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ABSTRACT

ϵ-differential privacy is the state-of-the-art model for releasing sen-

sitive information while protecting privacy. Numerous methods

have been proposed to enforce ϵ-differential privacy in various an-

alytical tasks, e.g., regression analysis. Existing solutions for re-

gression analysis, however, are either limited to non-standard types

of regression or unable to produce accurate regression results. Mo-

tivated by this, we propose the Functional Mechanism, a differ-

entially private method designed for a large class of optimization-

based analyses. The main idea is to enforce ϵ-differential privacy

by perturbing the objective function of the optimization problem,

rather than its results. As case studies, we apply the functional

mechanism to address two most widely used regression models,

namely, linear regression and logistic regression. Both theoreti-

cal analysis and thorough experimental evaluations show that the

functional mechanism is highly effective and efficient, and it sig-

nificantly outperforms existing solutions.

1. INTRODUCTION
Releasing sensitive data while protecting privacy has been a sub-

ject of active research for the past few decades. One state-of-the-

art approach to the problem is ϵ-differential privacy, which works

by injecting random noise into the released statistical results com-

puted from the underlying sensitive data, such that the distribution

of the noisy results is relatively insensitive to any change of a sin-

gle record in the original dataset. This ensures that the adversary

cannot infer any information about any particular record with high

confidence (controlled by parameter ϵ), even if he/she possesses all

the remaining tuples of the sensitive data. Meanwhile, the noisy

results should be close to the unperturbed ones in order to be useful

in practice. Hence, the goal of an ϵ-differential private data publi-

cation mechanism is to maximize result accuracy, while satisfying

the privacy guarantees.

The best strategy to enforce ϵ-differential privacy depends upon

the nature of the statistical analysis that will be performed using
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(a) Linear Regression (b) Logistic Regression

Figure 1: Two examples of regression problems

the noisy data. This paper focuses on regression analysis, which

identifies the correlations between different attributes based on the

input data. Figure 1 illustrates two most commonly used types

of regressions, namely, linear regression and logistic regression.

Specifically, linear regression finds the linear relationship between

the input attributes that fits the input data most. In the example

shown in Figure 1a, there are two attributes, age and medical ex-

penses; the data records are shown as dots. The regression result

is a straight line with minimum overall distances to the data points,

which expresses the value of one attribute as a linear function of

the other one. Figure 1b shows an example of logistic regression,

where there are two classes of data: diabetes patients (shown as

black dots) and those without diabetes (white dots). The goal is to

predict the probability of having diabetes, given a patient’s other

attributes (i.e., age and cholesterol level in our example). The re-

sult of this logistic regression can be expressed as a straight line;

the probability of a patient getting diabetes is calculated based on

which side of the line the patient lies in, and its distance to the line.

In particular, if a patient’s age and cholesterol level correspond to

a point that falls exactly on the straight line, then his/her proba-

bility of having diabetes is predicted to be 50%. We present the

mathematical details of these two types of regression in Section 3.

Although regression is a very common type of analysis in prac-

tice (especially on medical data), so far there is only a narrow se-

lection of methods for ϵ-differentially private regression. The main

challenge lies in the fact that regression involves solving an opti-

mization problem. The relationship between the optimization re-

sults and the original data is difficult to analyze; consequently, it is

hard to decide on the minimum amount of noise necessary to make

the optimization results differentially private. Most existing solu-

tions for ϵ-differentially privacy are designed for releasing simple
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aggregates (e.g., counts), or structures that can be decomposed into

such aggregates, e.g., trees or histograms. One way to adapt these

solutions to regression analysis is through synthetic data genera-

tion (e.g., [7]), which generates synthetic data in a differentially

private way based on the original sensitive data. The resulting syn-

thetic dataset can be used for any subsequent analysis. However,

due to its generic nature, this methodology often injects an unnec-

essarily large amount of noise, as shown in our experiments. To

our knowledge, the only known solutions that targets regression

are [4,5,16,27], which, however, are either limited to non-standard

types of regression analysis or unable to produce accurate regres-

sion results, as will be shown in Sections 2 and 7.

Motivated by this, we propose the functional mechanism, a gen-

eral framework for enforcing ϵ-differential privacy on analyses that

involve solving an optimization problem. The main idea is to en-

force ϵ-differential privacy by perturbing the objective function of

the optimization problem, rather than its results. Publishing the re-

sults of the perturbed optimization problem then naturally satisfies

ϵ-differential privacy as well. Note that, unlike previous work [4,5]

which relies on some special properties of the objective function,

our functional mechanism generally applies to all forms of opti-

mization functions. Perturbing objective functions is inherently

more challenging than perturbing scalar aggregate values, for two

reasons. First, injecting noise into a function is non-trivial; as we

show in the paper, simply adding noise to each coefficient of a func-

tion often leads to unbearably high noise levels, which in turn leads

to nearly useless results. Second, not all noisy functions are valid

objective functions; in particular, some noisy functions lead to un-

bounded results, and some others have multiple local minima. The

proposed functional mechanism solves these problems through a

set of novel and non-trivial algorithms that perform random per-

turbations in the functional space. As case studies, we apply the

functional mechanism to both linear and logistic regressions. We

prove that for both types of regressions, the noise scale required by

the proposed methods is constant with respect to the cardinality of

the training set. Extensive experiments using real data demonstrate

that the functional mechanism achieves highly accurate regression

results with comparable prediction power to the unperturbed re-

sults, and it significantly outperforms the existing solutions.

The remainder of the paper is organized as follows. Section

2 reviews related studies of differential privacy. Section 3 pro-

vides formally defines our problems. Section 4 describes the basic

framework for the functional mechanism, and applies it to enforce

ϵ-differential privacy on linear regression. Section 5 extends the

mechanism to handle more complex objective functions, and solves

the problem of differentially private logistic regression. Section 6

presents a post-processing module to ensure that the perturbed ob-

jective function has a unique optimal solution. Section 7 contains

an extensive set of experimental evaluations. Finally, Section 8

concludes the paper with directions for future work.

2. RELATED WORK
Dwork et al. [9] propose ϵ-differential privacy and show that

it can be enforced using the Laplace mechanism, which supports

any queries whose outputs are real numbers (see Section 3 for de-

tails). This mechanism is widely adopted in the existing work, but

most adoptions are restricted to aggregate queries (e.g., counts) or

queries that can be reduced to simple aggregates. In particular, Hay

et al. [13], Li et al. [17], Xiao et al. [30], and Cormode et al. [6]

present methods for minimizing the worst-case error of a given set

of count queries; Barak et al. [2] and Ding et al. [8] consider the

publication of data cubes; Xu et al. [31] and Li et al. [18] focus on

publishing histograms; McSherry and Mironov [20], Rastogi and

Nath [24], and McSherry and Mahajan [19] devise methods for re-

leasing counts on particular types of data, such as time series.

Complement to the Laplace mechanism, McSherry and Talwar

[21] propose the exponential mechanism, which works for any

queries whose output spaces are discrete. This enables differen-

tially private solutions for various interesting problems where the

outputs are not real numbers. For instance, the exponential mech-

anism has been applied for the publication of audition results [21],

coresets [10], frequent patterns [3], decision trees [11], support vec-

tor machines [25], and synthetic datasets [7,16]. Nevertheless, nei-

ther the Laplace mechanism nor the exponential mechanism can

be easily adopted for regression analysis. The reason is that both

mechanisms require a careful sensitivity analysis of the target prob-

lem, i.e, an analysis on how much the problem output would change

when an arbitrary tuple in the input data is modified. Unfortunately,

such an analysis is rather difficult for regression tasks, due to the

complex correlations between regression inputs and outputs.

