
Mining Statistically Significant Substrings using the
Chi­Square Statistic

Mayank Sachan

mayasac@cse.iitk.ac.in

Arnab Bhattacharya

arnabb@iitk.ac.in

Dept. of Computer Science and Engineering
Indian Institute of Technology, Kanpur

INDIA

ABSTRACT

The problem of identification of statistically significant patterns in

a sequence of data has been applied to many domains such as intru-

sion detection systems, financial models, web-click records, auto-

mated monitoring systems, computational biology, cryptology, and

text analysis. An observed pattern of events is deemed to be statis-

tically significant if it is unlikely to have occurred due to random-

ness or chance alone. We use the chi-square statistic as a quantita-

tive measure of statistical significance. Given a string of characters

generated from a memoryless Bernoulli model, the problem is to

identify the substring for which the empirical distribution of sin-

gle letters deviates the most from the distribution expected from

the generative Bernoulli model. This deviation is captured using

the chi-square measure. The most significant substring (MSS) of a

string is thus defined as the substring having the highest chi-square

value. Till date, to the best of our knowledge, there does not exist

any algorithm to find the MSS in better than O(n2) time, where n
denotes the length of the string. In this paper, we propose an al-

gorithm to find the most significant substring, whose running time

is O(n3/2) with high probability. We also study some variants of

this problem such as finding the top-t set, finding all substrings hav-

ing chi-square greater than a fixed threshold and finding the MSS

among substrings greater than a given length. We experimentally

demonstrate the asymptotic behavior of the MSS on varying the

string size and alphabet size. We also describe some applications

of our algorithm on cryptology and real world data from finance

and sports. Finally, we compare our technique with the existing

heuristics for finding the MSS.

1. MOTIVATION
Statistical significance is used to ascertain whether the outcome

of a given experiment can be ascribed to some extraneous factors

or is solely due to chance. Given a string composed of characters

from an alphabet Σ = {a1, a2, . . . , ak} of constant size k, the null

hypothesis assumes that the letters of the string are generated from

a memoryless Bernoulli model. Each letter of the string is drawn

randomly and independently from a fixed multinomial probability

distribution P = {p1, p2, . . . , pk} where pi denotes the probabil-

ity of occurrence of character ai in the alphabet (
P

pi = 1). The

objective is to find the connected subregion of the string (i.e., a sub-

string) for which the empirical distribution of single letters deviates

the most from the distribution given by the Bernoulli model.

Detection of statistically relevant patterns in a sequence of events

has drawn significant interest in the computer science community

and has been diversely applied in many fields including molecular

biology, cryptology, telecommunications, intrusion detection, au-

tomated monitoring, text mining, and financial modeling. The ap-

plications in computational biology include assessing the over rep-

resentation of exceptional patterns [7] and studying the mutation

characteristics in the protein sequence of an organism by identify-

ing the sudden changes in their mutation rates [18]. Different stud-

ies suggest detecting intrusions in various information systems by

searching for hidden patterns that are unlikely to occur [26, 27]. In

telecommunication, it has been applied to detect periods of heavy

traffic [13]. It has also been used in analyzing financial time series

to reveal hidden temporal patterns that are characteristic and pre-

dictive of time series events [22] and to predict stock prices [17].

Quantifying a substring as statistically significant depends on the

statistical model used to calculate the deviation of the empirical

distribution of single letters from its expected nature. The exact

formulation of statistical significance depends on the metric used;

p-value and z-score [23, 25] represent the two most commonly used

ones (some of the other ones are reviewed in [10, 24]). Research

indicates that in most practical cases, p-value provides more precise

and accurate results as compared to z-score [7].

The p-value is defined as the probability of obtaining a test statis-

tic at least as extreme as the one that was actually observed assum-

ing the null hypothesis to be true. For example, in an experiment

to determine whether a coin is fair, suppose it turns up head on 19

out of 20 tosses. Assuming the null hypothesis, i.e., the coin is fair,

to be true, the p-value is equal to the probability of observing 19 or

more heads in 20 flips of a fair coin:1

p-value = Pr(19H) + Pr(20H) =

`

20
19

´

+
`

20
20

´

220
≈ 0.002%

Traditionally, the decision to reject or fail to reject the null hypoth-

esis is based on a pre-defined significance level α. If the p-value is

low, the result is less likely assuming the null hypothesis to be true.

Consequently, the observation is statistically more significant.

1This definition of p-value is part of a one-sided test; however, we
can also calculate the probability of getting at least 19 heads or at
least 19 tails which is part of a two-sided test. The p-value is just
double in this case due to symmetry.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 10
Copyright 2012 VLDB Endowment 2150-8097/12/06... $ 10.00.

1052

In a memoryless Bernoulli multinomial model, the probability

of observing a configuration β0, given by a count vector C =
{Y1, Y2, . . . , Yk} with

Pk
i=1 Yi = l (where l is the length of the

substring) denoting the set of observed frequencies of each charac-

ter in the alphabet, is defined as

Pr(C = β0) = l!
k
Y

i=1

pYi
i

Yi!
(1)

The p-value for this model then is

p-value =
X

β more extreme than β0

Pr(β) (2)

However, computing the p-value exactly requires analyzing all pos-

sible outcomes of the experiment which are potentially exponential

in number, thereby rendering the computation impractical. More-

over, it has been shown that for large samples, asymptotic approxi-

mations are accurate enough and easier to calculate [24].

The two broadly used approximations are the likelihood ratio

statistic and the Pearson’s chi-square statistic [24]. In case of like-

lihood ratio test, an alternative hypothesis is set up under which

each pi is replaced by its maximum likelihood estimate πi = xi/n
with the exact probability of a configuration under null hypothesis

defined similarly as in the previous case. The natural logarithm of

the ratio between these two probabilities multiplied by −2 is then

the statistic for the likelihood ratio test:

−2 ln(LR) = −2
k
X

i=1

xi ln

„

πi

pi

«

(3)

Alternatively, the Pearson’s chi-square statistic, denoted by X2,

measures the deviation of observed frequency distribution from the

theoretical distribution [5]:

X2 =
k
X

i=1

(Oi − Ei)
2

Ei
=

k
X

i=1

(Yi − lpi)
2

lpi
(4)

where Oi and Ei are theoretical and observed frequencies of the

characters in the substring. Since each letter of the substring is

drawn from a fixed probability distribution, the expected frequency

Ei of a character in the substring is obtained by multiplying the

length of the substring l with the probability of occurrence of that

character. Hence, the expected frequency vector is given by E =
lP , where P = {p1, p2, . . . , pk}. The chi-square (X2) definition

in (4) can be further simplified as:

X2 =

k
X

i=1

(Yi − lpi)
2

lpi
=

k
X

i=1

Y 2
i

lpi
− 2

k
X

i=1

Yi + l

k
X

i=1

pi

=

k
X

i=1

Y 2
i

lpi
− l

"

∵

k
X

i=1

Yi = l and

k
X

i=1

pi = 1

#

(5)

Note that the chi-square value for a substring depends only on the

count of the characters in it, and not on the order in which they

appear. It can be seen in the coin toss example that all the outcomes

that are less likely to occur have higher X2 values than the observed

outcome. For multinomial models, under the null hypothesis, both

X2 statistic and−2 ln(LR) statistic converge to the χ2 distribution

with k − 1 degrees of freedom [21, 24]. Hence, the p-value of the

outcome can then be computed using the cumulative distribution

function (cdf) F (x) of the χ2(k − 1) distribution. If z0 is the X2

value of the observed outcome, then its p-value is 1− F (z0).

Moreover, it has also been shown that the X2 statistic converges

to the χ2 distribution from below as opposed to the −2 ln(LR)

statistic which converges from above [21, 24]. Thus, the chi-square

statistic diminishes the probability of type-I errors (false positives).

Considering these significant advantages, we adopt the Pearson’s

X2 statistic as the estimate to quantify the statistical significance

in our study.

In this paper, we focus on the problem where only portions of the

string instead of the whole string may deviate from the expected

behavior. As discussed in the experimental section, this problem

is particularly useful in the analysis of temporal strings where an

external event occurring in the middle of a string may be causing

the particular substring to deviate significantly from the expected

behavior by inflating or deflating the probabilities of occurrence of

some characters in the alphabet. Our work focuses on the problem

of identification of such statistically significant substrings in large

strings. Before venturing forward, we formally define the different

problem statements handled in this paper for a string S of length n.

