
MapReduce-based Dimensional ETL Made Easy

Xiufeng Liu, Christian Thomsen, Torben Bach Pedersen

Dept. of Computer Science, Aalborg University, Denmark
{xiliu, chr, tbp}@cs.aau.dk

ABSTRACT

This paper demonstrates ETLMR, a novel dimensional Extract–

Transform–Load (ETL) programming framework that uses Map-

Reduce to achieve scalability. ETLMR has built-in native support

of data warehouse (DW) specific constructs such as star schemas,

snowflake schemas, and slowly changing dimensions (SCDs). This

makes it possible to build MapReduce-based dimensional ETL

flows very easily. The ETL process can be configured with only

few lines of code. We will demonstrate the concrete steps in using

ETLMR to load data into a (partly snowflaked) DW schema. This

includes configuration of data sources and targets, dimension pro-

cessing schemes, fact processing, and deployment. In addition, we

also present the scalability on large data sets.

1. INTRODUCTION
In data warehousing, ETL flows are responsible for collecting

data from different data sources, transformation, and cleansing to

comply with user-defined business rules and requirements. Cur-

rent ETL technologies are demanded to process many gigabytes

of data each day. The vast amount of data makes ETL extremely

time-consuming. The use of parallelization technologies is the key

to achieve better ETL scalability and performance. In recent years,

the “cloud computing” technology MapReduce [1] has been widely

used for parallel computing in data-intensive areas due to its good

scalability. We see that MapReduce can be a good foundation for

ETL parallelization. ETL processing exhibits the composable prop-

erty such that the processing of dimensions or facts can be split into

smaller computations and the partial results from these computa-

tions can be merged to constitute the final results in a DW. Further,

the MapReduce programming paradigm is very powerful and flex-

ible. MapReduce makes it easier to write a distributed computing

program by providing interprocess communication, fault-tolerance,

load balancing, and task scheduling. It is often said that while par-

allel DBMSs are good for querying of large data sets, MapReduce-

based systems are good for ETL tasks and that a MapReduce-based

ETL system thus can live upstream from the DBMS [3]. However,

MapReduce is a general framework and lacks support for high-

level ETL-specific constructs such as star and snowflake schemas,

SCDs, etc. This results in low ETL programmer productivity. To

implement a parallel dimensional ETL program on MapReduce is

thus still very costly and time-consuming due to the inherent com-

plexities of ETL-specific activities when processing dimensional

DW schemas with SCDs etc.

In this demonstration, we present the MapReduce-based frame-

work ETLMR [2] (the code is freely available from etlmr.cs.

aau.dk). ETLMR offers high-level ETL-specific constructs on

fact tables and dimensions (including SCDs) in both star schemas

and snowflake schemas. A user can implement parallel ETL pro-

grams by using these constructs without knowing the details of the

parallel execution of the ETL processes. This makes MapReduce-

based ETL very easy. It reduces tedious programming work such

that the user only has to make a configuration file with few lines

of code to declare dimension and fact objects and the necessary

transformation functions. ETLMR achieves this by using and ex-

tending pygrametl [4], a Python-based framework for easy ETL

programming. Figure 1 shows parallel ETL using ETLMR. The

ETL flow consists of two sequential phases: dimension process-

ing and fact processing. Data is read from the sources, i.e., files

on a distributed file system (DFS), transformed, and processed into

dimension values and facts by parallel ETLMR instances which

consolidate the data in the DW. To make a parallel ETL program,

only few lines of code declaring target tables and transformation

functions are needed.

Figure 1: Parallel ETL using ETLMR

In the demonstration, we will focus on a complete scenario where

we process data for a partly snowflaked schema which also has an

SCD. We demonstrate the configuration of data sources and targets,

three dimension processing schemes, and fact processing as well as

deployment and scalability. For a full description of the research

challenges in making ETLMR, we refer to [2].

2. SOURCES AND TARGETS
Throughout the demonstration, we use a running example in-

spired by a project which tests web pages with respect to acces-

sibility (i.e., the usability for disabled people) and conformance

to certain standards. Each test is applied to all pages. For each

1882

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 12
Copyright 2012 VLDB Endowment 2150-8097/12/08... $ 10.00.

page, the test outputs the number of errors detected, and the re-

sults are written to a number of tab-separated files which form the

data sources. The data is split into approximately equal-sized files

and uploaded to the DFS (this is also where the results of previous

MapReduce jobs are written if other MapReduce jobs must process

the data before ETLMR). The files are located by URLs.

