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Abstract: For the regression model Yi = m(xi) + σ(xi)εi, i = 1, . . . , m, we propose a new nonparametric

diagnostic test for checking the constancy of the conditional variance function σ2(x). The proposed test

does not assume a known parametric form for the conditional mean function m(x). The test statistic is

inspired by recent asymptotic theory in analysis of variance when the number of factor levels is large.

Simulation studies demonstrate the good finite-sample properties of the test. We apply the proposed test

to a study on the effect of drug utilization on health care costs.

Title in French: we can supply this

Résumé : For the regression model Yi = m(xi) + σ(xi)εi, i = 1, . . . , m, we propose a new nonparametric

diagnostic test for checking the constancy of the conditional variance function σ2(x). The proposed test

does not assume a known parametric form for the conditional mean function m(x). The test statistic is

inspired by recent asymptotic theory in analysis of variance when the number of factor levels is large.

Simulation studies demonstrate the test has good finite-sample properties. We apply the proposed test to

a study on the effect of drug utilization on health care costs.

1. INTRODUCTION

Homoscedasticity or constant variance is a standard assumption in regression models. Ignoring
heteroscedasticity can lead to inefficient estimation or incorrect inference (Chapter 14, Ruppert,
Wand and Carroll, 2003). Heteroscedasticity in linear models can result in substantial inefficiency
in ordinary least squares (OLS) estimation (Greens, 2000). In many applications, however, it is
not uncommon to find the assumption of homoscedasticity violated. Examples include calibration
experiments of the physical and biological sciences, radioimmunoassay, econometrics, pharmacoki-
netic modelling (Davidian and Carroll, 1987) and prospective payment modelling (Maciejewski,
2004). It is therefore important to be able to assess the adequacy of this assumption.

Graphical diagnostic procedures, such as plotting the residuals versus the fitted value (or the
covariate), often provide useful visual aid (e.g., Cook and Weisberg, 1982, §2.3). Formal tests are
needed to evaluate whether the patterns observed are due to random fluctuations.

Consider the following nonparametric regression model:

Ymi = g(xmi) + σ(xmi)εmi, i = 1, ...,m, (1)

where Ymi is the response, g(x) is an unknown regression function, xm1, . . . , xmm are fixed design
points on [0,1], σ2(x) is the variance function, and εmi’s form a triangular array of row-wise
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independent random variables with mean 0 and variance 1. For simplicity in notation, the sample
size m in the subscript will be omitted whenever feasible. Of interest is to test if this regression
model is homoscedastic. The null hypothesis thus is:

H0 : σ2(x) = σ2 for all x, (2)

for some unknown positive constant σ2. We will allow for a general nonparametric alternative which
only assumes σ2(x) to be any nonconstant smooth function. We will propose a fully nonparametric
approach for testing (2). The test will not require direct estimation of g(x), which can be any
Lipschitz continuous function. It also allows flexible distributions for the εmi’s.

When the functional form of σ2(x) is restricted to some parametric class, various parametric
and semiparametric tests were proposed (Bickel, 1978, Cook and Weisberg, 1983, Davidian and
Carroll, 1987, Carroll and Ruppert, 1988, among others). These tests generally assume a known
parametric form for g(x). Normality assumption is often imposed, too. For the general situation
when σ2(x) belongs to an infinite dimensional space of smooth functions, Eubank and Thomas
(1993) propose a test but their method assumes normality and requires the choice of some weight
function. The approach of Müller and Zhao (1995) requires that the relation between g(x) and
σ2(x) follows a generalized linear model. Zheng (1996) provides a nonparametric Lagrange Multi-
plier (LM) test using kernel estimation of the score function. Diblasi and Bowman (1997) construct
a test based on nonparametric smoothing of the residuals on a suitably transformed scale but they
haven’t derived the asymptotic distribution of the test, instead they approximate the critical value
numerically. The method of Dette and Munk (1998) is based on an estimator for the best L2 ap-
proximation of the variance function by a constant. When the regression function is estimated via
wavelet thresholding methods and the error variances depend on the observed covariates through a
parametric relationship of some known form, a score test is given by Cai, Hurvich and Tsai (1998).

In Section 2, we introduce the statistic for testing (2), present the main asymptotic results under
the null hypothesis and local alternatives and discuss generalizations to other settings. Results from
simulation studies to investigate the finite sample behaviour of the test statistic are reported in
Section 3. In Section 4, we illustrate our method on a real data set to study health care cost.
Technical details are given in an appendix.

