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Abstract: It was only recently shown by Shi and Wormald, using the
differential equation method to analyze an appropriate algorithm, that
a random 5-regular graph asymptotically almost surely has chromatic
number at most 4. Here, we show that the chromatic number of a random
5-regular graph is asymptotically almost surely equal to 3, provided a
certain four-variable function has a unique maximum at a given point in
a bounded domain. We also describe extensive numerical evidence that
strongly suggests that the latter condition holds. The proof applies the
small subgraph conditioning method to the number of locally rainbow
balanced 3-colorings, where a coloring is balanced if the number of vertices
of each color is equal, and locally rainbow if every vertex is adjacent to at
least one vertex of each of the other colors. � 2009 Wiley Periodicals, Inc. J Graph

Theory 61: 157–191, 2009

Keywords: random graph; random regular graph; chromatic number

1. INTRODUCTION

The chromatic number of random regular graphs has attracted much interest in recent
years. For the uniform model Gn,d of d-regular graphs on n labelled vertices, recent
work has focussed on the chromatic number for fixed d . All necessary background with
respect to random regular graphs as well as the pioneering results about their chromatic
number and other parameters can be found in the comprehensive review paper by the
last author [17].

It is widely known that for d≥2 a random d-regular graph is a.a.s. not bipartite, and
thus has chromatic number at least 3. (We say an event holds asymptotically almost
surely (a.a.s.) if it holds with probability tending to 1 as n→∞. In these asymptotics
for Gn,d we assume nd is always even for feasibility.) Molloy and Reed (see [10]) gave
a lower bound on the chromatic number for general d , and in particular they showed
that for a random 6-regular graph it is a.a.s. at least 4. The basic ingredient of the proof
was the first moment method: showing that the expected number of 3-colorings of a
random regular graph converges to zero.

Achlioptas and Moore [2] proved that random 4-regular graphs have chromatic
number 3 w.p.p. (i.e. with probability bounded away from 0 for large n, which they refer
to as “with positive probability”). The proof was algorithmic in the sense that it used a
backtracking-free algorithm based on Brelaz’ heuristic. Subsequently, Achlioptas and
Moore [3] showed that the chromatic number of a d-regular graph (d≥3) is a.a.s. k or
k+1 or k+2, where k is the smallest integer such that d<2k ln k. They also showed
that if furthermore d>(2k−1) ln k, then a.a.s. the chromatic number is either k+1 or
k+2. They also obtained an upper bound on the probability that it is k+2, which
showed that 5-regular graphs can be 4-colored w.p.p. in the multigraph model that is
commonly used to analyze random regular graphs. This was subsequently improved by
Shi and the last author [14, 15], who showed that the chromatic number of a random
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d-regular graph is a.a.s. 3 for d=4, 4 for d=6, and either 3 or 4 for d=5. (In addition,
they showed that a.a.s. the chromatic number of a d-regular graph, for all other d up
to 10, is restricted to a range of two integers.) Their proofs were algorithmic.

The above results leave the main outstanding open question on the chromatic number
of low-degree random regular graphs as follows: Is the chromatic number of a 5-regular
graph a.a.s. 3?

Previous attempts of some of the authors of the present paper to answer the above
question in the negative, using refinements of the first moment method, failed. These
attempts computed the expected number of successively more restricted types of
3-colorings (such that whenever a generic 3-coloring exists, at least one of the restricted
type exists as well), and aimed at proving that it is a.a.s. equal to zero. All attempts,
however, gave expected values that tend to ∞.

These failures also led to various innovative attempts to design an algorithm that
would be amenable to rigorous mathematical analysis and that would at least w.p.p.
produce a 3-coloring for 5-regular graphs. These attempts also failed.

Both the above failures were given a well-founded empirical explanation by work in
physics. Building on a statistical mechanics analysis of the space of truth assignments
of the 3-SAT problem, which has not been shown yet to be mathematically rigorous,
and on the Survey Propagation (SP) algorithm for 3-SAT inspired by this analysis
(see e.g. [9] and the references therein), Krza̧kała et al. [8] provided strong evidence
that 5-regular graphs are a.a.s. 3-colorable by an SP algorithm. They also showed
that the space of assignments of three colors to the vertices (legal or not, i.e. with
no two adjacent vertices with the same color or not) consists of clusters of legal
color assignments inside which one can move from point to point by steps of small
Hamming distance. However, to go from one cluster to another by such small steps, it
is necessary to go through assignments of colors that grossly violate the requirement
of legality (high-energy color assignments). Also, the number of clusters that contain
points with energy that is a local, but not global, minimum is exponentially large. As
a result, local search algorithms are easily trapped into such local minima (metastable
states).

In this article we reduce the problem of proving that random 5-regular graphs are
a.a.s. 3-colorable to a problem of a totally different nature, involving simply showing
that the maximum of a given function on a given bounded domain occurs at a given
location. (In addition, we describe extensive calculations that strongly support the
hypothesis that the maximum does occur at the given location.) To achieve this, we
study locally rainbow balanced colorings of a 5-regular graph, where a coloring is
balanced if the number of vertices of each color is equal, and locally rainbow if
every vertex is adjacent to vertices of all the other colors. We compute the expectation
EY and variance �2 of the number Y of such colorings asymptotically. Assuming a
hypothesis stated below, we prove that �2 is asymptotically a constant times (EY )2. A
standard second moment inequality states that Y is nonzero with probability at least
(EY )2/(EY 2), which is hence bounded away from 0. Instead of this result, we obtain
the stronger result, that Y is a.a.s. nonzero, by using the small subgraph conditioning
method (see [17]). Previous applications of this method have almost all been to cases
where the random variable Y counts subgraphs of some type, usually regular spanning
subgraphs. Just a few cases have applied it to other random variables, beginning with
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numbers of independent sets [4]. The application in the present paper has a more
significant consequence.

The reason behind the choice of this particular subset of colorings (balanced and
locally rainbow) is that our approach does not work when applied to the full set of
colorings. In fact, the second moment of the number of ordinary 3-colorings grows
large exponentially faster than the square of its expectation (see the last section in [3]).
Restricting the analysis to locally rainbow colorings makes the expectation smaller
but fortunately the second moment is decreased even further and the requirements of
our method are met. The extra condition that colorings are balanced just makes the
computations simpler.

For our calculations, we use the well-known pairing or configuration model Pn,d ,
which was first introduced by Bollobás [5]. A pairing in Pn,d is a perfect matching
on a set of dn points which are grouped into n cells of d points each. A random
pairing naturally corresponds in an obvious way to a random d-regular multigraph
(possibly containing loops or multiple edges), in which each cell becomes a vertex.
Colourings of the multigraph then correspond to assignments of colors to the cells of
the model. The reader should refer to [17] for aspects of the pairing model not explained
here.

The application of the small subgraph conditioning method calls for the computation
of joint moments of the numbers of locally rainbow balanced 3-colorings and short
cycles. It also requires an upper bound on the second moment of Y , the number
of locally rainbow balanced 3-colorings of the random 5-regular pairing Pn,5. The
estimation of the second moment amounts essentially to counting the number of pairs
of such colorings on 5-regular graphs. To give an exact expression for E(Y 2) we had
to sum over a large number of variables (9×36). These variables express the number
of vertices that have a given pair of colors (out of the nine possible pairs) and also
have a given distribution of their five edges with respect to the pair of colors on the
other endpoint of these edges. (As we will see there are 36 possible distributions.) The
computation of the asymptotic value of this expression (even within a polynomial factor)
entails the computation of the global maximum of a function of 9×36 variables. In
Section 5 we show how to reduce this computation to the computation of the maximum
of a four-variable continuous function F defined over a closed and bounded convex
domain. As the definitions of F and its domain are technically involved, we postpone
presenting them until Section 5, at which point the motivation behind the technicalities
becomes clearer. For the sake of easy reference, we repeat these definitions, and also
give an equivalent definition of F , in Section 7.

Regarding the maximization of F , we show that the boundary of its domain contains
no local maximizer and that the point ( 19 ,

1
9 ,

1
9 ,

1
9 ) in the interior of its domain is a

local maximizer (by showing that the Hessian of ln F is negative definite at this point).
Although the definition of F involves another function with hundreds of variables, we
are able to obtain information on its values by a rather roundabout route. By numerically
computing its value at a huge number of locations over a fine grid of its domain, we
obtain strong numerical evidence for the following.

Hypothesis 1.1 (Maximum Hypothesis). The four-variable function F(n) has a
unique global maximum over its domain at the point ( 19 ,

1
9 ,

1
9 ,

1
9 ).
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We point out that for the case of the ordinary (not balanced locally rainbow) color-
ings there exists an analogue to function F which also has a local maximum at the
point ( 19 ,

1
9 ,

1
9 ,

1
9 ) but unfortunately this is not the global maximum. Provided that the

Maximum Hypothesis holds, we can establish the chromatic number of the random
5-regular graph a.a.s.

Theorem 1.1. Under the Maximum Hypothesis, the chromatic number of Gn,5 is
a.a.s. 3.

Thus, we have reduced the problem of proving that Gn,5 a.a.s. has chromatic
number 3, to showing that the maximum of a smooth function in a bounded domain
occurs at the very place that numerical calculations suggest.

In the rest of this article we prove Theorem 1.1 and describe why we are convinced
that the function has its maximum at the required location. In Section 2 we explain the
small subgraph conditioning method and show how it is used to prove Theorem 1.1
in the case that n is divisible by 6, using the relevant result from [17]. This assumes
the results of certain calculations that are performed in Sections 3–5. In Section 3 we
compute joint moments of the numbers of locally rainbow balanced 3-colorings and
short cycles. We develop an exact expression for the second moment E(Y 2) in Section 4
and determine its asymptotic value, under the Maximum Hypothesis, in Section 5. The
argument for n not divisible by 6 is supplied in Section 6. Finally, in Section 7 we
present the empirical validation of the Maximum Hypothesis.