Define the sources in the main program paralleletl.py:

fileurls = [’dfs://localhost/TestResults0.csv’,

’dfs://localhost/TestResults1.csv’, ...]

Lines from the input files are read into Python dictionaries for

manipulation in ETLMR. Here, we call them rows and they map

attribute names to values. An example of a row is

row={’url’:’www.dom0.tl0/p0.htm’, ’size’:’15998’,

’serverversion’:’MyServer/1.0’, ’downloaddate’

:’2011-01-31’,’lastmoddate’:’2011-01-01’, ’test’

:’Test001’, ’errors’:’7’}

Figure 2 shows the partly snowflaked target schema (ETLMR

supports star and snowflake schemas, and their combinations). The

schema comprises testdim, datedim, five snowflaked page dimen-

sion tables, and the fact table testresultsfact. pagedim is an SCD.

The declarations of the dimension tables are seen in the following

(we show the declaration of the fact table in Section 4).

Figure 2: The running example

Declared in the configuration file, config.py

from odottables import *

Declare the dimensions:

testdim=CachedDimension(name=’test’,key=’testid’,defaultid\

=-1,attributes=[’testname’], lookupatts=[’testname’])

datedim = CachedDimension(name=’date’,key=’dateid’,

attributes=[’date’,’day’,’month’, ’year’,’week’],

lookupatts=[’date’])

Declare the dimension tables of the normalized pagedim.

pagedim = SlowlyChangingDimension(name=’page’,

key=’pageid’, lookupatts=[’url’], attributes=[’url’,

’size’,’validfrom’,’validto’,’version’,’domainid’,

’serverversionid’], versionatt=’version’,

srcdateatt=’lastmoddate’, fromatt=’validfrom’,

toatt=’validto’)

topdomaindim=CachedDimension(name=’topdomaindim’,

key=’topdomainid’,attributes=[’topdomain’],

lookupatts=[’topdomain’])

domaindim = CachedDimension(name=’domaindim’,

key=’domainid’,attributes=[’domain’,’topdomainid’],

lookupatts=[’domain’])

serverdim = CachedDimension(name=’serverdim’,key=\

’serverid’,attributes=[’server’], lookupatts=[’server’])

serverversiondim=CachedDimension(name=’serverversiondim’,

key=’serverversionid’,attributes=[’serverversion’,

’serverid’], lookupatts=[’serverversion’],

refdims=[serverdim])

Define the references in the snowflaked dimension:

pagesf=SnowflakedDimension(

(pagedim, (serverversiondim, domaindim)),

(serverversiondim,serverdim),(domaindim, topdomaindim))

Different parameters are given when declaring a dimension ta-

ble instance (here we use CachedDimension instances which

cache parts of the data in memory), including the dimension table

name, the key column, and lists of attributes and lookup attributes

(sometimes referred to as the “business key”). Besides, optional

parameters can be given, such as a default value for the dimen-

sion key when a dimension value is not found in a lookup, e.g.,

defaultid=-1 in the declaration of testdim. For an instance

of SlowlyChangingDimension, additional SCD related pa-

rameters – such as the columns for the version number and the

timestamps – are given. Note how easy it is to declare and use

a snowflaked SCD in ETLMR. This is very complex with tradi-

tional tools. Other settings of the dimension tables for different

processing schemes are discussed later.

3. DIMENSION PROCESSING SCHEMES
ETLMR has several dimension processing schemes. We will

demonstrate how to configure and choose the schemes.

3.1 One Dimension One Task
We first consider an intuitive approach to process dimensions in

parallel, namely “one dimension, one task” (ODOT) where there is

one (and only one) map/reduce task for each dimension table.

We first define the corresponding attributes of the data source for

each dimension table (the srcfields) and transformations (the

rowhandlers). The user implements transformations as normal

Python functions and can thus do advanced cleansing and transfor-

mations. The transformations are applied to each processed row.

For space reasons, we do not show definitions of our transforma-

tions but only refer to their self-explanatory names (“UDF ...”).