2. TEST STATISTIC

2.1 Notations

Let r(x) denote a Lipschitz continuous positive density function defined on [0,1]. Assume the design
points x1, x2, ..., xm satisfy a standard assumption for fixed-design nonparametric regression model:

∫ xi

0

r(x)dx =
i

m
, i = 1, ...,m. (3)

Define R2
j = 1

2 (Yj+1 − Yj)2, j = 1, ..., n, where n = m − 1. If σ2(x) and m(x) defined in (1)
are Lipschitz continuous, we can easily show E(R2

j ) = σ2(xj) + O(n−1). This provides a simple
asymptotically unbiased local estimator for the variance function. The main advantage of this
estimator is that it does not require to estimate the regression function m(x).

Let σ̂2 be an estimate of the variance under the null hypothesis, which can be taken as, for
example, Rice’s (1984) estimator σ̂2 = 1

2(m−1)

∑m−1
j=1 (Yj+1 − Yj)2, then

Bj = R2
j − σ̂2, j = 1, . . . , n,

provide an asymptotically centred version of the sequence R2
j .

2.2 ANOVA with large number of factor levels
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To introduce our test statistic, we first diverge to briefly review some related results in analysis
of variance (ANOVA) when the number of cells becomes large as the sample size becomes large.
We consider a balanced one-way ANOVA of n cells and kn observations Vi1, . . . , Vikn in cell i,
i = 1, . . . , n. To test the null hypothesis of no cell effects, the following F-type statistic can be
used:

Fn =
MST

MSE

where

MST =
kn

n− 1

n∑

i=1

(V i· − V ··)2, MSE =
1

N − n

n∑

i=1

kn∑

j=1

(Vij − V i·)2, (4)

V i· = k−1
n

∑kn

j=1 Vij , V ·· = (nkn)−1
∑n

i=1

∑kn

j=1 Vij , and N = nkn is the total number of observa-
tions. Classical large sample results for the F-test assume that the number of observations per cell
goes to infinity but the number of cells is fixed. Recently, a different type of asymptotic framework
has been studied: the number of cells goes to infinity, the number of observations per cell can
either be fixed or goes to infinity at a slower rate, see Akritas and Papadatos (2004), Wang and
Akritas (2003) and the reference therein. In this new framework, Akritas and Papadatos (2004)
shows the asymptotic normality of

√
n(Fn − 1) as n →∞ under the assumption of no cell effects.

They assume Vij , i = 1, .., n, j = 1, ..., kn, are independent random variables, but allow them to
be nonnormal and have heteroscedastic errors. Since MSE converges to a constant, by Slutsky’s
theorem, the problem reduces to studying the asymptotic distribution of

√
n(MST −MSE).

2.3 An artificial ANOVA

We describe here, for the nonparametric regression model (1), how a hypothetical one-way layout
is formed from (xj , Bj), j = 1, . . . , n. In Section 2.4 below, we state a test statistic computed from
this artificial ANOVA.

In the artificial ANOVA, a cell is constructed using the nearest neighbourhood method. More
specifically, a symmetrized window Wi is created around each covariate value xi, i = 1, . . . , n, by
including the kn nearest covariate values. In what follows, the windows Wi will also be understood
as sets containing the indices j of the covariate values that belong to the window, that is

Wi =
{

j : I

(
|F̂x(xj)− F̂x(xi)| ≤ kn − 1

2n

)}
,

where F̂x(t) = n−1
∑n

i=1 I(xi ≤ t), and I(A) is an indicator function for event A.
Using these nearest neighbourhood windows, we construct an artificial balanced one-way ANOVA

with n categories, the responses in the i-th category are those Bi-values associated with the co-
variate values in Wi. To separate the hypothetical observations from the original observations, let
Vil, l = 1, . . . , kn, denote the kn responses in the i-th category of the above hypothetical ANOVA
and let

V = V(X, (Bj , j = 1, ..., n)′) = (V11, . . . , V1kn , . . . , Vn1, . . . , Vnkn)′ (5)

be the vector of the N × 1 vector of observations in the hypothetical one-way layout. We also
use (5) to denote the operator which creates the above vector by augmenting Bj , j = 1, ..., n,
according to the covariate X = (x1, . . . , xn)′.

2.4 The test statistic
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The new test we propose is based on the simple idea that under the assumption of homoscedasticity,
Bj should fluctuate around around zero. A test statistic for testing the the approximate constancy
of Bj can be naturally constructed by applying the test statistic in Section 2.2 to the hypothetical
one-way layout formed in Section 2.3. Although Bj ’s are not independent, we expect that the
dependence is asymptotically negligible.