2. SMALL SUBGRAPH CONDITIONING

The small subgraph conditioning method was introduced by Robinson and the last
author [12, 13]. See [7, Section 9.3] for a full exposition.

The setting for the method is as follows. A random variable, Y , counts occur-
rences of some structure, and depends on a parameter n which tends to ∞. The
expectation EY tends to infinity, and we want to show that P(Y>0)→1. The small
subgraph conditioning method applies when the variance of Y is of the same order
as (EY )2. The main computation required is the asymptotic value of some joint
moments of the numbers of certain small subgraphs and the random variable Y .
The result which the method depends on can be stated as follows (a consequence
of [17, Corollary 4.2]). (We use [x]m := x(x−1) · · · (x−m+1) to denote falling
factorials.)

Theorem 2.1. Let �k>0 and �k ≥−1 be real numbers for k=1,2, . . . and suppose
that for each n there are random variables Xk = Xk(n), k=1,2, . . . and Y =Y (n),
all defined on the same probability space G=Gn such that Xk is nonnegative integer
valued, Y is nonnegative and EY>0 (for n sufficiently large). Suppose furthermore
that

(i) For each j ≥1, the variables X1, . . . , X j are asymptotically independent Poisson
random variables with EXk →�k,
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(ii) if �k =�k(1+�k), then

E(Y [X1]m1 . . . [X j ]m j )

EY
→

j∏
k=1

�mk
k (1)

for every finite sequence m1, . . . ,m j of nonnegative integers,
(iii)

∑
k �k�k

2<∞,

(iv) E(Y 2)/(EY )2≤exp(
∑

k �k�k
2)+o(1) as n→∞.

Then P(Y>0|E)→1, where E is the event
∧

�k=−1{Xk =0}.
Proof of Theorem 1.1 (For n divisible by 6). For the application in the present

article we use the probability space Gn =Pn,5 with Y counting the number of locally
rainbow balanced 3-colorings and Xk counting the number of k-cycles for fixed k≥1.
We assume from now until the very end of this proof that n is divisible by 6. We next
discuss how the four conditions of Theorem 2.1 are verified in this setting.

It is well known (e.g. see [17]) that condition (i) is satisfied by �k =4k/(2k). In (6)
and (7) we will see that condition (ii) holds for the function

�k =15−k+2(−5)−k+2(−3)−k . (2)

Substituting this function into conditions (iii) and (iv), we see that the sum is

∑
k

�k�
2
k =∑

k

(5−1)k

2k
(15−k+2(−5)−k+2(−3)−k)2

=∑
k

1

2k

((
4

225

)k

+4

(−4

45

)k

+4

(−4

75

)k

+4

(
4

9

)k

+8

(
4

15

)k

+4

(
4

25

)k
)

.

Using the identity
∑

k(1/2k)x
k = (−1/2) ln(1−x), this sum becomes

∑
k

�k�
2
k = −1

2
ln

((
221

225

)(
49

45

)4(79
75

)4(5
9

)4(11
15

)8(21
25

)4
)

= ln

(
313513

76114792
√
13 ·17

)
. (3)

To verify condition (iv), we will need the asymptotic values of the first and second
moments of Y . Later in this article we will prove that

EY ∼
√
223653

113
1

(2�n)2

(
25

24

)n

(4)

Journal of Graph Theory DOI 10.1002/jgt



RANDOM 5-REGULAR GRAPH 163

and, under the Maximum Hypothesis,

E(Y 2)∼ 22319516

76117792
√
13 ·17

1

(2�n)2

(
25

24

)n

. (5)

We compute the ratio

E(Y 2)

(EY )2
∼ 313513

76114792
√
13 ·17 ,

which matches (3), establishing condition (iv). Having verified the four conditions, we
may apply the small subgraph conditioning method to conclude P(Y>0|E)→1, where
E is the event

∧
�k=−1{Xk =0}.

To interpret the event E in the conclusion, we note that �1=−1 and for k≥2 we have

|�k | ≤ 15−2+2(5)−2+2(3)−2

< 1.

So the conclusion reads P(Y>0|X1=0)→1. Because P(X2=0) is bounded away
from 0 for large n, it follows that Y>0 a.a.s. for the simple graphs Gn,5. This proves
Theorem 1.1 provided that n is divisible by 6. �

The cases that n is 2 or 4mod6 are treated in Section 6. This is done by modifying
certain parts of the argument for n≡0(mod6) to handle a small number of precolored
vertices, and then applying an asymptotic equivalence between random graph spaces.

3. JOINT MOMENTS

The goal of this section is to compute asymptotic values of some joint moments for the
random variables which count locally rainbow balanced 3-colorings and short cycles
in random regular graphs.

On the space Pn,5, let Y be the random variable counting the number of locally
rainbow balanced 3-colorings. We begin by computing the asymptotic value of EY .

Lemma 3.1.

EY ∼
(

n

n/3,n/3,n/3

)
(5n/6)!3

|Pn,5| A(n),

where

A(n)=
(

3
√
2√

11�n
30n/3

)3

.

Proof. To compute this expected value we must count, for each of the
(

n
n/3,n/3,n/3

)
ways to assign vertices to equal-sized color classes, the number of pairings that make
the coloring locally rainbow and balanced. All these assignments are equivalent, so
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fix one of them. Because the three color classes have equal size, the number of edges
between any two color classes must be 5n/6. In our discussion, the points in a vertex
inherit the color of that vertex.

To count the pairings that make the coloring locally rainbow and balanced we proceed
in two steps. First, at each vertex v, we choose for each point in v the color of the point
it is paired with. This must be done carefully to ensure that each vertex will be adjacent
to at least two colors and that the number of edges between the color classes will be
5n/6 as required. Then, for each pair of color classes, we pair up the appropriate points
between these classes in one of (5n/6)! ways. Thus, the second step gives us a factor
of (5n/6)!3.

To determine the number of choices in the first step, we observe that each color
class produces an equivalent contribution. We fix one color class, say color 1, and
construct the ordinary generating function that counts the number of ways of choosing
the color of the neighbor of each point within the class, with the indeterminate x
marking one of the two possible colors. At each vertex, each of the five points can
be assigned a mate (i.e. the other point in its pair) of either one of the two colors,
provided that not all of the points are assigned to the same color. Thus, the contribution
of each vertex to the generating function is (x+1)5−x5−1, giving us the generating
function

((x+1)5−x5−1)n/3.

Exactly 5n/6 of these choices must be for the color marked by x , so the total number
of choices for the first step is (letting square brackets denote extraction of a coefficient)

N = [x5n/6]((x+1)5−x5−1)n/3

for each color class. Combining these results, we have

EY =
(

n

n/3,n/3,n/3

)
(5n/6)!3

|Pn,5| N 3.

Using the saddle-point method (see e.g. Section 12.1 in [11]) we will estimate N
using a contour integral along the path |z|=1. We begin by substituting z=exp(i�)
and expanding in �:

N = 1

2�i

∫
|z|=1

((z+1)5−z5−1)n/3

z5n/6
dz

= 1

2�

∫ �

−�
e−i�5n/6((ei�+1)5−ei�5−1)n/3 d�

= 1

2�
(25−2)n/3

∫ �

−�
exp

(
−45+4(5)−(5+1)21+5

24(25−2)2
n�2+O(n�3)

)
d�

= 1

2�
30n/3

∫ �

−�
exp

(
−11

72
n�2+O(n�3)

)
d�.
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For |�|≤n−2/5, the contribution to the integral is asymptotically

I = 1

2�
30n/3

∫ ∞

−∞
exp

(
−11

72
n�2
)
d�

= 1

2�
30n/3

√
72�

11n

= 3
√
2√

11�n
30n/3.

For |�|>n−2/5, the absolute value of ((ei�+1)5−ei�5−1)n/3 is

|ei�|n/3

∣∣∣∣∣
5−1∑
j=1

(
5

j

)
ei� j
∣∣∣∣∣
n/3

≤ (25−4+|ei�+1|)n/3

≤ (25−4+
√
2+2 cos(n−2/5))n/3

=
(
30− 1

4
n−4/5+O(n−8/5)

)n/3

=30n/3 exp

(
n

3
ln

(
1− 1

120
n−4/5+O(n−8/5)

))

=30n/3 exp

(
− 1

360
n1/5+O(n−3/5)

)
,

which is o(I ). Therefore the expression for I gives the correct asymptotic estimate for
N , which is

N ∼ 3
√
2√

11�n
30n/3.

Combining this with our above results, we get Lemma 3.1. �

From Lemma 3.1 it is easy to deduce the asymptotic value of EY as stated in (4).
Simply substitute |Pn,5|= (5n)!/(25n/2(5n/2)!) and apply Stirling’s formula. We omit
the calculations.

We now move closer to our goal of computing joint moments for locally rainbow
balanced 3-colorings and short cycles. For fixed k≥1, let the random variable Xk count
the number of k-cycles in Pn,5. We will actually work with rooted-oriented cycles,
which introduces a factor of 2k into the counting. It will be helpful to have the following
definition. For a rooted-oriented cycle in a colored graph, define its color type to be
the sequence of colors on its vertices. To calculate the expected value of Y Xk , we will
count, for each locally rainbow balanced 3-coloring and each rooted oriented k-cycle,
the number of pairings that contain this cycle and respect this coloring.