Defined in config.py

dims={

pagedim:{’srcfields’:(’url’,’serverversion’,’domain’,

’size’, ’lastmoddate’),

’rowhandlers’:(UDF_extractdomain,UDF_extractserverver)},

domaindim:{’srcfields’:(’url’,),

’rowhandlers’:(UDF_extractdomain,)},

topdomaindim:{’srcfields’:(’uri’,),

’rowhandlers’:(UDF_extracttopdomain,)},

serverversiondim:{’srcfields’:(’serverversion’,),

’rowhandlers’:(UDF_extractserverver,)},

serverdim:{’srcfields’:(’serverversion’,),

’rowhandlers’:(UDF_extractserver,)},

datedim:{’srcfields’:(’downloaddate’,),

’rowhandlers’:(UDF_explodedate,)},

testdim:{’srcfields’:(’test’,), ’rowhandlers’:()}

}

As there are references between the tables of the snowflaked

(normalized) dimension, the processing order matters and is speci-

fied in the following. It is illustrated in Figure 3.

order=[(’topdomaindim’, ’serverdim’), (’domaindim’,

’serverversiondim’), (’pagedim’, ’datedim’, ’testdim’)]

Figure 3: Process snowflake schema

With this order, the dimensions are processed from the leaves

towards the root (the dimension table referenced by the fact table

is the root and a dimension table without a foreign key to another

dimension tables is a leaf). The dimension tables with dependen-

cies (from foreign key references) are processed in sequential jobs,

e.g., Job1 depends on Job0, and Job2 depends on Job1. Each job

processes independent dimension tables by parallel tasks. There-

fore, Job0 first processes topdomaindim and serverdim, then

1883

Job1 processes domaindim and serverversiondim, and fi-

nally Job2 processes pagedim, datedim, and testdim.

When processing, ETLMR does data projection in the mappers

to select the necessary values for each dimension table. This re-

sults in key/value pairs of the form (dimension table name, tuple

of values) that are given to the reducers. ETLMR partitions the

map outputs based on the table names such that the values for one

dimension table are processed by a single reducer (see Figure 4).

For example, the reducer for pagedim receives among others the

values {’url’:’www.dom0.tl0/p0.htm’,’serverversion’:

’Xyz/1.0’,’size’:’12’,’lastmoddate’:’2011-01-01’}.

In the reducers, ETLMR automatically applies UDFs for transfor-

mations (if any) to each row. The row is then automatically ensured

to be in the dimension table, i.e., ETLMR inserts the dimension

value if it does not already exist in the dimension table, and oth-

erwise updates it as needed. For a type-2 SCD (where versioning

of rows is applied), ETLMR also adds a new version and updates

the valid timestamps of the old version as needed. The programmer

thus only has to program the transformations to apply and ETLMR

takes care of the rest.

Figure 4: ODOT Figure 5: ODAT

3.2 One Dimension All Tasks
We now consider another approach to process dimensions (see

Figure 5), namely “One dimension, all tasks” (ODAT). This ap-

proach makes use of all the reducers to process the map outputs,

i.e., one dimension is processed by all tasks unlike ODOT where

only a single task is utilized for a dimension. Thus ODAT can

use more nodes and has better scalability. ETLMR has a sepa-

rate Python module implementing this approach, and only a single

line, from odattables import *, is needed to use it. As

the ODAT dimension and fact classes have the same interfaces as

the ODOT classes, nothing is changed in the declarations in Sec-

tion 2, except that the processing order is not needed any more.

With ODAT, the map output is partitioned in a round-robin fash-

ion such that all reducers receive an almost equal-sized map out-

put containing key/values pairs for all dimension tables (see Fig-

ure 5). A reducer processes map output for all dimension tables.

Therefore, a number of issues need to be considered, including the

uniqueness of dimension keys, concurrency problems when differ-

ent tasks are operating on the same dimension values to update

the timestamps of SCD dimensions, and duplicated values of the

same dimension. To remedy this, ETLMR automatically employs

an extra step called post-fixing to fix the problematic data when the

dimension processing job has finished. Figures 6 and 7 illustrate

post-fixing. The details about the post-fixing steps can be found

in [2]. An embedded DBMS is used for “bookkeeping” for post-

fixing. This DBMS can maximally handle ∼140 terabytes of data.

Post-fixing Consider two map/reduce tasks, task 1 and task 2, which

process the snowflaked dimension page. Each task uses a private

ID generator. The root dimension, pagedim, is a type-2 SCD.