Consider the following test statistic

T = T (X, (Bj , j = 1, ...n)′) ≡ MST −MSE (6)

where MST and MSE are defined in (4) and are calculated from the hypothetical ANOVA.
T (X, (Bj , j = 1, ...n)′) can be written as a quadratic form V′AV, where

A =
nkn − 1

n(n− 1)kn(kn − 1)

n⊕

i=1

Jkn −
1

n(n− 1)kn
Jnkn −

1
n(kn − 1)

Inkn .

In the above expression, Ikn is the kn-dimensional identity matrix, Jkn = 1kn1′kn
where 1kn

is the
kn-dimensional column vector of 1’s, and

⊕
is the notation for Kronecker (direct) sum.

The test statistic (6) is related to the one used by Wang, Akritas and Van Keilegom (2002)
for testing whether the regression function in (1) is constant. Wang, Akritas and Van Keilegom
assume independent data. Here the sequence R2

j , j = 1, . . . , n, is 2-dependent. The asymptotic
variance of T is rather complicated. We consider the modified test statistic T ∗,

T ∗ = T ∗(X, (Bj , j = 1, ...n)′)

≡ T (X, (Bj , j = 1, ...n)′)− 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

BjBj+1I(j, j + 1 ∈ Wi)

= V′AV − 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

BjBj+1I(j, j + 1 ∈ Wi). (7)

The term subtracted from T is an estimate of the mean value of T under (2), therefore T ∗ is a
centered version of T . In the next section, we will present large sample properties of T ∗(X, (Bj , j =
1, ...n)′) under both the null and local alternative hypotheses.

3. LARGE SAMPLE RESULTS

Assume the design points x1, . . . , xn satisfy (3). Let E(εk
i ) = µk(xi), k = 3, 4, 5, 6, be the higher

moments of εi. For some positive constant L and for all 1 ≤ i, j ≤ n, we have

|g(xi)− g(xj)| ≤ L|xi − xj |,
|σ2(xi)− σ2(xj)| ≤ L|xi − xj |,
|µk(xi)− µk(xj)| ≤ L|xi − xj |, k = 3, 4, 5.

We start with some results on asymptotic equivalence under the null hypothesis (2). Lemma 1
below shows the test statistic T ∗ calculated from the hypothetical one-way ANOVA augmented
from (Bj , j = 1, ..., n)′ is asymptotically equivalent to the one calculated from the hypothetical
one-way ANOVA augmented from (Zj , j = 1, ..., n)′, where Zj = σ2[ 12 (εj+1 − εj)2 − 1]. We let

p→
denote convergence in probability, and d→ denote convergence in distribution.

Lemma 1. Under the above assumptions, if kn →∞ and knn−1 → 0, then under H0,
(

n

kn

)1/2

[T ∗(X, (Bj , j = 1, ..., n)′)− T ∗(X, (Zj , j = 1, ..., n)′)]
p→ 0.
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Lemma 2 below suggests that the above test statistic has the same asymptotical distribution
when A in (7) is replaced by the simpler block diagonal matrix AD below.

Lemma 2. Denote the N×1 vector V∗ = V(X, (Zj , j = 1, ...n)′)), where V is the operator defined
in (5), and assume the conditions of Lemma 1 hold. Then, under H0,

(
n

kn

)1/2

[T ∗(X, (Zj , j = 1, ..., n)′)− T ∗∗(X, (Zj , j = 1, ..., n)′)]
p→ 0,

where with the block diagonal matrix AD = diag{B1, . . . ,Bn}, Bi = 1
n(kn−1) [Jkn − Ikn ],

T ∗∗(X, (Zj , j = 1, ..., n)′)

≡ V∗′ADV∗ − 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

ZjZj+1I(j, j + 1 ∈ Wi).

As a direct result of Lemma 1 and Lemma 2, to derive the asymptotic distribution of T ∗, we
may work directly with T ∗∗(X, (Zj , j = 1, ..., n)′). Direct calculation yields

T ∗∗(X, (Zj , j = 1, ...n)′) =
1

n(kn − 1)

n∑

i=1

n∑

|j1−j2|>1

Zj1Zj2I(j1, j2 ∈ Wi).

The next theorem presents the asymptotic distribution of T ∗ under the null hypothesis.

Theorem 1. Assume the conditions of Lemma 1. Then, under H0,
(

n

kn

)1/2

T ∗(X, (Bj , j = 1, ...n)′) d→ N
(
0, τ2

)
,

where τ2 = 4σ8

3

∫
µ2

4(x)r(x)dx.

