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Abstract

This paper studies the zero properties of blocked linear systems resulting from blocking of linear time-invariant
systems. The main idea is to establish a relation between the zero properties of blocked systems and the zero properties
of their corresponding unblocked systems. In particular, it is shown that the blocked system has a zero if and only
if the associated unblocked system has a zero. Furthermore, the zero properties of blocked systems under a generic
setting i.e. a setting which parameter matrices A, B,C,D assume generic values, are examined. It is demonestrated that
nonsquare blocked systems i.e. blocked systems with number of outputs unequal to the number of inputs, generically
have no zeros; however, square blocked systems i.e. blocked systems with equal number of inputs and outputs,
generically have only finite zeros and these finite zeros have geometric multiplicity one.

1. Introduction

The well-known technique of blocking or lifting has
been developed in systems and control [1] and signal
processing [2]. In the systems and control literature, this
method has mostly been exploited to transform linear
discrete-time periodic systems to linear time-invariant
systems so that the well-developed tools for linear time-
invariant systems can be extended for design and analy-
sis of linear discrete-time periodic systems [3], [4], [5]
and [6]. For example, the authors in [3] and [4] have
extended the notions of poles and zeros of linear time-
invariant systems to linear periodic systems. Some nec-
essary and sufficient conditions for structural properties
such as observability and reachability have been studied
in [7] and [8]. Moreover, the realization problem has
been researched in [8] and the related references listed
therein.

The blocking technique has been applied to linear
time-invariant systems as well, see e.g. [1], [9] and
the references therein. For instance, in [9], linear time-
invariant systems have been blocked for the purpose of
designing periodic controllers while the authors in [1]
have performed the blocking technique on linear time-
invariant systems for the purpose of dealing with multi-
rate sampled-data systems.

In this paper, we examine the zero properties of the
blocked systems resulting from blocking of linear time-
invariant systems. This study is motivated from both
application and theoretical perspectives. As mentioned
above, the blocking of linear time-invariant systems
is useful in the multirate sampled-data systems con-
troller design as shown by [1] and [9]. Furthermore,
from a theoretical perspective, the pole properties of
the blocked systems are well understood [6] and [9],
whereas much less known about the zero properties of
the blocked systems. Reference [6] studies the zero
properties of blocked systems obtained from blocking
of linear periodic systems. The results show that the
blocked system has a finite zero if the related linear
time-invariant unblocked system has a finite zero, which
is a form of sufficiency result. However, this reference
does not provide a necessary condition for the blocked
system to have a finite zero; also, zeros at infinity are
not considered. These gaps have been covered in our
works [10] and [11] where we have introduced some
additional results about the zero properties of blocked
systems. For instance, in [10] matrix fraction descrip-
tions (MFDs) have been used to establish a relation be-
tween the zero properties of blocked systems and the
zero properties of their corresponding unblocked sys-
tems. Moreover, in [11], the time domain approach has
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been exploited to explore the zero properties of blocked
systems. Both [10] and [11] only have considered tall
blocked systems i.e. blocked systems with more out-
puts than inputs, and they show that tall blocked sys-
tems have a zero if and only if the corresponding un-
blocked systems have a zero. Furthermore, in [10] and
[11] only blocked systems for which their associated
transfer functions have full-column normal rank, have
been explored.

In this paper, we generalize the results of [10] and
[11]. The zero properties of a general blocked system
are studied. Here, there exists no assumption such as
tallness or fatness on the structure of blocked systems.
Furthermore, we relax the assumption used in [10] and
[11] on the normal rank of the transfer function asso-
ciated with the blocked system. In both aforementioned
references i.e. [10] and [11], the normal rank of the
transfer function is assumed to be equal to its number
of columns; however, in the current paper, we put no
assumption on the normal rank of the transfer function
associated with the blocked system. Moreover, we ex-
plore the zero properties of a general blocked system for
all possible choices of zeros i.e. finite nonzero system
zeros, system zeros at zero and system zeros at infin-
ity. It is clearly shown that for all possible choices of
zeros, the blocked system has a zero if and only if its
corresponding unblocked system has a zero.