As before, there are
(

n
n/3,n/3,n/3

)
ways to choose the balanced 3-coloring. All are

equivalent, so fix one. To enumerate the cycles and pairings that respect this coloring,
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we will sum over all color types T . Once a color type has been chosen, each vertex of
the cycle can be placed in the pairing model by choosing a vertex of the correct color
and an ordered pair of points in that vertex to be used by the cycle. Hence, in total,
there are asymptotically (5×4×n/3)k ways to place the rooted-oriented cycle in the
pairing model. We now have

E(Y Xk)∼ 1

2k

(
n

n/3,n/3,n/3

)(
20n

3

)k 1

|Pn,5|
∑
T

f (T ),

where f (T ) is the number of pairings that respect a fixed coloring and fixed rooted-
oriented cycle of color type T and make the coloring locally rainbow.

To estimate the function f (T ), we will again fix one color class j and construct
an ordinary generating function. The generating function will count the number of
ways of choosing the color of the neighbor of each point within the class, with the
indeterminate x marking one of the two possible colors.

For j =1,2,3, let � j (T ) count the number of j-colored vertices in color type T
whose two neighbors in the cycle have different colors. Let �′

j (T ) count the number
of j-colored vertices in color type T whose two neighbors in the cycle both have the
color marked by x . Let �′′

j (T ) count the remaining j-colored vertices in T . We also
define 	 j (T )=�′

j (T )+�′′
j (T ).

For any vertex through which the cycle does not pass, the contribution to the gener-
ating function is, as before, (x+1)5−x5−1. For a cycle vertex whose neighbors in
the cycle have different colors, we can assign the neighbor colors for the remaining
points in any way, giving us (x+1)3. But for a cycle vertex whose neighbors in the
cycle have the same color, we must ensure that this vertex gets at least one neighbor
of a different color so that the coloring is locally rainbow. This gives us (x+1)3−x3

if the neighbors have the color marked by x , and (x+1)3−1 otherwise. Combining
these functions, the number of ways of choosing the neighbor of each point within
color class j is given by the coefficient of x5n/6 in the expression

((x+1)5−x5−1)n/3−� j (T )−�′
j (T )−�′′

j (T )((x+1)3)� j (T )((x+1)3−x3)�
′
j (T )

×((x+1)3−1)�
′′
j (T ).

Earlier in this section we used the saddle-point method to estimate a similar coefficient.
A simple comparison with that previous application makes it easy to see that the current
coefficient is asymptotically

30n/3−� j (T )−	 j (T )8� j (T )7	 j (T )3
√
2√

11�n
.

After the color of the neighbor of each point has been chosen, it remains to pair up
the points between each two color classes. Since the k pairs in the cycle have already
been chosen, the number of ways to do this is asymptotically

(5n/6)!3

(5n/6)k
.
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Putting �(T )=�1(T )+�2(T )+�3(T ) and 	(T )=	1(T )+	2(T )+	3(T ), we
conclude that

f (T )∼ 30n−�(T )−	(T )8�(T )7	(T )33
√
2
3

(
√
11�n)3

× (5n/6)!3

(5n/6)k

∼ A(n)
(5n/6)!3

(5n/6)k

(
8

30

)�(T )( 7

30

)	(T )

.

Letting c� = 8
30 and c	 = 7

30 , it remains to estimate

S=∑
T
c�(T )
� c	(T )

	 ,

where the sum is taken over all color types T . In other words, we need to enumerate
the color types, introducing a factor of c� for each cycle vertex whose neighbors have
different colors, and a factor of c	 for each of the remaining cycle vertices.

It is helpful to view each color type as a sequence of ordered pairs of colors: the
colors at the endpoints of each edge, taken in the order induced by the orientation of
cycle. One could consider each possible pair to be a state in a Markov chain. Number
the states as follows.

State Pair of colors

1 12
2 21
3 31
4 13
5 23
6 32

Each color type on k vertices then corresponds to a sequence of k+1 states where the
first state equals the last state. For example, consider the color type with color sequence
1,2,3,2. It corresponds to the state sequence 1,5,6,2,1. The transition from state 1 to
state 5 represents to a vertex (of color 2) whose neighbors in the cycle have different
colors (1 and 3); hence it should introduce a factor of c�. Thus, in the matrix below,
the entry at position (1,5) is c�. In this way we can construct a matrix that accounts for
all possible transitions, and use it to obtain the desired enumeration. The above sum S
equals Tr(Mk), where Tr denotes the trace, and M is the “transition” matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c	 0 0 c� 0

c	 0 0 c� 0 0

c� 0 0 c	 0 0

0 0 c	 0 0 c�

0 0 c� 0 0 c	
0 c� 0 0 c	 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The eigenvalues of this matrix are c	+c�, −c	+c�, − 1
2c�+ 1

2

√
−3c2�+4c2	, and

− 1
2c�− 1

2

√
−3c2�+4c2	. The last two eigenvalues have multiplicity 2. Thus

S = (c	+c�)
k+(−c	+c�)

k

+2(− 1
2c�+ 1

2

√
−3c2�+4c2	)

k

+2(− 1
2c�− 1

2

√
−3c2�+4c2	)

k .

Since c	+c� = 7
30 + 8

30 = 1
2 , we may write

S= 1

2k
(1+�k),

where

�k =15−k+2(−5)−k+2(−3)−k (6)

which is (2).
We conclude that

E(Y Xk)∼ 1

2k

(
n

n/3,n/3,n/3

)(
20n

3

)k 1

|Pn,5| A(n)
(5n/6)!3

(5n/6)k
S,

and hence, combining this result with the previous lemma,

E(Y Xk)

EY
∼ 1

2k
8k S

∼ 4k

2k
(1+�k).

The above argument is easily extended to work for higher moments, by counting the
pairings that contain a given locally rainbow balanced 3-coloring and set of oriented
cycles of the appropriate lengths. The contribution from cases where the cycles intersect
turn out to be negligible, for the following reasons. Suppose that the cycles form a
subgraph H with 
 vertices and � edges, and the total length of cycles is 
0. Then
in the case of disjoint cycles, 
=�=
0. A factor of �(n
0−
) is lost if there is a
reduction in the number of vertices of H , compared with the disjoint case, because of
the reduced number of ways of placing the cycles on the colored vertices. Similarly, a
factor �(n
0−�) is gained in the function f for the reduction in the number of edges of
H , because of the corresponding increase in the number of points to be paired up at the
end. Thus, the contribution from such an arrangement of cycles to the quantity being
estimated is of the order of n
−� times that of the contribution from disjoint cycles.
In all nondisjoint cases, H has more edges than vertices, since its minimum degree is
at least 2, and it has at least one vertex of degree at least 3. There are only finitely
many isomorphism types of H to consider, so the contribution from the case of disjoint
cycles is of the order of n times the rest. The significant terms in this case decompose
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into a product of the factors corresponding to the individual cycles. Consequently, we
obtain the following result, as required for (1) in accordance with (2):

E(Y [X1]m1 · · · [X j ]m j )

EY
∼

j∏
k=1

(
4k

2k
(1+�k)

)mk

. (7)

4. EXACT EXPRESSION FOR THE SECOND MOMENT

Given a pairing P ∈Pn,5, let RP be the class of locally rainbow balanced 3-colorings
of P . Let Y be the random variable that counts the number of locally rainbow balanced
3-colorings in Pn,5. Then, it is easily shown that

E(Y 2)= |{(P,C1,C2)|P ∈Pn,5,C1,C2∈RP}|
|Pn,5| . (8)

Below we assume we are given a pairing P and two locally rainbow balanced
3-colorings C1 and C2 on P . Recall that a pairing is a perfect matching on 5n points
which are organized into n cells of five points each. For i, j =0,1,2, let V i, j be the
set of cells colored with i and j with respect to colorings C1 and C2, respectively. Let
ni, j =|V i, j |/n and let Ei, j be the set of points in cells of V i, j . Since C1 and C2 are
balanced, we have

∑
i
ni, j =1/3, ∀ j,

∑
j
ni, j =1/3, ∀i, (9)

and therefore
∑

i, j n
i, j =1. Also, for r, t ∈{−1,1}, let Ei, j

r,t be the set of points in

Ei, j which are matched with points in Ei+r, j+t . (Here and throughout the article, the
arithmetic in the indices is modulo 3.) Let mi, j

r,t =|Ei, j
r,t |/n. For fixed i and j , it is

convenient to think of the four variables (mi, j
r,t )r,t∈{−1,1} as the entries of a 2×2 matrix.

The rows and columns are indexed by −1 and 1, with −1 for the first row or column.
We have that

∑
r,t m

i, j
r,t =5ni, j , and therefore

∑
i, j,r,t m

i, j
r,t =5. And, since matching sets

of points should have equal cardinalities, we also have that

mi, j
r,t =mi+r, j+t

−r,−t . (10)

Let v be a cell in V i, j . The spectrum s of cell v is a 2×2 nonnegative integer matrix.
The rows and columns are indexed by −1 and 1, with −1 for the first row or column.
Cell v is said to have spectrum s if sr,t out of its five points, r, t ∈{−1,1}, are matched
to points in cells of V i+r, j+t . The sum of the entries of s is 5 because of the 5-regularity
of the graph. Each row and column sum is at least 1 because both C1 and C2 are locally
rainbow. We let S denote the set of possible spectra. One can check that |S|=36.
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For each i, j ∈Z3 and spectrum s∈S, we denote by di, js the scaled (with respect
to n) number of cells which belong to V i, j and have spectrum s. We have

mi, j = ∑
s∈S

di, js s, (11)

ni, j = ∑
s∈S

di, js , (12)

and therefore
∑

i, j,s d
i, j
s =1.