PROBLEM 1 (MOST SIGNIFICANT SUBSTRING). Find the

most significant substring (MSS) of S, which is the substring having

the highest chi-square value (X2) among all possible substrings.

PROBLEM 2 (TOP-T SUBSTRINGS). Find the top-t set T of t
substrings such that |T | = t and for any two arbitrary substrings

S1 ∈ T and S2 6∈ T , X2
S1
≥ X2

S2
.

PROBLEM 3 (SIGNIFICANCE GREATER THAN THRESHOLD).

Find all substrings having chi-square value (X2) greater than a

given threshold α0.

PROBLEM 4 (MSS GREATER THAN GIVEN LENGTH). Find

the substring having the highest chi-square value (X2) among all

substrings of length greater than γ0.

The rest of the paper is organized as follows. Section 2 provides

an overview of the related work. Section 3 formulates some impor-

tant definitions and observations used by our algorithm. Section 4

describes the algorithm for finding the MSS of a string. Section 5

presents the analysis of the algorithm. Section 6 extends the MSS

finding algorithm to the more general problems. Section 7 shows

the experimental analysis and some applications of the algorithm

on real datasets. Finally, Section 8 discusses possible future work.

2. RELATED WORK
The problem of identifying frequent and statistically relevant

subsequences (not necessarily contiguous) in a sequence has been

an active area of research over the past decade [19]. The problem

of finding statistically significant subsequences within a window

of size w has also been addressed [3, 15]. Since the number of

subsequences grows exponentially with w, the task of computing

subsequences within a large window is practically infeasible.

We address a different version of the problem where the window

size can be arbitrarily large but statistically significant patterns are

constrained to be contiguous, thus forming substrings of the given

string. The problem has many relevant applications in places where

the extraneous factor that triggers such unexpected patterns occur

continuously over an arbitrarily large period in the course of a se-

quence, as in the case of temporal strings. As the possible number

of substrings reduces to O(n2), the problem of computing statisti-

cally significant patterns becomes much more scalable. However,

it is still computationally intensive for large data.

The trivial algorithm proceeds by checking all O(n2) possible

substrings. Some improvements such as blocking technique and

heap strategy were proposed, but they showed no asymptotic im-

provement in the time complexity [2]. Two algorithms, namely,

1053

ARLM and AGMM, were proposed which use local maxima to

find the MSS [9]. It was claimed (only through a conjecture and

not a proof) that ARLM would find the MSS. However, the time

complexity is still O(n2) with only constant time improvements.

AGMM was a O(n) time heuristic that found a substring whose

X2 value was roughly close to the X2 value of MSS, but no the-

oretical guarantees were provided on the bound of the approxima-

tion ratio. The comparative analysis of our algorithms with them

is shown in detail in Section 7. To the best of our knowledge, no

algorithm exists till date that exactly finds the MSS or solves the

other variants of the problem in better than O(n2) time.

It may seem that a fast algorithm can be obtained using the suf-

fix tree2 [14]. However, the problem at hand is different. To com-

pute the X2 value of any substring we need not traverse the whole

substring; rather, we just need the number of occurrences of each

character in that substring. This can be easily computed in O(1)
time by maintaining k count arrays, one for each character of the

alphabet, where ith element of the array stores the number of oc-

currences of the character till ith position in the string. Each array

can be preprocessed in O(n) time. Furthermore, due to complex

non-linear nature of the X2 function we assume that no obvious

properties of the suffix trees or its invariants can be utilized.

The trivial algorithm checks for all possible substrings that have

O(n) starting positions and for each starting position have O(n)
ending positions, thus requiring O(n2) time. Our algorithm also

considers all the O(n) starting positions, but for a particular start-

ing position, it does not check all possible ending positions. Rather,

it skips ending positions that cannot generate candidates for the

MSS or the top-t set. We show that for a particular starting po-

sition, we check only O(
√

n) different ending positions, thereby

scanning a total of only O(n3/2) substrings. We formally show

that the running time of our algorithm is O(n3/2). We also extend

the algorithm for finding the top-t substrings and other variants, all

of which, again, run in O(n3/2) time.

3. DEFINITIONS AND OBSERVATIONS
In the rest of the paper, any string S over a multinomial alphabet

Σ = {a1, a2, . . . , ak} and drawn from a fixed probability distribu-

tion P = {p1, p2, . . . , pk} is phrased as “S over (Σ, P)”. For a

given string S of length n, S[i] (1 ≤ i ≤ n) denotes the ith letter

of the string S and S[i . . . j] denotes the substring of S from index

i to index j, both included. So, the complete string S can also be

denoted by S[1 . . . n].

DEFINITION 1 (CHAIN COVER). For any string S of length

l, a string λ(S, ai, l1) of length l + l1 is said to be the chain cover

of S over l1 symbols of character ai if S is the prefix of λ(S, ai, l1)
and the last l1 positions of λ(S, ai, l1) are occupied by the char-

acter ai. Alternatively, λ(S, ai, l1) is of the form S followed by l1
occurrences of character ai.

For example, if S = cdcbbc then λ(S, d, 3) = cdcbbcddd, and

if S = baacd then λ(S, a, 2) = baacdaa.

We first prove that for any string S of length l, X2 value of any

string S′ of length less than or equal to l + l1 and having S as its

prefix is upper bounded by the X2 value of a chain cover of S over

l1 symbols of some character ai ∈ Σ.

2A suffix tree is a data structure that can be built in θ(n) time. The
power of suffix trees lies in quickly finding a particular substring
of the string. It provides a fast implementation of many important
string operations.

LEMMA 1. Let S be any given string of length l over (Σ, P)
with count vector denoted by {Y1, Y2, . . . , Yk} where each Yi ≥ 0

and
Pk

i=1 Yi = l. Let S′ be any string which has S as its prefix

and is of length l + l1. Then there exists some character aj ∈ Σ
such that X2 value of S′ is upper bounded by the X2 value of the

cover string λ(S, aj , l1). The character aj is such that it has the

maximum value of
2Yj+l1

pj
among all j ∈ {1, 2, . . . , k}.

PROOF. Let the X2 values of strings S, S′ and λ(S, aj , l1) be

denoted by X2
S , X2

S′ and X2
λ respectively. We need to prove that

X2
S′ ≤ X2

λ.

By definition, the count vector of λ(S, aj , l1) is {Y1, Y2, . . . , Yj+
l1, . . . Yk}. Further, let Y ′

i denote the frequency of character ai in

S′ that are not present in S (i.e., frequency of ai in the l1 length suf-

fix of S′). So, the count vector of S′ is {Y1+Y ′
1 , Y2+Y ′

2 . . . , Yk +

Y ′
k} where each Y ′

m ≥ 0 and
Pk

i=1 Y ′
m = l1. From the definition

of X2 statistic given in (5), we have

X2
S =

k
X

m=1

Y 2
m

lpm
− l (6)

X2
λ =

k
X

m=1,m6=j

Y 2
m

(l + l1)pm
+

(Yj + l1)
2

(l + l1)pj
− (l + l1)

=
k
X

m=1

Y 2
m

(l + l1)pm
+

2Yj l1 + l21
(l + l1)pj

− (l + l1) (7)

X2
S′ =

k
X

m=1

(Ym + Y ′
m)2

(l + l1)pm
− (l + l1)

=

k
X

m=1

Y 2
m

(l + l1)pm
+

k
X

m=1

2YmY ′
m + Y

′2
m

(l + l1)pm
− (l + l1) (8)

The character aj is chosen such that it maximizes the quantity
2Yj+l1

pj
over all possible alphabets. So for any other character am

where m ∈ {1, 2, . . . , k} we have

2Ym + Y ′
m

pm
≤ 2Ym + l1

pm
≤ 2Yj + l1

pj
(9)

Multiplying (9) by Y ′
m and summing it over m we get

k
X

m=1

2YmY ′
m + Y

′2
m

pm
≤

k
X

m=1

Y ′
m

2Yj + l1
pj

≤ 2Yj l1 + l21
pj

(10)

From (7), (8) and (10) we have

X2
S′ ≤

k
X

m=1

Y 2
m

(l + l1)pm
+

2Yj l1 + l21
(l + l1)pj

− (l + l1) = X2
λ.

The next lemma states that the X2 value of a string can always

be increased by adding a particular character to it.