In addition, the zero properties of blocked systems
are examined for a generic choice of matrices A, B,C
and D in a minimal state space representation corre-
sponding to the nonzero, nonconstant transfer function
D + C(zI − A)−1B. It is important to mention that the
zero properties of unblocked linear time-invariant sys-
tems under a genericity assumption have been studied
in the literature (see for e.g. [12], [13], [14], [15], [16]
and [17], [18]). For instance, [12] states that the ex-
istence of a nontrivial great common divisor among a
set of polynomials is a nongeneric property. Further-
more, the zero properties of unblocked systems have
been also examined under a genericity assumption in
[14], [16]. It is known that nonsquare unblocked sys-
tems i.e. unblocked systems with number of outputs
unequal to the number of inputs, are generically zero-
free [16], [13] and [14] page 448. [16] has exploited the
state space approach to show that tall unblocked sys-
tems i.e. unblocked systems with more number of out-
puts than inputs, are generically zero-free. However,
square unblocked systems i.e. unblocked systems with
equal number of inputs and outputs, generically have
only finite zeros [15] and [16]. These results cannot im-
mediately be applied to the blocked case, because pa-
rameter matrices of blocked systems are structured and

their entries cannot then be independently assigned.
In this paper, we particularly show that nonsquare

blocked systems i.e. blocked systems with number of
outputs unequal to the number of inputs, when parame-
ter matrices A, B,C and D assume generic values, have
no zeros. However, when one is considering generic
square blocked systems i.e. blocked systems with equal
number of inputs and outputs and the matrices A, B,C
and D take generic values, it is shown that square
blocked systems have no infinite zeros but they have fi-
nite zeros and the kernel of the system matrix associated
with any zero is one dimensional.

The structure of this paper is as follows. First, in Sec-
tion 2 we provide the problem formulation. Then a rela-
tion between the transfer function of blocked systems
and the transfer function of the associated unblocked
systems is recalled. Based on the relation obtained in
Section 2, Section 3 relates the zeros of blocked systems
to the zeros of their corresponding unblocked systems.
Section 3 also studies the zero properties of blocked sys-
tems under the genericity assumption. Finally, Section
4 provides the concluding remarks.

2. Blocked Systems and Unblocked Systems-The
State space representation and The Transfer
Function

In this section, first a formulation for the problem
under study is given. Then a relation between the un-
blocked system transfer function and the blocked sys-
tem transfer function is established. The obtained rela-
tion is then used in the next section for the analysis of
the blocked system zeros.

2.1. Unblocked systems and blocked systems-the state
space

The linear time-invariant unblocked system under
consideration is described as

xk+1 = Axk + Buk,

yk = Cxk + Duk,
(1)

where k ∈ Z, xk ∈ Rn, yk ∈ Rp and uk ∈ Rm. Also, the
transfer function associated with system (1) is defined
as

W(z) = D + C(zI − A)−1B, (2)

where z is a forward shift operator i.e. zuk = uk+1 and
zyk = yk+1, and also represents a complex number.
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Now we define for a fixed but arbitrary positive num-
ber N > 1

Uk =
[

uT
k uT

k+1 . . . uT
k+N−1

]T
,

Yk =
[

yT
k yT

k+1 . . . yT
k+N−1

]T
,

(3)

where k = 0,N, 2N, . . ..
Then the blocked system is given by [3]

xk+N = Abxk + BbUk,

Yk = Cbxk + DbUk,
(4)

where,

Ab = AN , Bb =
[

AN−1B AN−2B . . . B
]
,

Cb =
[

CT AT CT . . . A(N−1)T
CT
]T
,

Db =


D 0 . . . 0

CB D . . . 0
...

...
. . .

...
CAN−2B CAN−3B . . . D

 .
(5)

An operator Z is defined such that Zxk = xk+N , ZUk =

Uk+N , ZYk = Yk+N . The symbol Z is also used to denote
a complex value. Then the transfer function of (4) is
denoted by

V(Z) = Db + Cb(ZI − Ab)−1Bb. (6)

Furthermore, it is worthwhile remarking that the un-
blocked system (1) is a minimal realization of W(z) if
and only if the blocked system (4) is a minimal realiza-
tion of V(Z) [6].

2.2. Unblocked systems and blocked systems-the trans-
fer function

In the previous subsection the state space represen-
tation for both unblocked and blocked systems was re-
called [9], [19] and [10]. The aim of this subsection is
to recall a relation between V(Z) and W(z). The well-
known result of [6], [9] is summarized as the theorem
below.

