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Abstract—Measurement of visual quality is of fundamental im-
portance to numerous image and video processing applications.
The goal of quality assessment (QA) research is to design algo-
rithms that can automatically assess the quality of images or videos
in a perceptually consistent manner. Traditionally, image QA algo-
rithms interpret image quality as fidelity or similarity with a “ref-
erence” or ‘“perfect” image in some perceptual space. Such “full-
referenc” QA methods attempt to achieve consistency in quality
prediction by modeling salient physiological and psychovisual fea-
tures of the human visual system (HVS), or by arbitrary signal fi-
delity criteria. In this paper, we approach the problem of image QA
by proposing a novel information fidelity criterion that is based on
natural scene statistics. QA systems are invariably involved with
judging the visual quality of images and videos that are meant for
“human consumption.” Researchers have developed sophisticated
models to capture the statistics of natural signals, that is, pictures
and videos of the visual environment. Using these statistical models
in an information-theoretic setting, we derive a novel QA algorithm
that provides clear advantages over the traditional approaches. In
particular, it is parameterless and outperforms current methods
in our testing. We validate the performance of our algorithm with
an extensive subjective study involving 779 images. We also show
that, although our approach distinctly departs from traditional
HVS-based methods, it is functionally similar to them under cer-
tain conditions, yet it outperforms them due to improved modeling.
The code and the data from the subjective study are available at [1].

Index Terms—Image information, image quality assessment
(QA), information fidelity, natural scene statistics (NSS).

1. INTRODUCTION

HE field of digital image and video processing deals, in

large part, with signals that are meant to convey reproduc-
tions of visual information for human consumption, and many
image and video processing systems, such as those for acquisi-
tion, compression, restoration, enhancement and reproduction,
etc., operate solely on these visual reproductions. These sys-
tems typically involve tradeoffs between system resources and
the visual quality of the output. In order to make these tradeoffs
efficiently, we need a way of measuring the quality of images
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or videos that come from a system running under a given con-
figuration. The obvious way of measuring quality is to solicit
the opinion of human observers. However, such subjective eval-
uations are not only cumbersome and expensive, but they also
cannot be incorporated into automatic systems that adjust them-
selves in real-time based on the feedback of output quality. The
goal of quality assessment (QA) research is, therefore, to design
algorithms for objective evaluation of quality in a way that is
consistent with subjective human evaluation. Such QA methods
would prove invaluable for testing, optimizing, bench-marking,
and monitoring applications.

Traditionally, researchers have focussed on measuring signal
fidelity as a means of assessing visual quality. Signal fidelity
is measured with respect to a reference signal that is assumed
to have “perfect” quality. During the design or evaluation of a
system, the reference signal is typically processed to yield a dis-
torted (or test) image, which can then be compared against the
reference using so-called full reference (FR) QA methods. Typ-
ically this comparison involves measuring the “distance” be-
tween the two signals in a perceptually meaningful way. This
paper presents a FR QA method for images.

A simple and widely used fidelity measure is the peak
signal-to-noise ratio (PSNR), or the corresponding distortion
metric, the mean-squared error (MSE). The MSE is the Lo
norm of the arithmetic difference between the reference and the
test signals. It is an attractive measure for the (loss of) image
quality due to its simplicity and mathematical convenience.
However, the correlation between MSE/PSNR and human
judgement of quality is not tight enough for most applications,
and the goal of QA research over the past three decades has
been to improve upon the PSNR.

For FR QA methods, modeling of the human visual system
(HVS) has been regarded as the most suitable paradigm for
achieving better quality predictions. The underlying premise
is that the sensitivities of the visual system are different for
different aspects of the visual signal that it perceives, such as
brightness, contrast, frequency content, and the interaction be-
tween different signal components, and it makes sense to com-
pute the strength of the error between the test and the reference
signals once the different sensitivities of the HVS have been ac-
curately accounted for. Other researchers have explored signal
fidelity criteria that are not based on assumptions about HVS
models, but are motivated instead by the need to capture the loss
of structure in the signal, structure that the HVS hypothetically
extracts for cognitive understanding.

In this paper, we explore a novel information theoretic
criterion for image fidelity using natural scene statistics (NSS).
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Images and videos of the three-dimensional (3-D) visual en-
vironment come from a common class: the class of natural
scenes. Natural scenes form a tiny subspace in the space of
all possible signals, and researchers have developed sophisti-
cated models to characterize these statistics. Most real-world
distortion processes disturb these statistics and make the image
or video signals unnatural. We propose to use natural scene
models in conjunction with distortion models to quantify the
statistical information shared between the test and the reference
images, and posit that this shared information is an aspect of
fidelity that relates well with visual quality.

The approaches discussed above describe three ways in which
one could look at the image QA problem. One viewpoint is
structural, from the image-content perspective, in which im-
ages are considered to be projections of objects in the 3-D en-
vironment that could come from a wide variety of lighting con-
ditions. Such variations constitute nonstructural distortion that
should be treated differently from structural ones, e.g., blur-
ring or blocking that could hamper cognition. The second view-
point is psychovisual, from the human visual receiver perspec-
tive, in which researchers simulate the processing of images by
the HVS, and predict the perceptual significance of errors. The
third viewpoint, the one that we take in this paper, is the statis-
tical viewpoint that considers natural images to be signals with
certain statistical properties. These three views are fundamen-
tally connected with each other by the following hypothesis: The
physics of image formation of the natural 3-D visual environ-
ment leads to certain statistical properties of the visual stimulus,
in response to which the visual system has evolved over eons.
However, different aspects of each of these views may have dif-
ferent complexities when it comes to analysis and modeling. In
this paper, we show that the statistical approach to image QA
requires few assumptions, is simple and methodical to derive,
and yet it is competitive with the other two approaches in that it
outperforms them in our testing. Also, we show that the statis-
tical approach to QA is a dual of the psychovisual approach to
the same problem; we demonstrate this duality toward the end
of this paper.

Section II presents some background work in the field of
FR QA algorithms as well as an introduction to NSS models.
Section III presents our development of the information fidelity
criterion (IFC). Implementation and subjective validation de-
tails are provided in Sections IV and V, while the results are
discussed in Section VI. In Section VII, we compare and con-
trast our method with HVS-based methods, and conclude the
paper in Section VIII.

