old days, observing traffic at addresses
that never generated packets themselves was rare and
was assumed to be solely due to poorly engineered soft-
ware or misconfiguration. Nowadays, hosts connected
to the Internet constantly receive probe or attack pack-
ets, whether they are silent or not. It is an unfortunate

fact that most of these packets are generated and sent by
entities with malicious intentions in mind.

Observing these packets from a single vantage point
provides only limited information on the cause behind
these background activities, if any at all. Capturing
packets from multiple monitoring points and interpret-
ing them collectively provides a more comprehensive
view of nefarious network activity. The idea of mon-
itoring background traffic dates back to CAIDA’s net-
work telescope in 2000 [1]. CAIDA uses a huge, routed,
but very sparsely populated address block. Another ap-
proach has been taken by DShield [2] which is a dis-
tributed and collaborative system that collects firewall
logs from participating system administrators.

Both CAIDA and DShield were successfully used not
only to infer DoS attacks on remote hosts [3], but also
to monitor the activity of existing malware [4], and to
detect outbreaks of new malware. The success of these
systems has resulted in the deployment of many similar
monitoring facilities around the World. Some of these
new monitor deployments feature a large contiguous ad-
dress space like CAIDA’s telescope and others are simi-
lar to DShield’s architecture in the sense that they listen
on addresses widely distributed over the Internet. In this
paper, we will collectively refer to these systems as pas-
sive Internet threat monitors. Today, Internet threat mon-
itors are considered as the primary method to observe
and understand Internet background traffic in a macro-
scopic fashion.

However, we have noticed that most passive threat
monitors that periodically publish monitor results are
vulnerable to active attacks aimed at detecting the ad-
dresses of listening devices, or sensors. In our study,
we successfully identified the sensor locations for sev-

14th USENIX Security SymposiumUSENIX Association 209

14th USENIX Security Symposium

eral monitors in a surprisingly short time when certain
conditions are met. For some monitors, we were able to
locate majority of deployed sensors.

The operation of Internet threat monitors relies on
a single fundamental assumption that sensors are ob-
serving only non-biased background traffic. If sensor
addresses were known to adversaries then the sensors
may be selectively fed with arbitrary packets, leading to
tainted monitor results that can invalidate any analysis
based on them. Similarly, sensors may be evaded, in
which case sensors are again, effectively fed with bi-
ased inputs. Furthermore, volunteers who participate
in deploying their own sensors face the danger of be-
coming DoS victims which might lower their motivation
to contribute to the monitoring effort. Because passive
threat monitors are an important mechanism for getting
a macroscopic picture background activities on the In-
ternet, we must recognize and study the vulnerability of
these monitors to protect them.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a brief introduction to passive threat
monitors, followed by a simple example of an actual
detection session in Section 3. In section 4, vulnera-
bilities of passive threat monitors are closely examined
by designing detection algorithms. We discuss proper-
ties of feedback loops provided by threat monitors, de-
velop detection algorithms that exploit these properties,
and determine other important parameters that collec-
tively characterize detection activities. Finally, in Sec-
tion 6, we show how to protect passive threat monitors
from these threats. While some ideas and thoughts pre-
sented are immediately applicable but their effectiveness
is somewhat limited, others are intended for open dis-
cussion among researchers interested in protecting threat
monitors against detection activities.

Although we focus on sensor detectability of dis-
tributed threat monitors, it is straightforward to extend
our discussion to large telescope-type monitors also.

2 Passive Internet Threat Monitors
2.1 Threat Monitor Internals
Figure 1 shows a typical passive Internet threat monitor.
It has an array of sensors listening to packets arriving at
a set of IP addresses, capturing all traffic sent to these
addresses. Logs of capture events are sent to capture
report processor where these events are gathered, stored,
processed and published as background activity monitor
reports. Some sensors monitor network traffic for large
address spaces, while others capture only packets sent to
their own addresses.

A passive sensor often functions like a firewall that
is configured to record and drop all packets. The sen-
sor may also be equipped with an IDS of some kind

to explicitly capture known attacks. A sensor may be
a dedicated “silent” device that never generates packets
by itself, or it may have users behind it in which case its
firewall must be configured to pass legitimate packets in
both directions.

Capture
Report

Processor

Background Activities
Illegitimate

Packets

Sensor
Array

Sensor
Data

IDS

FW

Activity
Reports

ID
S

&
FW

Lo
gs

User(s)

Figure 1: Structure of a Typical Internet Threat Monitor

2.2 Characterizing Threat Monitors
To properly characterize passive threat monitors, we
need to look at their two main aspects: the properties of
their sensors and the reports they provide. In the follow-
ing, we provide a brief discussion of both so that readers
get a better understanding of the basic principles behind
Internet threat monitors.

2.2.1 Properties of Sensors
Sensor Aperture A Sensor may monitor a single ad-

dress, or multiple addresses simultaneously. We
call the size of the address space a sensor is lis-
tening to its aperture. Examples of sensors with
extremely large aperture are systems monitoring
routed but empty or sparsely populated address
space, such as the CAIDA’s telescope [1] and
the IUCC/IDC Internet Telescope [5]. CAIDA’s
telescope is claimed to monitor a /8 space, and
IUCC/IDC Internet Telescope is claimed to mon-
itor a /16 space.

Sensor Disposition Some systems use multiple sen-
sors that are distributed across the Internet ad-
dress space, while others just use a single sen-
sor. Extreme examples of a highly distributed sen-
sor are DShield [2] and the Internet Storm Center
[4]. They explain their system as monitoring over
500,000 addresses spanning over 50 different coun-
tries around the World [6].

USENIX Association210

Sensor Mobility Sensors may be listening to fixed ad-
dresses or dynamically assigned addresses, de-
pending on how they are deployed. Large, tele-
scope type sensors with extremely large aperture
such as /8 are likely to be listening on fixed ad-
dresses, while small aperture sensors, especially
those hooked up to DSL providers are very likely
to be listening to dynamically changing addresses.

Sensor Intelligence Some systems deploy firewall type
sensors that capture questionable packets without
deep inspection, while others deploy intrusion de-
tection systems that are capable of classifying what
kind of attacks are being made based on deep in-
spection of captured packets.

There are some sensors that respond to certain
network packets making them not quite “passive”
to capture payloads that all-drop firewall type sen-
sors cannot. [7, 8].

Sensor Data Authenticity Some systems use sensors
prepared, deployed and operated by institutions,
while others rely on volunteer reports from the gen-
eral public.

We see no fundamental difference between tradi-
tional, so called “telescope” threat monitors and “dis-
tributed sensor” threat monitors as they all listen to back-
ground traffic. In this paper, we focus on detecting sen-
sors of distributed threat monitors, but it is straightfor-
ward to extend our discussion to large telescope moni-
tors.

2.2.2 Report Types
All reports are generated from a complete database of
captured events, but exhibit different properties based
on their presentation. There are essentially two types of
presentation styles: the data can be displayed as “graph”
or in “table” format.

Port Table Table type reports tend to provide accurate
information about events captured over a range of
ports. Figure 2 shows the first few lines from a hy-
pothetical report table that gives packet counts for
observed port/protocol pairs.

Time-Series Graph The graph type reports result
from visualizing an internal database, and tend to
provide less information because they summarize�

�

�

�

% cat port-report-table-sample
port proto count
8 ICMP 394
135 TCP 11837
445 TCP 11172
137 UDP 582
139 TCP 576

.