To the best of our knowledge, the only existing work that tar-

gets regression analysis is by Chaudhuri et al. [4, 5], Smith [27],

and Lei [16]. Specifically, Chaudhuri et al. [4, 5] show that, when

the cost function of a regression task is convex and doubly dif-

ferentiable, the regression can be performed with a differentially

private algorithm based on the objective perturbation. The algo-

rithm, however, is inapplicable for standard logistic regression, as

the cost function of logistic regression does not satisfy convexity

requirement. Instead, Chaudhuri et al. demonstrate that their algo-

rithm can address a non-standard type of logistic regression with a

modified input (see Section 3 for details). Nevertheless, it is un-

clear whether the modified logistic regression is useful in practice.

Smith [27] proposes a general framework for statistical analysis

that utilizes both the Laplace mechanism and exponential mecha-

nism. However, the framework requires that the output space of

the statistical analysis is bounded, which renders it inapplicable for

both linear and logistic regressions. For example, if we preform a

linear regression on a three dimensional dataset, the output would

be two real numbers (i.e., the slopes of the regression plane on two

different dimensions), both of which have an unbounded domain

(−∞,+∞) (see Section 3 for the details of linear regression).

Lei [16] proposes a regression method that avoids conducting

sensitivity analysis directly on the regression outputs. In a nut-

shell, the method first employs the Laplace mechanism to produce

a noisy multi-dimensional histogram of the input data. After that,

it produces a synthetic dataset that matches the statistics in the

noisy histogram, without looking at the original dataset. Finally,

it utilizes the synthetic data to compute the regression results. Ob-

serve that, the privacy guarantee of this method is solely decided

by the procedure that generates the noisy histogram – the subse-

quent parts of the algorithm only rely on the histogram (instead

of the original data), and hence, they do not reveal any informa-

tion about the input dataset (except for the information revealed

by the noisy histogram). This makes it much easier to enforce ϵ-
differential privacy, since the multi-dimensional histogram consists

of only counts, which can be processed with the Laplace mecha-

nism in a differentially private manner. Nevertheless, as will be

shown in our experiments (referred to as DPME), Lei’s method [16]

is restricted to datasets with small dimensionality. This is caused by

the fact that, when the dimensionality of the input data increases,

this method would generate noisy histogram with a coarser granu-

larity, which in turn leads to inaccurate synthetic data and regres-

sion results. In summary, none of the existing solutions produce

satisfactory results for linear or logistic regressions.

Finally, it is worth mentioning that there exists a relaxed ver-

sion of ϵ-differential privacy called (ϵ, δ)-differential privacy [23].
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Under this privacy notion, a randomized algorithm is considered

privacy preserving if it achieves ϵ-differential privacy with a high

probability (decided by δ). This relaxed notion is useful in the sce-

narios where ϵ-differential privacy is too strict to allow any mean-

ing results to be released (see [12, 15] for examples). As we will

show in this paper, however, linear and logistic regressions can be

conducted effectively under ϵ-differential privacy, i.e., we do not

need to resort to (ϵ, δ)-differential privacy to achieve meaningful

regression results.

3. PRELIMINARIES
Let D be a database that contains n tuples t1, t2, . . . , tn and

d + 1 attributes X1, X2, . . . , Xd, Y . For each tuple ti =
(xi1, xi2, . . . , xid, yi), we assume without loss of generality1 that
√

∑d

i=1 x
2
id ≤ 1.

Our objective is to construct a regression model from D that en-

ables us to predict any tuple’s value on Y based on its values on

X1, X2, . . . , Xd, i.e., we aim to obtain a function ρ that (i) takes

(xi1, xi2, . . . , xid) as input and (ii) outputs a prediction of yi that

is as accurate as possible.

Depending on the nature of the regression model, the function

ρ can be of various types, and it is always parameterized with a

vector ω of real numbers. For example, for linear regression, ρ is

a linear function of xi1, xi2, . . . , xid, and the model parameter ω
is a d-dimensional vector where the j-th (j ∈ {1, . . . , d}) number

equals the weight of xij in the function. To evaluate whether ω
leads to an accurate model, we have a cost function f that (i) takes

ti and ω as input and (ii) outputs a score that measures the differ-

ence between the original and predicted values of yi given ω as the

model parameters. The optimal model parameter ω∗ is defined as:

ω∗ = argmin
ω

n
∑

i=1

f(ti, ω).

Without loss of generality, we assume that ω contains d values

ω1, . . . , ωd. In addition, we consider that f(ti, ω) can be written

as a function of ωk (k ∈ {1, . . . , d}) given ti, as is the case for

most regression tasks.

We focus on two commonly-used regression models, namely,

linear regression and logistic regression, as defined in the fol-

lowing. For convenience, we abuse notation and use xi (i ∈
{1, . . . , d}) to denote (xi1, xi2, . . . , xid), and we use (xi, yi) to

denote ti.

DEFINITION 1 (LINEAR REGRESSION). Assume without

loss of generality that the attribute Y in D has a domain

[−1, 1]. A linear regression on D returns a prediction function

ρ(xi) = xT
i ω

∗, where ω∗ is a vector of d real numbers that

minimizes a cost function f(ti, ω) =
(

yi − xT
i ω
)2

, i.e.,

ω∗ = argmin
ω

n
∑

i=1

(

yi − xT
i · ω

)2

.

In other words, linear regression expresses the value of Y as a linear

function of the values of X1, . . . , Xd, such that the sum square

error of the predicted Y values is minimized2.

1This assumption can be easily enforced by changing each xij to
xij−αj

(βj−αj)·
√

d
, where αj and βj denotes the minimum and maximum

values in the domain of Xj .

DEFINITION 2 (LOGISTIC REGRESSION). Assume that the

attribute Y in D has a boolean domain {0, 1}. A logistic regres-

sion on D returns a prediction function, which predicts yi = 1 with

probability

ρ(xi) = exp(xT
i ω

∗)/(1 + exp(xT
i ω

∗)),

where ω∗ is a vector of d real numbers that minimizes a cost func-

tion f(ti, ω) = log(1 + exp(xT
i ω))− yix

T
i ω. That is,

ω∗ = argmin
ω

n
∑

i=1

(

log(1 + exp(xT
i ω))− yix

T
i ω
)

For example, assume that D that contains three attributes X1,

X2, and Y , such that X1 (resp. X2) represents a person’s age

(resp. body mass index), and Y indicates whether or not the

person has diabetes. In that case, a logistic regression on the

database would return a function that maps a person’s age and body

mass index to the probability that he/she would have diabetes, i.e,

ρ(xi) = Pr[yi = 1]. This formulation of logistic regression is

used extensively in the medical and social science fields to pre-

dict whether certain event will occur given some observed vari-

ables. In [4, 5], Chaudhuri et al. consider a non-standard type of

logistic regression with modified inputs. In particular, they assume

that for each tuple ti, its value on Y is not a boolean value that

indicates whether ti satisfies certain condition; instead, they as-

sume yi equals the probability that a condition is satisfied given

xi. For instance, if we are to use Chaudhuri et al.’s method to pre-

dict whether a person has diabetes or not based on his/her age and

body mass index, then we would need a dataset that gives us ac-

curate likelihood of diabetes for every possible (age, body mass

index) combination. This requirement is rather impractical as real

datasets are often sparse (due to the curse of dimensionality or the

existence of large-domain attributes) and the likelihoods are not

measurable. Furthermore, Chaudhuri et al.’s method cannot be ap-

plied on datasets where Y is a boolean attribute, since their method

relies on convexity property on the cost function. In standard lo-

gistic regression, cost function log(1 + exp(xT
i ω)) − yix

T
i ω (or

log(1 + exp(−yix
T
i ω)) in [4, 5]) does not meet this assumption.