II. BACKGROUND

FR QA techniques proposed in the literature can be divided
into two major groups: those based on the HVS and those based
on arbitrary signal fidelity criteria (a detailed review of the re-
search on FR QA methods can be found in [2]-[5]).

A. HVS Error-Based QA Methods

HVS-based QA methods come in different flavors based on
tradeoffs between accuracy in modeling the HVS and computa-
tional feasibility. A detailed discussion of these methods can be
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found in [3]-[5]. A number of HVS-based methods have been
proposed in the literature. Some representative methods include
[6]-13].

B. Arbitrary Signal Fidelity Criteria

Researchers have also attempted to use arbitrary signal fi-
delity criteria in a hope that they would correlate well with per-
ceptual quality. In [14] and [15], a number of these are evalu-
ated for the purpose of QA. In [16] a structural similarity metric
(SSIM) was proposed to capture the loss of image structure.
SSIM was derived by considering hypothetically what consti-
tutes a loss in signal structure. It was claimed that distortions in
an image that come from variations in lighting, such as contrast
or brightness changes, are nonstructural distortions, and that
these should be treated differently from structural ones. It was
claimed that one could capture image quality with three aspects
of information loss that are complementary to each other: corre-
lation distortion, contrast distortion, and luminance distortion.

C. Limitations

A number of limitations of HVS-based methods are discussed
in [16]. In summary, these have to do with the extrapolation
of the vision models that have been proposed in the visual
psychology literature to image processing problems. In [16],
it was claimed that structural QA methods avoid some of the
limitations of HVS-based methods since they are not based on
threshold psychophysics or the HVS models derived thereof.
However, they have some limitations of their own. Specifically,
although the structural paradigm for QA is an ambitious para-
digm, there is no widely accepted way of defining structure and
structural distortion in a perceptually meaningful manner. In
[16], the SSIM was constructed by hypothesizing the functional
forms of structural and nonstructural distortions and the interac-
tion between them. In this paper, we take a new approach to the
QA problem. As mentioned in the Introduction, the third alter-
native to QA, apart from HVS-based and structural approaches,
is the statistical approach, which we use in an information
theoretic setting. Needless to say, even our approach will make
certain assumptions, but once assumptions regarding the source
and distortion models and the suitability of mutual information
as a valid measure of perceptual information fidelity are made,
the components of our algorithm and their interactions fall
through without resorting to arbitrary formulations.

Due to the importance of the QA problem to researchers and
developers in the image and video processing community, a con-
sortium of experts, the video quality experts group (VQEG), was
formed in 1997 to develop, validate, and recommend objective
video QA methods [17]. VQEG Phase I testing reported that
all of the proponent methods tested, which contained some of
the most sophisticated video QA methods of the time, were sta-
tistically indistinguishable from PSNR under their testing con-
ditions [18]. The Phase II of testing, which consisted of new
proponents under different testing configurations, is also com-
plete and the final report has recommended an FR QA method,
although it has been reported that none of the methods tested
were comparable to the “null mode,” a hypothetical model that
predicts quality exactly [19], meaning that QA methods need to
be improved further.
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D. Natural Scene Statistics

Images and videos of the visual environment captured using
high-quality capture devices operating in the visual spectrum
are broadly classified as natural scenes. This differentiates them
from text, computer generated graphics, cartoons and anima-
tions, paintings and drawings, random noise, or images and
videos captured from nonvisual stimuli such as radar and sonar,
X-rays, ultrasounds, etc. Natural scenes form an extremely
tiny subset of the set of all possible images. Many researchers
have attempted to understand the structure of this subspace of
natural images by studying their statistics (a review on natural
scene models could be found in [20]). Researchers believe that
the visual stimulus emanating from the natural environment
drove the evolution of the HVS, and that modeling natural
scenes and the HVS are essentially dual problems [21]. While
many aspects of the HVS have been studied and incorporated
into QA algorithms, a usefully comprehensive (and feasible)
understanding is still lacking. NSS modeling may serve to fill
this gap.

NSS have been explicitly incorporated into a number of
image processing algorithms: in compression algorithms
[22]-[25], denoising algorithms [26]-[28], image modeling
[29], image segmentation [30], and texture analysis and syn-
thesis [31]. While the characteristics of the distortion processes
have been incorporated into some QA algorithms (such as
those designed for the blocking artifact), the assumptions about
the statistics of the images that they afflict are usually quite
simplistic. Specifically, most QA algorithms assume that the
input images are smooth and low pass in nature. In [32], an NSS
model was used to design a no-reference image QA method for
images distorted with the JPEG2000 compression artifacts. In
this paper, we use NSS models for FR QA, and model natural
images in the wavelet domain using Gaussian scale mixtures
(GSM) [28]. Scale-space-orientation analysis (loosely referred
to as wavelet analysis in this paper) of images has been found to
be useful for natural image modeling. It is well known that the
coefficients of a subband in a wavelet decomposition are neither
independent nor identically distributed, though they may be
approximately second-order uncorrelated [33]. A coefficient is
likely to have a large variance if its neighborhood has a large
variance. The marginal densities are sharply peaked around
zero with heavy tails, which are typically modeled as Laplacian
density functions, while the localized statistics are highly space
varying. Researchers have characterized this behavior of natural
images in the wavelet domain by using GSMs [28], a more
detailed introduction to which will be given in the next section.

III. INFORMATION FIDELITY CRITERION FOR
IMAGE QUALITY ASSESSMENT

In this paper, we propose to approach the QA problem as
an information fidelity problem, where a natural image source
communicates with a receiver through a channel. The channel
imposes fundamental limits on how much information could
flow from the source (the reference image), through the channel
(the image distortion process) to the receiver (the human ob-
server). Fig. 1 shows the scenario graphically. A standard way
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Fig. 1. QA problem could be analyzed using an information theoretic
framework in which a source transmits information through a channel to
a receiver. The mutual information between the input of the channel (the
reference image) and the output of the channel (the test image) quantifies the
amount of information that could ideally be extracted by the receiver (the
human observer) from the test image.

of dealing with such problems is to analyze them in an informa-
tion-theoretic framework, in which the mutual information be-
tween the input and the output of the channel (the reference and
the test images) is quantified using a model for the source and
a distortion model. Thus, our assertion in proposing this frame-
work is that the statistical information that a test image has of
the reference is a good way of quantifying fidelity that could re-
late well with visual quality.