Remark 1. The term
∫

µ2
4(x)r(x)dx in the expression of τ2 can be consistently estimated by

1
4(m− 3)(σ̂2)4

m−3∑

j=2

(Yj − Yj−1)4(Yj+2 − Yj+1)4 − 6m4 − 9,

where m4 = 1
2(m−1)(bσ2)2

∑m
j=2(Yj − Yj−1)4 − 3.

Remark 2. The asymptotic normality of T ∗ still holds if the nearest-neighborhood window size kn

is taken to be fixed: kn = k. In this case, τ2 has a more complex expression,

τ2 = a1(k)σ8

∫
µ2

4(x)r(x)dx + a2(k)σ8

∫
µ4(x)r(x)dx + a3(k)σ8

∫
µ2

3(x)r(x)dx

+a4(k)σ8,

where

a1(k) =
8k3 − 45k2 + 79k − 39

6k(k − 1)2
, a2(k) =

k2 − 3k + 1
k(k − 1)2

,

a3(k) =
2(k − 2)2

k(k − 1)2
, a4(k) =

k2 − 3k + 3
2k(k − 1)2

.
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Remark 3. It can be shown that the above asymptotic results still hold in a random design setting,
where the covariates xi, i = 1, . . . , n, should be understood as a random sample from a distribution
with a positive density function r(x).

We next examine the power of our test against local alternatives of the form:

σ2(x) = σ2 + (nkn)−1/4h(x), (8)

where h(x) is a Lipschitz continuous nonconstant function. The asymptotic distribution is given
in the following theorem.

Theorem 2. Assume the conditions of Lemma 1, under the local alternative sequence (8), if
n−3k5

n = o(1), we have

(
n

kn

)1/2

T ∗(X, (Bj , j = 1, ..., n)′) d→ N
(
γ2, τ2

)
,

where τ2 is defined in Theorem 1 and

γ2 =
∫ 1

0

h2(t)r(t)dt−
(∫ 1

0

h(t)r(t)dt

)2

.

Remark 4. By appropriately choosing the rate kn, the test can detect local alternative converging
to a null at a rate arbitrarily close to the parametric rate n−1/2.

4. MONTE CARLO SIMULATIONS

In this section, we investigate the finite sample behaviors of the proposed test. The convergence
of the test statistic to normal distribution is often quite slow (e.g., Härdle and Mammen, 1993).
For finite sample sizes, the critical value of our test statistic is obtained using the bootstrap. More
specifically, let ε̂i = Yi − ĝ(xi), where ĝ(·) represents some estimate of the regression function,
for example, by using least squares method or nonparametric smoothing. Let ε∗i , i = 1, . . . ,m, be
a bootstrap sample from centered residuals ε̂i, i = 1, . . . , m, and let Y ∗

i = ĝ(xi) + ε∗i . For each
bootstrap sample (xi, Y

∗
i ), i = 1, . . . , m, calculate the test statistic T ∗. The critical value is then

determined from the appropriate quantile of the bootstrap distribution of the test statistic T ∗. In
the Monte Carlo study, we generate 500 simulated data sets for each scenario. For each data set
500 bootstrap samples are drawn. Different values of the sample size n, different forms of variance
function and different distributions of the error term εi are allowed.

For comparison purpose, we include results from applying the parametric test of Cook and
Weisberg (1983, abbreviated as CW test), which is a very powerful test when all the parametric
assumptions required are satisfied. Their test requires correct specification of the variance function;
here we adopt the assumption that σ2(x) = σ2

0exp(λx) where σ2
0 and λ are unknown parameters,

thus λ = 0 corresponds to the null hypothesis. In order to make fair comparisons, the regression
function g(·) is taken to be linear g(x) = 1 + x in our simulations. The design points are taken
to be uniform on the interval [0,1]: xi = 0 : 1/(m − 1) : 1. The random data are generated by
the software package Matlab 6.1. We also include results from applying the nonparametric test
of Dette and Munk (1998, abbreviated as DM test), which is based on an estimator for the best
L2-approximation of the variance function by a constant.

First, we investigate level of the tests. Sample size 50 and 70 are considered. We are particularly
interested in the situation when εi’s are not normally distributed, which is assumed for the CW
test (although it is possible to modify their test for other type of error distribution). Three
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different distributions for εi are considered: N(0,1), t(8) and t(4), where N(µ, σ2) represents a
normal distribution with mean 0 and variance σ2, t(b) represents a t-distribution with b degrees of
freedom; the smaller the b, the heavier is the tail of the distribution. The results are summarized
in Table 1. In Table 1 and Table 2, our nonparametric test is calculated for several window sizes
(kn). The test is abbreviated as NP(kn) test.