Theorem 2.1. Consider the unblocked system (1) with
transfer function W(z) and the blocked system (4) with
transfer function V(Z). Then

V(Z) =



V1(Z) Z−1VN (Z) Z−1VN−1(Z) · · · Z−1V2(Z)
V2(Z) V1(Z) Z−1VN (Z) · · · Z−1V3(Z)
V3(Z) V2(Z) V1(Z) · · · Z−1V4(Z)
.
.
.

.

.

.
.
.
.

. . .
.
.
.

VN (Z) VN−1(Z) VN−2(Z) · · · V1(Z)


(7)

and

W(z) = V1(zN) + z−1V2(zN) + · · · + z−(N−1)VN(zN), (8)

where V1(Z) = D + C(ZI − AN)−1AN−1B and Vl(Z) =

CAl−2B + C(ZI − AN)−1AN+l−2B, l = 2, · · · ,N.

Another important result regarding the relation be-
tween V(Z) and W(z) is recorded in [19], [10]. Assume
that the transfer function of the unblocked system (1) is
represented by a polynomial left coprime matrix frac-
tion description (MFD) as

W(z) = Q−1(z)P(z), (9)

where
P(z) = Pµ + Pµ−1z + · · · + P0zµ,

Q(z) = Qµ + Qµ−1z + · · · + Q0zµ.
(10)

In the above equation, µ is defined such that P0 and Q0
are not both zero. By coprimeness, Pµ and Qµ are not
both zero. Then it can be easily shown that associated
with the blocked system there exists a transfer function
with a polynomial left matrix fraction description as be-
low

Yk = V(Z)Uk, V(Z) = A−1(Z)B(Z), (11)

where

A(Z) = A0 +A1Z + · · · +AαZα +Aα+1Zα+1,

B(Z) = B0 + B1Z + · · · + BαZα + Bα+1Zα+1,
(12)

where α is the greatest integer less than µ/N andAi, Bi,
i ∈ {0, 1, . . . , α + 1} are constant coefficient matrices of
size N(p × m) obtained by a certain procedure from the
coefficient matrices Pi,Qi, i ∈ {0, 1, . . . , µ}, respectively
[10].

In the above, we related V(Z) and W(z). However,
by using the above calculation relating the Bi to Pl, we
are able to relate B(Z) and P(z) as well. The following
lemma is adapted from Lemma 2 in [10] and relates the
B(Z) and P(z).

Lemma 2.2. For a nonzero complex number Z0, let
zi, i = 1, 2, . . . ,N, be N distinct complex numbers such
that zN

i = Z0, i = 1, 2, . . . ,N

Υ =


Im Im · · · Im

z1Im z2Im · · · zN Im
...

. . .
. . .

...
zN−1

1 Im zN−1
2 Im · · · zN−1

N Im

 ,

Λ =


P(z1) P(z2) · · · P(zN)

z1P(z1) z2P(z2) · · · zN P(zN)
...

. . .
. . .

...
zN−1

1 P(z1) zN−1
2 P(z2) · · · zN−1

N P(zN)

 .
(13)
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Then
B(Z0)Υ = Λ. (14)

Proof. The proof can be done in a similar way as the
proof of Lemma 2 in [10].

The results obtained in this section help us to analyze
the zero properties of the blocked system (4) in the fol-
lowing section.

3. Zero Properties of Blocked Systems

In this section, the definitions for zeros of the systems
(4) and (1) are first reviewed. Then, the zero properties
of blocked systems are studied. Since the analysis of
the zero properties for blocked systems is quite com-
plicated, we consider three cases separately, that is, 1)
finite nonzero system zeros; 2) system zeros at infinity;
and 3) system zeros at zero. Finally, the last subsection
covers results for the zero properties of the system (4)
with a generic choice of matrices A, B, etc.

3.1. Definition

In order to study the zero properties of the system (4),
we need to provide a precise definition for zeros. Here,
we first recall the following definition for zeros of the
unblocked system (1) from [14] and [20] (page 178).

Definition 3.1. The finite zeros of the transfer function
W(z) = C(zI − A)−1B + D with minimal realization
{A, B,C,D} are defined to be the finite values of z for
which the rank of the following system matrix falls be-
low its normal rank:

M(z) =

[
zI − A −B

C D

]
. (15)

Further, W(z) is said to have an infinite zero when
n + rank(D) is less than the normal rank of M(z), or
equivalently the rank of D is less than the normal rank
of W(z).