Throughout this paper we refer to the set of the nine numbers ni, j as the set of the
overlap variables. We also refer to the set of the 36 numbers mi, j

r,t as the set of the

matching variables. We refer to the 9×36 numbers di, js as the spectral variables.
We consider the polytope

D =
{
(di, js )i, j∈Z3,s∈S ∈R324 :di, js ≥0 ∀i, j,s, ∑

j,s
di, js = 1

3
∀i,

∑
i,s

di, js = 1

3
∀ j,

∑
s
sr,t d

i, j
s =∑

s
s−r,−t d

i+r, j+t
s ∀i, j,r, t

}
,

and the discrete subset

I=D∩
(
1

n
Z324

)
.

In view of (9)–(12), note that I contains the set of sequences (di, js )i, j∈Z3,s∈S that
correspond to some pair of locally rainbow balanced 3-colorings. Given a fixed sequence

(di, js )∈I, let us denote by
(

n
(di, js n)

)
the multinomial coefficient that counts the number

of ways to distribute the n vertices into classes of cardinality di, js n for all possible

values of i, j and s. Define mi, j by (11). Also let
(
5
s

)
stand for 5!/

∏
r,t sr,t !.

Let N =|{(P,C1,C2)|P ∈Pn,5,C1,C2∈RP }|. By counting the ways to assign
spectra to cells, and then colors to points in cells given their spectra, and finally the
number of matchings between color classes, we have

N =∑
I

⎧⎨
⎩
(

n

(di, js n)

)⎛⎝∏
i, j,s

(
5

s

)di, js n
⎞
⎠( ∏

i, j,r,t
((mi, j

r,t n)!)
1/2

)⎫⎬
⎭ . (13)

Dividing this by |Pn,5|= (5n)!/(25n/2(5n/2)!), we obtain

E(Y 2)= 25n/2(5n/2)!

(5n)!

∑
I

⎧⎨
⎩
(

n

(di, js n)

)⎛⎝∏
i, j,s

(
5

s

)di, js n
⎞
⎠( ∏

i, j,r,t
((mi, j

r,t n)!)
1/2

)⎫⎬
⎭ . (14)
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5. ASYMPTOTIC VALUE OF E(Y2)

In this section, we complete the proof of the main theorem given in Section 2 by
showing that Equation (5) holds, assuming the Maximum Hypothesis.

For sake of simplicity, we will often write d to denote the tuple (di, js )i, j∈Z3,s∈S . Let
us consider the function

F̂(d)=

⎛
⎜⎜⎝∏

i, j,s

⎛
⎝
(
5
s

)
di, js

⎞
⎠

di, js
⎞
⎟⎟⎠
( ∏
i, j,r,t

(mi, j
r,t )

(1/2)mi, j
r,t

)

defined in D, where mi, j
r,t denotes

∑
s sr,t d

i, j
s as before. Throughout this article we

observe the conventions that 00=1 and 0 ln 0=0.
We define

f (d)= ln F̂(d)= ∑
i, j,s

di, js

(
ln

(
5

s

)
− ln di, js

)
+ ∑

i, j,r,t

1

2
mi, j

r,t ln m
i, j
r,t ,

g(d)=
∏

i, j,r,t (m
i, j
r,t )

1/4∏
i, j,s(d

i, j
s )1/2

, h(n)=2−1/2(2�n)−305/25−5n/2. (15)

Lemma 5.1. The second moment satisfies

E(Y 2)=h(n)
∑
d∈I

q(n,d)e f (d)n, (16)

where, as n→∞ and uniformly over all d, q(n,d)=O(n162) and q(n,d)∼g(d)
provided all di, js and mi, j

r,t are bounded away from 0.

Proof. We apply Stirling’s formula and perform simple manipulations to (14) to
obtain

E(Y 2)= 25n/2(5n/2)!n!

(5n)!

∑
d∈I

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝∏

i, j,s

(
5
s

)di, js n

(di, js n)!

⎞
⎟⎟⎠
( ∏
i, j,r,t

((mi, j
r,t n)!)

1/2

)⎫⎪⎪⎬
⎪⎪⎭

∼ √
�n5−5n/2 ∑

d∈I

⎧⎪⎪⎨
⎪⎪⎩

(n/e)n

(n/e)5n/2

⎛
⎜⎜⎝∏

i, j,s

(
5
s

)di, js n

(di, js n)!

⎞
⎟⎟⎠
( ∏
i, j,r,t

((mi, j
r,t n)!)

1/2

)⎫⎪⎪⎬
⎪⎪⎭

= h(n)
∑
d∈I

⎧⎪⎪⎨
⎪⎪⎩
(2�n)153(n/e)n

(n/e)5n/2

⎛
⎜⎜⎝∏
i, j,s

(
5
s

)di, js n

(di, js n)!

⎞
⎟⎟⎠
( ∏
i, j,r,t

((mi, j
r,t n)!)

1/2

)⎫⎪⎪⎬
⎪⎪⎭ . (17)
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Now we need to uniformly approximate the factorial of several numbers not necessarily
growing large with n. Stirling’s formula also implies k!=√

2��(k)(k/e)k for all k≥0,
where �(k)∼k if k→∞, and �(k)=�(k+1) for all k≥0. (In particular, � is nonzero.)
So we have⎛
⎜⎜⎝∏

i, j,s

(
5
s

)di, js n

(di, js n)!

⎞
⎟⎟⎠
( ∏
i, j,r,t

((mi, j
r,t n)!)

1/2

)

=

⎛
⎜⎜⎜⎜⎝
∏
i, j,s

(
5
s

)di, js n

√
2��(di, js n)

(
di, js n
e

)di, js n

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝ ∏

i, j,r,t

⎛
⎜⎝√2��(mi, j

r,t n)

(
mi, j

r,t n

e

)mi, j
r,t n
⎞
⎟⎠
⎞
⎟⎠

1/2

= (n/e)5n/2

(2�n)153(n/e)n

∏
i, j,r,t (�(nm

i, j
r,t )

1/4n−1/4)∏
i, j,s(�(nd

i, j
s )1/2n−1/2)

×

⎛
⎜⎜⎝∏

i, j,s

⎛
⎝
(
5
s

)
di, js

⎞
⎠

di, js n
⎞
⎟⎟⎠
( ∏
i, j,r,t

(mi, j
r,t )

mi, j
r,t n/2

)

= (n/e)5n/2

(2�n)153(n/e)n
q(n,d)e f (d)n

for a function q of the type in the statement of the lemma. Combining this with (17)
yields the statement of the lemma. �

Notice that the number of terms in (16) is at most (n+1)324, since each coordinate
of any d∈I must be a rational in (1/n)Z between 0 and 1. We consider the maximum
base of the exponential part of the terms in (16), taken over all points in the polytope D:

M=max
d∈D

{5−5/2e f (d)}.

This is well defined, due to the compactness of the domain and the continuity of the
expression. Note that the exponential behavior of the second moment is governed by
M since the number of terms in the sum in (16) is polynomial with respect to n.
In the next subsection we determine the value of M under the Maximum Hypothesis.

In the following subsection, based on that fact and using a Laplace-type integration
argument, we compute the sub-exponential factors in the asymptotic expression of the
second moment, and obtain (5).

A. Computing M

We will maximize F̂ in to two phases. In the first one, we will maximize F̂ assuming
the matching variables mi, j

r,t are fixed constants. These constants must be compatible

Journal of Graph Theory DOI 10.1002/jgt



RANDOM 5-REGULAR GRAPH 173

with the polytope D over which F̂ is defined, so we define M to be the set of vectors
m of 2×2 matrices (mi, j )i, j∈Z3 such that (11) holds for some d∈D.

We will often consider variables di, js andmi, j
r,t for fixed i, j ∈Z3. To simplify notation,

we delete the indices i and j when they are fixed throughout the formula. We also
define, for any 0<c∈R,

D′(c)=
{
(ds)s∈S ∈R36 :ds ≥0 ∀s, ∑

s
ds =c

}
,

and letM′(c) be the set of 2×2 matricesm such that (11) holds for some (ds)s∈S ∈D′(c)
(after deleting superscripts i and j). We will use d to denote both points in D and
D′(c). The meaning will be clear from the context.

In order to give an alternative characterization of the matching variables mi, j
r,t ,

we consider the following equations for all ordered pairs (i, j), i, j ∈Z3, and all
r, t ∈{−1,1}:

mi, j
r,t ≥ 0,

mi, j
r,t +mi, j

r,−t ≤ 4(mi, j
−r,t +mi, j

−r,−t ),

mi, j
r,t +mi, j

−r,t ≤ 4(mi, j
r,−t +mi, j

−r,−t ).

(18)

That is, for all such i and j , the entries of mi, j are nonnegative, neither row sum is
greater than 4 times the other, and neither column sum is greater than 4 times the other.

Lemma 5.2. Let c>0∈R. The set M′(c) can be alternatively described as the poly-
tope containing all matrices m such that∑

r,t
mr,t =5c, (19)

and the constraints in (18) hold. Similarly, M is the polytope containing all vectors
m of matrices mi, j such that∑

i,r,t
mi, j

r,t =5/3,
∑
j,r,t

mi, j
r,t =5/3, (20)

and the constraints in (10), (18) hold.

Proof. Let A be the set of matrices m satisfying (18) and (19).
M′(c)⊆A :
Let m be a matrix in M′(c). Then, for some d∈D′(c), we have∑

r,t
mr,t =

∑
r,t

∑
s
sr,t ds =

∑
s

∑
r,t

sr,t ds =
∑
s
5ds =5c,

and (19) is satisfied. Moreover, we observe that for any spectrum s, we have

sr,t ≥0, sr,t +sr,−t ≤4(s−r,t +s−r,−t ) and sr,t +s−r,t ≤4(sr,−t +s−r,−t ).