Table 1: Empirical level of the tests when m(x) = 1 + x.

n test
error distribution

N(0,1) t(8) t(4)

50

NP(3) 0.040 0.056 0.050
NP(5) 0.046 0.066 0.044
NP(7) 0.046 0.064 0.036
NP(9) 0.054 0.072 0.044
CW 0.040 0.098 0.184
DM 0.066 0.076 0.054

70

NP(3) 0.042 0.038 0.066
NP(5) 0.046 0.044 0.076
NP(7) 0.048 0.050 0.066
NP(9) 0.046 0.054 0.060
NP(11) 0.044 0.050 0.048
CW 0.044 0.118 0.196
DM 0.058 0.070 0.052

Table 2: Empirical power of the tests

n test alternative 1 alternative 2 alternative 3

50

NP(3) 0.444 0.382 0.496
NP(5) 0.516 0.474 0.530
NP(7) 0.596 0.536 0.530
NP(9) 0.628 0.590 0.490
CW 1.000 0.160 0.450
DM 0.414 0.348 0.366

70

NP(7) 0.668 0.642 0.692
NP(9) 0.726 0.726 0.698
NP(11) 0.752 0.770 0.672
NP(13) 0.786 0.808 0.660
CW 1.000 0.178 0.416
DM 0.454 0.418 0.466

It is observe from Table 1 that the NP test maintains the specified nominal level very well, so
is the DM test. The NP test is not very sensitive to the window size. The CW test, although
behaves well when the distribution of ε(xi) is normal or only slightly heavy tailed, could become
very liberal when the tail is heavy, for example, if the true distribution of ε(xi) is t(4).
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To investigate the power of the tests, we consider the following three alternatives:

alternative 1: Y = 1 + x + 0.5exp(2x)ε;
alternative 2: Y = 1 + x + 0.5(1 + sin(10x)ε);
alternative 3: Y = 1 + x + σ3(x)ε,

where ε has the standard normal distribution, σ3(x) = 0.5 if x < 0.5, σ3(x) = 0.5(x − 0.5)2

otherwise. Table 2 summarizes the results. It is observed that if all the assumptions of the
parametric test are satisfied (linear relationship in the mean function, normal error and correct
specification of the form of the variance function), then the CW test is most powerful. This is the
price the nonparametric test has to pay in order to be omnibus. However, when the assumptions
of parametric test are violated, the nonparametric tests can be more powerful. This small-scale
simulation study is certainly not exhaustive. It will be of interest to carry out more extensive
simulations in the future.

From the power study, we observe that the influence of the local window size kn is small when
the sample size is moderately large: n = 70. When n is relatively small (n = 50), the finite sample
power is more sensitive to kn. Choosing a bandwidth to maximize the power of smoothing-based
test is still an ongoing area of research. In general, this optimal bandwidth is different from the
optimal one to estimate the nonparametric curve. Some discussions on this problem are given in
§6.4 of Hart (1997). King, Hart and Wehrly (1991), Young and Bowman (1995) suggest calculating
the p-value for several different choices of the smoothing parameter, and called the plot of P -values
versus the smoothing parameters a “significant trace”. The modest goal of this paper is to provide
a simple nonparametric diagnostic test that can be used to help determine if more sophisticated
procedures, such as estimating the variance function, are needed.

5. DATA EXAMPLE

We illustrate the application of our bootstrap test on a clinical trial data set to investigate the
effects of drug utilization review (DUR) on health care costs (Tierney et al., 1998). DUR involves
comparing drug prescribing with accepted standards to identify potential problems. The response
variable is the total health care cost of a patient. Health care costs are highly skewed due to high
utilization of a few patients. To “normalize” the data, costs are often log-transformed prior to
analysis (Manning, 1998; Zhou et al, 2001). However, a complication is that the transformation
may normalize the skewed data but may not stabilize the variance (Manning, 1998). Hence,
log-transformed data may also have a heteroscedastic variance. From preliminary analysis, we
suspected that the heteroscedasticity may depend on the satisfaction level of a patient with his/her
pharmacist. A scatter plot of log-transformed health cost versus patient satisfaction level is given
in Figure 1. We apply our bootstrap test to this data set, which consists of 160 data points.
The response variable is log transformed and the covariate is transformed to the interval [0,1]. The
residuals are obtained using kernel smoothing with Epanechnikov kernel K(x) = 4

3 (1−x2)I(|x| ≤ 1)
and bandwidth h. The results of our test for different combinations of bandwidth h and window
size kn are summarized in Table 3, which indicates the possible presence of heteroscedasticity In
contrast, the CW test gives a p-value of 0.356.