To ensure privacy protection, we require that the regression

analysis should be performed with an algorithm that satisfies ϵ-
differential privacy, which is defined based on the concept of neigh-

bor databases, i.e., databases that have the same cardinality but

differ in one (and only one) tuple.

DEFINITION 3 (ϵ-DIFFERENTIAL PRIVACY [9]). A random-

ized algorithm A satisfies ϵ-differential privacy, iff for any output

O of A and for any two neighbor databases D1 and D2, we have

Pr [A(D1) = O] ≤ eϵ · Pr [A(D2) = O] .

By Definition 3, if an algorithm A satisfies ϵ-differential privacy

for an ϵ close to 0, then the probability distribution of A’s output

is roughly the same for any two input databases that differ in one

tuple. This indicates that the output of A does not reveal signifi-

cant information about any particular tuple in the input, and hence,

privacy is preserved.

As will be shown in Section 4, our solution is built upon the

Laplace mechanism [9], which is a differentially private framework

2There is a more general form of linear regression with an objective

function (ω∗, α∗) = argmin(ω,α)

∑n

i=1

(

yi − xT
i · ω − α

)2
. We

focus only on the type of linear regression in Definition 1 for ease
of exposition, but our solution can be easily extended for the more
general variant.
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that can be used to answer any query Q (on D) whose output is a

vector of real numbers. In particular, the mechanism exploits the

sensitivity of Q, which is defined as

S(Q) = max
D1,D2

∥Q(D1)−Q(D2)∥1, (1)

where D1 and D2 are any two neighbor databases, and ∥Q(D1)−
Q(D2)∥1 is the L1 distance between Q(D1) and Q(D2). Intu-

itively, S(Q) captures the maximum changes that could occur in

the output of Q, when one tuple in the input data is replaced. Given

S(Q), the Laplace mechanism ensures ϵ-differential privacy by in-

jecting noise into each value in the output of Q(D), such that the

noise η follows an i.i.d. Laplace distribution with zero mean and

scale S(Q)/ϵ (see [9] for details):

pdf(η) =
ϵ

2S(Q)
exp

(

−|η| ·
ϵ

S(Q)

)

.

In the rest of the paper, we use Lap (s) to denote a random variable

drawn from a Laplace distribution with zero mean and scale s. For

ease of reference, we summarize in Table 1 all notations that will

be frequently used.

4. FUNCTIONAL MECHANISM
This section presents the Functional Mechanism (FM), a general

framework for regression analysis under ϵ-differential privacy. Sec-

tion 4.1 introduces the details of the framework, while Section 4.2

illustrates how to apply FM on linear regression.

4.1 Perturbation of Objective Function
Roughly speaking, FM is an extension of the Laplace mecha-

nism that (i) does not inject noise directly into the regression re-

sults, but (ii) ensures privacy by perturbing the optimization goal

of regression analysis. To explain, recall that a regression task on a

database D returns a model parameter ω∗ that minimizes an opti-

mization function fD(ω) =
∑

ti∈D
f(ti, ω). Direct publication of

ω∗ would violate ϵ-differential privacy, since ω∗ reveals informa-

tion about fD(ω) and D. One may attempt to address this issue by

adding noise to ω∗ using the Laplace mechanism; however, this so-

lution requires an analysis on the sensitivity of ω∗ (see Equation 1),

which is rather challenging given the complex correlation between

D and ω∗.

Instead of injecting noise directly into ω∗, FM achieves ϵ-
differential privacy by (i) perturbing the objective function fD(ω)
and then (ii) releasing the model parameter ω that minimizes the

perturbed objective function fD(ω) (instead of the original one).

A key issue here is: how can we perturb fD(ω) in a differentially

private manner given that fD(ω) can be a complicated function of

ω? We address this issue by exploiting the polynomial representa-

tion of fD(ω), as will be shown in the following.

Recall that ω is a vector that contains d values ω1, . . . , ωd.

Let ϕ(ω) denote a product of ω1, . . . , ωd, namely, ϕ(ω) =
ωc1
1 · ωc2

2 . . . ωcd
d for some c1, . . . , cd ∈ N. Let Φj (j ∈ N) de-

note the set of all products of ω1, . . . , ωd with degree j, i.e.,

Φj =
{

ωc1
1 ωc2

2 . . . ω
cd
d

∣

∣

∣

∑d

l=1 cl = j
}

(2)

For example, Φ0 = {1}, Φ1 = {ω1, . . . , ωd}, and Φ2 =
{ωi · ωj | i, j ∈ [1, d]}. By the Stone-Weierstrass Theorem [26],

any continuous and differentiable f(ti, ω) can always be written

Notation Description

D database of n records

ti = (xi, yi) the i-th tuple in D

d the number of values in the vector xi

ω the parameter vector of the regression model

f (ti, ω) the cost function of the regression model that

evaluates whether a model parameter ω leads

to an accurate prediction for a tuple ti =
(xi, yi)

fD(ω) fD(ω) =
∑

ti∈D
f (ti, ω)

ω∗ ω∗ = argminω fD(ω)

fD(ω) a noisy version of fD(ω)

ω ω = argminω fD(ω)

f̃D(ω) the Taylor expansion of fD(ω)

ω̃ ω̃ = argminω f̃D(ω)

f̂D(ω) a low order approximation of f̃D(ω)

ω̂ ω̂ = argminω f̂D(ω)

ϕ a product of one or more values in ω, e.g,

(ω1)
3 · ω2

Φj the set of all possible ϕ of order j

λϕti the polynomial coefficient of ϕ in f(ti, ω)

Table 1: Table of notations

as a (potentially infinite) polynomial of ω1, . . . , ωd, i.e., for some

J ∈ [0,∞], we have

f(ti, ω) =

J
∑

j=0

∑

ϕ∈Φj

λϕtiϕ(ω), (3)

where λϕti ∈ R denotes the coefficient of ϕ(ω) in the polyno-

mial. Similarly, fD(ω) can also be expressed as a polynomial of

ω1, . . . , ωd.

Given the above polynomial representation of fD(ω), we perturb

fD(ω) by injecting Laplace noise into its polynomial coefficients,

and then derive the model parameter ω that minimizes the perturbed

function fD(ω), as shown in Algorithm 1. The correctness of Al-

gorithm 1 is based on the following lemma and theorem.

LEMMA 1. Let D and D′ be any two neighbor databases. Let

fD(ω) and fD′(ω) be the objective functions of regression analysis

on D and D′, respectively, and denote their polynomial represen-

tations as follows:

fD(ω) =

J
∑

j=1

∑

ϕ∈Φj

∑

ti∈D

λϕtiϕ(ω),

fD′(ω) =
J
∑

j=1

∑

ϕ∈Φj

∑

t′
i
∈D′

λϕt′
i
ϕ(ω).