Similar to the above definition, we state the following
definition for zeros of the blocked system (4).

Definition 3.2. The finite zeros of the transfer function
V(Z) = Cb(ZI − Ab)−1Bb + Db with minimal realization
{Ab, Bb,Cb,Db} are defined to be the finite values of Z
for which the rank of the following system matrix falls
below its normal rank:

Mb(Z) =

[
ZI − Ab −Bb

Cb Db

]
. (16)

Further, V(Z) is said to have an infinite zero when
n + rank(Db) is less than the normal rank of Mb(Z), or
equivalently the rank of Db is less than the normal rank
of V(Z).

3.2. Blocked systems and unblocked systems-the nor-
mal rank

As shown in the last subsection, the normal rank
plays an important role in characterization of zeros.
Thus, in this subsection an important result regarding
the relation between the normal rank of V(Z) and the
normal rank of W(z) is given. A restrictive version of
the following result is initially stated as Theorem 3 in
[10] only for linear time-invariant systems with p ≥ m
and full-column normal rank. Here we extend this re-
sults to linear time-invariant systems with an arbitrary
normal rank.

Theorem 3.3. Consider the unblocked transfer function
W(z) given by (2) and the blocked transfer function V(Z)
given (6). Then the following equality relates their nor-
mal rank:

normal rank(V(Z)) = N × normal rank(W(z))

Proof. To prove the conclusion of theorem, we modify
the proof of Theorem 3 in [10]. First let r and S denote
the normal rank of W(z) and the normal rank of V(Z),
respectively.

There exists a complex number Z0 , 0 and N dis-
tinct complex numbers zi, i = 1, 2, . . . ,N such that
det(A(Z0)) , 0, rank(B(Z0)) = S , zN

i = Z0, i =

1, 2, . . . ,N and rank(P(zi)) = r, i = 1, 2, . . . ,N. De-
fine Υ and Λ as in (13), then it follows from Lemma 2.2
that B(Z0)Υ = Λ. Noting that zi , zl for i , l, we see
that Υ is a nonsingular matrix because it is a Kronecker
product of a nonsingular VanderMonde matrix with the
identity matrix. Furthermore, Λ can be written as

Λ =


Ip Ip · · · Ip

z1Ip z2Ip · · · zN Ip
...

. . .
. . .

...
zN−1

1 Ip zN−1
2 Ip · · · zN−1

N Ip


P(z1) 0 · · · 0

0 P(z2) · · · 0
...

. . .
. . .

...
0 0 · · · P(zN)


=Υ̃diag{P(z1), P(z2), . . . , P(zN)}. (17)
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Observe that Υ̃ is a nonsingular matrix. Hence, Λ has
rank Nr which implies that rank(B(Z0)) = rank(Λ) =

Nr. This together with the fact that det(A(Z0)) , 0
implies that rank(V(Z0)) = rank(A−1(Z0)B(Z0)) = Nr.
Since the rank of V(Z) for a particular choice of Z is
equal to Nr; thus, the normal rank of V(Z) ≥ Nr i.e.
S ≥ Nr.

Conversely, there exists a complex number Z0 , 0
such that det(A(Z0)) , 0 and B(Z0) has rank S . Now
let zi, i = 1, 2, . . . ,N be complex numbers such that
zN

i = Z0, i = 1, 2, . . . ,N and rank(P(zi)) = rank(P(zl)),
zi , zl. Define Υ and Λ as in (13), then it follows
from Lemma 2.2 that B(Z0)Υ = Λ. Noting that zi , zl

for i , l so, Υ is nonsingular. Hence, Λ has rank
S . Hence, it follows from the definition of Λ that all
P(zi), i ∈ {1, 2, . . . ,N} have the same rank equal to S/N,
(which must therefore be an integer). Since for partic-
ular zi, we have P(zi) and thus W(zi) of rank S/N there
holds normal rank W(z) ≥ S/N or Nr ≥ S .

Now, by using the both inequalities i.e. Nr ≥ S and
S ≥ Nr, we can conclude that S = Nr.

The above theorem relates the normal rank of associ-
ated unblocked and blocked transfer functions. We can
also relate the normal rank of associated system matri-
ces to the respective transfer functions and to each other.