LEMMA 2. Let S be any given string of length l over (Σ, P)
with count vector denoted by {Y1, Y2, . . . , Yk} where each Yi ≥ 0

and
Pk

i=1 Yi = l. There always exists some character aj such that

by appending it to S, the X2 value of resultant string S′ becomes

greater than that of S. The character aj is such that it has the

maximum value of
Yj

pj
among all j ∈ {1, 2, . . . , k}.

1054

PROOF. Let the X2 values of strings S and S′ be denoted by

X2
S and X2

S′ respectively. We need to prove that X2
S < X2

S′ .

The string S′ is the resultant string obtained by appending alpha-

bet aj to the string S, so the count vector of S′ is {Y1, . . . , Yj +
1, . . . , Yk}. From (5), we have

X2
S =

k
X

m=1

Y 2
m

lpm
− l (11)

X2
S′ =

k
X

m=1

Y 2
m

(l + 1)pm
+

2Yj + 1

(l + 1)pj
− (l + 1) (12)

From (11) and (12) we have

X2
S′ −X2

S

=

k
X

m=1

Y 2
m

(l + 1)pm
+

2Yj + 1

(l + 1)pj
− (l + 1)−

k
X

m=1

Y 2
m

lpm
+ l

=
1

l(l + 1)

"

(2Yj + 1)l

pj
− l(l + 1)−

k
X

m=1

Y 2
m

pm

#

(13)

The character aj is chosen such that it maximizes
Yj

pj
over all j. So

we have

Ym

pm
≤ Yj

pj
∀m ∈ {1, 2, . . . , k} (14)

Multiplying (14) by Ym and summing it over m we get

k
X

m=1

Y 2
m

pm
≤ Yj

pj

k
X

m=1

Ym =
lYj

pj
(15)

Putting (15) into (13) we get

X2
S′ −X2

S ≥
1

l(l + 1)pj

h

(2Yj + 1)l − l(l + 1)pj − lYj

i

=
1

l(l + 1)pj

h

l(Yj − lpj) + l(1− pj)
i

(16)

Again, from (14) we have:

Ympj ≤ Yjpm ⇒ pj

k
X

m=1

Ym ≤ Yj

k
X

m=1

pm ⇒ lpj ≤ Yj (17)

Putting (17) into (16) and using pj < 1, we get

X2
S′ −X2

S > 0.

In the next result, we show that the X2 value of any string S′

having S as its prefix is upper bounded by X2 value of the chain

cover of S.

THEOREM 1. Let S be any given string of length l over (Σ, P)
with count vector denoted by {Y1, Y2, . . . , Yk} where each Yi ≥ 0

and
Pk

i=1 Yi = l. Further, let S′ be any string which has S as

its prefix and is of length less than or equal to l + l1. Then there

exists some character aj ∈ Σ such that X2 value of S′ is less

than λ(S, aj , l1). The character aj is such that it has the maximum

value of
2Yj+l1

pj
among all j ∈ {1, 2 . . . k}.

PROOF. The proof follows directly from the results stated in

Lemma 1 and Lemma 2. From Lemma 2, we can say that there

always exists a character such that appending it increases the X2

value of S′. Hence, we keep appending the string S′ with such

Algorithm 1 Algorithm for finding the most significant substring

(MSS)

1: X2
max ← 0

2: for i = n to 1 do

3: for l = 0 to n− i do

4: l′ ← i + l
5: X2

l ←X2 value of S[i . . . l′]
6: if X2

l > X2
max then

7: X2
max ← X2

l

8: end if

9: t←m s.t. ∀m ∈ {1, 2, . . . , k}, 2Ym+x
pm

is maximum

10: a← 1− pt

11: b← 2Yt − 2lpt − ptX
2
max

12: c← (X2
l −X2

max)lpt

13: x← ⌈−b+
√

b2−4ac

2a
⌉

14: Increment l by x
15: end for

16: i← i− 1
17: end for

18: return X2
max

characters till its length becomes l + l1. We call the resultant string

Sc. Clearly, Sc has S as its prefix and is of length l + l1 and X2

value of S′ is less than or equal to X2 value of Sc. The character

aj is such that maximizes
2Yj+l1

pj
over all j ∈ {1, 2, . . . , k}; so

using Lemma 1, we can say that the X2 value of Sc is less than the

X2 value of λ(S, aj , l1). This further implies that X2 value of S′

is less than or equal to the X2 value of λ(S, aj , l1).

We next formally describe our algorithm for finding the most

significant substring (MSS).

4. THE MSS ALGORITHM
The algorithm looks for the possible candidates of MSS in an or-

dered fashion. The pseudocode is shown in Algorithm 1. The loop

in line 2 iterates over the start positions of the substrings while the

loop in line 3 iterates over all the possible lengths of the substrings

from a particular start position. We keep track of the maximum X2

value of any substring computed by our algorithm by storing it in

a variable X2
max. For a given substring S[i . . . l′], we calculate its

X2 value, which is stored in X2
l (line 5). If X2

l turns out to be

greater than X2
max then X2

max is updated accordingly (line 7).

The character at is chosen such that it maximizes the value of
2Yj+x

pj
over all j (line 9 of the pseudocode). This property is nec-

essary for the application of the result stated in Theorem 1. De-

noting the X2 value of a chain cover of S[i . . . l′] over x symbols

of character at by X2
λ, the result stated in Theorem 1 states that

the X2 value of any substring of the form S[i . . . (l′ + m)] for

m ∈ {0, 1, . . . , x} is upper bounded by X2
λ. We choose x such

that it is maximized within the constraint that X2
λ is guaranteed to

be less than or equal to X2
max. Then, under the given constraint,

we can skip checking all substrings of the form S[i . . . (l′+m)] for

m ∈ {0, 1, . . . , x} as their X2 values are not greater than X2
max.

So, we directly increment l by x (line 14). Next, we find out what

the ideal choice of x is.

We denote the count vector of substring S[i . . . l′] of length l
by {Y1, Y2, . . . , Yk}. The count vector of cover chain is given by

{Y1, Y2 . . . , Yt + x, . . . , Yk} where Yt denotes the frequency of

1055

character a in the algorithm. By definition of X2 from (5),

X2
l =

k
X

m=1

(Ym)2

lpm
− l (18)

and

X2
λ =

k
X

m=1

(Ym)2

(l + x)pm
+

2xYt + x2

(l + x)pt
− (l + x)

=
l(X2

l + l)

(l + x)
+

2xYt + x2

(l + x)pt
− (l + x) (19)

We want to maximize x with the constraint that X2
λ ≤ X2

max.

From (19) we have,

l(X2
l + l)

(l + x)
+

2xYt + x2

(l + x)pt
− (l + x) ≤ X2

max (20)

On multiplying (20) by (l + x)pt and rearranging, the constraint

simplifies to

(1− pt)x
2 + (2Yt − 2lpt − ptX

2
max)x + (X2

l −X2
max)lpt ≤ 0

(21)

Eq. (21) is a quadratic equation in x with a = 1 − pt > 0, b =
2Yt − 2lpt − ptX

2
max and c = (X2

l − X2
max)lpt ≤ 0 (X2

l ≤
X2

max). We need to maximize x with the constraint that ax2 +
bx+ c ≤ 0. Thus, we choose x as the positive root of the quadratic

equation:

x =
−b +

√
b2 − 4ac

2a
(22)

Since a > 0 and c ≤ 0 we have x ≥ 0. Further, since x has to be

an integer we choose x as the greatest integer greater than or equal

to the above value (line 13 of the algorithm).

5. ANALYSIS OF THE MSS ALGORITHM
We first show that the running time of the algorithm on an input

string generated from a memoryless Bernoulli model is O(kn3/2)
with high probability where n and k denote the string and alphabet

size respectively. For a string not generated from the null model,

we will argue that the time taken by our algorithm on that string is

less than the time taken by our algorithm on an equivalent string

of the same size generated from the null model. Hence, the time

complexity of our algorithm for any input string is O(kn3/2) with

high probability.

Let S be any string drawn from a memoryless Bernoulli model.

Let Tij denote the random variable that takes value 1 if ai occurs

at position S[j] and 0 otherwise. Each character of the string S
is independently drawn from a fixed probability distribution P , so

the probability that Tij = 1 is pi. The frequency of character ai

in the string S denoted by the random variable Yi is the sum of n
Bernoulli random variables Tij where j ranges from 1 to n. Since

Yi is the sum of n i.i.d. (independent and identically distributed)

Bernoulli random variables, each having a success probability pi,

Yi follows a binomial distribution with parameters n and pi.