6. CONCLUSION

This paper proposed a fully nonparametric diagnostic test for testing the null hypothesis of ho-
moscedasticity or constant variance. The test is motivated by recent development in analysis of
variance with large number of factor levels. The test is asymptotically normal under the null
hypothesis. It can detect local alternative converging to the null at a rate arbitrarily close to the
parametric rate n−1/2. The simulation results demonstrate that using critical value obtained from
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Figure 1: Scatter Plot of the Health Care Cost Data
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Table 3: Empirical power of the tests

kn = 3 kn = 5 kn = 7
h=0.1 0.034 0.082 0.186
h=0.2 0.036 0.076 0.202
h=0.3 0.018 0.084 0.188
h=0.4 0.028 0.122 0.216
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the bootstrap, the proposed test has satisfactory finite sample performance.

APPENDIX: DERIVATIONS

We give here an outline of the proofs. More details are given in a technical report available from
the authors.

Proof of Lemma 1. The proof is done by combining the following two steps:
(

n

kn

)1/2

[T (X, (Bj , j = 1, ..., n)′)− T (X, (Zj , j = 1, ..., n)′)]
p→ 0, (9)

(
n

kn

)1/2 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

(BjBj+1 − ZjZj+1)I(j, j + 1 ∈ Wi)
p→ 0. (10)

We will first prove (10). Notice that

Bj = Zj +
1
2
(g(xj+1)− g(xj))2 + σ(g(xj+1)− g(xj))(εj+1 − εj) + (σ2 − σ̂2),

we can write the product BjBj+1 as the sum of 16 terms, one of them is ZjZj+1. Therefore the
left side of (10) can be decomposed into 15 terms:

(
n

kn

)1/2 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

(BjBj+1 − ZjZj+1)I(j, j + 1 ∈ Wi) =
15∑

t=1

Dt,

with

D1 =
(

n

kn

)1/2 1
n(kn − 1)

n∑

i=1

n−1∑

j=1

Zj(g(xj+2)− g(xj+1))2I(j, j + 1 ∈ Wi),

D2 =
(

n

kn

)1/2 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

σZj(g(xj+2)− g(xj+1))(εj+2 − εj+1)I(j, j + 1 ∈ Wi),

Di, i = 3, . . . , 15, are defined similarly. One can easily check that each Di, i = 1, . . . , 15, is op(1)
by making use of the fact that g(xj+1)−g(xj) = Op(n−1) uniformly in j; for those terms involving
random variables Zj and εj , we can easily check the mean and variance. Now we check (9). Denote
ξj = g(xj+1) − g(xj) and let ξ = V(X, (ξ2

j , j = 1, ...n)′), η = V(X, (ξj(εj+1 − εj), j = 1, ...n)′)
where V is the operator defined in (5), V∗ is defined as before. Then

T (X, (Bj , j = 1, ...n)′)− T (X, (Zj , j = 1, ...n)′)

=
1
4
ξ′Aξ + σ2η′Aη + (σ2 − σ̂2)21′NA1N + V∗′Aξ + 2σV∗′Aη

+2(σ2 − σ̂2)V∗′A1N + σξ′Aη + (σ2 − σ̂2)ξ′A1N + 2σ(σ2 − σ̂2)η′A1N .

We can show that each of the above terms is op(n−1/2k
1/2
n ) as in the proof of Theorem 2.3 of Wang,

Akritas and Van Keilegom (2002).

Proof of Lemma 2. We have
n

kn
E(T ∗ − T ∗∗)2

=
n

kn
E

[
V∗′(A−AD)V∗]2

=
n

kn

1
n2(n− 1)2k2

n

∑

i1 6=i2

∑

i3 6=i4

∑

j1,j2,j3,j4

E(Zj1Zj2Zj3Zj4)I(jk ∈ Wik
, k = 1, . . . , 4).

10



In the above sum, the nonzero expectation terms are of the following possible forms: E(Z2
j1

Z2
j2

) (of
order O(n2k4

n)), E(Z4
j ) (of order O(nk4

n)), E(Zj1Zj1+1Zj2Zj2+1) (of order O(n2k4
n)), E(Z2

j1
Zj2Zj2+1)

(of order O(n2k4
n)), etc. Thus

n

kn
E(T ∗ − T ∗∗)2 =

n

kn

1
n2(n− 1)2k2

n

O(n2k4
n) = O(knn−1) = o(1).