Then, we have the following inequality:

J
∑

j=1

∑

ϕ∈Φj

∥

∥

∥

∥

∥

∥

∑

ti∈D

λϕti −
∑

t′
i
∈D′

λϕt′

∥

∥

∥

∥

∥

∥

1

≤ 2max
t

J
∑

j=1

∑

ϕ∈Φj

∥λϕt∥1.

where ti is an arbitrary tuple.
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Algorithm 1 Functional Mechanism (Database D, objective

function fD(ω), privacy budget ε)

1: Set ∆ = 2maxt

∑J

j=1

∑

ϕ∈Φj
∥λϕt∥1

2: for each 0 ≤ j ≤ J do

3: for each ϕ ∈ Φj do

4: set λϕ =
∑

ti∈D
λϕti + Lap

(

∆
ε

)

5: end for

6: end for

7: Let fD(ω) =
∑J

j=1

∑

ϕ∈Φj
λϕϕ(ω)

8: Compute ω = argminω fD(ω)
9: Return ω

PROOF. Without loss of generality, assume that D and D′ differ
in the last tuple. Let tn (t′n resp.) be the last tuple in D (D′ resp.).
Then,

J
∑

j=1

∑

ϕ∈Φj

∥

∥

∥

∥

∥

∥

∥

∑

ti∈D

λϕti −
∑

t′
i
∈D′

λϕt′

∥

∥

∥

∥

∥

∥

∥

1

=
J
∑

j=1

∑

ϕ∈Φj

∥λϕtn − λϕt′n
∥1

≤
J
∑

j=1

∑

ϕ∈Φj

∥λϕtn∥1 +
J
∑

j=1

∑

ϕ∈Φj

∥λϕt′n
∥1

≤ 2max
t

J
∑

j=1

∑

ϕ∈Φj

∥λϕt∥1

THEOREM 1. Algorithm 1 satisfies ϵ-differential privacy.

PROOF. Let D and D′ be two neighbor databases. Without loss

of generality, assume that D and D′ differ in the last tuple. Let tn
(t′n) be the last tuple in D (D′). ∆ is calculated as done on Line 1

of Algorithm 1, and f(ω) =
∑J

j=1

∑

ϕ∈Φj
λϕϕ(ω) be the output

of Line 7 of the algorithm. We have

Pr
{

f(ω) | D
}

Pr
{

f(ω) | D′
} =

∏J

j=1

∏

ϕ∈Φj
exp

(

ϵ·
∥

∥

∥

∑

ti∈D λφti
−λφ

∥

∥

∥

1
∆

)

∏J

j=1

∏

ϕ∈Φj
exp

(

ϵ·
∥

∥

∥

∥

∑

t′
i
∈D′ λ

φt′
i
−λφ

∥

∥

∥

∥

1
∆

)

≤

J
∏

j=1

∏

ϕ∈Φj

exp





ϵ

∆
·

∥

∥

∥

∥

∥

∥

∑

ti∈D

λϕti −
∑

t′
i
∈D′

λϕt′
i

∥

∥

∥

∥

∥

∥

1





=

J
∏

j=1

∏

ϕ∈Φj

exp
( ϵ

∆
·
∥

∥λϕxn − λϕx′
n

∥

∥

1

)

= exp





ϵ

∆
·

J
∑

j=1

∑

ϕ∈Φj

∥

∥λϕtn − λϕt′n

∥

∥

1





≤ exp





ϵ

∆
· 2max

t

J
∑

j=1

∑

ϕ∈Φj

∥λϕt∥1



 (by Lemma 1)

= exp (ϵ) .

In other words, the computation of f(ω) ensures ϵ-differential pri-

vacy. The final result of Algorithm 1 is derived from f(ω) without

using any additional information from the original database. There-

fore, Algorithm 1 is ϵ-differentially private.

One potential issue with Algorithm 1 is the optimization on the

noisy objective function fD(ω) (see Line 8) can be unbounded

when the amount of noise inserted is sufficiently large, leading to

meaningless regression results. We address this issue later in Sec-

tion 6.

In the following, we provide a convergence analysis on Algo-

rithm 1, showing that its output ω is arbitrarily close to the ac-

tual minimizer of fD(ω), when the database cardinality n is suf-

ficiently large. Our analysis focuses the averaged objective func-

tion 1
n
fD(ω) instead of fD(ω), since the latter one monotoni-

cally increases with n. Assume we have a series of databases,

{D1, D2, . . . , Dn, . . .}, where each Dj contains j tuples all drawn

from a fixed but unknown distribution following probability distri-

bution function p(t). We have the following lemma.

LEMMA 2. If λϕt is a bounded real number in (−∞,+∞) for

any t and ϕ ∈ ∪J
j=1Φj , there exists a polynomial g(ω) with con-

stant coefficients such that limn→∞
1
n
fDn(ω) = g(ω).

PROOF. Based on our polynomial representation scheme,
1
n
fDn(ω) =

∑J

j=1

∑

ϕ∈Φj

(

1
n

∑n

i=1 λϕti

)

ϕ(ω), where each ti

is an i.i.d. sample from p(t). When the database cardinality n ap-

proaches +∞, we rewrite 1
n

∑n

i=1 λϕti as follows:

lim
n→∞

1

n

n
∑

i=1

λϕti =

∫

t

λϕtp(t)dx = E(λϕt) = cϕ. (4)

By the assumption that λϕt is bounded, cϕ = E(λϕt) is

a constant that always exists for any ϕ ∈ ∪J
j=1Φj . Thus,

limn→∞
1
n
fDn(ω) =

∑J

j=1

∑

ϕ∈Φj
cϕϕ(ω). This completes the

proof, by letting g(ω) =
∑J

j=1

∑

ϕ∈Φj
cϕϕ(ω).

THEOREM 2. When database cardinality n → +∞, the output

of Algorithm 1 ω satisfies g(ω) = minω g(ω), if λϕt is bounded for

any t and ϕ ∈ ∪J
j=1Φj .

PROOF. To prove this theorem, we first show that

limn→∞
1
n
fDn

(ω) = g(ω) for any ω.

Given Algorithm 1 with input dataset Dn, objective func-

tion fDn(ω) and privacy budget ϵ, the averaged perturbed ob-

jective function 1
n
fDn

(ω) =
∑J

j=1

∑

ϕ∈Φj

(

1
n
λϕ

)

ϕ(ω) =
∑J

j=1

∑

ϕ∈Φj

1
n

(
∑n

i=1 λϕti + Lap (∆/ε)
)

ϕ(ω). When n →

+∞, we have

lim
n→∞

1

n

(

n
∑

i=1

λϕti + Lap

(

∆

ε

)

)

= lim
n→∞

1

n

n
∑

i=1

λϕti + lim
n→∞

1

n
Lap

(

∆

ε

)

= cϕ + lim
n→∞

Lap

(

∆

nε

)

,

When ∆ and ϵ > 0 are both finite real numbers, it follows that

limn→∞ Lap
(

∆
nε

)

= 0. It leads to

lim
n→∞

1

n
fDn

(ω) = g(ω). (5)

Since Equation 5 is applicable to any ω, we have

g(ω) = minω g(ω) by proving limn→∞
1
n
fDn

(ω) =

minω limn→∞
1
n
fDn

(ω), which is obvious given the defini-

tion of ω in Algorithm 1.