Tij ∼ Bernoulli(pi)

Yi =

n
X

j=1

Tij =⇒ Yi ∼ Binomial(n, pi) (23)

We state the following two standard results from the domain of

probability distributions.

THEOREM 2. For large values of n, the Binomial(n,p) distri-

bution converges to Normal(µ,σ2) distribution with the same mean

and variance, i.e., µ = np and σ2 = np(1− p).

PROOF. The proof uses the result of Central Limit Theorem.

Please refer to [4] for the detailed proof.3

It has been shown in [1] that for both n and np greater than

a constant4, the binomial distribution can be approximated by the

normal distribution. Since all the probabilities pi in our setting

are fixed, we can always find a constant (say c) such that for all n
greater than c, every Xi ∼ N(npi, npi(1 − pi)) distribution. We

use the following result to obtain the distribution of the X2 statistic

of any substring from a string generated using the null model.

THEOREM 3. Let the random variable Yi, i ∈ {1, 2 . . . k} fol-

lows N(npi, npi(1 − pi)) distribution with
Pk

i=1 pi = 1 and the

additional constraint that
Pk

i=1 Yi = n. The random variable

X2 =
k
X

i=1

(Yi − npi)
2

npi
(24)

then follows the chi-square distribution with (k − 1) degrees of

freedom, denoted by χ2(k − 1).

PROOF. It has to be noted that all Yi’s in the theorem are not

independent but have an added constraint that
Pk

i=1 Yi = n. This

is precisely the reason why the degrees of freedom of chi-square

distribution is k − 1 instead of k. A well known result is that the

sum of squares of n independent standard normal random variables

follows a χ2(k) distribution. The proof (which is slightly compli-

cated) follows directly from this well known result. Please refer to

[20] for the detailed proof.

We will next prove that with high probability, the X2 value of

the MSS of S generated using the null model is greater than ln n.

However, before that, we prove another useful result using elemen-

tary probability theory.

LEMMA 3. Let Zmax denote the maximum of m i.i.d. random

variables following χ2(k) distribution. Then with probability at

least 1 − O(1/m2), for sufficiently large m and for any constant

c > 0, ln cm ≤ Zmax.

PROOF. We first show this for k = 2. Let f(x) and F (x) denote

the pdf and cdf of χ2(2) distribution:

f(x; 2) =
1

2
e−x/2 F (x; 2) = 1− e−x/2

(25)

We have

Zmax = max{Z1, Z2, . . . , Zm}∀i, Zi ∼ χ2(k) (26)

For any constant c > 0 we have:

Pr{Zmax > ln cm} = Pr{∃i, s.t. Zi > ln cm}
= 1− Pr{∀i, Zi ≤ ln cm} = 1− (Pr{Zi ≤ ln cm})m

= 1− (1− e−
1
2

ln cm)m = 1− (1− 1√
cm

)m

≥ 1− e−
√

m/c ≥ 1−O(1/m2) (27)

In the above proof we only utilized the asymptotic behavior of

pdf and cdf of the χ2(k) distribution. Since for any general k,

3In the above approximation, we can think of the binomial distri-
bution as the discrete version of the normal distribution having the
same mean and variance. So we do not need to account for the
approximation error using the Berry-Esseen theorem [8].
4In general, the value of this constant is taken as 5 [1].

1056

the asymptotic behavior of pdf and cdf of χ2(k) distribution has

the same dominating term e−x/2, the above result is valid for any

given k.5

LEMMA 4. In the MSS algorithm, at any iteration in the loop

over i, X2
max > ln n′ with probability at least 1−O(1/n′2) where

n′ = n− i.

PROOF. We can verify from the pseudo code (Algorithm 1) that

before we begin the loop in line 2 for i = i0, we have checked

all the substrings that are potential candidates for MSS of S start-

ing at i > i0. So, at this instance, the variable X2
max stores the

maximum X2 value of any substring of the string S[(i0 +1) . . . n].
In other words, the variable X2

max would store the maximum of
n′

C2 = O(n′2) (where n′ = n−i0) random variables each follow-

ing the same χ2(k − 1) distribution. However, since these O(n′2)
substrings are not mutually independent, the result of Lemma 3

cannot be directly applied in this case.

However, we can still say that a subset of at least O(n′) sub-

strings are independent, with each substring following a χ2(k− 1)
distribution. One way of constructing a mutually independent sub-

set of size O(n′) is by choosing n′/c substrings each of length c
such that they do not share any character among them, i.e., the ith

substring in this set is S[(ci−c) . . . (ci−1))] where c is a constant

such that the binomial distribution can be approximated by the nor-

mal distribution for all strings of length greater than or equal to c.

Since all characters of the string S are drawn independently from

a fixed probability distribution, all the substrings in the subset are

mutually independent, and since length of all these substrings are

greater than c, X2 statistics of these substrings follow the χ2(k−1)
distribution. Consequently, the value of X2

max in our algorithm is

greater than the max of at least O(n′) χ2(k−1) i.i.d. random vari-

ables. Putting the value of m = n′/c in the result of Lemma 3, we

can prove the above result.

LEMMA 5. On an input string generated from the null model,

with high probability (> 1− ǫ for any constant ǫ > 0) the number

of substrings skipped (denoted by x) in any iteration of the loop on

l in the MSS algorithm is ω(
√

l) for sufficiently large values of l.
Hence, ǫ can be set so close to 0 that with probability practically

equal to 1, the number of substrings skipped x in any iteration is at

least ω(
√

l).

PROOF. As stated in (22), the number of substrings skipped in

any iteration of the loop on l is

x =
−b +

√
b2 − 4ac

2a
(28)

We will prove that in the string generated from the null model,

with high probability b ≤ 1
2

√
lpt ln l and c ≥ − 1

2
lpt ln l. These

bounds help us in guaranteeing that x = ω(
√

l) with high proba-

bility. In order to prove the bounds on b and c, we first prove that

the following conditions hold with high probability.

(i) From the result stated in Lemma 4, for any constant ǫ1 > 0,

we have with probability at least 1−O(1/n′2) > 1− ǫ1 that

X2
max > ln n′ where n′ = n − i. In the algorithm, l in the

loop iterates from 0 to n − i, so we have l ≤ n′. Hence,

X2
max > ln l with probability at least 1− ǫ1.

(ii) Suppose Yt denotes the frequency of alphabet at in the string

S[i . . . l′] of length l. As denoted in (23) it is the sum of l

5The term of xk/2−1e−x/2 occurring in pdf of a general k is

asymptotically less than e−x/2+ǫ and greater than e−x/2−ǫ for any
ǫ > 0, which is independent of k.

independent Bernoulli random variables Tij each with expec-

tation pt; so, E[Yt] = lpt. Also, we have Pr(Tij ∈ [0, 1]) =
1. Now, using the Hoeffding’s inequality [16], we get

Pr{Yt − E[Yt] < t} ≥ 1− e
− 2t2l2

Pl
i=1

(bi−ai)
2

(29)

Substituting E[Yt] = lpt, t = 1
4

√
lpt ln l, ai = 0 and bi = 1,

we have for any constant ǫ2 > 0

Pr{Yt − lpt <
1

4

p

lpt ln l} ≥ 1− e−
2lpt ln l

16l

= 1− l−
pt
8 ≥ 1− ǫ2 (30)

(iii) As stated in Theorem 3, the X2 value of substring S[i . . . l′]
of length l denoted by X2

l follows the χ2 distribution. Fur-

ther, using the definition of cdf of χ2 distribution denoted by

Fx, we have for any constant ǫ3 > 0

Pr{X2
l <

ln l

2
} = Fx(

ln l

2
) = 1− e−

ln l
4 ≥ 1− ǫ3 (31)

We choose constants ǫ1, ǫ2 and ǫ3 small enough such that for any

constant ǫ > 0, 1 − ǫ1 − ǫ2 − ǫ3 > 1 − ǫ. Thus combining the

above three conditions, the following results hold with probability

1− ǫ:

b = 2(Yt − lpt)− ptX
2
max ≤ 2(Yt − lpt) ≤

1

2

p

lpt ln l (32)

c = lpt(X
2
l −X2

max) ≤ lpt(
1

2
ln l − ln l) ≤ −1

2
lpt ln l (33)

a = 1− pt ≤ 1 (34)

