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1 Introduction

The well-known technique of blocking or lifting has been used in systems and control
[5], [2]. This method has mostly been exploited to transform linear discrete-time
periodic systems to linear time-invariant systems so that the well-developed tools
for linear time-invariant systems can be extended for design and analysis of linear
discrete-time periodic systems [3], [1] and [2] . For example, the authors in [3]
have extended the notions of poles and zeros of linear time-invariant systems to
linear periodic systems. Some necessary and sufficient conditions for structural
properties such as observability and reachability have been studied in [7]. The
blocking technique has been applied to linear time-invariant systems as well, see
e.g. [5], [10] and the references therein. For instance, in [10], linear time-invariant
systems have been blocked for the purpose of designing periodic controllers while
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the authors in [5] have performed the blocking technique on linear time-invariant
systems for the purpose of dealing with multirate sampled-data systems.

In this paper, we examine the zero properties of the blocked systems resulting
from blocking of linear time-invariant systems. This study is motivated from both
application and theoretical perspectives. As mentioned above, the blocking of linear
time-invariant systems is useful in the multirate sampled-data systems controller
design as shown by [5] and [10]. Furthermore, from a theoretical perspective, the
pole properties of the blocked systems are well understood [2] and [10], whereas less
little known about the zero properties of the blocked systems. In our previous works
[6] and [12], we have introduced some important results about the zero properties
of blocked systems. For instance, in [6] matrix fraction descriptions (MFDs) have
been used to establish a relation between the zero properties of blocked systems and
the zero properties of their corresponding unblocked systems. Moreover, in [12], the
time domain approach has been exploited to explore the zero properties of blocked
systems. In both [6] and [12] only tall blocked systems i.e. blocked systems with
more whose outputs than inputs, have been considered. Furthermore, in [6] and [12]
only blocked systems for which their associated transfer functions have full-column
normal rank, have been studied.

In this paper, we generalize the results of [6] and [12]. The zero properties
of a general blocked system are studied. Here, there exists no assumption such
as tallness or fatness on the structure of blocked systems. Furthermore, we relax
the assumption put by [6] and [12] on the normal rank of the transfer function
associated with the blocked system. In the current paper, the normal rank of the
transfer function associated with the blocked system can either be equal to the
minimum of number of its rows and columns or be less than that minimum value.

2 Blocked Systems and Unblocked Systems

2.1 State space approach

The linear time-invariant unblocked system under consideration is described as

xk+1 = Axk +Buk,

yk = Cxk +Duk,
(1)

where k ∈ Z, xk ∈ Rn, yk ∈ Rp and uk ∈ Rm. Also, the transfer function associated
with system (1) is defined as

W (z) = D + C(zI −A)−1B, (2)

where z is a forward shift operator i.e. zuk = uk+1 and zyk = yk+1, and also
represents a complex number.

Now we define

Uk =
[
uT (k) uT (k + 1) . . . uT (k +N − 1)

]T
,

Yk =
[
yT (k) yT (k + 1) . . . yT (k +N − 1)

]T
, (3)
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where k = 0, N, 2N, . . ..
Then the blocked system is given by [3]

xk+N = Abxk +BbUk,

Yk = Cbxk +DbUk,
(4)

where

Ab = AN , Bb =
[
AN−1B AN−2B . . . B

]
,

Cb =
[
CT ATCT . . . A(N−1)TCT

]T
,

Db =




D 0 . . . 0
CB D . . . 0
...

...
. . .

...
CAN−2B CAN−3B . . . D


 . (5)

An operator Z is defined such that Zxk = xk+N , ZUk = Uk+N , ZYk = Yk+N .
The symbol Z is also used to denote a complex value. Then the transfer function
of (4) is denoted by

V (Z) = Db + Cb(ZI −Ab)
−1Bb. (6)

Furthermore, it is worthwhile remarking that the unblocked system (1) is a
minimal realization of W (z) if and only if the blocked system (4) is a minimal
realization of V (Z) [6].

2.2 Transfer function description

In the previous subsection the state space representation for both unblocked and
blocked systems was recalled [10], [4] and [6]. The aim of this subsection is to recall
a relation between V (Z) and W (z). The well-known result of [2], [10] is summarized
as the theorem below.

Theorem 1. Consider the unblocked system (1) with transfer function W (z) and
the blocked system (4) with transfer function V (Z). Then

V (Z) =























V1(Z) Z−1VN (Z) Z−1VN−1(Z) · · · Z−1V2(Z)

V2(Z) V1(Z) Z−1VN (Z)
.

.