A. Source Model

As mentioned in Section II-D, the NSS model that we use is
the GSM model in the wavelet domain. It is convenient to deal
with one subband of the wavelet decomposition at this point and
later generalize this for multiple subbands. We model one sub-
band of the wavelet decomposition of an image as a GSM RF,
C = {C; : i € I}, where I denotes the set of spatial indices for
the RF. C is a product of two stationary RFs that are independent
of each other [28]

C=S-U={S; U;:iel} (1
where S = {S; : i € I} is an RF of positive scalars and i =
{U; : i € T} is a Gaussian scalar RF with mean zero and vari-

ance 012]. Note that, for the GSM defined in (1), while the mar-
ginal distribution of C; may be sharply peaked and heavy-tailed,
such as those of natural scenes in the wavelet domain, condi-
tioned on S;, C; are normally distributed, that is

Pc;|s; (cilsi) ~N (0» 31‘2012]) @

where A (1, 0?) denotes a Gaussian density with mean z and
variance 2. Another observation is that given S;, C; are inde-
pendent of S;Vj # 4, meaning that the variance of the coef-
ficient C; specifies its distribution completely. Additionally, if
the RF U/ is white, then the elements of C are conditionally inde-
pendent given S. The GSM framework can model the marginal
statistics of the wavelet coefficients of natural images, the non-
linear dependencies that are present between the coefficients,
as well as the space-varying localized statistics through appro-
priate modeling of the RF S [28].

B. Distortion Model

The distortion model that we use in this paper is also de-
scribed in the wavelet domain. It is a simple signal attenuation
and additive Gaussian noise model in each subband

D=GC+V={gC;+Vi:i€l} 3

where C denotes the RF from a subband in the reference signal,
D = {D; : i € I} denotes the RF from the corresponding
subband from the test (distorted) signal, G = {g; : i € I} is
a deterministic scalar attenuation field, and V = {V; : ¢ € I}
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is a stationary additive zero-mean Gaussian noise RF with vari-
ance o?-. The RF V is white and is independent of S and U.
This model captures two important, and complementary, distor-
tion types: blur and additive noise. We will assume that most
distortion types that are prevalent in real world systems can be
roughly described locally by a combination of these two. In our
model, the attenuation factors g; can capture the loss of signal
energy in a subband to the blur distortion, while the process V
can capture additive noise separately. Additionally, changes in
image contrast that result from variations in ambient lighting are
not modeled as noise since they too can be incorporated into the
attenuation field G.

The choice of a proper distortion model is crucial for image fi-
delity assessments that are expected to reflect perceptual quality.
In essence we want the distortion model to characterize what the
HVS perceives as distortion. Based on our experience with dif-
ferent distortion models, we are inclined to hypothesize that the
visual system has evolved over time to optimally estimate nat-
ural signals embedded in natural distortions: blur, white noise,
and brightness and contrast stretches due to changes in ambient
lighting. The visual stimulus that is encoded by the human eyes
is blurred by the optics of the eye as well as the spatially varying
sampling in the retina. It is therefore natural to expect evolu-
tion to have worked toward near-optimal processing of blurry
signals, say for controlling the focus of the lens, or guiding vi-
sual fixations. Similarly, white noise arising due to photon noise
or internal neuron noise (especially in low light conditions) af-
fects all visual signals. Adaptation in the HVS to changes in
ambient lighting has been known to exist for a long time [34].
Thus, HVS signal estimators would have evolved in response to
natural signals corrupted by natural distortions, and would be
near-optimal for them, but suboptimal for other distortion types
(such as blocking or colored noise) or signal sources. Hence,
“over-modeling” the signal source or the distortion process is
likely to fail for QA purposes, since it imposes assumptions
of the existence of near-optimal estimators in the HVS for the
chosen signal and distortion models, which may not be true. In
essence distortion modeling combined with NSS source mod-
eling is a dual of HVS signal estimator modeling.

Another hypothesis is that the field G could account for the
case when the additive noise V is linearly correlated with C.
Previously, researchers have noted that as the correlation of the
noise with the reference signal increases, MSE becomes poorer
in predicting perceptual quality [35]. While the second hypoth-
esis could be a corollary to the first, we feel that both of these
hypotheses (and perhaps more) need to be investigated further
with psychovisual experiments so that the exact contribution of
a distortion model in the quality prediction problem could be
understood properly. For the purpose of image QA presented in
this paper, the distortion model of (3) is adequate, and works
well in our simulations.

C. Information Fidelity Criterion

Given a statistical model for the source and the distortion
(channel), the obvious IFC is the mutual information between
the source and the distorted images. We first derive the mutual
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information for one subband and later generalize for multiple
subbands.

Let CN = (C1,Cs,...,Cx) denote N elements from C. In
this section, we will assume that the underlying RF ¢/ is uncor-
related (and, hence, C is an RF with conditionally independent
elements given &), and that the distortion model parameters G
and o} are known a priori. Let DY = (D1, Da,... Dy) de-
note the corresponding N elements from D. The mutual infor-
mation between these is denoted as 1(C™V; D).

Due to the nonlinear dependence among the CV by way of
S, it is much easier to analyze the mutual information assuming
S is known. This conditioning “tunes” the GSM model for the
particular reference image, and, thus, models the source more
specifically. Thus, the IFC that we propose in this paper is the
conditional mutual information 7(C™; DN | SN = sV), where
SN = (81,8a,...,Sn) are the corresponding N elements of
S, and sV denotes a realization of SV . In this paper, we will
denote I(CN; DN | SN = sN) as I(CV; DN | s™). With the
stated assumptions on C and the distortion model (3), one can
show

N
ZI Ci; D;|CL DI7L sNY (4

i=1

D*jz

I(CN; DN | sV

~.
Il
-
-

I(Ci; D | C*1, D sN) )

Il
.MZ

s
Il
-

I(Ci; D; | s4) (6)

Il
MZ

Il
=

where we get (4) by the chain rule [36], and (5) and (6) by con-
ditional independence of C given S, independence of the noise
V, the fact that the distortion model keeps D; independent of
C;,Vi # j, and that given S;, C; and D; are independent of
S; V3 # 1. Using the fact that C; are Gaussian given S;, and V;
are also Gaussian with variance cr%,, we get

N
I(CN; DN |sN) = Z (Cy: Di | s;) (7)

h(D;|Cji,s;:)) (8)

—h(Vi)) )

2
z U>

where h(X) denotes the differential entropy of a continuous
random variable X, and for X distributed as N'(y, 02), h(X) =
1/2log, 2mea? [36].