We use the fact that if any positive x satisfies the equation a′x2 +
b′x + c′ ≤ 0 then it also satisfies the equation ax2 + bx + c ≤ 0
if a ≤ a′, b ≤ b′ and c ≤ c′. So substituting upper bounds of a,

b and c in (28) and maximizing x in (28) we have with probability

1− ǫ

x ≥ 1

2
(

r

1

4
lpt ln l + 2lpt ln l − 1

2

p

lpt ln l)

=
1

2
(

r

9

4
lpt ln l − 1

2

p

lpt ln l)

=
1

2

p

lpt ln l = Ω(
√

l ln l) = ω(
√

l) (35)

Further, in Algorithm 1, except line 9, all the steps inside the

loop over l in line 3 can be performed in constant time. However,

if we can determine the frequencies of all of the characters in the

substring S[i . . . l′] in O(1) time, then we can find the character

at (line 9) in O(k) time. For this purpose, we maintain one count

array for each character at, ∀t = 1, . . . , k, where the ith element

of the count array stores the number of occurrence of at up to the

ith position in the string. Each count array can be preprocessed in

O(n) time. Consequently, each iteration of the loop over l in line 3

takes O(k) time. Further the loop over i in line 2 iterates n times.

Now, we only need to compute the number of iterations of the loop

over l for which we use the next lemma.

LEMMA 6. The expected number of iterations of the loop on l
(in line 3 of the MSS algorithm) for each value of i is O(

√
n).

1057

Algorithm 2 Algorithm for finding the top-t substrings

1: T ←Min Heap on t elements all initialized to 0
2: for i = n to 1 do

3: for l = 0 to n− i do

4: l′ ← i + l
5: X2

max t ← Find Min(T)

6: X2
l ←X2 value of S[i . . . l′]

7: if X2
l > X2

max t then

8: Extract Min(T)

9: Insert X2
l in T

10: end if

11: t←m s.t. ∀m ∈ {1, 2, . . . , k}, 2Ym+x
pm

is maximum

12: a← 1− pt

13: b← 2Yt − 2lpt − ptX
2
max t

14: c← (X2
l −X2

max t)lpt

15: x←
‰

−b+
√

b2−4ac

2a

ı

16: Increment l by x
17: end for

18: i← i− 1
19: end for

20: return T

PROOF. Let T (r) be the number of iterations of the loop over l
required for l to reach r. We have shown in Lemma 5 that in each

iteration, the number of substrings skipped x is ω(
√

l). Thus, l in

the next iteration will reach from r to r +ω(
√

r). This gives us the

following recursive relation:

T (r + c
√

r) ≤ T (r) + O(1) = T (r) + q (36)

It can be shown that the solution to the above relation is O(
√

n).

Please refer to Lemma 7 in the appendix for detailed proof.

Since each iteration of the loop over l in line 3 takes O(
√

n)
time, the time taken by the algorithm on an input string generated

by the null model is O(kn3/2) which is O(n3/2) since k is taken

as a constant in our problem setting. Thus, we have shown that the

running time of the algorithm on an input string generated from a

memoryless Bernoulli model is O(kn3/2) with high probability.

5.1 Nature of the String
As it can be verified from the definition, the X2 value of a sub-

string increases when the expected and observed frequencies begin

to diverge. Thus, the individual substrings of a string not gener-

ated from the null model are expected to have higher X2 values

which, in turn, increases the X2
max. Further, it can be verified

from (22) that the number of substrings skipped, x, increases on

increasing X2
max as we have to maximize x such that the constraint

X2
λ ≤ X2

max is satisfied. If X2
max is large, it gives a larger win-

dow for X2
λ which allows the choice of a larger x. Hence, the time

taken by our algorithm on an input string not generated from null

model is less than the time taken by our algorithm on an equivalent

string of the same size generated from the null model. So, the time

complexity of our algorithm remains O(n3/2) and is independent

of the nature of the input string. Section 7.1.2 gives the details on

how our algorithms perform on different types of strings.

6. OTHER VARIANTS OF THE PROBLEM

6.1 Top­t Substrings
The algorithm for finding the top-t statistically significant sub-

strings (Algorithm 2) is same as the algorithm for finding the MSS

Algorithm 3 Algorithm for finding all substrings having X2 value

greater than α0

1: Sα0 ← φ
2: for i = n to 1 do

3: for l = 0 to n− i do

4: l′ ← i + l
5: X2

l ←X2 value of S[i . . . l′]
6: if X2

l > α0 then

7: Sα0 ← Sα0 ∪ S[i . . . l′]
8: end if

9: t←m s.t. ∀m ∈ {1, 2, . . . , k}, 2Ym+x
pm

is maximum

10: a← 1− pt

11: b← 2Yt − 2lpt − ptα0

12: c← (X2
l − α0)lpt

13: x←max

‰

−b+
√

b2−4ac

2a

ı

, 1

ff

14: Increment l by x
15: end for

16: i← i− 1
17: end for

18: return Sα0

except that X2
max t stores the tth largest X2 value among all sub-

strings seen till that particular instant by the algorithm. We main-

tain a min-heap T of size t for storing the top-t X2 values seen by

the algorithm. The heap T is initially empty and X2
max t always

stores the top (minimum) element of the heap. If X2
l is computed

to be greater than X2
max, then we extract the minimum element of

T (which now no more is a part of top-t substrings) and insert the

new X2
l value into the heap. Now, X2

max t points to the new mini-

mum of the heap. Finally, at the end of the algorithm we return the

heap T which contains the top-t X2 values among all the substrings

of string S.

The analysis of this algorithm is same as the algorithm for MSS

except that we now need to show that X2
max t is greater than ln n

with probability greater than any constant. This still holds true for

any t < ω(n) (please refer to Lemma 8 in the appendix for de-

tailed proof). Moreover, inside the for loop on l, we now perform

insertion and extract-min operations on a heap T of size t; so each

iteration of the loop over l now requires O(k + log t) time. Thus,

the total time complexity of the algorithm for finding the top t sub-

strings is O((k + log t)n3/2) for t < ω(n).

6.2 Significance Greater Than a Threshold
The algorithm for finding all substrings having X2 value greater

than a threshold α0 (Algorithm 3) is again essentially the same as

the MSS algorithm except that the X2
max constantly remains α0 at

every iteration. We maintain Sα0 as a set of all substrings having

X2 value greater than α0. We skip all substrings that cannot be

a part of Sα0 , i.e., whose cover strings have X2 value not greater

than α0.

Next, we analyze the time complexity of the algorithm on vary-

ing α0. We again revert to (22):

x = max

‰

−b +
√

b2 − 4ac

2a

ı

, 1

ff

(37)

where a = 1 − pt > 0, b = 2Yt − 2lpt − ptα0 and c = (X2
l −

α0)lpt ≤ 0. If α0 < X2
l then c in the above equation is positive.

Consequently, as x takes the value 1, the number of iterations of

the loop on l is O(n). Hence, the time complexity of the algorithm

is O(kn2). However, the time complexity decreases sharply on

1058

 10

 12

 14

 16

 18

 20

 22

 24

 6 7 8 9 10 11

L
n

 I
te

r

Ln n

Our Algorithm

Trivial Algorithm

O(n
1.5

)

(a) Number of iterations with string length n (k=2).

 10

 12

 14

 16

6.2 6.9 7.6 8.5 9.2 9.9 10.8

L
n

 I
te

r

Ln n

k=2

k=3

k=5

k=10

(b) Number of iterations with alphabet size k.

Figure 1: Analysis of time complexity for finding the MSS.

increasing α0. Once α0 becomes sufficiently greater than X2
l , the

term c ≈ −α0lpt starts predominating b, and x in each step is

effectively c/a which is O(
√

αl).6 Hence, the recurrence relation

of the number of iterations of the loop on l in this case is

T (l + O(
√

α0l)) = T (l) + 1 (38)

It can be again shown with the help of Lemma 7 in the appendix

that the solution to the recursive relation is O(
p

l/α0). So the total

time complexity of the algorithm is O(kn
p

n/α0).