. Z−1V3(Z)

V3(Z) V2(Z) V1(Z)
.

.

. Z−1V4(Z)
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

VN (Z) VN−1(Z) VN−2(Z) · · · V1(Z)























(7)

and

W (z) = V1(z
N ) + z−1V2(z

N) + · · ·+ z−(N−1)VN (zN).

(8)
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where V1(Z) = D + C(ZI − AN )−1AN−1B and Vl(Z) = CAl−2B + C(ZI −
AN )−1AN+l−2B, l = 2, · · · , N .

Another important result regarding the relation between V (Z) and W (z) is
recorded in [4], [6]. Assume that the transfer function of the unblocked system (1)
is denoted by a left coprime matrix fraction description (MFD) as

W (z) = P−1(z)Q(z), (9)

where

P (z) = Pµ + Pµ−1z + · · ·+ P0z
µ, Q(z) = Qµ +Qµ−1z + · · ·+Q0z

µ. (10)

where µ is defined so that P0 and Q0 are not both zero. By coprimeness, Pµ and
Qµ are not both zero. Then it can be easily shown that associated with the blocked
system there exists a transfer function with a left matrix fraction description as
below

Yk =V (Z)Uk, V (Z) = A−1(Z)B(Z), (11)

where

A(Z) = A0 +A1Z + · · ·+AαZ
α +Aα+1Z

α+1,

B(Z) = B0 + B1Z + · · ·+ BαZ
α + Bα+1Z

α+1, (12)

where α is the greatest integer less than µ/N and Ai, Bi i ∈ {0, 1, . . . , α+ 1}
are constant coefficient matrices of size N(p×m) obtained by a certain procedure
from the coefficient matrices Pi, Qi, i ∈ {0, 1, . . . , µ}, respectively [6].

In the above, we related V (Z) and W (z). However, by using the above calcu-
lation relating the Bi to Ql, we are able to relate B(Z) and Q(z) as well.

Lemma 2. For a nonzero complex number Z0, let zi, i = 1, 2, · · · , N be N distinct
complex numbers such that zNi = Z0, i = 1, 2, · · · , N .

Υ =











Im Im · · · Im
z1Im z2Im · · · zN Im

.

.

.

.

.

.

.

.

.

.

.

.

z
N−1

1
Im z

N−1

2
Im · · · z

N−1

N
Im











,Λ =











Q(z1) Q(z2) · · · Q(zN )
z1Q(z1) z2Q(z2) · · · zNQ(zN )

.

.

.

.

.

.

.

.

.

.

.

.

z
N−1

1
Q(z1) z

N−1

2
Q(z2) · · · z

N−1

N
Q(zN )











.

(13)

Then

B(Z0)Υ = Λ. (14)

Proof. The proof is omitted due to page limitation.

The results obtained in this section help us to analyze the zero properties of
the blocked system (4) in the following section.
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3 Zero Properties of Blocked Systems

In this section, the definitions for zeros of the systems (4) and (1) are first reviewed.
Then, the zero properties of blocked systems are studied. Since the analysis of the
zero properties for blocked systems is quite complicated, we consider three cases
separately, that is, 1) finite nonzero system zeros; 2) system zeros at infinity; and
3) system zeros at zero. Finally, the last subsection covers results for the zero
properties of the system (4) with a generic choice of matrices A,B, etc.

3.1 Definition

In order to study the zero properties of the system (4), we need to provide a proper
definition for zeros. Here, we first recall the following definition for zeros of the
unblocked system (1) from [9] and [8] (page 178).

Definition 3. The finite zeros of the transfer function W (z) = C(zI −A)−1B+D
with minimal realization {A,B,C,D} are defined to be the finite values of z for
which the rank of the following system matrix falls below its normal rank

M(z) =

[
zI −A −B

C D

]
. (15)

Further, W (z) is said to have an infinite zero when n + rank(D) is less than the
normal rank of M(z), or equivalently the rank of D is less than the normal rank of
W (z).

Similar to the above definition, we state the following definition for zeros of
the blocked system (4).

Definition 4. The finite zeros of the transfer function V (Z) = Cb(ZI−Ab)
−1Bb+

Db with minimal realization {Ab, Bb, Cb, Db} are defined to be the finite values of Z
for which the rank of the following system matrix falls below its normal rank

Mb(Z) =

[
ZI −Ab −Bb

Cb Db

]
. (16)

Further, V (Z) is said to have an infinite zero when n + rank(Db) is less than the
normal rank of Mb(Z), or equivalently the rank of Db is less than the normal rank
of V (Z).