.

.

Figure 2: An Example of Table Type Report

events. The graphs we will be focusing on are the
ones that have depict explicit time-series, that is,
the graph represents changes in numbers of events
captured over time. Table type reports also have
time-series property if they are provided periodi-
cally, but graphs tend to be updated more frequently
than tables.

Figure 3 shows an hypothetical time-series graph
report. It contains a time-series of the packets re-
ceived per hour for three ports, during a week long
period starting January 12th.

We examine other report properties in detail in
Section 4.2.

0

50

100

150

200

250

300

350

01/12 01/13 01/14 01/15 01/16 01/17 01/18 01/19

Pa
ck

et
C

ou
nt

Date

135/tcp
445/tcp

137/udp

Figure 3: An Example of Time Series Graph Feedback,
showing only three most captured events.

2.3 Existing Threat Monitors

In addition to threat monitors already mentioned, there
are many similar monitors deployed around the World.
For example, SWITCH [9] operate telescope type mon-
itors.

Examples of distributed sensor monitors are the mon-
itor run by the National Police Agency of Japan [10],
ISDAS (Internet Scan Data Acquisition System) run by
JPCERT/CC [11] and WCLSCAN [12] which is unique
in that it uses sophisticated statistical algorithms to esti-
mate background activity trends. The IPA (Information-
Technology Promotion Agency, Japan) is also known to
operate two versions of undocumented threat monitor
called TALOT (Trends, Access, Logging, Observation,
Tool) and TALOT2.

University of Michigan is operating the Internet Mo-
tion Sensor, with multiple differently sized wide aper-
ture sensors [13, 14]. Telecom-ISAC Japan is also
known to operate an undocumented and unnamed threat
monitor that also combines several different sensor
placement strategies. PlanetLab[15] has also announced

14th USENIX Security SymposiumUSENIX Association 211

14th USENIX Security Symposium

a plan to build their own monitor based on distributed
wide aperture sensors.

Building and deploying a threat monitor is not a cum-
bersome task for anyone with some unoccupied address
space in hand. For example, the Team Cymru Dark-
net Project provides a detailed step by step guideline for
building a monitor [16].

3 The Problem
3.1 A Simple Example
To demonstrate that our concerns are realistic, we show
that we can identify the addresses of real network moni-
tor sensors. Let us consider one example; we omit some
details about the discovered monitors to not compromise
their integrity. The monitor we were investigating pro-
vides a graph of the top five packet types that gets up-
dated once an hour. Without any prior knowledge, prop-
erties of this monitor were studied using publicly avail-
able materials such as symposium proceedings, work-
shop handouts and web sites. It became clear that there
is a high likelihood that at least one of its sensors was
located in one of four small address blocks.

We examined the graph to determine if we could find
a way to make obvious changes to it by sending appro-
priately typed packets to the suspected addresses ranges.
The graph showed the top 5 packet types with a granu-
larity of only one week, so introducing a new entry into
the graph would require a substantial number of pack-
ets. It was something that we didn’t want to do. Instead,
the existing entries were examined, and one of the UDP
ports was chosen as a target, because of its constant low-
profile curve. So, we sent a batch of empty UDP packets
using the previously chosen port number to each address
in the candidate blocks, covering one block every hour.

Four hours later, we examined the report graph from
this monitor on the web, part of which is shown in
Figure 4, and found a spike of the expected height in
the curve; labeled “Successful Detection.” Because we
knew the time at which we sent packets to each address
block, it was obvious which of the four blocks contained
the sensor. For verification purposes, the same proce-
dure was repeated on the suspect block next day, and
produced another spike in the feedback graph, labeled
“Block is Verified” in the Figure.

3.2 The Impact
In this paper, we are investigating vulnerabilities of
threat monitors that break either implicit or explicit as-
sumptions that are fundamental to a monitors’ function-
ality. The biggest assumption that all monitors rely on is
that they are observing non-biased background traffic.

However, as shown in the simple example presented
in the previous section, sensor address detection is not

Successful
Detection

Block is
Verified

Figure 4: The graph shows the feedback from the sim-
ple marking session. The target curve is shown in dark
black, and spikes produced by sending UDP packets are
emphasized in dotted circles.

totally impossible. Our study shows that proper analy-
sis of the target system leads to detection in surprisingly
short time.

In the following, we examine possible consequences
after sensor addresses have become known.

• Sensors may be fed with arbitrary packets.
Sensors may be fed selectively with arbitrary pack-
ets. The result is that captured events no longer rep-
resent general background activity, effectively dis-
abling the target monitor.

• Sensors may become DoS victims.
Furthermore, sensors may be subject of DoS at-
tacks, possibly disabling victim sensors and asso-
ciated networks. The risk of suffering a DoS attack
or actually having been attacked may result in vol-
unteers removing their sensors from the distributed
monitors reducing their effectiveness.

• Sensors may be evaded.
Malicious activity may evade sensors. Again, cap-
ture results no longer represent general background
activity.

It is important to realize that sensor attackers or
evaders do not require a complete list of sensor ad-
dresses. The list may be incomplete, or it may include
address ranges instead of addresses. The sensor revo-
cation mentioned above could be triggered by a single
address or address range in the list.

USENIX Association212

It is equally important to recognize that these vulnera-
bilities are not limited to systems that make results pub-
licly available. There are commercial services and pri-
vate consortium which run similar threat monitors and
provide their clients or members with monitor results
with certain precision. We all know that information re-
leased to outside organizations is very likely to be prop-
agated among unlimited number of parties whether or
not the information is protected under some “soft” pro-
tection. Therefore, the threat is the "Clear and Present
Danger" for anybody who runs similar services.

4 Detection Methods
To understand the vulnerabilities of threat monitors, we
first investigate possible ways of detecting them.

4.1 The Basic Cycle
The scheme that we have used for sensor detection is
basically a variation of the classic black-box estimation
procedure, as shown in Figure 5.

Target System

[5] Examine
Feedback

[2] Create Test
(Plan Marking)

Assumptions
(Suspect Address

List)

[3] Test
Input

(Markers)
[4] Feedback

Background Info

[0-a] Target
System
Study

[6] Refine,
update,
correct
assumtions

[1] Select an
assumption

[1-a]
Background
Info provides
hints

[0-b] Initial
List

Figure 5: The Monitor Detection Cycle

In Figure 5, a target system is at the bottom, and what
we call an assumption pool is at the top. This pool holds
address lists or address ranges that we believe might host
sensors. The goal of the detection procedure is to refine
assumptions in this pool as much as possible. An outline
of the procedure is described below.

0. The target system is studied prior to the actual de-
tection procedure (0-a). Background information
about the target system’s characteristics are col-
lected using publicly available information such as
conference proceedings, workshop handouts, talk
videos and web pages.

Properties of feedback information (reports)
from the target systems are also of interest in this
phase, and is discussed in Section 4.2. Characteris-
tics of an operating institution, including relation-
ships with other institutions and personal relation-
ships between key people sometimes allow us to

derive valuable information about sensor deploy-
ment.

As a result of this process, an initial set of ad-
dress lists or address ranges may be determined and
stored in the assumption pool (0-b). Background
information may also be filled with parameters that
affect the detection cycle. This includes a wide
range of information, from available physical re-
sources to various policies.

1. The actual detection cycle starts by selecting an ad-
dress list or address range from the pool. The list
or range may be divided into smaller lists or ranges
if necessary.