Combining the results of Lemma 2 and Theorem 2, we con-

clude that the output of Algorithm 1 approaches the minimizer of

fDn(ω), when database cardinality n → +∞.
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4.2 Application to Linear Regression
After presenting the general framework, we next apply FM to

linear regression as shown in Definition 1. In linear regression,
recall that ti = (xi, yi) is the i-th tuple in database D with
√

∑d

i=1 x
2
id ≤ 1 and yi ∈ [−1, 1]; ω is a d-dimensional vector

contains model parameters. The expansion of objective function
fD(ω) for linear regression is

fD(ω) =
∑

ti∈D

(

yi − xT
i ω

)2

=
∑

ti∈D

(yi)
2 −

d
∑

j=1



2
∑

ti∈D

yixij



ωj +

∑

1≤j,l≤d





∑

ti∈D

xijxil



ωjωl.

Therefore, fD(ω) only involves monomials in Φ0, Φ1 and Φ2.

Since each xi locates in the d-dimensional unit sphere and yi ∈
[−1, 1], given objective function of linear regression, Line 1 of Al-

gorithm 1 could calculate the parameter ∆ as

∆ = 2 max
t=(x,y)

J
∑

j=1

∑

ϕ∈Φj

∥λϕt∥1

≤ 2 max
t=(x,y)



y2 + 2

d
∑

j=1

yx(j) +
∑

1≤j,l≤d

x(j)x(l)





≤ 2(1 + 2d+ d2),

where t is an arbitrary tuple and x(j) denotes the j-th dimension of

vector x. Thus, Algorithm 1 adds Lap(2(d+ 1)2/ε) noise to each

coefficient and the optimization on ω is run on the noisy objective

function.

For example, assume that we have a two-dimensional database D
with three tuples: (x1, y1) = (1, 0.4), (x2, y2) = (0.9, 0.3), and

(x3, y3) = (−0.5,−1). The objective function for linear regres-

sion is fD(ω) = 2.06ω2 − 2.34ω+ 1.25, with optimal ω∗ = 117
206

.

If we apply Algorithm 1 on D, then Line 1 of Algorithm 1 would

set ∆ = 2(d+1)2 = 8, and then generate the noisy objective func-

tion fD(ω). Figure 2 shows an example of fD and fD . Notice that

the global optimum of fD(ω) is close to the original ω∗ when the

coefficients are approximately preserved.

The analysis for linear regression is fairly simple, because the

objective function is itself a polynomial on ω. For other regression

tasks (e.g., logistic regression), Algorithm 1 cannot be directly ap-

plied, as the objective function may not be a polynomial with finite

order. In the next section, we will present a solution to tackle this

problem.

5. POLYNOMIAL APPROXIMATION OF

OBJECTIVE FUNCTIONS
For Algorithm 1 to work, it is crucial that the polynomial form

of the objective function fD(ω) contains only terms with bounded

degrees. While this condition holds for certain types of regression

analysis (e.g., linear regression, as we have shown in Section 4),

there exist regression tasks where the condition cannot be satis-

fied (e.g., logistic regression). To address this issue, this section

presents a method for deriving an approximate polynomial form

of fD(ω) based on Taylor expansions. For ease of exposition, we

will focus on logistic regression, but our method can be adopted for

other types of regression tasks as well.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1
ω

−
ƒ

D
(ω) = 2.06ω

2
 − 2.34ω + 1.25

ƒ
D

(ω) = 1.86ω
2
 − 2.52ω + 1.25

Figure 2: Example of objective function for linear regression

and its noisy version obtained by FM

5.1 Expansion
Consider the cost function f(ti, ω) of regression analysis. As-

sume that there exist 2m functions f1, . . . , fm and g1, . . . , gm,

such that (i) f(ti, ω) =
∑m

l=1 fl(gl(ti, ω)), and (ii) each gl is a

polynomial function of ω1, . . . , ωm. (As will be shown shortly,

such a decomposition of f(ti, ω) is useful for handling logistic

regression.) Given the above decomposition of f(ti, ω), we can

apply the Taylor expansion on each fl(·) to obtain the following

equation:

f̃(ti, ω) =

m
∑

l=1

∞
∑

k=0

f
(k)
l (zl)

k!
(gl(ti, ω)− zl)

k , (6)

where each zl is a real number. Accordingly, the objective function

fD(ω) can be written as:

f̃D(ω) =

n
∑

i=1

m
∑

l=1

∞
∑

k=0

f
(k)
l (zl)

k!
(gl(ti, ω)− zl)

k
(7)

To explain how Equations 6 and 7 are related to logistic regres-

sion, recall that the cost function of logistic regression is f(ti, ω) =
log(1 + exp(xT

i ω))− yix
T
i ω. Let f1, f2, g1, and g2 be four func-

tions defined as follows:

g1(ti, ω) = xT
i ω, g2(ti, ω) = yix

T
i ω,

f1(z) = log(1 + exp(z)), f2(z) = z.

Then, we have f(ti, ω) = f1(g1(ti, ω))+f2(g2(ti, ω)). By Equa-

tions 6 and 7,

f̃D(ω) =

n
∑

i=1

2
∑

l=1

∞
∑

k=0

f
(k)
l (zl)

k!
(gl(ti, ω)− zl)

k
(8)

Since f2(z) = z, we have f
(k)
2 = 0 for any k > 1. Given this fact

and by setting zl = 0, Equation 8 can be simplified as

f̃D(ω) =

n
∑

i=1

∞
∑

k=0

f
(k)
1 (0)

k!

(

xT
i ω
)k

−

(

n
∑

i=1

yix
T
i

)

ω (9)

There are two complications in Equation 9 that prevent us from ap-

plying it for private logistic regression. First, the equation involves

a infinite summation. Second, the term f
(k)
1 (0) involved in the

equation does not have closed form solution. To address these two

issues, we will present an approximate approach that reduces the

degree of the summation, and the approach only requires the value

of f
(k)
1 (0) for k = 0, 1, 2, i.e., f

(0)
1 (0) = log 2, f

(1)
1 (0) = 1

2
, and

f
(2)
1 (0) = 1

4
.

1369



5.2 Approximation
Our approximation approach works by truncating the Taylor se-

ries in Equation 9 to remove all polynomial terms with order larger

than 2. This leads to a new objective function with only low order

polynomials as follows:

f̂D(ω) =

m
∑

l=1

n
∑

i=1

f̂l(gl(ti, ω))

=

m
∑

l=1

n
∑

i=1

2
∑

k=0

f
(k)
l (zl)

k!
(gl(ti, ω)− zl)

k
(10)

A natural question is: how much error would the above approxima-

tion approach incur? The following lemmata provide the answer.

LEMMA 3. Let ω̃ = argminω f̃D(ω) and ω̂ =

argminω f̂D(ω). Let L = maxω

(

f̃D(ω) − f̂D(ω)
)

and

S = minω

(

f̃D(ω)− f̂D(ω)
)

. We have the following inequality:

f̃D(ω̂)− f̃D(ω̃) ≤ L− S (11)

PROOF. Observe that L ≥ f̃D(ω̂)− f̂D(ω̂) and S ≤ f̃D(ω∗)−

f̂D(ω∗). Therefore,

f̃D(ω̂)− f̂D(ω̂)− f̃D(ω∗) + f̂D(ω∗) ≤ L− S.

In addition, f̂D(ω̂)− f̂D(ω∗) ≤ 0. Hence, Equation 11 holds.