Equation (10) was derived for one subband. It is straightfor-
ward to use separate GSM RFs for modeling each subband of in-
terest in the image. We will denote the RF modeling the wavelet
coefficients of the reference image in the kth subband as C*, and
in test (distorted) image as D¥, and assume that C* are indepen-
dent of each other. We will further assume that each subband

I
M=
S
a
+
<
?

(10)

I
N | =
i
O
Q
(V)
7 N
—
+
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is distorted independently. Thus, the RFs V* are also indepen-
dent of each other. The IFC is then obtained by summing over
all subbands

ke€subbands

where CVe-* denotes N}, coefficients from the RF C* of the kth
subband, and similarly for D™V+¥ and s™Vk:*

Equation (11) is our IFC that quantifies the statistical infor-
mation that is shared between the source and the distorted im-
ages. An attractive feature of our criterion is that like MSE
and some other mathematical fidelity metrics, it does not in-
volve parameters associated with display device physics, data
from visual psychology experiments, viewing configuration in-
formation, or stabilizing constants, which dictate the accuracy
of HVS-based FR QA methods (and some structural ones, too).
The IFC does not require training data either. However, some
implementation parameters will obviously arise once (11) is im-
plemented. We will discuss implementation in the next section.

The IFC is not a distortion metric, but a fidelity criterion. It
theoretically ranges from zero (no fidelity) to infinity (perfect fi-
delity within a nonzero multiplicative constant in the absence of
noise).! Perfect fidelity within a multiplicative constant is some-
thing that is in contrast with the approach in SSIM [16], in which
contrast distortion (multiplicative constant) was one of the three
attributes of distortion that was regarded as a visual degrada-
tion, albeit one that has a different (and “orthogonal”) contribu-
tion toward perceptual fidelity than noise and local-luminance
distortions. In this paper, we view multiplicative constants (con-
trast stretches) as signal gains or attenuations interacting with
additive noise. Thus, with this approach, the same noise vari-
ance would be perceptually less annoying if it were added to a
contrast stretched image than if it were added to a contrast at-
tenuated image. Since each subband has its own multiplicative
constant, blur distortion could also be captured by this model as
the finer scale subbands would be attenuated more than coarser
scale subbands.

IFC = [(CNA-,k;DNk,k | st,k)

Y

IV. IMPLEMENTATION ISSUES

In order to implement the fidelity criterion in (11), a number
of assumptions are required about the source and the distortion
models. We outline them in this section.

A. Assumptions About the Source Model

Note that mutual information (and, hence, the IFC) can only
be calculated between RFs and not their realizations, that is,
a particular reference and test image under consideration. We
will assume ergodicity of the RFs, and that reasonable estimates
for the statistics of the RFs can be obtained from their realiza-
tions. We then quantify the mutual information between the RFs
having statistics obtained from particular realizations.

For the scalar GSM model, estimates of sf can be obtained by
localized sample variance estimation since for natural images

IDifferential entropy is invariant to translation, and so the IFC is infinite for
perfect fidelity within an additive constant in the absence of noise as well. How-
ever, since we are applying the IFC in the wavelet domain on “AC” subbands
only to which the GSM model applies, the zero-mean assumptions on 2/ and V
imply that this case will not happen.
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S is known to be a spatially correlated field, and o7 can be

assumed to be unity without loss of generality.

B. Assumptions About the Distortion Model

The IFC assumes that the distortion model parameters G and
0‘2, are known a priori, but these would need to be estimated
in practice. We propose to partition the subbands into blocks
and assume that the field G is constant over such blocks, as are
the noise statistics 0%;. The value of the field G over block [,
which we denote as g;, and the variance of the RF V over block
I, which we denote as 0%, are fairly easy to estimate (by linear
regression) since both the input (the reference signal) as well as
the output (the test signal) of the system (3) are available

i1 = Cov(C, D)Cov(C,C) (12)
5%, = Cov(D, D) — giCov(C, D) (13)

where the covariances are approximated by sample estimates
using sample points from the corresponding blocks in the refer-
ence and test signals.

C. Wavelet Bases and Inter-Coefficient Correlations

The derivation leading to (10) assumes that ¢/ is uncorrelated,
and, hence, C is independent given S. In practice, if the wavelet
decomposition is orthogonal, the underlying ¢/ could be approx-
imately uncorrelated. In such cases, one could use (10) for com-
puting the IFC. However, real cartesian-separable orthogonal
wavelets are not good for image analysis since they have poor
orientation selectivity, and are not shift invariant. In our imple-
mentation, we chose the steerable pyramid decomposition with
six orientations [37]. This gives better orientation selectivity
than possible with real cartesian separable wavelets. However,
the steerable pyramid decomposition is over-complete, and the
neighboring coefficients C from the same subband are linearly
correlated. In order to deal with such correlated coefficients,
we propose two simple approximations that work well for QA
purposes.