Then m must satisfy the constraints in (18), since it is a positive linear combination of
spectra, and m∈A.
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A⊆M′(c) :
A is a polytope and so it is the convex hull of its vertices:[

c 0

0 4c

]
,

[
0 c

c 3c

]
,

[
0 c

4c 0

]
,

[
c 0

3c c

]
,

[
0 4c

c 0

]
,

[
c 3c

0 c

]
,

[
4c 0

0 c

]
,

[
3c c

c 0

]
.

Each of these vertices v has the shape of some spectrum s times c. By making ds =c
and ds′ =0 for s′ �=s, we show that v∈M′(c).

Moreover, we observe that M′(c) is a convex set, since it is the image of D′(c)
under a linear mapping. Then M′(c) must contain the convex hull of the vertices of
A, and thus A.

The second statement in the lemma follows easily from this and from the definition
of M. �

For any fixed m∈M, let F̃(m) be the maximum of F̂ restricted to d∈D such that
(11) holds. To express F̃(m) in terms of m, we will use the matrix function

�

[
x y

z w

]
= ∑

s∈S

(
5

s

)
xs−1,−1 ys−1,1zs1,−1ws1,1

= (x+ y+z+w)5−(x+ y)5−(x+z)5

−(y+w)5−(z+w)5+x5+ y5+z5+w5, (21)

and, for each of the nine possible pairs (i, j), i, j ∈Z3, consider the 4×4 system

�i, jr,t
���i, j

��i, jr,t

=mi, j
r,t , r, t=−1,1 (22)

in the matrix variables �i, j .

Lemma 5.3. For any m in the interior of M, each of the nine systems in (22) has
a unique positive solution. Moreover, in terms of the solutions of these systems,

F̃(m)= ∏
i, j,r,t

(
(mi, j

r,t )
1/2

�i, jr,t

)mi, j
r,t

,

and the equation remains valid for m on the boundary of M if the expression on the
right is extended by continuity.

Proof. We assume that m is a fixed vector in the interior of M. In order to compute
F̃(m), it is sufficient to maximize the function F̂(d) for nonnegative di, js subject
to (11), since the other constraints are trivially satisfied. We observe that the factor
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∏
(mi, j

r,t )
(1/2)mi, j

r,t is constant, and that variables di, js with different pairs of indices (i, j)

appear in different factors of F̂ and also in different constraints. Thus, it is sufficient
to maximize, separately for each i, j ∈Z3, the function

Gi, j = ∏
s∈S

⎛
⎝
(
5
s

)
di, js

⎞
⎠

di, js

(23)

over nonnegative di, js subject to the matrix constraint (11). From now on in this proof,
we fix i and j and thus omit superscripts as discussed above.

Let R be the polytope containing all d= (ds)s∈S such that ds is nonnegative for
all s∈S, and satisfying (11). The fact that m is in the interior of M implies that R
contains points with all the ds strictly positive. In fact, the interior of R consists of all
those points in R with this property.

For any point d0 on the boundary of R we select a segment joining d0 with some
interior point. We observe that, in moving along the segment from the interior of R
toward d0, the directional derivative of ln G contains the sum of some bounded terms
plus some terms of the type ln ds with positive coefficient, which become large as we
approach d0. Hence, G does not maximize at the boundary of R.

We temporarily relax constraint (11) and observe that the Hessian of ln G is nega-
tive definite for any tuple of positive ds . Hence ln G is strictly concave in that domain
and also in the interior of R, since linear constraints do not affect concavity. Thus, the
maximum of G is unique and occurs in the only stationary point of ln G in the interior
of R.

We are now in a good position to apply the Lagrange multipliers method to look for
stationary points of ln G. We consider

ln G=∑
s
ds

(
ln

(
5
s

)
− ln ds

)
(24)

for positive ds subject to the four constraints:

Lr,t =
∑
s
sr,t ds−mr,t =0, r, t ∈{−1,1}. (25)

For each one of the four constraints Lr,t in (25) a Lagrange multiplier is �r,t introduced.
Then we obtain the following equations:

ln

(
5
s

)
−1− ln ds =

∑
r,t

�r,t sr,t ∀s∈S (26)

which, together with constraints (25) have a unique solution when d is the only
stationary point of ln G. Let us define �r,t =exp(−�r,t − 1

5 ). After exponentiating (26),
and noting that the sum of the sr,t is 5, we have

ds =
(
5
s

)∏
r,t
(�r,t )

sr,t ∀s∈S, (27)
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and combining this with (25) gives

mr,t =∑
s

(
sr,t

(
5
s

) ∏
r ′,t ′

(�r ′,t ′)
sr ′,t ′

)
, r, t ∈{−1,1}

= �r,t
�

��r,t

∑
s

((
5
s

) ∏
r ′,t ′

(�r ′,t ′)
sr ′,t ′

)
, r, t ∈{−1,1}. (28)

By construction, this system has a unique positive solution, and (27) gives the maximizer
of G in terms of this solution. From (21), we observe that (28) is exactly the same
system as the one in (22).

Now the maximum of G can be obtained by plugging (27) into (23), resulting in

max
d∈R

G(d)=∏
r,t

(
1

�r,t

)mr,t

, (29)

and the required expression for F̃(m) follows by elementary computations. �

Let us now define for any d∈D′( 19 ) the auxiliary function

Ĝ(d)=

⎛
⎜⎝∏

s

⎛
⎝
(
5
s

)
ds

⎞
⎠

ds
⎞
⎟⎠(∏

r,t
(mr,t )

(1/2)mr,t

)
, (30)

where mr,t =
∑

s sr,t ds . (Recall that 0
0=1.)

Lemma 5.4. The function Ĝ takes its maximum on D′( 19 ) in the interior of D′( 19 ).

Proof. It is easy to see that the boundary of D′( 19 ) comprises the points where for at
least one s, ds=0 and

∑
s ds= 1

9 . We observe that it is sufficient to prove the statement

for ln Ĝ. The continuity of ln Ĝ at the boundary points of D′( 19 ) follows from the fact
that

lim
x→0

xx =1.

After proving ln Ĝ is continuous at the boundary of D′( 19 ), take any d on the boundary.
Here ds0=0 for some s0. Then ds1>0 for some s1 since the sum of entries of d is 1

9 .
At any point d such that ds>0,

� ln Ĝ

�ds
= ln

(
5

s

)
−1− ln ds+ 5

2
+∑

r,t

1
2 sr,t ln mr,t . (31)

(Note: if ds>0 then all the mr,t corresponding to a nonzero sr,t are also necessarily
nonzero.)

As a first case, suppose none of the mr,t is zero at d. Then at a point d+�Es0 −�Es1

(here Es denotes the vector with 1 in its s coordinate and zero elsewhere) � ln Ĝ/�ds0 −
� ln Ĝ/�ds1 →∞ as �→0. (Since the first partial goes to ∞ and the second is bounded.)
Hence there is no maximum at d.

Journal of Graph Theory DOI 10.1002/jgt



RANDOM 5-REGULAR GRAPH 177

Next suppose precisely one mr,t is zero at d (fix such values of r and t). Pick an
s such that sr,t =1. Then ds =0 at d. So rename s as s0 and use the above argument,
choosing again any s1 with ds1>0. Now the unbounded terms in � ln Ĝ/�ds0 are
− ln ds0 + 1

2 (s0)r,t ln mr,t and we have mr,t ≥ds0 because (s0)r,t =1. It follows that there
is no maximum at d.

For two different mr,t equal to zero at d, pick the spectrum s0 to have 1 in one of
the corresponding positions, and zero in the other. Then the same argument as above
gives the result.

So no local maximum occurs on the boundary. The result follows. �

Lemma 5.5. The function Ĝ has a unique maximum in D′( 19 ) at the point where all

the ds are equal to
(
5
s

)
/8,100. The function value at the maximum is (55/225/24)1/9.

Proof. We note that (11) maps the interior of D′( 19 ) into the interior of M′( 19 ). As
a result and in view of Lemma 5.4, the maximum of Ĝ, under mapping (11), does not
occur on the boundary of M′( 19 ).

Assume that m is a fixed matrix in the interior of M′( 19 ). We first maximize Ĝ in
D′( 19 ) subject to the matrix constraint (11). Denote this maximum by G̃(m). By arguing
as in the proof of Lemma 5.3, we have

G̃(m)=∏
r,t

(
(mr,t )1/2

�r,t

)mr,t

,

where the �r,t are the unique positive solution of the system in (22) after deleting
superscripts i and j . Moreover, the maximizer is given in terms of this solution by (27).

We now maximize G̃ in the interior of M′( 19 ), by applying the Lagrange multiplier
method to

ln G̃(m)=∑
r,t

mr,t

(
1

2
ln mr,t − ln �r,t

)
,

subject to

∑
r,t

mr,t = 5

9
.

We need some preliminary computations. By adding the four equations in (22) and
taking into account (21), we have

5�(�)=∑
r,t

mr,t .

