
Combining kTLS and BPF for Introspection and
Policy Enforcement

Daniel Borkmann, John Fastabend
Cilium.io

Linux Plumbers 2018, Vancouver, Nov 14, 2018

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 1 / 17

Distributed Microservices and APIs
Shift from monolithic legacy applications to distributed microservices

Microservice: service that does one thing well, communicates over
network, built and managed independently

Key motivation for enterprises: speed, scale, agility

Competitive advantage to react faster to market

Lowest common denominator to communicate: API

Typically: REST API via HTTP

Outsourcing: API economy around microservices1

1REST API examples:
https://stripe.com/docs/api/,
https://www.twilio.com/docs/usage/api/,
https://www.zuora.com/developer/api-reference/

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 2 / 17

https://stripe.com/docs/api/
https://www.twilio.com/docs/usage/api/
https://www.zuora.com/developer/api-reference/

Kubernetes and Networking

Microservice itself becomes easier to develop, debug, deploy

But: higher operational complexity of overall architecture

Kubernetes → platform for automating deployment, scaling, and
operations of application containers across clusters of hosts

At the heart of all this, obviously: Linux kernel

Pods as plumbing around cgroups and namespaces holding one or more
containers (e.g. Docker) that share common policy

TCP/IP stack and socket API → communication bus for microservices

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 3 / 17

Kubernetes and Networking

Default policy enforcement in terms of networking: iptables

Available also on old kernels, more or less well understood

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 4 / 17

Kubernetes and Networking
Problem: ports become meaningless in microservices API world
Consequence: shift to L7 proxies to manage API communication

Injected as transparent sidecar into every Pod
Packet cost in times of KPTI and Retpoline mitigations even worse

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 5 / 17

Kubernetes and Networking
Sidecar proxies like Envoy provide many additional L7 features

Health checks, service discovery, load balancing, mutual TLS, etc

Envoy can be augmented with BPF support to improve fast-path
Policy enforcement, introspection and redirection based on BPF

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 6 / 17

Enter: BPF at Socket Layer

Implementation through special BPF map called sock map
Attached sockets get socket callbacks replaced and psock attached
Ingress data path:

TCP stack

psock->parser.strp
psock->progs.skb_parser

psock->progs.skb_verdict

sk_buff

drop pass

psock->ingress_skb

sk redirect

sk_psock_backlog()

TX

psock->ingress_msgsk_msg

tcp_bpf_recvmsg()

copy_page_to_iter()

sk_msg_elem()

msg->sg.start …
msg->sg.end

RX

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 7 / 17

Enter: BPF at Socket Layer

Egress data path:

TCP stack

psock->progs.msg_parser

pages

drop pass

sk

TX

tcp_bpf_sendmsg()

sk_msg_alloc()

sk_msg_memcopy_from_iter()

psock->cork or new msg

copy_from_iter()

sk_psock_msg_verdict()

sk_msg

msg->sg.start …
msg->sg.end

psock->ingress_msg
redirect

psock->cork

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 8 / 17

kTLS and ULP Basics

Handshake in user space, remaining work transferred into kernel

Zero-copy, avoiding bounce buffer in user space

Modes: sw-based RX/TX via crypto layer, hw-based RX/TX via NIC

TLS 1.2, AES, 128 bit key size

Transparent to applications via ssl library integration

Soon: TLS 1.3, support != 128 bit key sizes

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 9 / 17

kTLS and ULP Basics

ULP (upper layer protocol) provides generic selector for TLS or others

User space API:

struct tls12_crypto_info_aes_gcm_128 tls_tx = {
.info = {

.version = TLS_1_2_VERSION,

.cipher_type = TLS_CIPHER_AES_GCM_128,
},
.key = [...], [...]

}, tls_rx = {
[...]

};
setsockopt(fd, SOL_TCP, TCP_ULP, "tls", sizeof("tls"));
setsockopt(fd, SOL_TLS, TLS_TX, &tls_tx, sizeof(tls_tx));
setsockopt(fd, SOL_TLS, TLS_RX, &tls_rx, sizeof(tls_rx));

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 10 / 17

Path to Combining kTLS and BPF

ULPs used by kTLS and BPF at Socket Layer → pick one

Generic ULP stacking problematic performance, complexity wise

Best path forward: refactoring & tearing old sock map code apart

Generic sk msg API for managing scatter/gather ring

psock framework on top of sk msg with TCP as one implementation

Standalone BPF array/hash map where sockets are attached to

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 11 / 17

Path to Combining kTLS and BPF

sk msg and psock API as generic framework across ULPs

Allowed for in-kernel ULP removal, keeping original TCP ULP as-is

Now BPF Socket Layer and kTLS both operate on sk msg context

Allows removal of open coded TX plaintext/encrypted sg handling

Allows integration with BPF msg parser program

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 12 / 17

kTLS with BPF

psock->progs.msg_parser

drop pass

sk

tls_sw_sendmsg()

tls_alloc_encrypted_msg()

sk_msg_zerocopy_from_iter(msg_pl)

ctx->open_rec or tls_get_rec()

sk_psock_msg_verdict()

tls_clone_plaintext_msg()

msg_pl
msg_en

sk_msg_memcopy_from_iter()

tls_push_record()

TCP stack

TX

 crypto

cork

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 13 / 17

sk msg Data Structure
struct sk_msg_sg {

u32 start;
u32 curr;
u32 end;
u32 size;
u32 copybreak;
bool copy[MAX_MSG_FRAGS];
/* Extra element for wrap-around chaining */
struct scatterlist data[MAX_MSG_FRAGS + 1];

};

struct sk_msg {
struct sk_msg_sg sg;
void *data;
void *data_end;
u32 apply_bytes;
u32 cork_bytes;
u32 flags;
struct sk_buff *skb;
struct sock *sk_redir;
struct sock *sk;
struct list_head list;

};
Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 14 / 17

BPF Helpers for Socket Layer

bpf msg apply bytes()

bpf msg cork bytes()

bpf msg redirect map/hash()

bpf msg pull data()

bpf msg push data()

Base BPF helpers like map lookups, etc

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 15 / 17

Orchestration

Putting it all together: Cilium
API aware networking and network security for microservices

BPF behind the scenes all the way: XDP, cls bpf, socket layer

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 16 / 17

Summary, Next Steps

First time kernel can enforce policy inside TLS connections!

Next steps to work on

Extend currently limited set of helpers

Optimizations for fast-path (e.g. strparser)

kTLS also with AES GCM in 256 bit key size

Wider kTLS user space library adoption

Bounded loops in BPF core

Daniel Borkmann, John Fastabend kTLS and BPF Nov 14, 2018 17 / 17