Lemma 3.4. Consider the unblocked transfer function
W(z) given by (2) and its corresponding system matrix
denoted by M(z). Then the following equality holds:

normal rank(M(z)) = n + normal rank(W(z))

Proof.

M(z) =

[
zI − A −B

C D

]
=

[
I 0

C(zI − A)−1 I

] [
zI − A −B

0 W(z)

]
.

Observe that the normal rank(M(z)) =normal
rank(zI − A)+normal rank(W(z)) = n+normal
rank(W(z)).

Corollary 3.5. The normal rank of M(z) is n + r if and
only if the normal rank of Mb(Z) is n + Nr.

Proof. The proof is immediate using the results of
Lemma 3.4 and Theorem 3.3.

3.3. Blocked systems and unblocked systems-zeros
In the last subsection the relation between the nor-

mal rank of V(Z) and the normal rank of W(z) was ex-
plored. In this subsection, the relation between zeros
of blocked systems and those of their corresponding un-
blocked systems is investigated. As stated earlier, due to
the complexity of analysis, we consider three cases sep-
arately, that is, 1) finite nonzero system zeros; 2) system
zeros at infinity; and 3) system zeros at zero.

A sufficient condition under which the blocked sys-
tem (4) has a finite nonzero zero has been provided in
[6]. Later, in [10] and [11] a necessary and sufficient
condition has been provided where a tall blocked sys-
tem with full-column normal rank has a finite nonzero
zero. Here, we provide the following necessary and suf-
ficient condition for the blocked system (4) to have a fi-
nite nonzero zero without imposing any condition either
on the structure of the blocked system or on the normal
rank of its associated transfer function matrix.

Theorem 3.6. Consider the unblocked system (1) with
transfer function W(z) given by (2) and the blocked sys-
tem (4) with transfer function V(Z) given by (6). Sup-
pose that the quadruple {A, B,C,D} is minimal. Define

ω , exp(
2π j
N

). It follows that

1. If W(z) has a finite zero at z0 , 0 then V(Z) has a
finite zero at Z = Z0 = zN

0 , 0.
2. If V(Z) has a finite zero at Z = Z0 , 0 then, for

any z0 satisfying zN
0 = Z0, W(z) has a finite zero

at one or more of z = z0 , 0 or z = ωz0 , 0 . . .
z = ωN−1z0 , 0.

Proof. We prove the first part of the theorem. Let r
denote the normal rank of W(z). Assume that the un-
blocked system has a zero at z0 which implies that
rank(P(z0)) < r. Now, let zi = ωiz0, i = 1, 2, . . . ,N,

where ω = exp(
2π j
N

), be N distinct complex num-

bers and zN
i = zN

0 = Z0, i = 1, 2, . . . ,N. One
can define Υ and Λ as in (13); then using Lemma
2.2 it is immediate that B(Z0)Υ = Λ. More-
over, with the help of equation (17), we can obtain
B(Z0)Υ = Υ̃diag{P(z1), P(z2), . . . , P(zN)}. Since zi are
chosen to be distinct Υ and Υ̃ are nonsingular matrices
and rank(B(Z0)) = rank(diag{P(z1), P(z2), . . . , P(zN)}).
Since rank(P(zi)) ≤ r, i = 1, 2, . . . ,N − 1, the assump-
tion that rank(P(z0)) < r implies that rank(B(Z0)) < Nr
so, rank(V(Z0)) < Nr. Furthermore, from Theorem 3.3,
it is known that normal rank(V(Z)) = Nr; hence, the
blocked system (4) has a finite zero at Z0 = zN

0 .
We now turn to the part two. Suppose that Z0 is a

zero for the system matrix of (4). Also, note that there
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exist N distinct complex numbers zi, i ∈ {1, 2, . . . ,N}
such that zN

i = Z0, i ∈ {1, 2, . . . ,N}. Hence, accord-
ing to the result of Lemma 2.2, Υ is a nonsingular ma-
trix and rank(B(Z0)) = rank(Λ). Since rank(Λ) is less
than normal rank, one or more of P(zi), i ∈ {1, 2, . . . ,N}
should have less than the normal rank. The latter im-
plies that the system (1) has a finite zero at one or more
of z = z0 , 0 or z = ωz0 , 0 . . . z = ωN−1z0 , 0.