In view of this, we have for all r, t ∈{−1,1}
∑

r ′,t ′∈{−1,1}
mr ′,t ′

� ln �r ′,t ′

�mr,t
= ∑

r ′,t ′∈{−1,1}

mr ′,t ′

�r ′,t ′

��r ′,t ′

�mr,t
= ∑

r ′,t ′∈{−1,1}

��(�)

��r ′,t ′

��r ′,t ′

�mr,t

= ��(�)

�mr,t
= 1

5
. (32)
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This allows us to compute

� ln G̃(m)

�mr,t
= 1

2
ln mr,t + 1

2
− ln �r,t −

∑
r ′,t ′

mr ′,t ′
� ln �r ′,t ′

�mr,t

= 1

2
ln mr,t − ln �r,t +

3

10
, (33)

and obtain the equations

1
2 ln mr,t − ln �r,t + 3

10 =� ∀r, t ∈{−1,1}, (34)

where � is the Lagrange multiplier introduced by the single constraint. After exponen-
tiating (34), and defining �′ =exp(�− 3

10 ), we can write
√
mr,t

�r,t
=�′ ∀r, t ∈{−1,1}. (35)

We relabel the entries of the matrices m and � as[
m1 m2

m3 m4

]
,

[
�1 �2

�3 �4

]
.

Combining (35) and (22) and after some manipulations, we get

�i
��

�� j
−� j

��

��i
=0, ∀i, j ∈{1, . . . ,4}.

We can factorize the following equation:

�1
��

��4
−�4

��

��1
=0,

and get

(�1−�4)P=0,

where

P = 120�1�2�3�4+20�1
3�2+20�1

3�3+25�1
3�4+30�1

2�2
2

+30�1
2�3

2+35�1
2�4

2+5�4
4+20�1�2

3+20�1�3
3

+25�1�4
3+5�1

4+60�1
2�2�3+80�1

2�2�4+80�1
2�3�4

+60�2
2�3�4+60�1�2

2�3+90�1�2
2�4+60�1�2�3

2

+80�1�2�4
2+90�1�3

2�4+80�1�3�4
2+60�2�3

2�4

+60�2�3�4
2+20�2

3�3+20�2
3�4+30�2

2�3
2+30�2

2�4
2

+20�2�3
3+20�2�4

3+20�3
3�4+30�3

2�4
2+20�3�4

3,
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which is strictly positive, so �1=�4. Similarly, we can factorize

�2
��

��3
−�3

��

��2
=0,

and get

(�2−�3)Q=0,

where

Q = 120�1�2�3�4+20�1
3�2+20�1

3�3+20�1
3�4+30�1

2�2
2

+30�1
2�3

2+30�1
2�4

2+5�3
4+5�2

4+20�1�2
3+20�1�3

3

+20�1�4
3+90�1

2�2�3+60�1
2�2�4+60�1

2�3�4

+80�2
2�3�4+80�1�2

2�3+60�1�2
2�4+80�1�2�3

2

+60�1�2�4
2+60�1�3

2�4+60�1�3�4
2+80�2�3

2�4

+90�2�3�4
2+25�2

3�3+20�2
3�4+35�2

2�3
2+30�2

2�4
2

+25�2�3
3+20�2�4

3+20�3
3�4+30�3

2�4
2+20�3�4

3,

which is also strictly positive, so �2=�3. Finally, we substitute �4 by �1 and �3 by
�2 in

�1
��

��2
−�2

��

��1
=0,

and then factorize it to obtain

(�1−�2)R=0,

where

R=70�1
4+275�1

3�2+415�1
2�2

2+275�1�2
3+70�2

4,

which is again strictly positive, so �1=�2. Hence, all the �i are equal (and all the mi
are equal).

Since the mi are equal and sum to 5
9 , each must equal 5

36 . Substituting this value
into any of Equations (22), and remembering that the �i are equal, gives each �i =
2−2/53−4/55−2/5. This shows that the Lagrange multiplier problem has a unique solu-
tion. This solution must correspond to the unique stationary point of G̃ in the interior
of M′( 19 ), which must then be a maximum.

Finally, (27) gives the maximizer of Ĝ in D′( 19 ) when the mr,t (and the �r,t ) are

fixed to be equal. The maximum value of Ĝ is computed from its definition. �
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Now we recall the definition of the nine overlap variables from Section 4. We observe
that (12) maps D into a polytope of dimension 4. The vectors (ni, j ) in this polytope
can be expressed in terms of four variables by

n0,2 = 1/3−n0,0−n0,1, n1,2=1/3−n1,0−n1,1, n2,0=1/3−n0,0−n1,0,

n2,1 = 1/3−n0,1−n1,1, n2,2=n0,0+n0,1+n1,0+n1,1−1/3, (36)

where the variables n0,0, n0,1, n1,0 and n1,0 take arbitrary nonnegative real values such
that

n0,0+n0,1≤ 1
3 , n1,0+n1,1≤ 1

3 , n0,0+n1,0≤ 1
3 , n0,1+n1,1≤ 1

3 ,

n0,0+n0,1+n1,0+n1,1≥ 1
3 . (37)

We are now in a good position to define the function F used in the statement
of the Maximum Hypothesis. We first define the domain of F . This is the set of
all nonnegative real vectors n= (n0,0,n0,1,n1,0,n1,1) satisfying (37). For each n in
the domain of F , we compute the nine overlap variables from (36) and define F(n)
to be the maximum of F̂(d) over D subject to the constraints in (12). This defi-
nition of F is repeated in Section 7, which also contains an alternative equivalent
definition.

Let b= (bi, js )s∈S,i, j∈Z3 be the point in D where bi, js =
(
5
s

)
/8,100 for all i, j,s.

Now we return to our main function f , which was defined in (15).

Lemma 5.6. Under the Maximum Hypothesis, the function f has a unique maximizer
in D at b. Moreover, M :=maxd∈D{5−5/2e f (d)}= 25

24 .

Proof. Recall that f = ln F̂ . The Maximum Hypothesis implies that any maximizer
of F̂ on D must satisfy

∑
s∈S d

i, j
s = 1

9 , for all i, j ∈Z3. Let us momentarily relax the
constraints in (10), and maximize each factor

Ĝi, j (d)=

⎛
⎜⎜⎝∏

s

⎛
⎝
(
5
s

)
di, js

⎞
⎠

di, js
⎞
⎟⎟⎠
(∏
r,t
(mi, j

r,t )
(1/2)mi, j

r,t

)
,

separately inD′( 19 ). In view of Lemma 5.5, b is the unique maximizer and the maximum
value of each factor is (55/225/24)1/9. We observe that the constraints in (10) are also
satisfied by b. Therefore b is the unique maximizer of F̂ and the maximum function
value is ((55/225/24)1/9)9=55/225/24. �

B. Subexponential Factors

Here we complete the computation of the asymptotic expression of E(Y 2) under the
Maximum Hypothesis by using a standard Laplace-type integration technique.
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First we need the following result, whose proof we omit

Lemma 5.7. The following system of 24 equations in the variables di, js has rank 23:∑
s
st1d

i, j
s −∑

s
s−t
−1d

i+1, j+t
s =0 ∀i, j, t, ∑

j,s
di, js =1/3 ∀i, ∑

i,s
di, js =1/3 ∀ j.

Moreover, after relabelling the variables as d1, . . . ,d324, the solutions can be
expressed by

d1, . . . ,d301 free,

dk = Lk(d1, . . . ,d301, 1
6 ), k=302, . . . ,324,

where Lk are linear functions with coefficients in Z.

Hereinafter, we relabel di, js as d1, . . . ,d324 in the sense of Lemma 5.7. The bi, js are

also relabelled as b1, . . . ,b324 accordingly. (Recall that b
i, j
s was defined as

(
5
s

)
/8,100.)

For a point d= (d1, . . . ,d324)∈D, the first 301 coordinates will be often denoted by
d̃= (d1, . . . ,d301) for simplicity.

Let �>0 be fixed but small enough. We consider the cube of side 2� centered on b̃

Q̃={(d1, . . . ,d301)∈R301 :dk ∈ [bk−�,bk+�], ∀k}
and the discrete subset

J̃ =Q̃∩
(
1

n
Z301

)
.

Let us define their extension to higher dimensions:

Q= {(d1, . . . ,d324)∈R324 : (d1, . . . ,d301)∈Q̃,

dk = Lk(d1, . . . ,d301, 1
6 ), ∀k=302, . . . ,324},

where the Lk’s are as in Lemma 5.7, and

J =Q∩
(
1

n
Z324

)
.

Note that b is an interior point of D, and that for each k the function Lk(·, 1
6 ) is

continuous. Then, if � is chosen small enough, we can ensure that for some �>0

∀d∈Q, dk>� and |dk−bk |<�, k=1, . . . ,324, (38)

and hence Q⊂D. Moreover, since n is always divisible by 6, for each k the function
Lk(·, 1

6 ) maps points from (1/n)Z301 into (1/n)Z, and so J ⊂I.
Now recalling the definitions of f , g and h in (15), we define for any (d1, . . . ,d301)∈Q̃
f̃ (d1, . . . ,d301)= f (d1, . . . ,d324)

g̃(d1, . . . ,d301)=g(d1, . . . ,d324)
where dk = Lk(d1, . . . ,d301, 1

6 ) ∀k=302, . . . ,324.
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From Lemma 5.6 and by straightforward computations we obtain the following:

Lemma 5.8. The following statements hold:

• Under the Maximum Hypothesis, f has a unique maximum in D at b.
• Under the Maximum Hypothesis, f̃ has a unique maximum in Q̃ at b̃, with e f (b)=
e f̃ (b̃)= 25

245
5/2≈58.2309.

• The Hessian H̃ of f̃ at b̃ is negative definite, and det H̃ =−2175310785310712

111413 ·17794.
• g̃(b̃)=29035585171 �=0.
• Both f̃ and g̃ are of class C∞ in Q̃.

We compute the contribution to E(Y 2) of the terms around b and get the following.

Lemma 5.9. Under the Maximum Hypothesis,

∑
d∈J

q(n,d)e f (d)n ∼ (2�n)301/2√
|det H̃ |

g̃(b̃)en f̃ (b̃)= 23319516(2�n)301/2

76117792
√
213 ·17

(
25

24

)n

55n/2.