2. We design a set of tests to refine the selected as-
sumption - usually narrowing down its range. To
distinguish this process from the traditional “scan-
ning”, we call running these tests “marking”.

Various background information, especially
feedback properties of the target system, are used
in this process (1-a). We call the packets used in
marking activities “markers”. The main focus in
the design process is the marking algorithm de-
ployed, which is discussed in Section 4.3. Details
of designing the marking activity are discussed in
Section 4.4.

3. We run the marking process against the target sys-
tem by sending markers to addresses in the sus-
pected address list or range.

4. We capture the feedback from the target system.
5. The feedback is examined to identify results of suc-

cessful marking.
6. Based on these results, the assumption is refined,

corrected, or updated. Afterwards, a new cycle be-
gins with a newly selected assumption.

4.2 Feedback Properties
The feedback properties that a target monitor provides
influence the marking process in many ways. In the fol-
lowing, we examine the major properties of typical feed-
backs. The most obvious property is the feedback type,
either a table or a graph, which we already described in
Section 2.2.2.

4.2.1 Timing Related Properties
For feedback in the form of a time series, timing related
properties play an important role when designing mark-
ing activity.

Accumulation Window The accumulation window
can be described as the duration between two con-
secutive counter resets. For example, a feedback
that resets its counter of captured events every hour
has a accumulation window of one hour.

14th USENIX Security SymposiumUSENIX Association 213

14th USENIX Security Symposium

The accumulation window property affects the
marking process in several different ways;

1. An attempt to introduce changes must happen
within the accumulation window period. In
other words, the accumulation window deter-
mines the maximum duration of a unit mark-
ing activity.

2. The smaller the accumulation window the
more address blocks can be marked in a given
time frame.

3. A smaller accumulation window requires less
markers to introduce changes.

Time Resolution Time resolution is the minimum unit
of time that can be observed in a feedback. The
time resolution provides a guide line for determin-
ing the duration of a single marking activity. That
is, a single marking activity should be designed to
fit loosely into multiples of the time resolution for
the target system. We can not be completely ac-
curate as we need to be able to absorb clock skew
between target and marking systems.

Feedback Delay Delay is the time between a capture
event and next feedback update. For example, a
feedback that is updated hourly has a maximum de-
lay of one hour, while another feedback that is up-
dated daily has a maximum delay of one day. The
delay determines the minimum duration between
different marking phases that is necessary to avoid
dependency between them.

Most feedbacks have identical time resolution,
accumulation window and delay property, but not
always. For example, there is a system which pro-
vides a weekly batch of 7 daily reports, in which
case the accumulation window is one day while the
maximum delay is 7 days.

Retention Time The retention time of a feedback is the
maximum duration that a event is held in the feed-
back. For a graph, the width of the graph is the re-
tention time for the feedback. All events older than
the graph’s retention time are pushed out to the left.

Figure 6 illustrates the relationship between dif-
ferent timing properties using a hypothetical feed-
back that updates every 2 days, and provides accu-
mulated packet counts for a particular day every 6
hours. As shown in this figure, this feedback has a
time resolution of 6 hours, a accumulation window
of 1 day, a maximum feedback delay of 2 days. In
addition, the retention time for this graph is 3 days.
The duration of some possible marking activities
are also shown in this figure. Note that a marking
activity can span multiple resolution units, but can-
not span two accumulation windows.

2

4

6

8

10

12

14

16

18

126241812624181262418

Pa
ck

et
C

ou
nt

Time

time resolution

accumulation window

maximum delay

duration of possible unit activities

Figure 6: Timing Properties of A Hypothetical Feedback

4.2.2 Other Feedback Properties
In addition to the timing related properties, there is a
group of properties that mainly rule how capture events
are presented in feedbacks. These properties also play
an important role when designing marking activity.

Type Sensitivity Type sensitivity refers to the sensitiv-
ity of a feedback to certain types of packets. If a
feedback shows significant changes in its response
to an appropriate amount of packets of the same
type, then the feedback is sensitive to that type.

Dynamic Range The dynamic range of a feedback,
which is the difference between smallest and largest
numbers in the feedback, presents another impor-
tant factor in a marking design, in conjunction with
the level sensitivity property described next.

Counter Resolution / Level Sensitivity The counter
resolution of a feedback is the minimal number of
packets required to make an identifiable change in
the feedback. For example, a feedback table that
includes information for a single event has a reso-
lution of 1 packet, while the feedback in a graph
that is 100 dots high with a maximum scale (dy-
namic range) of 1,000 packets has a resolution of
10 packets.

We use the term “sensitivity” also to describe the
“level of sensitivity”. In the above example, the
former feedback is more sensitive than the latter
feedback. Some systems use logarithmic scale for
their feedbacks, and as a result, they are sensitive to
small spikes even if the dynamic range of the feed-
back is very large.

The unit of measurement also vary from system
to system, and affects the level sensitivity of the
feedback. Some use accumulated packet counts
directly, in which case the sensitivity can be cal-
culated easily. Others use mathematically derived
values such as average packet counts per sensor
and packet counts per 100 sensors. In the latter

USENIX Association214

case, number of sensors in the monitor must be
known to calculate the sensitivity. This figure may
be obtained from the background information for
the monitor, or may be estimated by comparing the
feedback with feedbacks from other monitors that
use plain packet counts.

Cut-off and Capping Some systems drop events that
are considered non-significant. Some systems drop
events that are too significant, so events with less
significance are more visible. A common case of
cut-off is a feedback in the form of “Top-N” events.
In this type of feedback, the top N event groups are
selected, usually based on their accumulated event
count over a predetermined period of time such as
an hour, a day or a week. A feedback with the top-
N property is usually very hard to exploit, because
it often requires a large number of events to make
significant changes such as visible spikes or an in-
troduction of a new event group. However, there
is a chance of exploiting such feedback, when the
feedback exhibits certain properties, such as fre-
quently changing members with low event counts,
or if there is a event group with a period of inac-
tivity. An introduction of a new event group is also
possible, by “pre-charge” activity that is intended
to accumulate event counts.

4.3 Marking Algorithms
An algorithm used for a particular marking is often de-
pends on the feedback properties. It is sometimes neces-
sary to modify or combine basic marking algorithms to
exploit a particular feedback, or to derive more efficient
marking algorithm. In the following, we present some
examples of possible marking algorithms.

4.3.1 Address-Encoded-Port Marking
A system providing a table of port activities may be-
come a target of an address-encoded-port marking. In
this method, an address is marked with a marker that
has its destination port number derived from encoding
part of the address bits. After the marking, port numbers
which were successfully marked are recovered from the
feedback, which are in turn combined with other address
bits to derive refined addresses.

Consider the case in Figure 7. In this example, we
mark a /16 address block with base address b that is host-
ing a sensor at b + A. The destination port of the marker
for address b + n is set to the 16 lower bits of the ad-
dress b + n (which is equivalent to n). For the sensor
address b + A, a marker with destination port set to A is
sent, which in turn appear as captured event on port A in
the port activity report. This feedback is combined with
the base address b to form the complete address of the
sensor, which is b + A.

/16 Target
address space

Base address = b

b+0 b+65535b + A

Marker for
addres

b + n
(b + n) & 0xf f f f (=n)
Destination port

Marking

Feedback

por t count

. . .
A 1
. . .