Remark 3.7. It is worthwhile mentioning that the fac-
torization recalled in Remark 1 of [10], can also be used
to prove the statement of the above theorem.

The above theorem treats the zero properties of the
blocked system for choice of finite nonzero zeros; it is
natural to ask what happens to zeros at infinity, and the
following theorem deals with this case.

Theorem 3.8. Consider the unblocked system (1) with
transfer function W(z) given by (2) and the blocked sys-
tem (4) with transfer function V(Z) given by (6). Sup-
pose that the quadruple {A, B,C,D} is minimal. Then
W(z) has a zero at z = ∞ if and only if V(Z) has a zero
at Z = ∞.

Proof. Sufficiency. We first relate the rank of Db and
the rank of D ( here the case where N = 2 is discussed
and generalization to an arbitrary N is straightforward).
Suppose that D has rank q, then there exist invertible

matrices T̄ and S̄ such that S̄ DT̄ =

[
Iq 0
0 0

]
. Then

one can write[
S̄ 0
0 S̄

] [
D 0

CB D

] [
T̄ 0
0 T̄

]
=

[
S̄ DT̄ 0

S̄ CBT̄ S̄ DT̄

]
.

It now becomes immediate that rank(Db) ≥ 2q i.e.
rank(Db) ≥ 2rank(D), and in a general case with an
arbitrary N we have rank(Db) ≥ Nrank(D).

Now suppose that V(Z) has a zero at infinity and let
r denote the normal rank of W(z), then according to the
Definition 3.2, the matrix rank(Db) < Nr. Now, us-
ing the result of Theorem 3.3 one can write rank(Db) <
N × normal rank(W(z)). Then it becomes immediate
that rank(D) < r which implies that W(z) has a zero at
infinity.

Necessity. The proof of necessity part is immediate
by using the structure of Db.

Finally in the remainder of this subsection, we ex-
amine the zero properties of blocked systems for zeros
at the origin. In order to deal with this case we first
need to review the following result from [21], obtained

by specializing Lemma 1 of [21] to the case where the
unblocked system is time-invariant.

Lemma 3.9. [21]
Let Ãb = IN ⊗ A, B̃b = IN ⊗ B, C̃b = IN ⊗C and D̃b =

IN ⊗ D. Furthermore, define EZ ,


0 1 0

0
. . .

...
. . . 1

Z 0 0

,
EZ ∈ Cn×n and ẼZ = EZ ⊗ IN and ⊗ denotes the Kro-
necker product. Then there exist invertible matrices Tl

and Tr and matrices X and Y such that for all Z ∈ C

 In(N−1) 0 0
0 ZI − Ab −Bb

0 Cb Db

 =

[
Tl 0
X I

] [
ẼZ − Ãb −B̃b

C̃b D̃b

] [
Tr Y
0 I

]
. (18)

Theorem 3.10. Consider the unblocked system (1) with
transfer function W(z) given by (2) and the blocked sys-
tem (4) with transfer function V(Z) given by (6). Sup-
pose that the quadruple {A, B,C,D} is minimal. Then
W(z) has a zero at z = 0 if and only if V(Z) has a zero
at Z = 0.

Proof. Sufficiency. Let W(z) have normal rank r so,
V(Z) has normal rank Nr and Mb(Z) has normal rank
n + Nr. Now suppose that V(Z) has a zero at Z = 0, so
that Mb(Z) has rank less than its normal rank at Z = 0.

Then rank

 In(N−1) 0 0
0 −Ab −Bb

0 Cb Db

 < N(n + r). Now by

using the conclusion of the Lemma 3.9, we can write In(N−1) 0 0
0 −Ab −Bb

0 Cb Db

 =

[
Tl 0
X I

] [
E0 − Ãb −B̃b

C̃b D̃b

] [
Tr Y
0 I

] (19)

and so rank
[

E0 − Ãb −B̃b

C̃b D̃b

]
< N(n + r).