3.2 Blocked systems and unblocked systems-the normal rank

As shown in the last subsection, the normal rank plays an important rule in char-
acterization of zeros. Thus, in this subsection an important result regarding the
relation between the normal rank of V (Z) and the normal rank of W (z) is given.

Theorem 5. V (Z) has normal rank Nr if and only if the normal rank of W (z) is
r, r ≤ min{m, p}.
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Proof. The proof is omitted due to page limitation.

The above theorem relates the normal rank of associated unblocked and blocked
transfer functions. We can also relate the normal rank of associated system matrices
to the respective transfer functions and to each other.

Lemma 6. The normal rank of M(z) is n + r if and only if the normal rank of
W (z) is r, r ≤ min{m, p}.

Proof. The proof is omitted due to page limitation.

Corollary 7. The normal rank of M(z) is n+ r if and only if the normal rank of
Mb(Z) is Nr + n, r ≤ min{m, p}.

Proof. The proof is immediate using the results of Lemma 6 and Theorem 5.

3.3 Blocked systems and unblocked systems-zeros

In the last subsection the relation between the normal rank of V (Z) and the normal
rank of W (z) was denoted. In this subsection, the relation between zeros of blocked
systems and those of their corresponding unblocked systems is investigated. As
stated earlier, due to the complexity of analysis, we consider three cases separately,
that is, 1) finite nonzero system zeros; 2) system zeros at infinity; and 3) system
zeros at zero.

Theorem 8. Consider the unblocked system (1) with transfer function W (z) de-
fined by (2) and the blocked system (4) with transfer function V (Z) denoted by (6).
Suppose that the quadruple {A,B,C,D} is minimal and W (z) has normal rank r,
r ≤ min{m, p}. Then V (Z) has a finite zero at Z = Z0 = zN0 6= 0 if W (z) has a
finite zero at z0 6= 0. Conversely, suppose V (Z) has a finite zero at Z = Z0 6= 0,
let z0 be any N−th root of Z0. Then W (z) has a finite zero at one or more of

z = z0 6= 0 or z = ωz0 6= 0 . . . z = ωN−1z0 6= 0, where ω = exp(
2πj

N
).

Proof. The proof is omitted due to page limitation.

The above theorem treat the zero properties of the blocked system for choice
of finite nonzero zeros; it is natural to ask what happens to zeros at infinity, and
the following theorem deals with this case.

Theorem 9. Consider the unblocked system (1) with transfer function W (z) de-
fined by (2) and the blocked system (4) with transfer function V (Z) denoted by (6).
Suppose that the quadruple {A,B,C,D} is minimal and W (z) has normal rank r,
r ≤ min{m, p}. Then W (z) has a zero at z = ∞ if and only if V (Z) has a zero at
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Z = ∞.

Proof. The proof is omitted due to page limitation.

So far the zero properties of blocked system (4) have been studied for choices
of finite nonzero zeros and infinite zeros. In order to cover all possible choices in
the remainder of this subsection, we examine the zero properties of blocked systems
for zeros at the origin. In order to deal with this case we first need to review the
following result from [11], obtained by specializing Lemma 1 of [11] to the case
where the unblocked system is time-invariant.

Lemma 10. [11]

Let Ãb = IN
⊗

A, B̃b = IN
⊗

B, C̃b = IN
⊗

C and D̃b = IN
⊗

D. Further-

more, define EZ ,




0 1 0

0
. . .

...
. . . 1

Z 0 0



, EZ ∈ C

n×n and ẼZ = EZ

⊗
IN . Then

there exist invertible matrices Tl and Tr and matrices X and Y such that for all
Z ∈ C




In(N−1) 0 0

0 ZI −Ab −Bb

0 Cb Db



 =

[
Tl 0
X I

] [
ẼZ − Ãb −B̃b

C̃b D̃b

][
Tr Y
0 I

]
.

(17)

Theorem 11. Consider the unblocked system (1) with transfer function W (z)
defined by (2) and the blocked system (4) with transfer function V (Z) denoted by
(6). Suppose that the quadruple {A,B,C,D} is minimal and W (z) has normal rank
r, r ≤ min{m, p}. Then W (z) has a zero at z = 0 if and only if V (Z) has a zero
at Z = 0.

Proof. The proof is omitted due to page limitation.

4 Conclusions

The zero properties of the blocked system obtained from blocking of linear discrete
time-invariant systems were studied in this paper. The zero properties of blocked
systems were investigated for all possible choices of zeros. In particular, it was
shown that the blocked system is zero-free if and only if the related unblocked
system is zero-free.
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