Both task 1 and task 2 process rows with the lookup attribute value

url=’www.dom2.tl2/p0.htm’.

Figure 6 depicts the resulting data in the dimension tables. White

rows were processed by task 1 and grey rows were processed by

task 2. Each row is labelled with the taskid of the task that pro-

cessed it. The problems include duplicated IDs in each dimension

Figure 6: Before post-fixing

Figure 7: After post-fixing

table and improper values in the SCD attributes, validfrom,

validto, and version. The post-fixing program first fixes the

topdomaindim such that rows with the same value for the lookup

attribute are merged into one row with a single ID. Thus, the two

rows with topdom= tl2 are merged into one row. The references to

topdomaindim from domaindim are also updated to reference

the correct (fixed) rows. In the same way, pagedim is updated to

merge the two rows representing www.dom2.tl2. Finally, pagedim

is updated. Here, the post-fixing also has to fix the values for the

SCD attributes.

3.3 Offline Dimensions
ETLMR also has a module for processing dimensions which are

stored on the nodes. We say such dimensions are offline as opposed

to the previously described approaches where the dimensions re-

side in the DW database and are online. The interface of offline

dimensions is similar to that of online dimensions except that there

is an additional parameter, shelvedpath, to denote the local path for

saving the dimension data. The following code snippet exemplifies

a declaration:

from offdimtables import *
datedim = CachedDimension(

name=’date’,

key=’dateid’,

attributes=[’date’,’day’,’month’,’year’,’week’],

lookupatts=[’date’],

shelvedpath=’/path/to/datedim’)

When offline dimensions are used, the map/reduce tasks do not

interact with the DW by means of database connections and as the

data is stored locally in each node, the network communication cost

is greatly reduced. The dimension data is expected to reside in

the nodes, and is not loaded into the DW until this is explicitly

requested.

3.4 How to Choose
The ODOT scheme is preferable for small-sized dimensions

when high scalability is not required. On the contrary, the ODAT

scheme is preferable for dimension tables with big data volumes

as the data can processed by all tasks which gives better scalabil-

ity. When immediate data availability is not required, the offline

dimension scheme can be chosen for better performance.

4. FACT PROCESSING
We now demonstrate how to configure the fact processing. For

our example, the fact table is declared as below:

1884

In config.py

Declare the fact table (here we support bulk loading):

testresultsfact = BulkFactTable(name=’testresultsfact’,

keyrefs=[’pageid’,’testid’,’dateid’],measures=[’errors’],

bulkloader=UDF_pgcopy, bulksize=5000000)

Set the referenced dimensions and the

transformations to apply to facts:

facts = {testresultsfact:

{’refdims’:(pagedim, datedim, testdim),

’rowhandlers’:(UDF_convertStrToInt,)}}

It is possible to declare several fact tables if needed, and they can

be processed in parallel. The declaration of a fact table includes

the name of the fact table and the column names of the dimension-

referencing keys and measures. Here, the BulkFactTable class

is used to enable bulk loading of facts. As the bulk loader varies

from DBMS to DBMS, the user has to declare which function

to call to perform the actual bulk loading. After the declaration,

ETLMR must be configured to use the instance. This involves spec-

ifying the dimension objects from which ETLMR looks up dimen-

sion keys and specifying the transformations (“rowhandlers”)

which ETLMR should apply to the facts.

When ETLMR processes the fact data, the data files are assigned

to the map/reduce tasks in a round-robin fashion. Each task auto-

matically does its work by applying the user-defined transforma-

tions to the rows from the data files, looking up dimension keys,

and inserting the rows into a buffer. When the buffer is full, its data

is loaded into the DW by means of the bulk loader. This is again

very easy for the user who just has to program transformations.

5. DEPLOYMENT
ETLMR uses the Python-based Disco (discoproject.org)

as its MapReduce platform. The system uses a master/worker ar-

chitecture with one master and many workers (or nodes). Each

worker has a number of map/reduce tasks which run the ETLMR

parts in parallel. The master is responsible for scheduling the tasks,

distributing partitioned data, tracking status, and monitoring the

status of workers. If a worker crashes, the MapReduce framework

automatically assigns the node’s task to another node and thus pro-

vides us with restart and checkpointing capabilities.