On the other hand, rank
[

E0 − Ãb −B̃b

C̃b D̃b

]
≥

Nrank
[
−A −B
C D

]
. (This follows from the fact that

with row and column reordering the matrix on the left
can be made upper triangular with diagonal blocks all
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of the form
[
−A −B
C D

]
). The last two inequalities im-

ply that rank
[
−A −B
C D

]
< n + r and so the unblocked

system has a zero at z = 0.
Necessity. Suppose W(z) has a zero at z = 0. Note

that the associated system is finite dimensional and
therefore A has only a finite number of eigenvalues.
Thus there exists ρ > 0 such that A − zI is invertible
for all real numbers z with 0 < z < ρ. Let ε be any such
number. ( We shall further restrict ε subsequently). Let
Aε , A−εI; hence, Aε is nonsingular. Clearly, z = 0 is a
point where there is rank loss of the system matrix asso-
ciated with the quadruple {A, B,C,D} if and only if z = ε
is a point where there is rank loss of the system matrix
associated with the quadruple {Aε , B,C,D}. Using the
result of the Theorem 3.6, we can conclude that εN is a
point where there is rank loss of the system matrix as-
sociated with a quadruple {Abε , Bbε ,Cbε ,Dbε } (where the
quadruple {Abε , Bbε ,Cbε ,Dbε } characterizes the blocked
system associated with the quadruple {Aε , B,C,D}). By
hypothesis, the following inequality holds

rank
[
εN I − Abε Bbε

Cbε Dbε

]
< normal rank

[
ZI − Abε Bbε

Cbε Dbε

]
.

(20)

With the help of equation (18), one can write

n(N − 1) + normal rank
[

ZI − Ab −Bb

Cb Db

]
=

normal rank
[

EZ − Ãb −B̃b

C̃b D̃b

]
and

n(N − 1) + normal rank
[

ZI − Abε Bbε
Cbε Dbε

]
=

normal rank
[

EZ − Ãbε −B̃b

C̃b D̃b

]
where Ãbε = IN ⊗ Aε . We now show that

normal rank
[

ZI − Abε Bbε
Cbε Dbε

]
=

normal rank
[

ZI − Ab −Bb

Cb Db

]
.

(21)

Suppose that W(z) = D + C(zI − A)−1B and
normal rank(W(z)) = r, r ≤ min{m, p}, then Wε(z) ,
D + C(zI − Aε)−1B = D + C((z + ε)I − A)−1B has
the same normal rank i.e. r. By using the result of

Theorem 3.3, we have normal rank(V(Z)) = Nr and
normal rank(Vε(Z)) = Nr (where Vε(Z) is the transfer
function associated the quadruple {Abε , Bbε ,Cbε ,Dbε }).
Thus, with the help of Lemma 3.4, the equality (21) be-
comes immediate.

At this stage of proof we illustrate that

rank(Mb(0)) ≤ rank(Mbε (ε
N)), (22)

where Mbε (ε
N) =

[
εN I − Abε Bbε

Cbε Dbε

]
.

Suppose that rank
[
−AN Bb

Cb Db

]
= q; then there ex-

ists a q × q submatrix of Mb(0) such that its determi-
nant is nonzero. Recall that the determinant function
is a continuous function of the entries of the associated
matrix and the quadruple {Abε , Bbε ,Cbε ,Dbε } can be ob-
tained from {Ab, Bb,Cb,Db} with a perturbation ε of the
underlying unblocked matrix A. Therefore, since ρ can
be chosen arbitrarily small while positive, we may as-
sume that for any positive ε with ε < ρ, there exists a
q × q submatrix of Mbε (ε

N) which has nonzero determi-

nant, so that rank
[
εN I − Abε Bbε

Cbε Dbε

]
≥ q.

Finally, by combining (20), (21) and (22), we obtain

rank
[
−AN Bb

Cb Db

]
< normal rank

[
ZI − Ab −Bb

Cb Db

]
.

Equivalently, Z = 0 is a zero for V(Z).

In this subsection we have studied the zero properties
of the blocked system for the whole complex plane in-
cluding infinity. One can naturally ask what are the zero
properties of the blocked system for a generic choice
of parameter matrices A, B, etc. It is important to recall
that the zero properties of the unblocked system (1) for a
generic choice of parameter matrices have been studied
in the literature (see e.g. [14], [16] and [13]). However,
since the parameter matrices of the blocked system (4)
are structured and their entries cannot independently as-
sume generic values, the study of zero properties in this
case is not trivial.