Proof. From (38), we see that for all d∈J ⊂Q we must have dk>�∀k. Thus, by
their definition, all the mi, j

r,t are bounded away from 0, q(n,d)∼g(d) and we can write

∑
d∈J

q(n,d)e f (d)n ∼∑
J

g(d)en f (d)=∑
J̃

g̃(d̃)en f̃ (d̃). (39)

We note that both f̃ and g̃ and its partial derivatives up to any fixed order are
uniformly bounded in the compact set Q̃. Then, by repeated application of the Euler–
Maclaurin summation formula (see [1, p. 806]), we have asymptotically as n grows
large

∑
J̃

g̃(d̃)en f̃ (d̃)∼n301
∫
Q̃
g̃(x̃)en f̃ (x̃) dx̃ . (40)

We observe from Lemma 5.8 that we are in good condition to apply Laplace’s method
as developed in the multivariate case by Wong [16, Theorem IX.5.3]. We obtain∫

Q̃
g̃(x̃)en f̃ (x̃) dx̃∼ 1√

|det H̃ |

(
2�

n

)301/2

g̃(b̃)en f̃ (b̃). (41)

The result follows from (39)–(41) and Lemma 5.8. �

Now we deal with the remaining terms of the sum.

Lemma 5.10. Under the Maximum Hypothesis, there exists some positive real
�<e f (b) s.t.

∑
I\J q(n,d)e f (d)n =o(�n).

Proof. Let B be the topological closure of D\Q. We recall from Lemma 5.8 that
f has a unique maximum in D at point b /∈ B. Then, since B is a compact set and
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f is continuous, there must be some real 	< f (b) such that f (x̄)≤	 ∀x̄ ∈ B. Now
we observe that all terms in the sum

∑
I\J q(n,d)e f (d)n can be uniformly bounded

by Cn162e	n , for some fixed constant C . Note furthermore that there is a polynomial
number of terms (at most (n+1)324) in the sum. Hence, the result holds by taking for
instance �= (e	+e f (b))/2. �

From Lemmata 5.9 and 5.10,

∑
I
g(d)e f (d)n ∼ 23319516(2�n)301/2

76117792
√
213 ·17

(
25

24

)n

55n/2

and finally, from this and Lemma 5.1, we conclude the following.

Theorem 5.11. Under the maximum hypothesis,

E(Y 2)∼ 22319516

76117792
√
13 ·17

1

(2�n)2

(
25

24

)n

,

which is (5).

6. . . . AND FOR n NOT DIVISIBLE BY 6

Since 5-regular graphs have an even number of vertices, we only need to consider n≡2
or 4(mod6).

One possibility is to rework the whole argument of this paper but with slightly
unbalanced colorings. Instead, the asymmetry in the argument can be somewhat reduced
by using an argument relating different models of random regular graphs. We first treat
the case n≡0(mod6) in more depth, and prove the following.

Theorem 6.1. Fix nonnegative integers j∗12, j∗23 and j∗13 and set j∗ = j∗12+ j∗23+ j∗13.
Consider the 5-regular graphs with n≡0(mod6) vertices and a distinguished ordered
set of j∗ edges, no two being incident with the same vertex. Let G be chosen uniformly
at random from such structures. Under the Maximum Hypothesis, G a.a.s. has a
3-coloring in which the first j∗12 distinguished edges have end vertices colored 1 and 2,
the next j∗23 have end vertices colored 2 and 3, and the rest have end vertices colored
1 and 3.

Proof. Consider the probability space �n with uniform probability distribution,
and whose underlying set consists of pairings in Pn,5 with an ordered set J of j∗
distinguished pairs of points, such that no two pairs in J are incident with the same
vertex. Let Ŷ denote the number of locally rainbow balanced 3-colorings of a pairing
containing J , in which the distinguished pairs join vertices of the preassigned colors.
We will show that

EŶ ∼3− j∗EY, (42)
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that (7) holds with Y replaced by Ŷ (and no other adjustment), and that under the
Maximum Hypothesis,

E(Ŷ 2)∼9− j∗E(Y 2). (43)

The theorem then follows immediately by the argument in the last few sentences of
the proof of Theorem 1.1.

To show (42), we apply the same method as in the proof of Theorem 1.1. First,
rework the proof of Lemma 3.1, but after assigning vertices to color classes, select
which pairs are in J . This can be done in asymptotically (5n/3)2 j

∗
ways, since each

distinguished pair must join points belonging to vertices of two given color classes,
and if such pairs of vertices are randomly chosen, a.a.s. no vertex is repeated. Then, for
those vertices containing a point in a pair in J , the generating function (x+1)5−x5−1
is adjusted to either (x+1)4−x4 or (x+1)4−1 since the choice of color for the mate
of one of the points is already determined. (Compare this with the similar adjustments
made in the derivation of (7).) Finally, the (remaining parts of the) matchings between
color classes are chosen as before, so between two color classes where there are j0
distinguished edges, the number of matchings is (5n/6− j0)!. On the other hand, the
total number of choices of the pairing with the ordered set J distinguished is asymptot-
ically (5n/2) j

∗ |Pn,d |, since we can choose first the pairing and next the distinguished
edges at random. These will satisfy the nonadjacency condition a.a.s.

Comparing with the computation of EY , this produces

EŶ ∼ (5n/3)2 j
∗
152 j

∗

302 j∗(5n/6) j∗(5n/2) j∗
EY =3− j∗EY,

as required for (42).
To verify (7) with Ŷ in place of Y , we note that the calculation of E(Ŷ Xk) requires

the same modifications as EŶ . In particular, the same adjustment of factors in the
generating functions is warranted. So E(̂Y Xk)∼3− j∗EŶ . The same argument shows
that

E(Ŷ [X1]m1 · · · [X j ]m j )∼3− j∗E(Y [X1]m1 · · · [X j ]m j )

and thus (7) holds with Y replaced by Ŷ . As before, �k is defined by (6).
To estimate E(Ŷ 2), there is no need to adjust the formulae in Section 4, though that

would be one way to achieve the result. Instead, note that, corresponding to (8),

E(Ŷ 2)= |{(P,C1,C2, J )|P ∈Pn,5, J ∈JP ,C1,C2∈RP,J }|
|{(P, J )|P ∈Pn,5, J ∈JP }| ,

where JP denotes the set of ordered j∗-subsets of pairs of P that do not contain
common vertices, and RP,J denotes the set of locally rainbow balanced 3-colorings of
P that give the required colors to the ends of edges in J . Since almost all choices of
j∗ pairs do not intersect at vertices, we have

|{(P, J )|P ∈Pn,5, J ∈JP }|
|Pn,5| ∼

(
5n

2

) j∗

.
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On the other hand, we show below that

|{(P,C1,C2, J )|P ∈Pn,5, J ∈JP ,C1,C2∈RP,J }|
|{(P,C1,C2)|P ∈Pn,5,C1,C2∈RP}| ∼

(
5n

18

) j∗

. (44)

Comparing with (8) then gives (43).
To complete the proof of the theorem, it is only required to show (44). We may

rewrite the numerator on its left side as∑
|{(P,C1,C2)|P∈Pn,5,C1,C2∈RP }|

h(P,C1,C2), (45)

where h gives the number of choices of the ordered set J of j∗ pairs that have the
required colors at their ends in both colorings C1 and C2. It is easy to see, from
Lemmata 5.1 and 5.6, that under the maximum hypothesis, the contribution to E(Y 2)
from d where di, js ∼bi, js is E(Y 2)(1+o(1)). For such points of the domain, all mi, j

r,t are
asymptotically equal to 5

36 and all ni, j are asymptotically equal to 1
9 . Thus, considering

how (8) led to Lemma 5.1, almost all of the triples (P,C1,C2) being summed over
in (45) have asymptotically 5n/36 edges between any two parts V i, j and V i ′, j ′ in
the partition of vertices generated by C1 and C2. For these triples, h(P,C1,C2) is
asymptotic to (5n/18) j

∗
, since two adjacent vertices of the same two colors in both C1

and C2 can have either the same color or opposite colors in the two colorings. On the
other hand, it is immediate that

h(P,C1,C2)=O(n j∗)

and hence the contribution to (45) from the other d is negligible. Thus the expression
in (45) is asymptotic to(

5n

18

) j∗

|{(P,C1,C2)|P ∈Pn,5,C1,C2∈RP }|,

and (44) follows. �

Proof of Theorem 1.1 (For n not divisible by 6). We use the type of argument
employed at the end of Section 3 of [13]. Suppose n≡2(mod6). Take a random 5-
regular graph G with n vertices, and assume without loss of generality (by relabelling
vertices say) that the last two vertices, call them u and v, are adjacent in G. Delete u
and v, and join up the former neighbors of u using two new edges, and the same with
the former neighbors of v, in each case randomly choosing how to pair up the four
neighbors. Leave the four added edges as a distinguished ordered set of edges, the first
two joining former neighbors of u and the last two similarly for v. It is easy to show
and well known that a given vertex of a random 5-regular graph is a.a.s. not in a cycle
of length less than 4 (or 100, for that matter). It follows that a.a.s. no multiple edges
occur due to the new edges, and furthermore that a.a.s. the new edges are not adjacent
to each other. Throw the graph away if either of these two properties fails to hold. The
result is a random 5-regular graph with an ordered set of distinguished edges, no two
adjacent. Let us call this G ′.
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The distribution of G ′ is uniform, since for each G ′ obtained by the above procedure
there is a unique way of reinstating the edges to u and v, respecting the ordering in
an obvious canonical way, and thus recovering the original graph G. Therefore G ′ is
distributed as the random structures in Theorem 6.1 with j∗ =4. Thus, by Theorem 6.1,
G ′ a.a.s. has a 3-coloring such that the first two distinguished edges join vertices of
colors 1 and 2, and the others join vertices of colors 1 and 3. Then we can use exactly
this coloring on V (G)\{u,v}, and color u with color 3 and v with color 2, to obtain a
3-coloring of G.