Port report

Sensor Address:
b + A

Figure 7: An Address-Encoded-Port Marking Example

Although the address-encoded-port marking can only
be deployed against table type feedbacks, it is consid-
ered extremely efficent, because it can deliver multiple
complete or partial addresses from a single marking ac-
tivity.

However, not all of the 16-bit port space is available
in practice; there are ports which are frequently found
in real background activity. Some of these ports, espe-
cially those that are used by vulnerable, usually receive
a large number of events. Other ports may also receive
some background traffic due to back scatter and stray or
wandering packets.

To increase the accuracy of our method even in the
presence of background traffic for some ports, it is pos-
sible to determine the usable port space in advance. This
can be achieved by looking at previous port-reports from
the target system. The accuracy of this method can
also be improved by incorporating redundant marking
in which multiple makers of the same type are sent to
the same address to mask the existence of busy ports.

Redundant marking also helps in dealing with packet
losses. For example, we can mark a particular address
with four different markers, each using a destination port
number that is encoded with 2-bits of redundancy iden-
tifier and 14-bits of address information. In this case, we
examine the feedback for occurrences of these encoded
ports.

4.3.2 Time Series Marking

Time series marking can be used when the feedback is in
the form of a time series property. It is used in conjunc-
tion with other marking algorithms such as the uniform
intensity marking described next. In time series mark-
ing, each sub-block is marked within the time resolution
window of the feedback so that results from marking can
be reverse back to the corresponding sub-block.

14th USENIX Security SymposiumUSENIX Association 215

14th USENIX Security Symposium

4.3.3 Uniform Intensity Marking
In uniform-intensity marking, all addresses are marked
with the same intensity. For example, let’s assume that
we are marking a /16 address block that is known to con-
tain several sensors. We divide the original block into
16 smaller /20 sub-blocks. Then we mark each of these
sub-blocks using time-series marking, one sub-block per
time unit, marking each address with a single marker.

0
1
2
3
4
5
6

0 2 4 6 8 10 12 14 16

Pa
ck

et
C

ou
nt

Time (Sub-block # + 1)

Figure 8: An Example of Uniform-Intensity Marking
Feedback

Figure 8 shows an ideal (no packet loss, and all other
conditions being good) feedback graph from the mark-
ing described above. In this figure, the vertical axis rep-
resents the packet count and the horizontal axis repre-
sents time. We see that there is a spike of height one at
time 4, which means that there is one sensor in sub-block
#3, since the packet count at time 4 is accumulated be-
tween time 3 and time 4, when sub-block #3 was being
marked. Similarly, there is a spike of height one at time
8 and height two at time 11, meaning there is one sensor
in sub-block #7 and two sensors in sub-block #10.

4.3.4 Radix-Intensity Marking
In radix-intensity marking, selected address bits are
translated into marking intensity, i.e., the number of
packets for each address. Let us consider the example
used in the uniform-intensity section above. We exe-
cute the same marking procedure, but mark the first /21
block within a sub-block with 2 markers, and the second
/21 block with 3 markers (Figure 9). Table 1 shows the
possible location of sensors within a sub-block, and how
they are reflected in the feedback intensity.

/16 Target
address

block
#0 #1 #2

. . .
#15

/20 Sub-blocks

Markers

/21 /21

Figure 9: An Example of Radix-Intensity Marking

Sensor Location (Block #)
Sensor first second third Feedback
Count sensor sensor sensor Intensity

0 — — — 0
1 0 — — 2

1 — — 3
2 0 0 — 4

0 1 — 5
1 1 — 6

3 0 0 0 6
0 0 1 7
0 1 1 8
1 1 1 9

Table 1: Single Bit (2 for 0 and 3 for 1) Radix-Intensity
Feedback for up to 3 sensors in a sub-block.

0
1
2
3
4
5
6

0 2 4 6 8 10 12 14 16

Pa
ck

et
C

ou
nt

Time (Sub-block # + 1)

Radix Intensity
Single Intensity

Figure 10: An Example of Radix-Intensity Marking
Feedback

For this example, we further assume that there are no
more than two sensors in each sub-block. Figure 10
shows the ideal feedback from this marking with solid
lines. The feedback from the uniform-intensity marking
is also drawn for comparison in dotted lines. Looking at
the solid line, we notice a spike with height 2 at time 4
meaning that there is one sensor in the first half of sub-
block #4. There is also a spike with height 3 at time 8
meaning that there is one sensor in the second half of
sub-block #7. Another spike spike with height 5 can be
seen at time 11 meaning that there are two sensors, one
in the first and another in the second half of sub-block
#10.

Notice that with uniform-intensity marking, the feed-
back would have derived only the numbers of sensors in
each sub-block, while radix-intensity marking was able
to also derive information about the positions of these
sensors within each sub-block. For this example, the
radix-intensity marking derived an extra bit of address
information.

In radix-intensity marking, the assignment of inten-
sity to address bit patterns has to be designed carefully
to minimize the ambiguity during feedback translation.
The above example used intensities 2 and 3 for a single
bit. As shown in Table 1, this assignment allows unique

USENIX Association216

decoding of up to two sensors in a single sub-block, and
with a single exception, it allows unique decoding of up
to three sensors in a single sub-block (there is an am-
biguity for feedback intensity value of 6 which decodes
into two cases).

In practice, code assignment has to consider the effect
of packet loss, so the assignment becomes more compli-
cated. Another drawback of the radix-intensity marking
is that aggressive encoding introduces unusually large
spikes in the feedback. The number of address bits that
are encoded as intensity should be kept relatively small
so that the marking activity can retain its stealthiness.

4.3.5 Radix-Port Marking
When several ports are available for marking, a port pair
can be assigned to toggle an address bit off or on (0/1).
Multiple pairs can be used to encode multiple address
bits, but we need to be careful that traces of multiple
event groups do not interfere with each other.

4.3.6 Delayed Development Marking
This is yet another marking algorithm, that can be com-
bined with the other more fundamental marking algo-
rithms.

This method is especially useful when the feedback
is a graph that displays “Top-N” activity. In time-series
marking on this type of feedback, we have to be sure
that results of successful hits are noticeable in the feed-
back by using the appropriate marking intensity for each
address. However, since Top-N graphs show only fre-
quently captured events, it is often necessary to use high
intensities to make significant changes.

Delayed development marking solves this problem by
deploying two separate phases of marking which we
call “exposure” phase and “development” phase. These
terms were taken from the classical silver-oxide pho-
tography in which a hidden image accumulated on a
medium by exposure to light is later developed to pro-
duce a visible image.

Our algorithm use markers instead of light. In the ex-
posure phase, marking is done with minimal intensity
markers, leaving hidden traces in the feedback. The in-
tensity for this phase is the minimal sensitivity level of
the feedback, and the duration of the phase is determined
from the retention time of the feedback. After the ex-
posure phase but within the retention time of the feed-
back, development marking is done with high intensity
markers. This will introduce a new event group into the
feedback, revealing all hidden traces. Of course, it is
necessary that the development marking hits the sensor
for successful development. Thus, it is desirable to have
several known addresses for successful marking using
this algorithm.

A variation of the algorithm exploits the inactivity pe-
riod of existing or recurring top-N event groups. In this
case, the explicit development phase is not necessary,
since the natural background activity will effectively de-
velop the hidden traces. An example of this exploit is
given in section 5.2.

4.3.7 Combining Algorithms
As noted already earlier, it is possible to create new algo-
rithms by combining or varying the algorithms we have
presented. For example, an algorithm that spans differ-
ent feedback types is also possible.