6.3 MSS Greater Than a Given Length
The algorithm for finding the most significant substring among

all substrings having length greater than a given length Γ0 is ex-

actly the same as the MSS algorithm except that now we ignore

any substring whose length is not greater than Γ0. This means the

loop on l starts with Γ0 instead of 0 and loop on i goes on till n−Γ0

instead of n. The time complexity of the algorithm decreases not

just because of less number of substrings evaluated in this case but

also because the skip x in our algorithm is a function of l and it

increases with increasing values of l. Hence, the recursive relation

for the loop over l in this case is the same with only the base case

different: T (Γ0) = 1 instead of T (1) = 1. The solution to this

recurrence relation is O(
√

n −
√

Γ0). Since there are n − Γ0 it-

erations of loop in i, the total time complexity of the algorithm is

O(k(n− Γ0)(
√

n−
√

Γ0)) which is effectively O(kn3/2).

6In a substring generated from a memoryless Bernoulli distribu-

tion, X2 follows a χ2 distribution with constant mean and vari-

ance. Hence, it can be shown with high probability that X2
l is a

small constant.

 8

 10

 12

 14

 16

 18

 5 6 7 8 9

L
n

 X
2
m

a
x

Ln n

Our Algorithm

Figure 2: Variation of X2
max with string length n (k = 2).

 0

 20

 40

 60

 80

 100

 120

 140

0.05 0.10 0.15 0.20 0.25

It
e

r/
X

2
m

a
x

p0

S1:X
2
max

S1:Iterations(in 10
4
)

S2:X
2
max

S2:Iterations(in 10
4
)

Figure 3: X2
max and number of iterations for different multinomial

strings. S1 : n = 104, k = 3, P = {p0, 0.5 − p0, 0.5}; S2 : n =
104, k = 5, P = {p0, 0.5− p0, 0.1, 0.2, 0.2}.

7. EXPERIMENTAL ANALYSES AND AP­

PLICATIONS
The experimental results shown in this section are for C codes

run on Macintosh platform on a machine with 2.3 GHz Intel dual

core processor and 4 GB, 1333 MHz RAM. Each character of a syn-

thetic string was generated independently from the underlying dis-

tribution assumed using the standard uniform (0, 1) random num-

ber generator in C.

7.1 Synthetic Datasets

7.1.1 Time Complexity of Finding MSS

The first experiment is on the time complexity of our algorithm

for finding the most significant substring. Figure 1a depicts the

comparison of number of iterations required by our algorithm vis-

à-vis the trivial algorithm for input strings of different lengths (n)

generated from the null model for an alphabet of size 2. The num-

ber of iterations of our algorithm when plotted on a logarithmic

scale increases linearly with the logarithm of the string size with

a slope close to 1.5. Hence, we can claim that the empirical time

complexity of our algorithm for an input string generated by null

model is also O(n1.5).

The effect of varying the alphabet size is shown in Figure 1b

for different string lengths. It can be observed that, as expected,

varying the alphabet size has no significant effect on the number of

iterations of the algorithm.

Figure 2 shows that the expected X2
max increases linearly with n

with slope ∼ 2 which supports our claim in Lemma 4 that for suf-

ficiently large n, X2
max is greater than ln n with high probability.

Finally, Figure 3 plots the variation of X2
max and iterations of the

loop over l for different heterogeneous multinomial distributions

1059

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��

��

 0

 2

 4

 6

 8

 10

10,000 20,000 50,000

It
er

at
io

n
s

in
 M

il
li

o
n

String Length

Null
Geometric
Zapian
Markov

(a) Varying n (k = 5).

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���� ���� ������

��
��
��
��

����

����

��
��
��
��

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 5

It
er

at
io

n
s

in
 M

il
li

o
n

Alphabet size

Null
Geometric
Zapian
Markov

(b) Varying k (n = 20000).

Figure 4: Comparison of time taken by our algorithm on strings not

generated by the null model.

and different alphabet sizes. It is evident that change in the prob-

ability p0 of occurrence of character a0 only changes the X2
max

but has no significant effect on the number of iterations taken by

our algorithm. It can be intuitively seen that the change in p0 is

effectively canceled out by the change in X2
max, so the number of

characters skipped (x in Eq. (22)) roughly remains the same.

7.1.2 Strings Not Generated Using the Null Model

We now investigate the results for input strings not generated

from the null model in addition to an equivalent length input string

generated from the null model which is a memoryless Bernoulli

source where the multinomial probabilities of all the characters are

equal. The different types of other strings that we compare are:

(a) Geometric string: A string generated from a memoryless multi-

nomial Bernoulli source but the multinomial probabilities of all

the characters are different. The probability of occurrence of a

character decreases geometrically. Hence, the probability of

occurrence of character ai is proportional to 1/2i.

(b) Harmonic string: A string generated from a memoryless multi-

nomial Bernoulli source but the multinomial probabilities of all

the characters are different. The probability of occurrence of a

character decreases harmonically. Hence, the probability of

occurrence of character ai is proportional to 1/i.

(c) Markov string: A string generated by a Markov process, i.e.,

the occurrence of a character depends on the previous charac-

ter. The state transition probability of character aj following

character ai is proportional to 1/2(i−j) mod k.

The number of iterations for our algorithm on different values

of string length (n) and alphabet size (k) are plotted in Figure 4.

It can be verified that in all the cases, the string generated using

the null model requires the maximum number of iterations which

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 7 8 9 10 11 12

L
n

 T
im

e
 (

in
 µ

s
)

Ln n

MSS

Top-10

Top-100

Top-2000

(a) Number of iterations with string length n.

 8

 9

 10

 11

 12

 13

 14

 15

 0 2 4 6 8 10 12

L
n

 T
im

e
 (

in
 µ

s
)

Ln t

n=500

n=2000

n=10000

(b) Number of iterations with t.

Figure 5: Analysis of time complexity for finding the top-t set.

is in accordance with our theoretical claim in Section 5. The time

taken by our algorithm on an input string not generated from a null

model is upper bounded by the time taken on an equivalent size

input string generated from the null model. This verifies that the

time complexity of our algorithm is O(kn3/2), independent of the

type of the input string.

7.2 Other Variants

7.2.1 Top­t Significant Substrings

The time taken by the algorithm for finding the top-t set on vary-

ing string lengths for different values of t is shown in Figure 5a.

The linear increment in logarithmic scale with slope ∼ 1.5 verifies

that for any constant t the time taken by our algorithm to find the

top-t set is again O((k + log t)n1.5).

The time taken for different t is shown in Figure 5b. The plot

shows that till t < ω(n), the running time increases with slope 1.5,

but once t crosses the limit, the slope starts increasing towards 2.

This is agreement with our theoretical analysis in Section 6.1.

7.2.2 Significance Greater Than a Threshold

Figure 6 depicts the number of iterations taken by the algorithms

for finding all substrings greater than a threshold α0. As discussed

in Section 6.2, the iterations decrease very sharply from O(n2) un-

til α0 = O(X2
max) after which it gradually decreases (as a function

of 1/
√

α0).

7.2.3 Substrings Greater Than a Given Length

The number of iterations taken by the algorithms for finding the

MSS among all strings of length greater than Γ0 is shown in Fig-

ure 7. As discussed in Section 6.3, the number of iterations slowly

decreases as Γ0 tends to n before rapidly approaching 0.

1060

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50

L
n

 I
te

r

α0

Trivial Algorithm

Our Algorithm

Figure 6: Number of iterations with α0 (n = 105, k = 2).

 0

 5

 10

 15

 20

 25

 30

 10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6

L
n

 I
te

r

Ln Γ0

Trivial Algorithm

Our Algorithm

Figure 7: Number of iterations with Γ0 (n = 105, k = 2).

7.3 Comparison with Existing Techniques
Table 1 presents the comparative results of our algorithm with

the existing algorithms [13] for two different values of string size

(averaged over different runs). As expected, results indicate that

ARLM [13], being O(n2), does not scale well for larger strings,

as opposed to our algorithm. AGMM [13], being O(n) time, is

very fast and outperforms all the algorithms in terms of time taken.

However, being just a heuristic with no theoretical guarantee, it

does not always lead to a solution that is close to the optimal. As

can be verified from Table 1, the average X2
max string found by

AGMM is significantly lower than the average X2
max value found

by other algorithms. Further, since there are no guarantees on the

lower bound of the X2
max value found by it relative to the opti-

mal X2
max value, AGMM can lead to pretty bad solutions in some

real datasets which are not as well behaved as the synthetic ones

(Section 7.5). Finally, our algorithm requires only 3 seconds for a

string as large as of length 80000 which signifies that for real life

scenarios, the algorithm is practical.