Proof of Theorem 1. From Lemma 1 and Lemma 2, we only need to show

n1/2k−1/2
n T ∗∗ d→ N(0, τ2).

where T ∗∗(X, (Zj , j = 1, ..., n)′) = 2
n(kn−1)

∑n
i=1

∑n
j1+1<j2

Zj1Zj2I(j1, j2 ∈ Wi). It’s evident that
E(T ∗∗) = 0 and

V ar
(
n1/2k−1/2

n T ∗∗
)

=
4

n(kn − 1)2kn

n∑

i1=1

n∑

i2=1

n∑

j1+1<j2

n∑

l1+1<l2

E(Zj1Zj2Zl1Zl2)I(j1, j2 ∈ Wi1 , l1, l2 ∈ Wi2)

= Q1 + Q2 + Q3,

where Q1 represents the sum of terms when the subscripts j1, j2, l1, l2 form two pairs, i.e., j1 = l1,
j2 = l2; Q2 is the sum of terms when there in one and only one pair among the subscripts
j1, j2, l1, l2, i.e., j1 = l1, j2 6= l2 or j1 6= l1, j2 = l2; Q3 is the sum of terms when there in no pair
among the subscripts j1, j2, l1, l2.

Q1 =
4

nkn(kn − 1)2

n∑

i1=1

n∑

i2=1

n∑

j1+1<j2

E(Z2
j1Z

2
j2)I(j1, j2 ∈ Wi1 ∩Wi2)

=
σ8

nkn(kn − 1)2

n∑

i1=1

n∑

i2=1

n∑

j1+1<j2

[µ4(xj1) + 1]2I(j1, j2 ∈ Wi1 ∩Wi2) + O(n−1kn)

=
σ8

nkn(kn − 1)2

n∑

j=1

[µ4(xj) + 1]2[12 + 22 + · · ·+ (kn − 2)2] + O(n−1kn)

=
σ8(kn − 2)(2kn − 3)

6nkn(kn − 1)

n∑

j=1

[µ4(xj) + 1]2 + O(n−1kn)

=
σ8(kn − 2)(2kn − 3)

6kn(kn − 1)

∫
(µ4(x) + 1)2r(x)dx + O(n−1kn),

where the second equality makes use of Lemma A.1 of Wang, Akritas and Van Keilegom (2002),
the last equality uses (3). Similar calculation yield,

Q2 =
2σ8(kn − 2)(kn − 3)

3kn(kn − 1)

∫
(µ2

4(x)− 1)r(x)dx + O(n−1kn),

Q3 =
σ8[(kn − 4)(kn − 3)(2kn − 1) + (kn − 3)(kn − 2)(2kn − 5)]

12(kn − 1)2kn

∫
(µ4(x)− 1)2r(x)dx

+
σ8(kn − 2)2

2kn(kn − 1)2

∫
[µ2

4(x)− 2µ4(x) + 4µ2
3(x) + 1]r(x)dx + O(n−1kn).

Combining the above, we have V ar
(
n1/2k

−1/2
n T ∗∗

)
→ τ2 as kn → ∞. T ∗∗ = n−1

∑n
i=1 Ai =

n−1Sn, where Ai = 2
kn−1

∑n
j+1≤l ZjZlI(j, l ∈ Wi). The asymptotic normality of (nkn)−1/2Sn can
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then be proved following the same lines as in the proof of Theorem 2.2 of Wang, Akritas and
Van Keilegom (2002), using Markov’s blocking technique (see proof of Theorem 27.4 in Billingsley,
1995).

Proof of Theorem 2. Bj = R2
j − σ̂2, under the local alternative (8), we have E(R2

j ) = σ2 +
(nkn)−1/4h(xj) + O(n−1) and E(σ̂2) = σ2 + (nkn)−1/4

∫
h(x)r(x)dx + O(n−1). Denote B∗

j =
Bj − (nkn)−1/4[h(xj) −

∫
h(x)r(x)dx]. As before, we let Vij , i = 1, . . . , n, j = 1, . . . , kn, be the

observations in the hypothetical one-way ANOVA constructed from Bj . Further, let Uij , i =
1, . . . , n, j = 1, . . . , kn, denote the observations in the hypothetical one-way ANOVA constructed
from B∗

j . V, U denote the N ×1 vector of observations in the two hypothetical one-way ANOVAs,
respectively. Then U = V − (nkn)−1/4S, where denoting Sj = h(xj) −

∫
h(x)r(x)dx, S is the

following N × 1 vector (Sj , j ∈ W1, . . . , Sj , j ∈ Wn)′. The test statistic is calculated from V and
will be called T ∗loc here.