4.4 Designing A Marking Activity
An actual marking activity can be characterized by sev-
eral parameters. Some of these parameters are interre-
lated, so the process of designing a marking activity can-
not be fixed. In the following, we describe the typical
process of designing a marking activity.

Target Range
First, we need to decide on the range, or the block

of addresses that we want to mark. The initial range
may be determined from social engineering, reasonable
guesses or a combination of both. For example, sen-
sors for a monitor run by a national CERT are likely to
be placed in the address assigned to that nation. With-
out any information, we essentially have to start with the
full /0 address space, except for the bogons, i.e. the un-
routable addresses ranges. Later markings can use the
results from preceding markings.

Marking Algorithm
The marking algorithm is basically determined by the

properties of the selected feedback. If the feedback is
in table form, then the address-encoded-port marking
would be a good candidate. If the feedback is in the
form of a graph, time-series marking with one of the
intensity-based algorithms would be a decent candidate.
Variations of selected algorithms to exploit the space that
the feedback provides are also considered here.

Marker Design
The marker packet is designed next.

• Marker type
Protocol, source and destination port number are
determined from the requirements of the selected
algorithm and the feedback’s type sensitivity.

• Source address
The source IP address of marking packets may be
spoofed because we do not require a reply to them.
The only information we require is the data from
feedback reports which can obtained independently
of the marking packets. However, spoofed source
addresses may affect the stealthiness of the mark-

14th USENIX Security SymposiumUSENIX Association 217

14th USENIX Security Symposium

ing activity. If someone running the target monitor
were to examine the source addresses of packets
they capture, addresses belonging to Bogon (un-
routable) address space would certainly draw at-
tention. So, randomly generated source addresses
should be avoided. A list of non-Bogon addresses
can be generated by taking a snapshot of BGP rout-
ing table from a core Internet router. Another easy
way is to use the addresses of actual attackers ob-
tained by running a passive packet monitor.

• Payload
The presence of a payload is also considered here
based on the sensor type. While most firewall
type sensors are sensitive to small packets including
TCP handshaking segments and payload-less UDP
datagrams, most IDS type sensors require a payload
that the IDS is sensitive to.

Intensity
The intensity of a marking specifies how many mark-

ers are sent to a single address, and is usually determined
from the resolution and the noise level of a feedback.
The selected marking algorithm may impose additional
constraints, and we may also need to take the stealthi-
ness into account.

Bandwidth
The bandwidth parameter depends on limiting factors

imposed by the availability of physical resources, ca-
pacity of bottleneck routers, or our stealthiness require-
ments. If a botnet of an appropriate size can be utilized,
the bandwidth is not a limiting parameter. Nevertheless,
we assume that we have some concrete bandwidth figure
here.

Velocity
The velocity of a marking is the speed with which

marker packets can be generated. The bandwidth cap on
the velocity can be calculated from the bandwidth pa-
rameter above and the marker size, but the actual veloc-
ity is also limited by the CPU speed of the host gener-
ating the markers. For example, with a naive generator
based on libnet [17], a 350 MHz Intel Celeron can
generate only 100 small markers per second, while the
same software on a 2.4 GHz Intel Pentium 4 can gener-
ate packets of the same size 15 times faster. Neverthe-
less, whichever smaller becomes the actual velocity.

Address Range Subdivision
The number of addresses that can be marked per unit

time is calculated from the velocity and the intensity.
This figure together with the feedback’s timing proper-
ties discussed in Section 4.2 determines the number of
addresses that can be marked in a time unit. This num-
ber also determines how a target range is sub-divided
into smaller sub-blocks.

At this point, if a derived sub-block size is too big
or to small, or not appropriate by some other rea-
son, then parameters already determined above should
be adjusted. As readers might have noted, there is
a inter-relationships among bandwidth, intensity, sub-
block size and marking duration. Figure 11 is a chart
that shows this dependency for 64-byte markers, in a
form of bandwidth against duration for various sized ad-
dress blocks and selected intensity. In reality, these inter-
relating parameters are ought to be tweaked around us-
ing the chart like this one.

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

4G1G256M64M16M4M1M256K64K

T
im

e
to

co
m

pl
et

e
(s

ec
)

Bandwidth (bps)

1 min

1 hour

6 hours

1 day

1 week

1 month

1 year

/0, intensity = 16
/0, intensity = 4/0, intensity = 1

/8, intensity = 16
/8, intensity = 4/8, intensity = 1

/16, intensity = 16
/16, intensity = 4

/16, intensity = 1
/24, intensity = 16

Figure 11: Bandwidth v.s. Time for Various Sized
Blocks and Intensities for 64-byte Markers

Marking Order
The order in which we mark blocks or addresses

within a block may increase or decrease the likelihood
of our marking activity being detected. One example
would be the presence of an advanced IDS that does spa-
tial and longitudinal analysis of captured events. For this
reason, we may want to scramble the order in which we
send the markers in some way or other.

4.5 Gathering Additional Information
There are several supplemental procedures that can be
used to gather additional information before or in be-
tween series of marking activities.

ICMP-Based Recon Some systems explicitly state that
their sensors respond to ICMP requests to attract
and capture packets from adversaries who check if
a target host is alive prior to an actual attack. This
feature can be used to select a set of candidates
from a target region prior to the actual marking pro-
cess.

Sensor Fingerprinting There are threat monitors, es-
pecially those prepared and deployed by large or-
ganizations that use uniform hardware and soft-
ware platforms for their sensors. In this case, once

USENIX Association218

the first sensor has been detected, it can be finger-
printed to help with identifying additional sensors
of the same type.

For the purpose of detecting sensors of threat
monitors, ICMP is the only method we can use.
However, our study shows that we can fingerprint
the sensors that respond to ICMP requests to some
extent by characterizing their responses to various
ICMP requests, such as Echo Requests, Timestamp
Requests, Mask Requests, or Information Requests.

Topological inference For sensors to be useful, it is
necessary that they are deployed in fashion that
gives them access to as much traffic as possible. In
particular, it is often undesirable to deploy sensors
behind firewalls or small network segments. There-
fore, it seems likely that sensors deployed within an
intranet are not placed deeply in the topology. So,
for address blocks assigned to intranets, we can use
tools like traceroute to study their internal topol-
ogy, and then carry out our marking activity can
against those address blocks closer to the ingress
point of the intranet. Note that address blocks as-
signed to intranets can be identified through the use
of whois and similar tools. The fact that surpris-
ingly many hosts respond to ICMP Mask Requests
can also be used to build a topology map of a partic-
ular intranet. It is ironic that features which facil-
itate administrating Internet hosts provide us with
an improved way to compromise another class of
systems intended for Internet management.

FQDN filtering At some stage in the detection process,
candidate addresses may be converted into FQDNs
via DNS reverse lookups. We can then examine
their names and drop those from the list that contain
words that indicate some common purpose, such as
“www”, “mail” or “ns”. This filter is particularly
useful for address ranges that cover intranets. In our
experience, this kind of filtering actually cut down
the number of addresses in the candidate list from
64 to only 2.

For some of these algorithms, it is necessary to use
a non-spoofed source address because they require bidi-
rectional interaction with hosts and routers in or near the
target region. The drawback of using non-spoofed ad-
dresses is that traffic from them may be easier to detect
and could alert monitor operators to the fact that their
sensors are under attack.