Lemma 3 shows that the error incurred by truncating the Taylor

series approximate function depends on the maximum and mini-

mum values of f̃D(ω)− f̂D(ω). To quantify the magnitude of the

error, we first rewrite f̃D(ω) − f̂D(ω) in a form similar to Equa-

tion 8:

f̃D(ω)− f̂D(ω) =

m
∑

l=1

n
∑

i=1

∞
∑

k=3

f
(k)
l (zl)

k!
(gl(ti, ω)− zl)

k

To derive the minimum and maximum values of the function

above, we look into the remainder of Taylor expansion. The fol-

lowing lemma provides exact lower and upper bounds on f̃D(ω)−

f̂D(ω), which is a well known result [1].

LEMMA 4. For any z ∈ [zl − 1, zl +1], 1
n

(

f̃D(ω)− f̂D(ω)
)

must be in the interval
[

∑

l

min f
(3)
l (z)(z − zl)

3

6
,
∑

l

max f
(3)
l (z)(z − zl)

3

6

]

By combining Lemmata 3 and 4, we can easily calculate the error

incurred by our approximation approach. In particular, the error

only depends on the structure of the function, and is independent

of the characteristics of the dataset. Furthermore, the average error

of the approximation is always bounded, since

1

n
f̃D(ω)−

1

n
f̂D(ω)

≤
∑

l

maxz f
(3)(z)(z − zl)

3 −minz f
(3)(z)(z − zl)

3

6
.

The above analysis applies to the case of logistic regression as

follows. First, for the function f1(z) = log(1 + exp(z)), we have

f
(3)
1 (z) = exp(z)−(exp(z))2

(1+exp(z))3
. It can be verified that minz f

(3)
1 (z) =

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 0  0.5  1  1.5  2

ω

ƒ
D

(ω)

ƒ
^

D
(ω)

Figure 3: Example of objective function for logistic regression

and its polynomial approximation

e−e2

(1+e)3
, maxz f

(3)
1 (z) = e2−e

(1+e)3
. Thus, the average error of the

approximation is at most

f̃(ω̂)− f̃(ω̃) ≤
(e2 − e)

6(1 + e)3
−

(e− e2)

6(1 + e)3

=
(e2 − e)

6(1 + e)3

≈ 0.015

In other words, the error of the approximation on logistic regres-

sion is a small constant. However, because of this error, there does

not exist a convergence result similar to the one stated in Theorem

2. That is, there is a gap between the results from our approxi-

mation approach and those from a standard regression algorithm.

To illustrate this, let us consider a two-dimensional database D
with three tuples, (x1, y1) = (−0.5, 1), (x2, y2) = (0, 0), and

(x3, y3) = (1, 1). Figure 3 illustrates the objective function of lo-

gistic regression fD as well as its approximation f̂D . As will be

shown in our experiments, however, our approximation approach

still leads to accuracy regression results.

5.3 Application to Logistic Regression
Algorithm 2 presents an extension of Algorithm 1 that incorpo-

rates our polynomial approximation approach. In particular, given

a dataset D, Algorithm 2 first constructs a new objective function

f̂D(ω) that approximates the original one, and then feeds the new

objective function as input to Algorithm 1. The model parame-

ter returned from Algorithm 1 is then output as the final results

of Algorithm 2. It can be verified that Algorithm 2 guarantees ϵ-
differential privacy – this follows from the fact that (i) Algorithm 1

guarantees ϵ-differential privacy for any given objective function

(regardless of whether it is an approximation), and (ii) the output

of Algorithm 2 is directly obtained from Algorithm 1.

To apply Algorithm 2 for logistic regression, we set

f̂D(ω) =

n
∑

i=1

2
∑

k=0

f
(k)
1 (0)

k!

(

xT
i ω
)k

−

(

n
∑

i=1

yix
T
i

)

ω.

(This is by Equation 8 and the fact that f̂D(ω) retains only the low

order terms in the fD(ω).) After that, when f̂D(ω) is fed as part

of input to Algorithm 1, Line 1 of Algorithm 1 would calculate the
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parameter ∆ as:

∆ = 2 max
t=(x,y)

(

f
(1)
1 (0)

1!

d
∑

j=1

x(j) +
f
(2)
1 (0)

2!

∑

j,l

x(j)x(l)

+ y
d
∑

j=1

x(j)

)

≤ 2(
d

2
+

d2

8
+ d)

=
d2

4
+ 3d,

where t is an arbitrary tuple and x(j) denotes the j-th dimension of

the vector x.

Recall that Algorithm 1 injects Laplace noise with scale ∆/ϵ
to the coefficients of the objective function (see Line 4 of Algo-

rithm 1). Therefore, ∆ = d2/4 + 3d indicates that the amount of

noise injected by our algorithm is only related to d and is indepen-

dent of the dataset cardinality.

6. AVOIDING UNBOUNDED NOISY OB­

JECTIVE FUNCTIONS
As shown in the previous sections, FM achieves ϵ-differential

privacy by injecting Laplace noise into the coefficients of the ob-

jective functions of optimization problems. The injection of noise,

however, may render the objective function unbounded, i.e., there

may not exist any optimal solution for the noisy objective function.

For instance, if we fit a linear regression model on a two dimen-

sional dataset, the objective function would be a quadratic function

fD(ω) = aω2 + bω+ c with a minimum point (see Figure 2 for an

example). If we add noise into the coefficients of fD(ω), however,

the resulting objective function may be no longer have a minimum,

i.e., when coefficient a becomes non-positive after noise injection.

In that case, there does not exist a solution to the optimization prob-

lem.

One simple approach to address the above issue is to re-run FM

whenever the noisy objective function is unbounded, until we ob-

tain a solution to the optimization problem. This approach, as

shown in the following lemma, ensures ϵ-differential privacy but

incurs two times the privacy cost of FM.

LEMMA 5. Let A∗ be an algorithm that repeats Algorithm 1

with privacy budget ϵ on a dataset, until the output of Algorithm 1

corresponds to a bounded objective function. Then, A∗ satisfies

(2ϵ)-differential privacy.

PROOF. Let D and D′ be any two neighbor datasets, A be Algo-

rithm 1, and O be any output of A. Since A ensures ϵ-differential

privacy (see Theorem 1), we have

e−ϵ · Pr
[

A(D′) = O
]

≤ Pr [A(D) = O]

≤ eϵ · Pr
[

A(D′) = O
]

(12)

Let O+ be the set of outputs by Algorithm 1 that correspond to

bounded objective functions. For any O+ ∈ O+, we have

Pr
[

A∗(D) = O+] =
Pr
[

A∗(D) = O+
]

∑

O′∈O+ Pr [A∗(D) = O′]

≤
eϵ · Pr

[

A∗(D′) = O+
]

e−ϵ ·
∑

O′∈O+ Pr [A∗(D′) = O′]
(By Eqn. 12)

≤ e2ϵ · Pr
[

A∗(D′) = O+] .

Algorithm 2 Functional Mechanism (Database D, objective

function fD(ω), privacy budget ε)

1: Decompose the function f(ti, ω) =
∑

l
fl(gl(ti, ω)).

2: Build a new objective function f̂D(ω), such that

f̂D(ω) =
∑m

l=1

∑n

i=1

∑2
k=0

f
(k)
l

(zl)

k!
(gl(ti, ω)− zl)

k

3: Run Algorithm 1 with input
(

D, f̂D(ω), ε
)

.

4: Return ω from Algorithm 1.

Although repeating FM provides a quick fix to obtain bounded

objective functions, it leads to sub-optimal results as it entails a

considerably higher privacy cost than FM does. To address this

issue, we propose two methods to avoid unbounded objective func-

tions in linear and logistic regressions, as will be detailed in Sec-

tions 6.1 and 6.2.