3.4. Zeros properties of blocked systems under a
generic setting

The following theorem investigates the zero proper-
ties of the system (4) for a generic choice of system ma-
trices A, B,C,D. It extends the earlier result of [11],
which only considered tall blocked systems. Reference
[11] states that tall blocked systems have no zeros when
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matrices A, B,C,D assume generic values. The follow-
ing theorem generalizes the result in [11] by specify-
ing that nonsquare blocked systems have no zeros when
matrices A, B,C,D accept generic values and square
blocked systems generically only have finite zeros and
these finite zeros have geometric multiplicity one.

Theorem 3.11. Consider the system (1) defined by the
quadruple {A, B,C,D}, in which the individual matrices
are generic and m, n, p are nonzero. Then

1. If p > m, the system matrix of the blocked system
has full column rank for all Z.

2. If p < m, the system matrix of the blocked system
has full row rank for all Z.

3. If p = m, then the system matrix of the blocked
system must have finite zeros with one-dimensional
kernel.

Proof. Suppose first that p > m. Then it can be readily
shown that the system matrix of tall unblocked systems
generically have full-column normal rank. Furthermore,
[16] showed that for tall unblocked systems are generi-
cally zero-free. If the blocked system had its system ma-
trix with less than full column rank for a finite Z0 , 0,
then according to Theorem 3.6, there would be neces-
sarily a nonzero nullvector of the system matrix of the
unblocked system for z0 , 0 equal to some N − th root
of Z0, which would be a contradiction. If the blocked
system had a zero at Z0 = ∞, then based on Theorem
3.8 the D matrix of the unblocked system would be less
than full column rank which would be a contradiction.
Analogously, using the argument in Theorem 3.10, one
can easily conclude that blocked system has full col-
umn rank system matrix at Z0 = 0. The case p < m can
be done similarly. (One can appeal to the fact, demon-
strated in [6] see page 180, that if V(Z) is the blocked
transfer function associated with W(z), then P1VT (Z)P2
for certain permutation matrices P1, P2 is the blocked
transfer function associated with WT (z)).

Now we consider the case p = m; since D is generic,
it has full column rank. Hence, based on the conclu-
sion of Theorem 3.8, both the unblocked system and the
blocked system do not have zeros at infinity. In the sec-
ond part of this proof we use the conclusion of Theorem
3.6. Furthermore, one should note that since matrices
A, B,C and D assume generic values it can be easily un-
derstood that the quadruple {Ab, Bb,Cb,Db} is a minimal
realization. Now, based on the fact that Db is nonsingu-
lar, one can conclude that the zeros of the blocked sys-
tem are the eigenvalues of Ab − BbD−1

b Cb. If the eigen-
values of Ab − BbD−1

b Cb are distinct, then the associated
eigenspace for each eigenvalue is one-dimensional; it is

equivalent to saying that the associated kernel of Mb(Z)
evaluated at the eigenvalue has dimension one. One
should note that the unblocked system has distinct zeros
due to the genericity assumption. Furthermore, zeros of
the unblocked system generically have distinct magni-
tudes except for complex conjugate pairs. It is obvious
that those zeros of the unblocked system with distinct
magnitudes produce distinct blocked zeros. Now, we
focus on zeros of the unblocked system with the same
magnitudes, i.e. complex conjugate pairs. The only case
where the generic unblocked system has distinct zeros
but its corresponding blocked system has non-distinct
zeros happens when the N − th power of the complex
conjugate zeros of the unblocked system coincide. We
now show by contradiction that this is generically im-
possible. In order to illustrate a contradiction, suppose
that the unblocked system has a complex conjugate pair,
say z01 and z∗01. If they produce an identical zero for the
blocked system, their N − th powers must be the same.
The latter condition implies that the angle between z01

and z∗01 has to be exactly
2πh
N

, where h is an integer,
which contradicts the genericity assumption for the un-
blocked system. Hence, the zeros of the blocked sys-
tem generically have distinct values and consequently
the corresponding kernels of system matrix evaluated at
the zeros are one-dimensional.

4. Conclusions

The zero properties of the blocked system obtained
from blocking of linear discrete time-invariant systems
were studied in this paper. In particular it was shown
that the blocked system is zero-free if and only if the
related unblocked system is zero-free. In addition, the
system matrix of the blocked system was investigated
under the genericity assumption. It was demonstrated
that blocked system generically has no zeros when it is
either fat or tall. However, when the blocked system
is square, it generically has a finite zero and the kernel
associated with that zero is of dimension one.
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