5 Case Studies
We have successfully determined the addresses of sev-
eral sensors belonging to multiple threat monitors. In
this process, we employed actual marking using live net-
works and simulated environments but also mathemati-

cal simulations. In this section, we present some signif-
icant cases that can be discussed without compromising
the security of the vulnerable monitors.

5.1 System A
System A corresponds to the threat monitor described in
the introductory example in Section 3.1. As described
earlier, in our initial study of the system, we were able
to derive four small address blocks that we suspected
to host sensors. We used time-series uniform-intensity
marking on each block and disovered that there was ac-
tually one sensor in one of the blocks.

This system provides a feedback report in the form of
a port table in addition to the graph type feedback used
in the first cycle. The second cycle was run using the
address-encoded-port marking on the block determined
in the first cycle, using 4 redundantly encoded markers
per address. To remain undetected, we scrambled the
markers so that there was no obvious relationship be-
tween bit patterns of sensor addresses and port numbers.
From the feedback, the complete address of the sensor
was successfully decoded.

During the feedback delay of the second cycle, an-
other set of methods was tested on this block. First, the
ICMP-recon on addresses on this block was run. The ad-
dress block was scanned with ICMP echo request, con-
nection request (TCP-SYN) on 22/tcp and 1433/tcp. Ad-
dresses that respond to ICMP echo request but did not re-
spond to connection requests were kept in the list, which
finally held 227 addresses. Since the original block was
/22 (1024 addresses), the ICMP-recon has cut down the
size of the list to one-fifth. Then, the list was put through
FQDN-filter. Since this block was assigned to a intranet,
almost all addresses in the list were resolved into names
that resembles some kind of a particular function, except
two addresses. These two addresses were marked with
time-series uniform-intensity marking on ICMP echo re-
quest, and revealed a complete sensor address, which in-
deed matched with the results from the second cycle.

5.2 System B
This is an imaginary case, but can be applied to many
existing threat monitors. The “Dabber Worms” hitting
9898/tcp is very well known to have explicit period of
activity and inactivity, as shown in Figure 12. The active
period always last for few hours at fixed time of the day,
followed by inactive period that last until next active pe-
riod. Events captured during the active period is likely
to be in the range of 1-10 per sensor, depending on the
monitor. On the other hand, virtually no events are cap-
tured during the inactive period, except for occasional
spikes that goes as high as one event per sensor.

As readers might have noticed already, the activity
profile and intensity figures of the Dabber Worm profile

14th USENIX Security SymposiumUSENIX Association 219

14th USENIX Security Symposium

Figure 12: A Typical Dabber Worm Event Profile in
Solid Black Lines (Vertical Axis is total events captured
expressed in log scale). The period of inactivity provides
a good space for marking in a Top-N type graph.

provides graphs containing this profile to be exploited
during the period of inactivity. The simplest example
would be a time-series uniform-intensity marking using
destination 9898/tcp. The marking intensity depends on
how feedback intensity is presented, but because of the
activity profile of the Dabber Worm, this event group
should stay or recur in the graph (delayed development
marking with autonomous development phase).

5.3 System C
This is another existing system, that publishes daily ac-
cumulated port reports that covers entire port range. This
type of feedback is a target for the address-encoded-port
marking. However, the problem (or the strength) of this
system is that it deploys numerous number of sensors,
and as a result, the port report table is very noisy. Most
ports are occupied, and clean ports are hard to predict.

However, the port report provided by this system in-
cludes not only total event counts, but also numbers of
different sources and targets for each port, as shown in
Figure 13.�

�

�

�
port total events # of src # of tgt
0 17630 1367 533
1 188 37 27
2 123 20 21
...
65535 47 9 5

Figure 13: A Hypothetical Port Report From System C

Examination of these figures reveals that there are
strong statistical trends in these reports. Take ratio
of number of targets and number of sources (#tar-
gets/#sources, abbreviated as TSR here after) for exam-
ple.

40000

30000

20000

10000

2.01.51.00.50.1

Fr
eq

ue
nc

y
(P

or
ts

)

TSR (Target Source Ratio) Value

 Region SRegion T

Figure 14: Target/Source (TSR) Value Distribution Ex-
ample

Figure 14 shows a distribution of TSR values, calcu-
lated from the actual port report from this system, on
a particular day in December 2004. Each bar repre-
sents occurrences of values smaller than the correspond-
ing horizontal label (inclusive), and larger than the next
smaller horizontal label (exclusive). Clean ports (no re-
ports, no sources, no destinations) are counted as having
TSR=1.0 for convenience. From this graph, we see the
obvious strong bell shaped distribution with TSR=1.0 at
the center.

Because we can always mark with spoofed source ad-
dresses, we can manipulate the TSR value for a particu-
lar port to be smaller than it actually would, by marking
the port with different source addresses. Now, let us de-
fine two regions in the distribution graph, Region S and
Region T as in Figure 14. Here, Region S is where ports
to be marked reside, and Region T is where ports marked
should move into. That is, if we can move ports that
were otherwise in Region S into Region T by reason-
able number of markers with different source addresses,
and if we can detect these movements, then we have a
variation of the address-encoded-port marking.

One way to implement this marking is to use the yes-
terday’s port report to identify ports that could have been
moved if they were marked, and use these ports as ad-
dress encoding space for today’s marking activity. This
sounds very naive, but if counts on ports tend to change
gradually from day to day, it should work.

Below is the outline of the algorithm, using standard
statistical operations to determine threshold values for
Region S and T.

1. From yesterday’s port table, drop ports with
EC(eventcount) > 100. These are ports with in-
credibly large event counts that affect the statistical
operations of this algorithm. Since we will never
manipulate these ports, it is safe to drop them first.

2. We do the same thing with some more precision.

USENIX Association220

Compute average and standard deviation of re-
maining reports, avg(EC) and stddev(EC) respec-
tively, and drop those ports with EC ≥ avg(EC)+
stddev(EC). These ports are unlikely to move.

3. Compute T SR value for all remaining ports,
and also compute their average avg(TSR) and
stddev(TSR).

4. Let STHRESH, the threshold value for Region S to
avg(TSR)− stddev(TSR).

5. Let T T HRESH, the threshold value for Region T
to STHRESH − 0.5× stddev(TSR). Leaving little
space between Region S and T avoids ports in Re-
gion S that should not move from wondering into
Region T.

6. From remaining ports, select ports with TSR >
STHRESH.

7. For each of the selected port, add nmarker to num-
ber of sources, add 1 to number of targets, and cal-
culate a new TSR. This simulates “what if marked
with nmarker different sources” situation.

8. If the new T SR ≤ T T HRESH, then add the port
to the encoding space. The port “could have been
moved”.

9. Sort the encoding space in ascending order, using
EC as a sort key. This is because lower count ports
are easier to manipulate.

10. Trim the encoding space so that the size of the
space is 2n. At this point, we have a encoding space
for n-bit.

11. Run an actual address-encoded-port marking using
the encoding space, and obtain the feedback.

12. Look for ports with T SR≤ T THRESH in the feed-
back.

We can confirm the validity of this whole idea by run-
ning a simulation of this algorithm using port reports
from the target system. An encoding space is generated
from the port report of the first day, then all ports in the
encoding space are marked artificially in the port report
of the second day. The result of the artificial marking
can then be evaluated as follows.