6.1 Regularization
As shown in Sections 4 and 5, given a linear or logistic regression

task, FM would transform the objective function into a quadratic

polynomial f̂D(ω), after which it injects noise into the coefficients

of f̂D(ω) to ensure privacy. Let f̂D(ω) = ωTMω+αω+β be the

matrix representation of the quadratic polynomial, and f̄D(ω) =

ωTM∗ω+α∗ω+β∗ be the noisy version of f̂D(ω) after injection

of Laplace noise. Then, M must be symmetric and positive defi-

nite [28]. To ensure that f̂D(ω) is bounded after noise injection, it

suffices to make M∗ also symmetric and positive definite [28].

The symmetry of M∗ can be easily achieved by (i) adding noise

to the upper triangular part of the matrix and (ii) copying each en-

try to its counterpart in the lower triangular part. In contrast, it is

rather challenging to ensure that M∗ is positive definite. To our

knowledge, there is no existing method for transforming a positive

definite matrix into another positive definite matrix in a differen-

tially private manner. To circumvent this, we adopt a heuristic ap-

proach called regularization from the literature of regression analy-

sis [14,29]. In particular, we add a positive constant λ to each entry

in the main diagonal of M∗, such that the noisy objective function

becomes

f̄D(ω) = ωT (M∗ + λI)ω + α∗ω + β∗, (13)

where I is a d × d identity matrix, and α∗ and β∗ are the noisy

versions of α and β, respectively.

Although regularization is mostly used in regression analysis to

avoid overfitting [14,29], it also helps achieving a bounded f̄D(ω).
To illustrate this, consider that we perform linear regression on a

two dimensional database. We have d = 1. In addition, each of

ω, M∗ + λ · I , α∗, and β∗ contains only one value (see Figure 2

for an example). Accordingly, the noisy objective function f̄D(ω)
would be a quadratic function with one variable ω. Such a function

has a minimum, if and only if M∗ + λI is positive. Intuitively, we

can ensure this as long as λ is large enough to mitigate the noise

injected in M∗.

In general, for any d ≥ 1, a reasonably large λ makes it more

likely that all eigenvalues of M∗ + λI are positive, in which case

M∗ +λI would be positive definite. Meanwhile, as long as λ does

not overwhelm the signal in M∗, it would not significantly degrade

the quality of the solution to the regression problem. In our experi-

ments, we observe that a good choice of λ equals 4 times standard

deviation of the Laplace noise added into M∗. Note that setting λ
to this value does not degrade the privacy guarantee of FM, since

the standard deviation of the Laplace noise does not reveal any in-

formation about the original dataset.
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Although regularization increases the chance of obtaining a

bounded objective function, there is still a certain probability that

the noise objective function does not have a minimum even after

regularization. This motivates our second approach, spectral trim-

ming, as will be explained in Section 6.2.

6.2 Spectral Trimming
Let f̄D(ω) = ωT (M∗ + λI)ω + α∗ω + β∗ be the noisy ob-

jective function with regularization. As we have discussed in Sec-

tion 6.1, M∗ + λI is symmetric (due to the symmetry of M∗).

In addition, f̄D(ω) is unbounded if and only if M∗ + λI is not

positive definite, which holds if and only if at least one eigenvalue

of M∗ + λI is not positive [28]. In other words, to transform an

unbounded f̄D into a bounded one, it suffices to get rid of the non-

positive eigenvalues of M∗ + λI .

Let QTΛQ be the eigen-decomposition of M∗ + λI , i.e., Q is a

d×d matrix where each row is an eigenvector of M∗+λI , and Λ is

a diagonal matrix where the i-th diagonal element is the eigenvalue

of M∗ + λI corresponding to the eigenvector in the i-th row of Q.

We have QTQ = I . Accordingly,

fD(ω) = ωT
(

QTΛQ
)

ω + α∗
(

QTQ
)

ω + β∗

Suppose that the i-th diagonal element ei of Λ is not positive.

Then, we would remove ei from Λ, which results in a (d − 1) ×
(d − 1) diagonal matrix. In addition, we would also delete the i
row in Q, so that QTΛQ would still be well-defined. In general,

if Λ contains k non-positive diagonal elements, then removal of all

those elements would transform Λ into a (d− k)× (d− k) matrix,

which we denote as Λ′. Accordingly, Q becomes a (d − k) × d
matrix, which we denote as Q′. The noisy objective function then

becomes

f̄D(ω) = ωT
(

Q′TΛ′Q′
)

ω + α∗
(

Q′TQ′
)

ω + β∗. (14)

We rewrite f̄D(ω) as a function of Q′ω:

ḡD
(

Q′ω
)

=
(

Q′ω
)T

Λ′ (Q′ω
)

+ α∗Q′T (Q′ω
)

+ β∗,

which is a bounded function of Q′ω since all eigenvalues of Λ′

are positive. We compute the vector V that minimizes ḡD(V ), and

then derive ω by solving Q′ω = V (note that the solution to this

equation is not unique).

In summary, we delete non-positive elements in Λ to obtain a

bounded objective function, based on which we derive the model

parameters. Intuitively, the non-positive elements in Λ are mostly

due to noise, and hence, removing them from Λ would not in-

cur significant loss of useful information. Therefore, the objective

function in Equation 14 may still lead to accurate model parame-

ters. The removal of non-positive elements from Λ does not violate

ϵ-differential privacy, as the removing procedure depends only on

M∗ (which is differentially private) instead of the input database.

7. EXPERIMENTS
This section experimentally evaluates the performance of FM

against four approaches, namely, DPME [16], Filter-Priority (FP)

[7], NoPrivacy, and Truncated. As explained in Section 2, DPME

is the state-of-the-art method for regression analysis under ϵ-
differential privacy, while FP is an ϵ-differentially private tech-

nique for generating synthetic data that can also be used for re-

gression tasks. NoPrivacy and Truncated are two algorithms that

performs regression analysis do not enforce ϵ-differential privacy:

NoPrivacy directly outputs the model parameters that minimize the

objective function, and Truncated returns the parameters obtained

Parameter Range and Default Value

Data Subset Sampling Rate
0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1

Dataset Dimensionality 5, 8, 11, 14
Privacy Budget ϵ 3.2, 1.6, 0.8, 0.4, 0.2, 0.1

Table 2: Experimental parameters and values

from an approximate objective function with truncated polynomial

terms (see Section 5). We include Truncated in the experiments, so

as to investigate the error incurred by the low-order approximation

approach proposed in Section 5. For DPME and FP, we use the im-

plementations provided by their respective authors, and we set all

internal parameters (e.g., the granularity of noisy histograms used

by DPME) to their recommended values. All experiments are con-

ducted using Matlab (version 7.12) on a computer with a 2.4GHz

CPU and 32GB RAM.

We use two datasets from the Integrated Public Use Microdata

Series [22], US and Brazil, which contain 370, 000 and 190, 000
census records collected in the US and Brazil, respectively. There

are 13 attributes in each datasets, namely, Age, Gender, Martial

Status, Education, Disability, Nativity, Working Hours per Week,

Number of Years Residing in the Current Location, Ownership of

Dwelling, Family Size, Number of Children, Number of Automo-

biles, and Annual Income. Among these attributes, Marital status

is the only categorical attribute whose domain contains more than

2 values, i.e., Single, Married, and Divorced/Widowed. Follow-

ing common practice in regression analysis, we transform Marital

Status into two binary attributes, Is Single and Is Married (an in-

dividual divorced or widowed would have false on both of these

attributes). With this transformation, both of our datasets become

14 dimensional.