1) Vector GSM: Our first approximation is to partition the
subband into nonoverlapping block-neighborhoods and assume
that the neighborhoods are uncorrelated with each other. One
could then use a vector form of the IFC by modeling each neigh-
borhood as a vector random variable. This “blocking” of coef-
ficients results in an upper bound

N/M
r — =
1(CN; DN [sN) < Y I1(C 5 Dyl sg)
i=1
-
where C'; = (Cj;,i = 1...M) is a vector of M wavelet

coefficients that form the jth neighborhood. All such vectors,
associated with nonoverlapping neighborhoods, are assumed to
be uncorrelated with each other. We now model the wavelet co-
efficient neighborhood as a vector GSM. Thus, the vector RF

- . . .
C={C,:ieTl}onalattice I is a product of a scalar RF S

_
and a zero-mean Gaussian vector REU = {U ; : i € I'} of co-
variance C_, . The noise V is also a zero-mean vector Gaussian

U
RF of same dimensionality as C, and has covariance C_, . If we
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— —
assume that U ; is independent of U ;,Vi # j, itis quite easy to
show (by using differential entropy for Gaussian vectors) that

N/M
1(CN:DV|sN) < Y 1(C Dy s) (14)
j=1
11%11 |gJ2»s?CU>+C_)| "
= — Og
2 & 2 IC_,|
= %
where the differential entropy of a continuous vector

random vectoL )_() distributed as a multivariate Gaussian
N(w,2),h(X) = 1/2log, (2me)?|X| where |-| denotes
the determinant, and d is the dimension of )_f [36]. Recalling
that C_, is symmetric and can be factorized as QAQ” with

orthonormal Q and eigenvalues A, and that for a distortion
model where C_, = O'%;I, the IFC simplifies as follows:2

N/M
HCN: DN M) < S 1(C 1Dy s) (16)
j=1
A gfstl_f + 021
- -3
2 ;;; o o2 1]
(17)
N/M
Y o (1933QAQ7 o311 |
- 5 Z 0go 02]\[ ( 8)
— Vv

N/M 2.2 2
1 |gJ5]A+O'VI
5Zm4—ﬁr— (19)

M 2423
3 log, <1 + ‘qu—§'“> (20)

v

where the numerator term inside the logarithm of (19) is the de-
terminant of a diagonal matrix and, hence, equals the product of
the diagonal terms. The bound in (16) shrinks as M increases.
In our simulations we use vectors from 3 X 3 spatial neighbor-
hoods and achieve good performance. Equation (20) is the form
that is used for implementation.

For the vector GSM model, the maximum-likelihood estimate
of 3]2 can be found as follows [38]:

2n

—
where M is the dimensionality of C';. Estimation of the co-
variance matrix C_, is also straightforward from the reference

image wavelet coe%cients [38]
N/M T

~ M — =
== Yoy 22
C_ Nj;o]oj (22)

2Utilizing the structure of C_, and C_, helps in faster implementations
J Vv

through matrix factorizations.
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7 is assumed to be unity without

In(21)and (22), (1/N) 0 s
loss of generality [38].

2) Downsampling: Our second approximation is to use a
subset of the coefficients by downsampling C. Downsampling
reduces the correlation between coefficients. We will assume
that the downsampled subband is approximately uncorrelated,
and then use (10) for scalar GSM on the downsampled subband.
The underlying assumption in the downsampling approach is
that the quality prediction from the downsampled subbands
should be approximately the same as the prediction from the
complete subband. This downsampling approach has an addi-
tional advantage that it makes it possible to substantially reduce
the complexity of computing the wavelet decomposition since
only a fraction of the subband coefficients need to be computed.
In our simulations we discovered that the wavelet decompo-
sition is the most computationally expensive step. Significant
speedups are possible with the typical downsampling factors of
twelve or fifteen in our simulations. We downsample a subband
along and across the principal orientations of the respective
filters. In our simulations, the downsampling was done using
nearest-neighbor interpolation.

Further specifics of the estimation methods used in our testing
are given in Section VI.

V. SUBJECTIVE EXPERIMENTS FOR VALIDATION

In order to calibrate and test the algorithm, an extensive
psychometric study was conducted. In these experiments, a
number of human subjects were asked to assign each image
with a score indicating their assessment of the quality of that
image, defined as the extent to which the artifacts were visible
and annoying. Twenty-nine high-resolution 24-bits/pixel RGB
color images (typically 768 x 512) were distorted using five
distortion types: JPEG2000, JPEG, white noise in the RGB
components, Gaussian blur, and transmission errors in the
JPEG2000 bit stream using a fast-fading Rayleigh channel
model. A database was derived from the 29 images such that
each image had test versions with each distortion type, and for
each distortion type the perceptual quality roughly covered the
entire quality range. Observers were asked to provide their per-
ception of quality on a continuous linear scale that was divided
into five equal regions marked with adjectives “Bad,” “Poor,”
“Fair,” “Good,” and “Excellent,” which was mapped linearly
on to a 1-100 range. About 20-25 human observers rated each
image. Each distortion type was evaluated by different subjects
in different experiments using the same equipment and viewing
conditions. In this way a total of 982 images, out of which 203
were the reference images, were evaluated by human subjects
in seven experiments. The raw scores were converted to dif-
ference scores (between the test and the reference) [18] and
then converted to Z-scores [39], scaled back to 1-100 range,
and finally a difference mean opinion score (DMOS) for each
distorted image. The average RMSE for the DMOS was 5.92
with an average 95% confidence interval of width 5.48. The
database is available at [1].



SHEIKH et al.: INFORMATION FIDELITY CRITERION FOR IMAGE QUALITY ASSESSMENT

TABLE 1
VALIDATION SCORES FOR DIFFERENT QUALITY ASSESSMENT METHODS. THE
METHODS TESTED WERE PSNR, SARNOFF JND-METRIX 8.0 [40], MSSIM
[16], IFC FOR SCALAR GSM WITHOUT DOWNSAMPLING, IFC FOR SCALAR
GSM WITH DOWNSAMPLING BY 3 ALONG ORIENTATION AND 5 ACROSS, IFC
FOR VECTOR GSM, IFC FOR VECTOR GSM USING HORIZONTAL AND
'VERTICAL ORIENTATIONS ONLY, AND IFC FOR VECTOR GSM AND
HORIZONTAL/VERTICAL ORIENTATIONS WITH ONLY THE SMALLEST
EIGENVALUE IN (20). THE METHODS WERE TESTED AGAINST DMOS FROM
THE SUBJECTIVE STUDY AFTER A NONLINEAR MAPPING. THE VALIDATION
CRITERIA ARE: CORRELATION COEFFICIENT (CC), MEAN ABSOLUTE ERROR
(MAE), ROOT MEAN SQUARED ERROR (RMS), OUTLIER RATIO (OR), AND
SPEARMAN RANK-ORDER CORRELATION COEFFICIENT (SROCC)