False Positive The original TSR of a port was already
in Region T without marking. The algorithm will
still detect this port as a successful marking, so this
is a false positive case.

Successful Marking (Hit) The original TSR was in
Region S, and the artificial marking moved this port
into Region T. This is a successful marking.

False Negative The original TSR was in Region S, and
the artificial marking could not move this port into
Region T.

Note that this type of simulation yields a more pre-
cise evaluation of the algorithm than running an actual

marking. As results from the actual marking are affected
by the disposition of actual sensors in the target address
region, we would not know the correct number of ac-
tual sensors. The simulation derives the probability of
successful markings, under the assumption that all ad-
dresses in the target region host sensors.

We simulated this algorithm against 30 pairs of ac-
tual port reports from 31 consecutive days in Decem-
ber 2004, with encoding space size set to 16,384 (14-
bit). Also, nmarker, number of markers, was set to
stddev(EC), unless stddev(EC) is greater than 16, in
which case nmarker was set to 16. Table 2 only shows
results for the first week, but other dates came up with
similar numbers. The last column shows result of 4-way
majority marking, in which hit is counted when at least
3 out of 4 markers satisfy the hit condition.

As shown in this table, the algorithm does perform
well, despite the fact that it is quite naive. In fact, the 4-
way redundant marking with ’at least 3 out of 4’ majority
condition achieves almost perfect results, even though
it reduces the available port-space to one quarter of the
original size. More sophisticated ways of trend analy-
sis that derive better port space may further improve the
performance, especially in the non-redundant case.

For some day-pairs, the number of markers, or in-
tensity, can be much smaller, some times as small as 8
markers without sacrificing the performance. However,
the table shows mechanically computed value, which is
based on standard deviation of event counts, which is
for stealthiness. The intensity seems unrelated to any of
the statistical values we have used in our example algo-
rithm, so there must be something that we have missed
here. Nevertheless, with intensity of at most 16 mark-
ers, this algorithm is capable of revealing at least 12-bits
from this monitor per day.

6 Protecting Threat Monitors
As mentioned earlier, threat monitors are inherently vul-
nerable to marking activities. Possible approaches to
protect these monitors is discussed in this section, start-
ing with assessment of the Leak. By knowing the how
much information the monitor is leaking, we can infer
the time-to-live for sensors and the monitor, which in
turn can be used to take correct measures.

6.1 Assessing the Leak
The first step of the monitor protection is to assess how
much information is leaking per unit time. An important
guideline for the assessment is that we should not to-
tally rely on figures derived by some explicit procedure
in mind.

A hypothetical example would show this. Assume
that there is a hypothetical monitor that publishes a com-
pletely unpopulated table type port report every hour.

14th USENIX Security SymposiumUSENIX Association 221

14th USENIX Security Symposium

Date mean
T SP

sthresh tthresh nmarker Hits
(%)

FP
(%)

FN
(%)

3o4
(%)

12/02 0.965 0.738 0.625 13 88.8 0.1 11.1 93.5
12/03 0.848 0.638 0.533 14 94.8 2.1 3.1 98.6
12/04 0.881 0.654 0.540 15 88.2 0.5 11.3 93.2
12/05 0.838 0.553 0.410 16 87.2 12.3 0.5 92.1
12/06 0.835 0.648 0.554 16 95.3 0.3 4.4 99.3
12/07 0.842 0.660 0.570 16 95.0 0.1 4.9 98.7
12/08 0.851 0.674 0.586 16 94.7 0.4 4.9 98.5

Table 2: Result of Simulated Marking for First Week of Dec. 2004.

Let’s assume that there are 1K sensors in this moni-
tor. A botnet with 20K hosts each shooting address-
encoded-port type markers at 30 marker/sec will pro-
duce a complete list of /16 blocks where sensors are
placed in the very first hour. Then during the second
hour, each /16 block is marked with address-encoded-
port markers each using 64 port (6 bits), producing a
complete list of /22 blocks. This process is repeated,
and at the end of 4th hour, complete list of full 32-bit
addresses for all 1K sensors will be produced.

The process may become shorter, depending on num-
ber of blocks produced by each phase. If 1K sensor
addresses are actually 128 wide aperture sensors each
monitoring a /28 space, then the each phase will produce
maximum of 128 blocks, which means that we can use
512 ports (11-bit worth) for second and third phases, and
the complete list would be available after the 3rd hour.

As shown here, the same marking activity behaves
differently under different conditions. So the procedu-
rally derived assessment results should only be used as a
reference.

6.2 Possible Protections

Provide Less Information
An obvious way to fight against marking activities is to
decrease the amount of information the system is giv-
ing out, prolonging the time-to-live. Manipulating feed-
back properties studied in section 4.2 will provide a good
starting point. For example, longer accumulation win-
dow, longer feedback delay, less sensitivity, and larger
cut-off threshold all works for this purpose. However,
there are several points that we have to be aware of.

• Frequency and level of detail of published reports
usually reflect a system’s basic operation policy.
For example, some system expect large-scale dis-
tributed (manual) inspection by report viewers so
that new malicious activities can be captured at its
very early stage. Such system obviously requires
frequent and detailed reports to be published, and
decreasing the amount of information given may in-
terfere with this policy. Therefore, there is a trade
off between the degree of protection by this method

and the fundamental policy of the system.
• Even if we decrease the amount of information, we

still have a leak. So, the amount of information the
system is giving out should be decided with theo-
retical considerations, and should never be decided
by some simplistic thoughts.

Giving out background information that leads to ac-
quisition of vital system parameters or valuable addi-
tional information should be kept minimum. This in-
cludes system overview statements that are open to pub-
lic, such as those in system’s home pages, proceedings
and meeting handouts. Some system is required to dis-
close its internals to some extent by its nature. The in-
formation disclosed should still be examined carefully
even if this is the case.

Throttle the Information

There seem to be some standard remediation tech-
niques that are being used to provide privacy in data
mining that could be applied here. It would be helpful to
study the privacy of database queries and relate it to the
problem presented in this paper.

Introducing Explicit Noise

Because of the stealthiness requirement, most mark-
ing activities would try to exploit small changes in feed-
backs. Adding small noise to captured events would dis-
turb capturing the small changes. The noise can be arti-
ficially generated, but authors believe that this is some-
thing we should not do. One possible way is to intro-
duce explicit variance into level sensitivity into sensors.
For example, sensors can be divided into two groups,
in which one group operates at full sensitivity, and an-
other group operates at a reduced sensitivity, generating
low level noise like events. Theoretically speaking, this
method can be understood as introducing another dimen-
sion that markings have to consider. In this sense, lev-
els of sensitivity should be different across all sensors,
rather than limiting them to only two levels.

The similar effect can be introduced by inter-monitor
collaboration, in which noise is generated from moni-
tor results from other monitor systems, using them as

USENIX Association222

sources for legitimate noise.

Disturbing Mark-Examine-Update Cycle
Another obvious way is to disturb the mark-examine-

update cycle in figure 5 so that list of addresses will not
get refined, or at least slowing down the cycle. One way
to implement this strategy is to incorporate explicit sen-
sor mobility.

Things to consider here are:

• Degree of mobility required to disturb the cycle
must be studied. Assuming that marking activi-
ties do not use address bit scrambling (for stealth-
iness purposes), it is obvious that changing ad-
dresses within a limited small address space does
little harm to the cycle, because the cycle only have
to discard the last part of its activity. Conversely,
moving among much larger blocks would invali-
date the marking result at its early stage, impacting
all results thereafter.