We conduct regression analysis on each dataset to predict the

value of Annual Income using the remaining attributes. For logistic

regression, we convert Annual Income into a binary attribute: val-

ues higher than a predefined threshold are mapped to 1, and 0 other-

wise. Accordingly, when we use a logistic model to classify a tuple

t, we predict the Annual Income of t to be 1 if
exp(xT

i ω)

1+exp(xT
i
ω)

> 0.5

(see Definition 2), where ω is the model parameter, and x is a

vector that contains the values of t on all attributes expect An-

nual Income. We measure the accuracy of a logistic model by

its misclassification rate, i.e., the fraction of tuples that are in-

correctly classified. The accuracy of a linear model, on the other

hand, is measured by the mean square error of the predicted values,

i.e., 1
n

∑n

i=1

(

yi − xT
i ω
)2

, where n is the number of tuples in the

dataset, yi is the Annual Income value of the i-th tuple, x is a vec-

tor that contains the other attribute values of the tuple, and ω is the

model parameter.

In each experiment, we perform 5-fold cross-validation 50 times

for each algorithm, and we report the average results. We vary

three different parameters, i.e., the dataset size, the dataset dimen-

sionality, and privacy budget ϵ. In particular, we generate random

subsets of the tuples in the US and Brail datasets, with the sampling

rate varying from 0.1 to 1. To vary the dataset dimensionality, we

select three subsets of the attributes in each dataset for classifica-

tion. The first subset contains 5 attributes: Age, Gender, Education,

Family Size, and Annual Income. The second subset consists of 8
attributes: the aforementioned five attributes, as well as Nativity,

Ownership of Dwelling, and Number of Automobiles. The third

subset contains all attributes in the second subset, as well as Is Sin-

gle, Is Married, and Number of Children. Table 2 summarizes the

parameter values, with the default values in bold.
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Figure 4: Regression accuracy v.s. dataset dimensionality
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Figure 5: Regression accuracy v.s. dataset cardinality

7.1 Accuracy vs. Dataset Dimensionality
Figures 4a and 4b illustrate the linear regression error of each al-

gorithm as a function of the dataset dimensionality. We omit Trun-

cated in the figures, as our approximation approach in Section 5

is required only for logistic regression but not linear regression.

Observe that FM consistently outperforms FP and DPME, and its

regression accuracy is almost identical to that of of NoPrivacy. In

contrast, FP and DPME incur significant errors, especially when

the dataset dimensionality is large.

Figures 4c and 4d show the error of each algorithm for logistic

regression. The error of Truncated is comparable to that of No-

Privacy, which demonstrates the effectiveness of our low-order ap-

proximation approach that truncates the polynomial representation

of the objective function. The error of FM is slightly higher than

that of Truncated , but it is still much smaller than the errors of FP

and DPME.

7.2 Accuracy vs. Dataset Cardinality
Figure 5 show the regression error of each algorithm as a func-

tion of the dataset cardinality. For both regression tasks and for

both datasets, FM outperforms FP and DPME by considerable mar-

gins. In addition, for linear regression, the difference in accuracy

between FM and NoPrivacy is negligible; meanwhile, their accu-

racy remains stable with varying number of records in the database,

except when the sampling rate equals 0.1 (the smallest value used

in all experiments). In contrast, the performance of FP and DPME

improves with the dataset cardinality, which is consistent with the

theoretical result in [7] and [16]. Nevertheless, even when we use

all tuples in the dataset, the accuracy of FP and DPME is still much

worse than that of FM and NoPrivacy.

For logistic regression, there is a gap between the accuracy of

FM and that of NoPrivacy and Truncated, but the gap shrinks

rapidly with the increase of dataset cardinality. The errors of FP

and DPME also decrease when the dataset cardinality increases,

but they remain considerably higher than the error of FM in all

cases.

7.3 Accuracy vs. Privacy Budget
Figure 6 plots the regression error of each algorithm as a function

of the privacy budget ϵ. The errors of NoPrivacy and Truncated

remain unchanged for all ϵ, as none of them enforces ϵ-differential

privacy. All of the other three methods incur higher errors when

ϵ decreases, as a smaller ϵ requires a larger amount of noise to

be injected. FM outperforms FP and DPME in all cases, and it is

relatively robust against the change of ϵ. In contrast, FP and DPME

produce much less accurate regression results, especially when ϵ is

small.

7.4 Computation Time
Finally, Figures 7-9 report the average running time of each al-

gorithm. Due to the space constraint, we only report the results for

logistic regression; the results for linear regression are qualitatively

similar. Overall speaking, the running time of FM is at least one

order of magnitude lower than that of NoPrivacy, which in turn is

about two times faster than FP and DPME. The efficiency of FM is

mainly due to its low-order approximation module, which truncates

the polynomial representation of the objective function and retains

only the first and second order terms. As a consequence, FM com-

putes the optimization results by solving a multi-variate quadratic

optimization problem, for which Matlab has an efficient solution.

In contrast, all other methods require solving the original optimiza-

tion problem of logistic regression, which has a complicated ob-

jective function that renders the solving process time consuming.

In addition, FP and DPME require additional time to generate syn-

thetic data, leading to even higher computation cost.
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Figure 6: Regression accuracy v.s. privacy budget
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gistic regression

As shown in Figure 7 and Figure 8, the computation time of all

algorithms increases with the dimensionality and cardinality of the

databset. This is expected, as a larger number of tuples (attributes)

leads to a higher complexity of the optimization problem. The ex-

ecution time of FP and DPME increases at a faster rate than that

of FM and NoPrivacy, since the former two require generating syn-

thetic data, which entails higher computation cost when the number

of tuples (attributes) in the dataset increases. On the other hand, as

shown in Figure 9, the privacy budget ϵ has negligible effects on the

running time of the algorithms, since it affects neither the size or di-

mensionality of the dataset nor the complexity of the optimization

problem being solved.

In summary, FM is superior to FP and DPME in terms of both

accuracy and efficiency in all experiments. The advantage of FM

in terms of regression accuracy is more pronounced when the data

dimensionality increases. Furthermore, the accuracy of FM is even

comparable to NoPrivacy in the scenarios where the cardinality of

the dataset or the privacy budget is reasonably large. These results

demonstrate that FM is a preferable method for differentially pri-

vate regression analysis.

8. CONCLUSION AND FUTURE WORK
This paper presents a general approach for differentially private

regression. Different from existing techniques, our approach con-

ducts both sensitivity analysis and noise insertion on the objective

functions, which leads to more accurate regression results when the

objective functions can be represented as finite polynomials. To

tackle more complex objective functions with infinite polynomial

representation (e.g., logistic regression), we propose to truncate the

Taylor expansion of the objective function, and we analyze the er-

ror incurred in the optimization results. Our empirical studies on
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gression

real datasets validate our theoretical results and demonstrate the ef-

fectiveness and efficiency of our proposal.

For future work, we plan to extend our research on the following

directions. First, our current mechanism only works with objec-

tive functions in the form of
∑n

i=1 f(ti, ω). However, there exist

regression tasks with more complicated objective functions (e.g.,

Cox regression). It is interesting and challenging to investigate how

those regression tasks can be addressed. Second, besides Taylor

expansion, there may exist other analytical tool that can be used

to approximate the objective functions. We plan to study whether

alternative analytical tool can lead to more accurate regression re-

sults.
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