T ∗loc = V′AV − 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

BjBj+1I(j, j + 1 ∈ Wi)

= U′AU− 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

B∗
j B∗

j+1I(j, j + 1 ∈ Wi)

+2(nkn)−1/4S′AU + (nkn)−1/2S′AS

− 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

(nkn)−1/4(SjB
∗
j+1 + Sj+1B

∗
j )I(j, j + 1 ∈ Wi)

− 2
n(kn − 1)

n∑

i=1

n−1∑

j=1

(nkn)−1/2SjSj+1I(j, j + 1 ∈ Wi). (11)

Notice that

B∗
j = σ2

[
1
2
(εj+1 − εj)2 − 1

]
+ (nkn)−1/4h(xj)

[
1
2
(εj+1 − εj)2 − 1

]

+
1
2
(g(xj+1)− g(xj))2 + σ(xj)(g(xj+1)− g(xj))(εj+1 − εj)

−
(

σ̂2 − σ2 − (nkn)−1/4

∫
h(x)r(x)dx

)
+ Op(n−1). (12)

following the same lines as the proof of Theorem 1, we can show that

n1/2k−1/2
n


U′AU− 2

n(kn − 1)

n∑

i=1

n−1∑

j=1

B∗
j B∗

j+1I(j, j + 1 ∈ Wi)


 → N(0, τ2).

Similarly as in the proof of Theorem 2.3 of Wang, Akritas and Van Keilegom (2002) and making
use of expression (12), we can show that

S′AU = Op(knn−1/2) + Op(n−1k2
n),

S′AS = knγ2 + Op(knn−1) + Op(n−1k2
n),

where γ2 =
∫ 1

0
h2(t)r(t)dt −

(∫ 1

0
h(t)r(t)dt

)2

. By checking mean and variance, we can show that

the last two terms of (11) are both op(n−1/2k
1/2
n ).
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W. Härdle & E. Mammen (1993). Comparing nonparametric versus parametric regression fits. The

Annals of Statistics, 21, 1926–1947.

J. D. Hart (1997). Nonparametric regression and lack-of-fit tests, Springer, New York.

E. King, J. D. Hart & T. E. Wehrly (1991). Testing the equality of two regression curves using linear

smoothers. Statistics & Probability Letters 12, 239-247.

M. L. Maciejewski, X. H. Zhou, J. C. Fortney & J. F. Burgess (2004). Alternative Methods for Modelling

Heteroscedastic Non-normally Distributed Costs. Health Economics. Submitted.

W. G. Manning (1998). The logged dependent variable, heteroscedasticity, and the retransformation

problem. Journal of Health Economics, 17 283-295.

H. G. Müller & P. L. Zhao (1995). On a semiparametric variance model and a test for heteroscedasticity.

The Annals of Statistics, 23, 946–967.

13



J. Rice (1984). Bandwidth choice for nonparametric regression. The Annals of Statistics, 12, 1215–1230.

D. Ruppert M. P. Wand & R. J. Carroll (2003). Semiparametric regression. Cambridge University Press.

W. M. Tierney, M. Overhage, M. Murray, X. H. Zhou, L. Harris& F. Wolinsky (1998). The final report of

the computer-based prospective drug utilization review project (1993-1997) U. S. Agency for Health

Care Policy and Research. Bethesda, MD.

L. Wang, M. G. Akritas & I. Van Keilegom (2002). Nonparametric Goodness-of-fit test for heteroscedastic

regression models. Submitted

S. G. Young & A. W Bowman (1995). Non-parametric analysis of covariance. Biometrics, 51, 920-931.

J. X. Zheng (1996). A consistent nonparametric test of heteroscedasticity. Preprint, Department of

Economics, University of Texas, Austin.

X. H. Zhou, K. T. Stroupe & W. H. Tierney (2001). Regression analysis of health care charges with

heteroscedasticity. Journal of the Royal Statistical Society Series C, 50(3), 303-312.

Received ??? Lan WANG: lan@stat.umn.edu
Accepted ??? School of Statistics, University of Minnesota

Minneapolis, MN 55455, USA

Xiao-Hua ZHOU: azhou@u.washington.edu
Department of Biostatistics, School of Public Health & Com Med,

University of Washington
Seattle, WA 98198, USA

14