To deploy ETLMR, a configuration module is placed on the mas-

ter. This configuration defines dimension and fact tables. The dis-

tributed ETL program is then started by the following code which

defines which node is the master, where the input is located, the

name of the configuation module, and the numbers of mappers and

reducers.

Start the ETLMR main program, paralleletl.py:

ETLMR.start(master=’masternode’,inputs=fileurls,required_\

modules=[(’config’,’config.py’)],nr_maps=20,nr_reduces=20)

We note that the number of mappers and reducers can easily

be changed in this program by only updating the nr maps and

nr reduces arguments. This makes it very easy for the ETL de-

veloper to scale up/scale down ETL programs.

6. SCALABILITY
We now present the scalability of ETLMR. Details about the

used cluster are available in [2]. Table 1 shows the time of di-

mension processing when we use the ODAT and offline dimen-

sion processing scheme (the fastest). We use an 80 GB fixed-size

data set for the running example represented in a star schema (with

13,918,502 rows in the page dimension). We scale the number of

map/reduce tasks from 4 to 20. As the data is equally split and

processed by all tasks, ETLMR achieves a nearly linear speedup

Table 1: The time of dimension processing
no. of tasks 4 8 12 16 20

Time (min) 260.95 135.65 91.39 70.73 55.22

in processing the big dimension. The speedup is nearly linear as

the partitioning costs become more dominating when each map/re-

duce task gets less data and run for a shorter time. Further, the

costs from the MapReduce framework (e.g., for communication)

increase when more tasks are added.

We also consider another 80 GB data set which has small-sized

dimensions (19,460 rows in the page dimension) to study the scal-

ability. Figure 8 shows ETLMR has a nearly linear speedup in the

increasing number of tasks. When we use a fixed number of tasks

(such that the MapReduce costs don’t increase) and vary the size

of the test data, the processing time grows linearly in the data size

(see Figure 9).

0 4 8 12 16 20

The number of tasks, n

0
2
4
6
8

10
12
14
16
18
20
22
24

S
p
e
e
d
u
p
,
T

1
/T

n

Compared with 1 task

Figure 8: Speedup with in-

creasing tasks, 80GB

20 40 60 80

Data size (GB)

0

50

100

150

200

250

300

P
ro

c
e
s
s
in

g
ti
m

e
(m

in
.)

4 tasks

8 tasks

12 tasks

16 tasks

20 tasks

Figure 9: Processing time

when scaling up data size

More studies of the scalability can be found in [2] which also

considers the use of ETLMR compared to doing ETL operations

by means of the MapReduce tools Hive and Pig. As ETLMR is a

specialized ETL tool, it is much simpler to create an ETL solution

with ETLMR. Further, [2] compares the performance of ETLMR to

the leading open source ETL tool PDI which also supports MapRe-

duce. In the comparison, ETLMR is significantly faster.

7. DEMONSTRATION
In the demonstration, we will show how to implement a Map-

Reduce-based dimensional ETL program using ETLMR. We will

use the running example of this paper – a (partly) snowflaked sche-

ma with an SCD – as our demonstration case and show how to

build a complete ETL program in few lines by using the constructs

shown in Sections 2–5. We will thus show the configuration of data

sources, targets, and transformations. Further, we will show how to

choose between ETLMR’s different processing schemes, how the

schemes differ, and how post-fixing works for the ODAT scheme.

Finally, we will compare ETLMR to the MapReduce-based tools

Hive and Pig and show that ETLMR-based code is shorter and very

intuitive. The audience will thus experience the programming effi-

ciency in creating highly parallel ETL-programs with ETLMR.

8. REFERENCES
[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing

on Large Clusters”. In Proc. of OSDI, pp. 137–150, 2004.

[2] X. Liu, C. Thomsen and T. B. Pedersen, “ETLMR: A Highly Scalable
ETL Framework Based on MapReduce”. In Proc. of DaWaK,
pp. 96–111, 2011.

[3] M. Stonebraker et al., “MapReduce and Parallel DBMSs: friends or
foes?”. CACM, 53(1):64–71, 2010.

[4] C. Thomsen and T. B. Pedersen, “pygrametl: A Powerful
Programming Framework for Extract-Transform-Load Programmers”.
In Proc. of DOLAP, pp. 49–56, 2009.

1885