Validation against DMOS

Model | cc | MaE | RMs | orR | srocc
PSNR 0826 | 7.272 | 9.087 | 0.114 | 0.820
IND-Metrix 0901 | 5252 | 6992 | 0.046 | 0.902
MSSIM 0912 | 4979 | 6.616 | 0.035 | 0910
IFC (no ds) 0911 | 5078 | 6.652 | 0.041 | 0.908
IFC (ds 3/5) || 0913 | 5.009 | 6.587 | 0.041 | 0.909
IFC (vec) 0917 | 4919 | 6.437 | 0.039 | 0915
IFC (v, vec) || 0919 | 4.855 | 6.366 | 0.032 | 0918
IFC (v, 1 ev) || 0.929 | 4.523 | 5941 | 0.059 | 0928
VI. RESULTS

In this section, we present results on validation of the IFC on
the database presented in Section V, and comparisons with other
QA algorithms. Specifically, we will compare the performance
of our algorithm against PSNR, SSIM [16], and the well known
Sarnoff model (Sarnoff IND-Metrix 8.0 [40]). We present re-
sults for five versions of the IFC: scalar GSM, scalar GSM with
downsampling by three along the principal orientation and five
across, vector GSM, vector GSM using the horizontal and ver-
tical orientations only, and vector GSM using horizontal and
vertical orientations and only one eigenvalue in the summation
of (20). Table I summarizes the validation results.

A. Simulation Details

Some additional simulation details are as follows. Although
full color images were distorted in the subjective evaluation, the
QA algorithms (except IND-Metrix) operated upon the lumi-
nance component only. For the scalar GSM with no downsam-
pling, a 5 x 5 moving window was used for local variance esti-
mation (s?), and 16 x 16 nonoverlapping blocks were used for
estimating parameters ¢; and a%,, ;- The blocking was done in
order for the stationarity assumptions on the distortion model to
approximately hold. For the scalar GSM with downsampling, all
parameters were estimated on the downsampled signals. A3 x 3
window was used for variance estimation, while 8 x 8 blocks
were used for the distortion model estimation. For vector GSM,
vectors were constructed from nonoverlapping 3 x 3 neighbor-
hoods, and the distortion model was estimated with 18 x 18
nonoverlapping blocks. In all versions of the IFC, only the sub-
bands at the finest level were used in the summation of (11).
Since the sizes of the images in the database were different,
the IFC was normalized by the number of pixels in each image.
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Mean SSIM (MSSIM) was calculated on the luminance compo-
nent after decimating (filtering and downsampling) it by a factor
of 4 [16].

B. Calibration of the Objective Score

It is generally acceptable for a QA method to stably predict
subjective quality within a monotonic nonlinear mapping, since
the mapping can be compensated for easily. Moreover, since the
mapping is likely to depend upon the subjective validation/ap-
plication scope and methodology, it is best to leave it to the final
application, and not to make it part of the QA algorithm. Thus,
in both the VQEG Phase-I and Phase-II testing and validation,
a monotonic nonlinear mapping between the objective and the
subjective scores was allowed, and all the performance valida-
tion metrics were computed after compensating for it [18]. This
is true for the results in Table I, where a five-parameter nonlin-
earity (a logistic function with additive linear term) is used for
all methods except for the IFC, for which we used the mapping
on the logarithm of the IFC. The quality predictions, after com-
pensating for the mapping, are shown in Fig. 2. The mapping
function used is given in (23), while the fitting was done using
MATLAB’s fininsearch

Quality(x) = Brlogistic(fe, (z — P3)) + Paz + B5(23)

logistic(r, z) = E ! (24)

2 1+exp(rz)

C. Discussion

Table I shows that the IFC, even in its simplest form, is
competitive with all state-of-the-art FR QA methods presented
in this paper. The comparative results between MSSIM and
Sarnoff’s JIND-Metrix are qualitatively similar to those reported
in [16], only that both of these methods perform poorer in the
presence of a wider range of distortion types than reported
in [16]. However, MSSIM still outperforms JND-Metrix by a
sizeable margin using any of the validation criteria in Table L.

The IFC also performs demonstrably better than Sarnoff’s
JND-Metrix under all of the alternative implementations of
the IFC. The vector-GSM form of the IFC outperforms even
MSSIM. Note that the downsampling approximation performs
better than scalar IFC without downsampling, even though
the downsampled version operates on signals that are fifteen
times smaller, and, hence, it is a computationally more feasible
alternative to other IFC implementations at a reasonably good
performance. Also note that the IFC as well as MSSIM use
only the luminance components of the images to make quality
predictions whereas the JND-Metrix uses all color information.
Extending the IFC to incorporate color could further improve
performance.

An interesting observation is that when only the smaller
eigenvalues are used in the summation of (20), the performance
increases dramatically. The last row in Table I and Fig. 2
show results when only the smallest eigenvalue is used in the
summation in (20). The performance is relatively unaffected
up to an inclusion of five smallest eigenvalues (out of nine).
One hypothesis that could explain this observation is that a
measurement noise could be present in IFC whose strength
depends upon the strength of the signal used in the computation
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Fig. 2. Scatter plots for the quality predictions by the four methods after compensating for quality calibration: PSNR, Sarnoff’s JND-metrix, MSSIM, and IFC
for vector GSM. The IFC shown here uses only the horizontal and vertical subbands at the finest scale, and only the smallest eigenvalue in (20). (x) The distortion
types are: JPEG2000, (+) JPEG, (o) white noise in RGB space, (box) Gaussian blur, and (diamond) transmission errors in JPEG2000 stream over fast-fading

Rayleigh channel.

of IFC. Thus, ignoring components with high signal strength
[corresponding to summing over low eigenvalues only in (20)]
could lower the noise if the relationship between the noise
variance and the signal variance is super-linear, for which
an increase in signal strength would cause a decrease in the
signal-to-noise ratio.

Another interesting observation is that when only the hori-
zontal and vertical subbands are used in the computation of the
IFCin (11) for the vector GSM IFC, the performance increases.?
We first thought that this was due to the presence of JPEG dis-
torted images in the database since the blocking artifact is repre-
sented more in the horizontal and vertical subbands than at other
orientations. However, we discovered that the performance in-
crease was consistent for all distortion types present in the data-
base, and most notably for the JPEG2000 distortion. Also we
do not get this increase in performance when we sum over other
subbands; the performance in fact worsens. Table II gives the
performance change of IFC on individual distortion types for
horizontal and vertical subbands and the corresponding perfor-
mance change when orientations of 60 degrees were summed
in (11). We feel that this performance increase is due to the im-

31t does so for other IFC forms but we will not report those results here since
they are mirrored by the ones presented.