For n≡4(mod6), we may apply exactly the same argument, but deleting two pairs
of adjacent vertices rather than one pair. �

7. THE MAXIMUM HYPOTHESIS AND ITS EMPIRICAL VALIDATION

In this section we describe the evidence that supports the Maximum Hypothesis. The
hypothesis asserts that for a certain four-variable function F(n) on a bounded domain,
F(n) has a unique global maximum at the point ( 19 ,

1
9 ,

1
9 ,

1
9 ). There are two equiva-

lent definitions for the function F , which give two possible approaches to numerical
verification of the Maximum Hypothesis. All the relevant definitions and equations are
repeated here, so that the definition of F in this section is self-contained.

We first define the domain of F . This is the set of all nonnegative real vectors
n= (n1, . . . ,n4) satisfying

n1+n2≤ 1
3 , n3+n4≤ 1

3 , n1+n3≤ 1
3 , n2+n4≤ 1

3 , n1+n2+n3+n4≥ 1
3 . (46)

For each n in the domain of F , we define the following nine values

n0,0=n1, n0,1=n2, n0,2= 1
3 −n1−n2,

n1,0=n3, n1,1=n4, n1,2= 1
3 −n3−n4,

n2,0= 1
3 −n1−n3, n2,1= 1

3 −n2−n4, n2,2=n1+n2+n3+n4− 1
3 . (47)

We need some more definitions before stating how to compute F at any point in its
domain.

A spectrum s is a 2×2 nonnegative integer matrix such that each row and column
sum is at least 1, and the sum of all four entries is 5. We index the rows and columns
by −1 and 1, with −1 for the first row or column. So

s=
[
s−1,−1 s−1,1

s1,−1 s1,1

]
.

Let S denote the set of all spectra, including[
4 0

0 1

]
,

[
3 0

1 1

]
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and so on. Note that |S|=36. (This definition of spectrum is the same as the one
presented in Section 4.)

For each ordered pair (i, j), i, j ∈Z3, and spectrum s∈S, introduce a real variable
di, js , called a spectral variable. Also define matrices mi, j by

mi, j =∑
s∈S

di, js s. (48)

(cf. (11))
Consider the following as constraints for all i and j :

∑
s∈S

di, js =ni, j , di, js ≥0 ∀s∈S, (49)

where the constants ni, j are defined in (47), and

mi, j
r,t =mi+r, j+t

−r,−t for i, j ∈{0,1,2} and r, t ∈{−1,1}, (50)

where the arithmetic in the indices is modulo 3.
For a sequence d of variables di, js satisfying the above constraints, let F̂(d) be the

function defined as

F̂(d)=

⎛
⎜⎜⎝∏

i, j,s

⎛
⎝
(
5
s

)
di, js

⎞
⎠

di, js
⎞
⎟⎟⎠
( ∏
i, j,r,t

(mi, j
r,t )

(1/2)mi, j
r,t

)
. (51)

(We follow the convention that 00 equals 1.) Note that F̂ is a function of 9×36
constrained variables. Since F̂ is continuous in the compact domain defined by the
constraints, it must have a maximum. Then, we set F(n) to be the value of this
maximum.

In Section 5 we defined the same function F̂(d) but extended it to the larger domain
D where the ni, j are not fixed but rather take any value in (47).

For the second definition of F , define the matrix function (also defined as (21))

�

[
x y

z w

]
= (x+ y+z+w)5−(x+ y)5−(x+z)5−(y+w)5

−(z+w)5+x5+ y5+z5+w5. (52)

For each of the nine possible pairs (i, j), i, j ∈Z3, let �i, j and mi, j be 2×2 matrices
whose rows and columns are indexed by −1 and 1 (as in the first definition of F). For
each such (i, j), consider the 4×4 system (cf. (22))

���i, j

��i, jr,t

, �i, jr,t =mi, j
r,t , r, t=−1,1. (53)
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As in (18), we consider the following constraints, for all such i and j , and all r, t ∈
{−1,1},

mi, j
r,t ≥ 0,

mi, j
r,t +mi, j

r,−t ≤ 4(mi, j
−r,t +mi, j

−r,−t ),

mi, j
r,t +mi, j

−r,t ≤ 4(mi, j
r,−t +mi, j

−r,−t ).

(54)

For each n in the domain of F , we define M(n) to be the set of all vectors m=
(mi, j )i, j∈Z3 of 2×2 matrices mi, j satisfying (54), (50), and also

∑
r,t

mi, j
r,t =5ni, j , (55)

where the constants ni, j are defined in (47). We observe that M(n) is a polytope
of dimension 9. Given a vector m of matrices (mi, j )i, j∈Z3 in the interior of M(n),
define

F̃(m)= ∏
i, j,r,t

(
(mi, j

r,t )
1/2

�i, jr,t

)mi, j
r,t

, (56)

with the �i, jr,t given in terms of the mi, j
r,t by (53) and required to be strictly positive. In

Section 5, we show that for m in the interior of M(n) the �i, jr,t variables are determined
uniquely, and that F̃ can be continuously extended to the boundary points of the
polytope.

Our second definition of F(n) is the maximum of F̃(m) over all m lying in M(n).
This is well defined by continuity of the function and compactness of the domain.

We observe that Lemma 5.3 shows the equivalence of these two alternative definitions
of F .

One important piece of evidence supporting the Maximum Hypothesis is the
following theorem.

Theorem 7.1. The function F(n) has a local maximum at the point ( 19 ,
1
9 ,

1
9 ,

1
9 ).

Proof. By Lemma 5.5, Ĝ(d) takes its maximum in D′( 19 ) uniquely at the point

where all the ds are equal to
(
5
s

)
/8,100.

It follows by continuity of F̂ that the only values of F̂ that can contribute to
the maximum value of F in a neighborhood of ( 19 ,

1
9 ,

1
9 ,

1
9 ) must come from d in a

neighborhood of (( 5s )/8,100)s∈S . The Hessian, computed using Maple, shows that F̂
has a local maximum here, so the local maximum of F at ( 19 ,

1
9 ,

1
9 ,

1
9 ) follows. �

Next, we describe the empirical evidence that F has a unique maximum at
( 19 ,

1
9 ,

1
9 ,

1
9 ).
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Let n be any fixed vector in the domain of F . Recall the definition of M′(c) from
Section A. We observe that the projection of M(n) to the (i, j) coordinate is M′(ni, j ).
Let us momentarily relax the constraints in (50), and consider separately each factor

G̃i, j =∏
r,t

(
(mi, j

r,t )
1/2

�i, jr,t

)mi, j
r,t

to be defined in M′(ni, j ). We note that M′(ni, j ) is a polytope of dimension 3, so Gi, j

can be written in terms of three free variables. In order to show that ln G̃i, j is concave,
it is sufficient to see that the 3×3 Hessian matrix is negative definite over the domain.
This was numerically confirmed with the help of a computer. Having experimentally
confirmed the concavity of the logarithm of each factor of F̃ , we conclude the concavity
of ln F̃ . Moreover, this concavity is not affected by adding the constraints in (50),
previously relaxed.

The procedure we use is based on the concavity of ln F̃ . We sweep the domain of
F . Variables n1, n2, n3, n4 take all nonnegative values satisfying (46) in a grid of 200
steps per dimension. For each point n= (n1, . . . ,n4) we compute F(n) as follows.

Procedure for computing F(n).

1. We compute the nine overlap variables ni, j from (47). (The sweep avoids a fine
layer of width 1

1000 around the boundary.)
2. We set m0 to be an interior point of M(n).
3. Starting from m0, we numerically maximize ln F̃ in M(n) by some Newton-like

iterative method. This should work reasonably well from the concavity of ln F̃ .
As we observed before, the maximization domain has dimension 9. In fact, the
elements in M(n) can be expressed in terms of the nine coordinates mi, j

1,1 by

mi, j
−1,−1=mi−1, j−1

1,1 ,

mi, j
1,−1= 1

2 (a
i, j +ai+1, j−1−ai−1, j+1),

mi, j
−1,1= 1

2 (a
i, j +ai−1, j+1−ai+1, j−1),

where

ai, j =5ni, j −mi, j
1,1−mi−1, j−1

−1,−1 .

Then we must write ln F̃ in terms of themi, j
1,1 and, at each step of the maximization,

compute the gradient with respect to these nine variables. From the proof of
Lemma 5.5 and in view of (33), we can get rid of the derivatives of the �i, jr,t and

express this gradient just in terms of the mi, j
r,t and �i, jr,t . Hence, each iteration of

the maximization algorithm requires the solution of the nine 4×4 systems in (53),
which are known to have a unique positive solution.
The maximum obtained is F(n).

Recall from Lemma 5.6 that F( 19 ,
1
9 ,

1
9 ,

1
9 )=55/225/24≈58.2309. The values of F

we obtained by this procedure for each n were always below F( 19 ,
1
9 ,

1
9 ,

1
9 ). There were
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some points in the domain where a value over 58 was obtained. These points were all
near ( 19 ,

1
9 ,

1
9 ,

1
9 ). Around these points we made an additional scan of the neighborhood

with stepsize 1
8000 . The values obtained were always less than F( 19 ,

1
9 ,

1
9 ,

1
9 ).
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