7.4 Application in Cryptology
The correlation between adjacent symbols is of central impor-

tance in many cryptology applications [12]. The objective of a ran-

dom number generator is to draw symbols from the null model. The

independence of consecutive symbols is an important criterion for

efficiency of a random number generator [12]. We define correla-

tion between adjacent symbols in terms of the state transition prob-

ability. An ideal random binary string generator should generate

the same symbol in next step with probability exactly 0.5. How-

ever, some random number generators which are inefficient might

be biased towards generating the same symbol again with proba-

bility more than 0.5. Table 2 shows the comparison of X2
max for

different lengths n of string and different probabilities of genera-

tion of same symbol p in the next iteration.

Algo String Size Avg X2
max Avg Time

Trivial 20000 18.69 8.54s

Our 20000 18.69 0.5s

ARLM 20000 18.69 1.9s

AGMM 20000 15.10 0.01s

Trivial 80000 20.35 142.21s

Our 80000 20.35 2.82s

ARLM 80000 20.32 39.22s

AGMM 80000 17.71 0.03s

Table 1: Comparison with other techniques for synthetic datasets.

X2
max p = 0.50 p = 0.55 p = 0.60 p = 0.80

n = 1000 12.18 14.24 16.80 36.47

n = 5000 15.12 17.67 21.52 48.79

n = 10000 16.87 19.36 24.03 53.37

n = 20000 17.89 21.48 25.70 60.61

Table 2: Variation of X2
max with n and p.

It can be verified from the data that the X2
max is minimum for

a string generated with p = 0.5 and increases with increasing p.

Further, Figure 4 plots the variation of X2
max of a string generated

using the null model with (logarithm of) the string length (ln n).

We observe a nice linear convergence with slope 2. This X2
max

value can be used as a benchmark for a string of any length to mea-

sure the deviation from the null model. If the observed X2
max value

of a string deviates significantly from the benchmark, it means that

the string generated is not completely random but contains some

kind of hidden correlation among the symbols. One of the major

advantages of using the algorithm is in a scenario where only a

substring of a string might deviate from the random behavior. Our

algorithm will be able to capture such a substring without having

to examine all the possible substrings7.

7.5 Real Datasets

7.5.1 Analysis of Sports Data

The chi-square statistic can be used to find the best or worst

career patches of sports teams or professionals. Boston Red Sox

versus New York Yankees is one of the most famous and fiercest

rivalries in professional sports [11]. They have competed against

each other in over two thousand Major League Baseball games

over a period of 100 years. Yankees have won 1132 (54.27%) of

those games. However, we would like to analyze the time peri-

ods in which either of Yankees or Red Sox were particularly dom-

inant against the other. The dominant periods should have large

win ratio for a team over a sufficiently long stretch of games. If

we encode the results in the form of a binary string whose letters

denote a win or loss for a team, then these sufficiently long peri-

ods will contain results that significantly differ from the expected

or average. Consequently, the X2 value for the dominant periods

will significantly differ from 0. We use the dataset obtained from

www.baseball-reference.com.

The top five most significant patches found by our algorithm

have been summarized in Table 3. The best period for Yankees

was from mid 1920s to early 1930s in which they won more than

75% of the games. It was clearly the era of Yankees dominance in

which they won 26 World Series championships and 39 pennants,

compared to only 4 pennants for the Red Sox [11]. Alternatively,

the best patch for Red Sox was a two-year period around 1912 in

which they had close to 90% winning record; this is also referred

to as the glory period in Red-Sox history [11].

7Such substrings will tend to exhibit large X2 values and, hence,
will be captured by our algorithm.

1061

Start End X2 val Games Wins Win%

17-04-1924 06-06-1933 38.76 204 155 75.98%

05-09-1911 01-09-1913 26.99 39 5 12.82%

02-05-1902 27-07-1903 16.93 27 4 14.81%

08-02-1972 28-07-1974 16.56 35 7 20.00%

10-07-1960 07-09-1962 12.05 42 34 80.05%

Table 3: Performance of Yankees against Red-Sox.

Algorithm X2 val Start End Time

Trivial 38.76 17-04-1924 06-06-1933 0.142s

Our 38.76 17-04-1924 06-06-1933 0.036s

ARLM 38.76 17-04-1924 06-06-1933 0.032s

AGMM 26.99 05-09-1911 01-09-1913 0.011s

Table 4: Comparison with other techniques for sports data.

The comparative results of our algorithm with existing techniques

are summarized in Table 4. As expected, our algorithm and AGMM

finds the optimal solution but our algorithm outperforms the trivial

algorithm and is almost as good as ARLM in terms of time (due

to relatively small string size). Moreover, though AGMM is faster,

it does not find the optimal solution. The best period found by

AGMM was the second best (see Table 3) and has a significantly

lower X2 value.

7.5.2 Analysis of Stock Returns

Most financial models are based on the random walk hypothesis

which is consistent with the efficient-market hypothesis [6]. They

assume that the stock market prices evolve according to a random

walk with a constant drift and, thus, the prices of the stock market

cannot be predicted.8

We analyze the returns of three generic financial securities for

which a long historical data is available. The Dow Jones Indus-

trial Average is one of the oldest stock market index that shows the

performance of 30 large publicly owned companies in the United

States. Similarly, S&P 500 is another large capitalization-weighted

index that captures the performance of 500 large-cap common stocks

actively traded. Finally, the IBM common stock is representative

of one of the oldest and largest publicly owned firms. We run the

algorithms on the Dow Jones prices obtained since the year 1928

onwards (20906 days), S&P 500 since 1950 onwards (15600 days)

and IBM since 1962 onwards (12517 days). The daily price data

are obtained from finance.yahoo.com.

Given the randomness in the stock prices, we assume that the

prices can increase (or decrease) each day with a fixed probability.

The fixed probability is calculated as the ratio of days on which

price went up (or down) to the total number of trading days. We

find the statistically significant substrings of the binary string en-

coded with 1 for the day if the price of security went up and 0 oth-

erwise. These substrings correspond to significantly long periods

that contain a large ratio of days in which the stock price changed.

The results are summarized in Table 5.

A lot of bad periods occurred during the Great Depression of

1930s, the recent dot-com bubble burst and mortgage recession pe-

riods of the last decade, whereas a number of good periods occurred

during the economic boom of 1950s and 1960s. These observations

verify that these statistically significant periods do not occur just

due to randomness or chance alone, but are consequences of exter-

nal factors as well. The identification of such significant patterns

can help in identifying the relevant external factors. Finally, the

X2 values of these substrings can also be used in quantifying the

historical risk of the securities which is one of the most important

parameters that investment managers like to control.

8If the stock prices can be predicted then there is an arbitrage in the
market which violates the efficient market hypothesis.

Periods Security Start End Change

Good

Dow Jones 24-02-1954 06-12-1955 68.10%
Dow Jones 25-06-1958 04-08-1959 43.52%
S&P 500 15-09-1953 20-09-1955 97.07%
S&P 500 09-12-1994 17-05-1995 17.92%

IBM 13-08-1970 06-10-1970 37.60%
IBM 26-10-1962 26-01-1968 252.0%

Bad

Dow Jones 27-02-1931 04-05-1932 -71.17%
Dow Jones 19-09-1929 14-11-1929 -41.27%
S&P 500 26-10-1973 21-11-1974 -39.79%
S&P 500 05-09-2000 12-03-2003 -46.24%

IBM 31-03-2005 20-04-2005 -21.20%
IBM 22-02-1973 13-08-1975 -46.91%

Table 5: Significant periods for the securities.

Algo Sec. X2 Start End Change Time

Trivial Dow 25.22 24-02-54 06-12-55 68.1% 14.10s

Our Dow 25.22 24-02-54 06-12-55 68.1% 0.89s

ARLM Dow 25.22 24-02-54 06-12-55 68.1% 4.15s

AGMM Dow 19.53 24-01-66 09-04-85 325.0% 0.03s

Trivial S&P 22.21 26-10-73 21-11-74 -39.79% 9.36s

Our S&P 22.21 26-10-73 21-11-74 -39.79% 0.63s

ARLM S&P 22.21 26-10-73 21-11-74 -39.79% 2.87s

AGMM S&P 13.44 22-04-66 09-05-66 -6.44% 0.03s

Table 6: Comparison with other techniques for stock returns.