• Current threat monitors that use different set of al-
most identical sensors and almost identical post-
processing provide different reports. Our guess is
that with the number of sensors these systems are
using, location of sensors affects the monitor re-
sult quite a bit. So, degree of how sensor mobil-
ity affects monitor results must be studied, together
with further investigation for reasoning of multiple
threat monitors giving different results. A study
using variations in sensor aperture and placement
[18] gives answers to some of these questions.

Intentionally discarding part of captured events in ran-
dom or other fashion also disturbs the mark-examine-
update cycle. From the view point of consistency of
monitor results, this method is better than explicit mo-
bility. However, it must be noted that discarding events
will deteriorate the effective sensitivity of the monitor.

Marking Detection
Another obvious and powerful, but hard to implement

way is to detect marking activities and discard associated
capture events. This is extremely difficult, because well
designed marking is expected to give least correlations
among markers and thus nearly indistinguishable from
real background activities.

However, there is a fundamental difference between
marking activities and real background activities; events
generated by marking activities are basically local and
transient by nature. It may be possible to design a mark-
ing activity that implicitly covers multiple addresses and
that persist over time, but only at the sacrifice of mark-
ing speed. We are now looking at several ways to handle
transient events. Statistical approach may work in some
cases, especially for those activities that introduce strong
statistical anomalies, and we have already gathered some

positive result from the statistical filtering approach.
Correlations among different monitors may be used

to detect marking activities, but again, difference among
feedbacks from different monitors must be studied in
depth first. We are also not certain if this method would
be capable of detecting small transient changes. In any
case, we believe that studies on advanced IDS would
provide another good starting point.

Sensor Scale and Placement
Consider an imaginary case in which 216 sensors are

placed uniformly over the /16 blocks (one sensor per /16
block) for example. This arrangement forces address-
encoded-port marking to be applied sequentially until
half of sensors are detected. Although the marking still
derives complete sensor addresses at constant rate during
this period, the arrangement effectively slows down the
most efficient marking method. Increasing number of
sensors that are carefully placed provide a certain level
of protection, and worth studying its property.

The carefully planned distributed sensor placement
may also benefit the marking detection efforts, by reveal-
ing patterns of the transient events that sweeps across
address blocks.

Small Cautions
In section 4.5, we have pointed out several additional

methods to gather useful information. Most of these
methods can be disabled by paying small attentions.

• Give FQDNs to sensors deployed in intranets to
prevent FQDN-based filtering. Names that re-
sembles common functionality, or names that dis-
solves into other hosts in the same subnet are better
choices.

• For ICMP-echo-responding sensors, consider an-
swering to some other packets they capture, to pre-
vent them from detected as silent host that only an-
swers to ICMP echo request.

• Consider how sensors respond to various ICMP re-
quests to prevent ICMP-based fingerprinting and
topology inferencing.

• For intranet-placed sensors, introduce some facility
(hardware and/or software) such as TTL mangling,
to make sensors look like they are deep inside a in-
tranet to avoid topology inferencing based filtering.

7 Conclusion
Passive Internet threat monitors are an important tool for
obtaining a macroscopic view of malicious activity on
the Internet. In this paper, we showed that they are sub-
ject to detection attacks that can uncover the location of
their sensors. We believe that we have found a new class
of Internet threat, because it does not post a danger to the
host systems themselves, but rather a danger to a meta-
system that is intended to keep the host systems safe.

14th USENIX Security SymposiumUSENIX Association 223

14th USENIX Security Symposium

Although we believe that we have not fully defined
the threat, we presented marking algorithms that work
in practice. They were derived more or less empirically,
so it is possible that there may be more efficient marking
algorithms that we did not study. For example, methods
for detecting remote capture devices has been studied in
the context of remote sniffer detection, but none of these
studies have correlated plain sniffers with threat moni-
tors, and there may be techniques that can be applied in
our context. To find insights that we may have missed, a
more mathematical approach to the analysis of feedback
properties may be necessary.

We presented some methods to protect against our
markings algorithms, but some of these solutions are
hard to implement, and others still need to be studied
more carefully for their feasibility and effectiveness and
most importantly, for their vulnerabilities. The goal of
this paper is to bring attention of this problem to the re-
search community and leverage people with various ex-
pertise, not limited to system and network security, to
protect of this important technology. Continuing efforts
to better understand and protect passive threat monitors
are essential for the safety of the Internet.

Acknowledgments
We would like to present our sincere gratitude to multi-
ple parties who admitted our marking activities on their
networks and monitor systems during the early stage of
this research. We must confess, that marking against
them sometimes went well beyond the level of the back
ground noise, and sometimes took a form of unexpect-
edly formatted packets. We would also like to acknowl-
edge members of the WIDE Project, members of the
Special Interest Group on Internet threat monitors (SIG-
MON) and the anonymous reviewers for thoughtful dis-
cussions and valuable comments. We must also note
that the final version of this paper could not have been
prepared without the sincere help of our paper shepherd
Niels Provos.

References
[1] CAIDA Telescope Analysis. http:

//www.caida.org/analysis/security/
telescope/.

[2] Distributed intrusion detection system. http://www.
dshield.org/.

[3] David Moore, Geoffrey M. Voelker, and Stefan Savage.
Inferring Internet Denial-of-Service Activity. In 10th
USENIX Security Symposium, August 2001.

[4] SANS Internet Storm Center (ISC). http://isc.
sans.org/.

[5] The IUCC/IDC Internet Telescope. http://noc.
ilan.net.il/research/telescope/.

[6] About the Internet Storm Center (ISC). http://isc.
sans.org/about.php.

[7] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern
Paxson, and Larry Peterson. Characteristics of Internet
Background Radiation. In Proceedings of the Internet
Measurement Conference (IMC) 2004, October 2004.

[8] Dug Song, Rob Malan, and Robert Stone. A Snapshot of
Global Internet Worm Activity. Technical report, Arbor
Networks Inc., 2001.

[9] SWITCH Internet Background Noise (IBN). http://
www.switch.ch/security/services/IBN/.

[10] @police Internet Activities Monitored. http://www.
cyberpolice.go.jp/english/obs_e.html.

[11] JPCERT/CC Internet Scan Data Acquisition System
(ISDAS). http://www.jpcert.or.jp/isdas/
index-en.html.

[12] Masaki Ishiguro. Internet Threat Detection System Us-
ing Bayesian Estimation. In Proceedings of The 16th An-
nual Computer Security Incident Handling Conference,
June 2004.

[13] Internet Motion Sensor. http://ims.eecs.
umich.edu/.

[14] Michael Bailey, Eval Cooke, Farnam Jahanian, Jose
Nazario, and David Watson. Internet Motion Sensor: A
Distributed Blackhole Monitoring System. In Proceed-
ings of The 12th Anual Network and Distributed System
Security Symposium. ISOC, February 2005.

[15] PlanetLab. http://www.planet-lab.org/.

[16] The Team Cymru Darknet Project. http://www.
cymru.com/Darknet/.

[17] libnet. http://libnet.sourceforge.net/.

[18] Evan Cooke, Michael Bailey, Zhuoqing Morley Mao,
David Watson, Farnam Jahanian, and Danny McPher-
son. Toward understanding distributed blackhole place-
ment. In Proceedings of the 2004 ACM workshop on
Rapid malcode, October 2004.

USENIX Association224