TABLE 1I
VALIDATION SCORES FOR THE VECTOR GSM IFC USING ALL ORIENTATIONS
VERSUS USING: ONLY THE HORIZONTAL AND VERTICAL ORIENTATIONS AND
THE SUBBANDS ORIENTED AT +60°. ONLY THE SMALLEST EIGENVALUE
HAS BEEN USED IN (20) FOR GENERATING THIS TABLE

RMS in prediction against DMOS

Distortion || All orientations | Hor./Vert. | +60 deg.
JPEG2000 6.899 6.017 7.559
JPEG 6.542 6.237 6.927
White Noise 3.589 3.444 3.698
Gauss. Blur 4.166 3.873 4.521
Fast-fading 4.448 4416 4.779

portance that the HVS gives to horizontal and vertical edge in-
formation in images in comparison with other orientations [34].

In our MATLAB implementation, the scalar GSM version
of the IFC (without downsampling) takes about 10 s for a
512 x 768 color image on a Pentium III 1-GHz machine. The
vector GSM version (with horizontal and vertical subbands
only) takes about 15 s. This includes the time required to
perform color conversions, which is roughly 10% of the total



SHEIKH et al.: INFORMATION FIDELITY CRITERION FOR IMAGE QUALITY ASSESSMENT

Reference C

Divisive !
Normalization

Channel

—> -
Decomposition

L2

(A2

Divisive
Normalization W’

Channel

Decomposition

V[V
%_U

Test

Fig. 3.

time. We noted that about 40% to 50% of the time is needed for
the computation of the wavelet decomposition.

We would like to point out the most salient feature of the IFC:
It does not require any parameters from the HVS or viewing
configuration, training data or stabilizing constants. In contrast,
the JND-metrix requires a number of parameters for calibration
such as viewing distance, display resolution, screen phosphor
type, ambient lighting conditions, etc. [40], and even SSIM re-
quires two hand-optimized stabilizing constants. Despite being
parameterless, the IFC outperforms both of these methods. It is
reasonable to say that the performance of the IFC could improve
further if these parameters, which are known to affect percep-
tual quality, were incorporated as well.

VII. SIMILARITIES WITH HVS BASED QA METHODS

We will now compare and contrast IFC with HVS-based QA
methods. Fig. 3 shows an HVS-based quality measurement
system that computes the error signal between the processed
reference and test signals, and then processes the error signal
before computing the final perceptual distortion measure. A
number of key similarities with most HVS-based QA methods
are immediately evident. These include a scale-space-orien-
tation channel decomposition, response exponent, masking
effect modeling, localized error pooling, suprathreshold effect
modeling, and a final pooling into a quality score.

In the Appendix we show the following relationship between
the scalar version of the IFC in (10) and the HVS model of Fig. 3
for one subband

N
I(CN; DN|sN) m @) log, (MSE(W:, Wlsi) + 38 (25)

=1
where W; and W/ are as shown in Fig. 3. The MSE compu-
tation in Fig. 3 and (25) is a localized error strength measure.
The logarithm term can be considered to be modeling of the
suprathreshold effect. Suprathreshold effect is the name given to
the fact that the same amount of distortion becomes perceptually
less significant as the overall distortion level increases. Thus, a
change in MSE of, say, 1.0 to 2.0 would be more annoying than
the same change from 10.0 to 11.0. Researchers have previously
modeled suprathreshold effects using visual impairment scales
that map error strength measures through concave nonlineari-
ties, qualitatively similar to the logarithm mapping, so that they
emphasize the error at higher quality [41]. Also, the pooling in
(25) can be seen to be Minkowski pooling with exponent 1.0.
Hence, with the stated components, the IFC can be considered
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HVS-based quality measurement system. We show that this HVS model is the dual of the scalar GSM-based IFC of (11).

to be a particular HVS-based QA algorithm, the perceptual dis-
tortion criterion (PDC), within multiplicative and additive con-
stants that could be absorbed into the calibration curve
Ny
Z Z log, (MSE(W ;, W/ib | 8k.))
k€subbands i=1

PDC =

(26)
IFCscalar ~ a(PDC) + Nsubﬁ (27)

where k denotes the index of the kth subband, and Ny, is the
number of subbands used in the computation.

We can make the following observations regarding PDC of
(26), which is the HVS dual of the IFC (using the scalar GSM
model), in comparison with other HVS-based FR QA methods.

e Some components of the HVS are not modeled in Fig. 3
and (27), such as the optical point spread function and the
contrast sensitivity function.

e The masking effect is modeled differently from some
HVS-based methods. While the divisive normalization
mechanism for masking effect modeling has been em-
ployed by some QA methods [11]-[13], most methods
divisively normalize the error signal with visibility
thresholds that are dependent on neighborhood signal
strength.

* Minkowski error pooling occurs in two stages. First, a
localized pooling in the computation of the localized
MSE (with exponent 2), and then a global pooling after
the suprathreshold modeling with an exponent of unity.
Thus, the perceptual error calculation is different from
most methods, in that it happens in two stages with
suprathreshold effects in between.

* In (26), the nonlinearity that maps the MSE to a
suprathreshold-MSE is a logarithmic nonlinearity and
it maps the MSE to a suprathreshold distortion that is
later pooled into a quality score. Watson et al. have used
threshold power functions to map objective distortion
into subjective JND by use of two-alternative forced
choice experiments [41]. However, their method applies
the supratreshold nonlinearity after pooling, as if the
suprathreshold effect only comes into play at the global
quality judgement level. The formulation in (26) suggests
that the suprathreshold modeling should come before a
global pooling stage but after localized pooling, and that
it affects visual quality at a local level.