The comparative performance of our algorithm vis-à-vis the other

techniques in finding the period with the highest X2 value is sum-

marized in Table 6. Again, as expected, our algorithm, trivial algo-

rithm and ARLM find the same period for which the X2 value is

maximized. However, in this case, the time performance advantage

of our algorithm over ARLM is pretty apparent. AGMM, though

having the time advantage, does pretty badly in terms of identifying

the maximum X2 substring. Especially for S&P 500, it returns a

substring that is not even close to the top few substrings.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we chose to analyze the X2 statistic in the context

of a memoryless Bernoulli model. We experimentally saw that for

a string drawn from such a model, the chi-square value of the most

significant substring increases asymptotically as (2 ln n) where n is

the length of the string. However, the rigorous mathematical proof

remains an interesting open problem. Such analysis of asymptotic

behavior have significant applications in deciding the confidence

interval with which the null hypothesis is rejected. Further, the

analysis can be further extended to strings generated from Markov

models, the most basic of which being the case when there is a

correlation between adjacent characters.

The single dimensional problem of identification of the most

significant substring can be extended to two-dimensional grid net-

works as well as general graphs. One potentially interesting ap-

plication is in financial time series analysis of two securities that

might not be very correlated in general, but might point to signif-

icant correlations during certain specific events such as recession.

Such correlations are essential to most risk analysis techniques.

9. REFERENCES
[1] M. Abramowitz and I. Stegun. Handbook of Mathematical

Functions. Wiley, 1964.
[2] S. Agarwal. On finding the most statistically significant

substring using the chi-square measure. Master’s thesis,
Indian Institute of Technology, Kanpur, 2009.

[3] M. Atallah, R. Gwadera, and W. Szpankowski. Detection of
significant sets of episodes in event sequences. In ICDM,
pages 3–10, 2004.

1062

[4] G. Box, W. Hunter, and J. Hunter. Statistics for
Experimenters. Wiley, 1978.

[5] H. Chernoff and E. Lehmann. The use of maximum
likelihood estimates in chi-square tests for goodness of fit.
The Annals of Mathematical Statistics, 25(3):579–586, 1954.

[6] P. Cootner. The Random Character of Stock Market Prices.
MIT, 1964.

[7] A. Denise, M. Régnier, and M. Vandenbogaert. Assessing the
statistical significance of overrepresented oligonucleotides.
In WABI, pages 537–552, 2001.

[8] R. Durrett. Probability: Theory and Examples. Cambridge
University Press, 2010.

[9] S. Dutta and A. Bhattacharya. Most significant substring
mining based on chi-square measure. In PAKDD, pages
319–327, 2010.

[10] S. Dutta and A. Bhattacharya. Mining statistically significant
substrings based on the chi-square measure. In Pattern
Discovery Using Sequence Data Mining: Applications and
Studies, pages 73–82. IGI Global, 2012.

[11] H. Frommer and F. Frommer. Red Sox vs Yankees: The Great
Rivalry. Sports Publishing LLC, 2004.

[12] O. Goldreich. Modern cryptography, probabilistic proofs and
pseudorandomness. Springer-Verlag, 1999.

[13] R. Goonatilake, A. Herath, S. Herath, S. Herath, and
J. Herath. Intrusion detection using the chi-square
goodness-of-fit test for information assurance, network,
forensics and software security. J. Computing Sciences,
23(1):255–263, 2007.

[14] D. Gusfield. Algorithms on strings, trees, and sequences.
Cambridge University Press, 1997.

[15] R. Gwadera, M. Atallah, and W. Szpankowski. Reliable
detection of episodes in event sequences. Knowl. Inf. Syst.,
7(4):415–437, 2005.

[16] W. Hoeffding. Probability inequalities for sums of bounded
random variables. J. American Statistical Association,
58(301):13–30, 1963.

[17] M. Kaboudan. Genetic programming prediction of stock
prices. Computational Economics, 16(3):207–236, 2000.

[18] I. Kuznetsov and S. Rackovsky. Identification of non-random
patterns in structural and mutational data: the case of prion
protein. In CSB, pages 604–608, 2003.

[19] H. Mannila, H. Toivonen, and A. Verkamo. Discovering
frequent episodes in sequences. In KDD, pages 210–215,
1995.

[20] D. Panchenko. Lecture 23. In Statistics for Applications.
MIT Open Course Ware, 2003.

[21] H. Patel. Quality control methods for multivariate binomial
and poisson distributions. Technometrics, 15(1):103–112,
1973.

[22] R. Povinelli. Identifying temporal patterns for
characterization and prediction of financial time series
events. IEEE Trans. Knowl. Data Eng., 15(2):339–352, 2003.

[23] S. Rahmann. Dynamic programming algorithms for two
statistical problems in computational biology. In WABI,
pages 151–164, 2003.

[24] T. Read and N. Cressie. Goodness-of-Fit Statistics for
Discrete Multivariate Data. Springer, 1988.

[25] M. Régnier and M. Vandenbogaert. Comparison of statistical
significance criteria. J. Bioinformatics and Computational
Biology, 4(2):537–551, 2006.

[26] N. Ye and Q. Chen. An anomaly detection technique based
on a chi-square statistic for detecting intrusions into
information systems. Quality and Reliability Engineering
International, 17:105–112, 2001.

[27] N. Ye, X. Li, Q. Chen, S. Emran, and M. Xu. Probabilistic
techniques for intrusion detection based on computer audit
data. IEEE Transactions on Systems, Man, and Cybernetics,
31(4):266–274, 2001.

APPENDIX

LEMMA 7. The solution to the recursive relation T (⌈l+ c
√

l⌉)
≤ T (l)+1 with T (α) = 1 for α <= 1 where l is a positive integer

is O(
√

l/c). More specifically, T (l) ≤ 4
√

l
c

+ c2.

PROOF. We prove this by induction. The base cases for l <
c2 are trivially satisfied. Further, for any positive integer l ≥ c2,

assume that T (l) ≤ 4
√

l
c

+ c2 is true for all positive integers r such

that c2 < r < ⌈l + c
√

l⌉. Hence,

T (⌈l + c
√

l⌉) ≤ T (l) + 1

≤ 4
√

l

c
+ c2 + 1 =

v

u

u

t

4
√

l

c
+ 1

!2

+ c2

=

p

16l + 8c
√

l + c2

c
+ c2

≤
p

16l + 9c
√

l

c
+ c2 [∵ c2 ≤ l]

≤ 4
√

l + cl

c
+ c2

(39)

LEMMA 8. In the algorithm for finding the top-t substrings, for

any constant ǫ and t < ω(n), X2
max t < ln n with probability at

least 1− ǫ.

PROOF. Let Zmax denote the tth max of m i.i.d. random vari-

ables following χ2(k) distribution. As in the X2
max case in Algo-

rithm 1, since asymptotic behavior of χ2(k) distribution is same for

all k, we again prove it only for k = 2, which is sufficient. Again,

f(x) and F (x) denote the pdf and cdf of χ2(2) distribution:

f(x; 2) =
1

2
e−x/2 F (x; 2) = 1− e−x/2

(40)

We have

Zmax t = max t{Z1, Z2, . . . , Zm}∀ i, Zi ∼ χ2(k) (41)

Now for each Zi, we define a new Bernoulli random variable Yi

which takes the value 1 if Zi > ln m and 0 otherwise:

Pr{Yi = 1} = Pr{Zi > ln m} = e−
1
2

ln(m) =
1√
m

(42)

Let Y =
Pm

1=1 Yi; then Y follows binomial distribution with prob-

ability of success p = 1√
m

. Further,

Pr{Zmax t > ln m} = Pr{Y ≥ t} (43)

Using the Chernoff’s inequality for binomial distribution , for any

constant ǫ > 0,

Pr{Y ≥ t} ≥ 1− e
− (mp−t)2

2mp ≥ 1− e
− (

√
m−t)2

2
√

m (44)

If t < ω(
√

m), we can effectively ignore t in the above equation.

In that case, the above equation simplifies to

Pr{Zmax t > ln m} ≈ 1− e−
√

m

2 ≥ 1− ǫ (45)

Finally, again as in Algorithm 1, at least O(n) substrings are inde-

pendent. Therefore, the result holds.

1063