* One significant difference is that the IFC using the scalar
GSM model, or the PDC of (26), which are duals of each
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other, is notably inferior to the vector GSM-based IFC.
We believe that this is primarily due to the underlying
assumption about the uncorrelated nature of the wavelet
coefficients being inaccurate. This dependence of percep-
tual quality on the correlation among coefficients is hard
to investigate or model using HVS error sensitivities, but
the task is greatly simplified by approaching the same
problem with NSS modeling. Thus, we feel that HVS-
based QA methods need to account for the fact that nat-
ural scenes are correlated within subbands, and that this
inter-coefficient correlation in the reference signal affects
human perception of quality.*

* Another significant difference between IFC/PDC and
other HVS-based methods is distinct modeling of signal
attenuation. Other HVS-based methods ignore signal
gains and attenuations, constraining G to be unity, and
treat such variations as additive signal errors as well. In
contrast, a generalized gain g in the IFC/PDC ensures
that signal gains are handled differently from additive
noise components.

¢ One could conjecture that the conditioning on S in the
IFC is paralleled in the HVS by the computation of the
local variance and divisive normalization. Note that the
high degree of self-correlation present in S enables its
adequate estimation from C by local variance estimation.
Since this divisive normalization occurs quite early in the
HVS model5 and since the visual signal is passed to the
rest of the HVS after it has been conditioned by divisive
normalization by the estimated s?, we could hypothesize
that the rest of the HVS analyzes the visual signal condi-
tioned on the prior knowledge of S, just as the IFC ana-
lyzes the mutual information between the test and the ref-
erence conditioned on the prior knowledge of S.

* One question that should arise when one compares the
IFC against the HVS error model is regarding HVS
model parameters. Specifically, one should notice that
while functionally the IFC captures HVS sensitivities,
it does so without using actual HVS model parameters.
We believe that some of the HVS model parameters were
either incorporated into the calibration curve, or they did
not affect performance significantly enough under the
testing and validation experiments reported in this paper.
Parameters such as the characteristics of the display de-
vices or viewing configuration information could easily
be understood to have approximately similar affect on all
images for all subjects since the experimental conditions
were approximately the same. Other parameters and
model components, such as the optical point spread func-
tion or the contrast sensitivity function, which depend
on viewing configuration parameters as well, are perhaps
less significant for the scope and range of quality of our
validation experiments. It is also reasonable to say that
incorporating these parameters could further enhance the

4Equation (20) suggests that the same noise variance would cause a greater
loss of information fidelity if the wavelet coefficients of the reference image
were correlated than if they were uncorrelated.

SDivisive normalization has been discovered to be operational in the HVS
[21].
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performance of IFC. We are continuing efforts into devel-
oping an IFC for a unified model that consists of source,
distortion, and HVS models, and we feel that deeper
insights into perception of quality would be gained.

*  We would like to remind the readers at this point that al-
though the IFC is similar to an HV S-based distortion mea-
sure, it has not been derived using any HVS knowledge,
and its derivation is completely independent. The similar-
ities exist due to the similarities between NSS and HVS
models. The difference is subtle, but profound!

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an IFC for image QA using NSS.
We showed that using signal source and distortion models, one
could quantify the mutual information between the reference
and the test images, and that this quantification, the IFC, quan-
tifies perceptual quality. The IFC was demonstrated to be better
than a state-of-the-art HVS-based method, the Sarnoff’s JND-
Metrix, as well as a state-of-the-art structural fidelity criterion,
the SSIM index in our testing. We showed that despite its com-
petitive performance, the IFC is parameterless. We also showed
that the IFC, under certain conditions, is quantitatively sim-
ilar to an HVS-based QA method, and we compared and con-
trasted the two approaches and hypothesized directions in which
HVS-based methods could be refined and improved.

We are continuing efforts into improving the IFC by com-
bining HVS models with distortion and signal source models,
incorporating color statistics, and inter-subband correlations.
We are hopeful that this new approach will give new insights
into visual perception of quality.

APPENDIX

In this Appendix, we shall quantify the similarities between
the scalar GSM version of the IFC of (10) and the HVS-based
QA assessment method shown in Fig. 3. The model in Fig. 3 is
based on calculating MSE in the perceptual space and then pro-
cessing it further to yield the final perceptual distortion measure.
Here we will only deal with coefficients in one subband and a
scalar GSM model.

We start by giving the formulation for the divisive normal-
ization stage, which divides the input by its localized average.
Considering the input to the squaring block, this turns out to be
normalization by the estimated local variance of the input of the
squaring block

-1

1 ‘
_ 2 2 ~ i 772
Wi=C? | & > O ~ g =U (28)
JEN (i) ‘
—1
1 D2
W' =pD? | = § D? Nt 29

JEN (i) v

Here, we have assumed that s; & s; for j € N(4), that is, the
variance is approximately constant over the K pixels neighbor-

hood of i, which we denote by A/ (7). Also note that the term
inside the parentheses in an estimate of the conditional local
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variance of C' (or D) at ¢ given S; = s;, which could be ap-
proximated by the actual value. We have also assumed, without
loss of generality, that E[U?] = ¢% = 1, since any nonunity
variance of U/ could be absorbed into S. The MSE between W;
and W/ given S; = s; could now be analyzed

MSE(W;, W/ | s;) = B[(W! — W;)?| s:] (30)
D? 2
~ <— —U,?) si| (31
97si + oy
E (V2 +20:CiVi = 02 U2)”
= si
(9252 +0%)°
(32)

where we have used D; = ¢;C; + V; and that given S; =
sq, C; = s;U;. Expanding the above expression and taking ex-
pectation, and using independence between U/ and V, the fact
that C,U, and V are all zero-mean, and the fact that for zero-
mean Gaussian variables E[X*%] = 30?, where o is the vari-
ance of X, we get

40—%7

MSE(W;, W | i) = (33)

gZ 3 + O—V
The goal of this derivation is to compare the IFC of (10) and
HVS-based MSE criterion

I(c™; DN | s™)

—Zlog2 <1+ 2) (34)
V
2
__Zlg2<gzs +a )

1
m- 3" (loga (SE(W:, W/ [ 5) ~ g, 4). G0
i=1
Hence, we have an approximate relation between the IFC and
the HVS-based MSE

(35)

N

~ o log,(MSE(W;, W/ |s,) + 8 (37)
i=1

where « and [ are constants.

I(CN; DV | sM)
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