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ABSTRACT

Data management systems have traditionally been designed to sup-

port either long-running analytics queries or short-lived transac-

tions, but an increasing number of applications need both. For

example, online games, socio-mobile apps, and e-commerce sites

need to not only maintain operational state, but also analyze that

data quickly to make predictions and recommendations that im-

prove user experience. In this paper, we present Minuet, a dis-

tributed, main-memory B-tree that supports both transactions and

copy-on-write snapshots for in-situ analytics. Minuet uses main-

memory storage to enable low-latency transactional operations as

well as analytics queries without compromising transaction perfor-

mance. In addition to supporting read-only analytics queries on

snapshots, Minuet supports writable clones, so that users can cre-

ate branching versions of the data. This feature can be quite useful,

e.g. to support complex “what-if” analysis or to facilitate wide-

area replication. Our experiments show that Minuet outperforms

a commercial main-memory database in many ways. It scales to

hundreds of cores and TBs of memory, and can process hundreds

of thousands of B-tree operations per second while executing long-

running scans.

1. INTRODUCTION
Modern applications are placing increased pressure on the time

from data ingest to insight. They not only need to update opera-

tional state fast, but also need to quickly analyze that data for rec-

ommendations and predictions that improve user experience. For

example, e-commerce sites not only track per-user shopping ac-

tivity, but also mine that data to recommend related items for pur-

chase. Socio-mobile applications track user location to recommend

nearby businesses or predict traffic delays. Online multi-player

games track player positions and interactions to price and sell vir-

tual goods. Credit card companies need to catch fraud, online ad

networks need to discover recent trends to target ads, and so on.

For today’s businesses, the ability to quickly gain insight and im-

mediately optimize is increasingly a necessity rather than simply
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a competitive advantage. Moreover, the fresher the data, the more

effective is the insight from the analysis.

The state-of-the-art in most deployments is to employ two drasti-

cally different data management systems for managing operational

state and analytics. Organizations use transactional systems, and

more recently, key-value stores, for short-lived operations on oper-

ational state [13], and they use data warehouses for long-running

analyses on that data. This separation is largely a result of conflict-

ing workload needs: random access for transactions versus scans

for analytics. This separation also typically implies a lag of hours,

if not days, from data ingest to insight.

To close this gap, we present Minuet, a main-memory, distributed

B-tree that supports both transactions and in-situ analytics. Its

salient features include:

• Performance and scalability (see Section 6): Minuet sup-

ports hundreds of thousands of transactions per second with

latencies near 1ms. We show that its performance scales

nearly linearly up to hundreds of cores and TBs of memory

in a shared-nothing commodity cluster.

• Copy-on-write snapshots (see Section 4): Minuet offers

consistent snapshots to enable “in-situ” analysis without com-

promising the performance of ongoing transactions. It miti-

gates the overhead of snapshot creation by sharing snapshots

intelligently between concurrent queries while still ensuring

strict serializability. To reduce overheads even further, users

can choose to execute queries using slightly stale snapshots.

• Writable clones (see Section 5): The snapshots themselves

are writable, so users can create branching versions of data.

Like revision control but for B-trees, this feature has many

uses. Analysts can use it for “what-if” analysis in forensics

or forecasting, e.g. what happens if I rebalance my invest-

ments? System developers can use it for wide-area replica-

tion and sharing, and archiving.

Minuet can offer this combination of features because it keeps its

data entirely in memory. Unlike disks, memory can simultane-

ously provide low-latency random access and fast sequential ac-

cess. Moreover, this approach is practical today given the avail-

ability of large main memories; most operational data sets can fit in

the memory of a cluster [38]. Although others have also proposed

such hybrid memory-based systems (e.g., [25]), Minuet is the first

to scale across a cluster of servers and offer writable, branching

clones.

Minuet is based on a prior scalable distributed B-tree [5] built us-

ing the Sinfonia data sharing service (Section 2) [6]. In this paper

we extend this B-tree with a novel concurrency control optimiza-

tion that enables scalable insertions and updates. Furthermore, we

add support for long scan operations using copy-on-write snapshots

that can optionally be made strictly serializable. Our experiments
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(Section 6) show that Minuet easily outperforms a modern com-

mercial main-memory database. Minuet can execute hundreds of

thousands of low-latency B-tree operations per second and scales

linearly to hundreds of cores. By leveraging snapshots, it can also

execute long-running scans concurrently with short update trans-

actions with limited interference. This combination of features

is a big step towards unifying operational and analytics systems,

thereby allowing organizations to make faster and more insightful

data-driven decisions.

2. OVERVIEW AND BACKGROUND
In this section, we describe the architecture of Minuet and review

its building blocks. Minuet organizes data in a scalable distributed

multi-version B-tree, and exposes a key-value interface with sup-

port for range queries. The system architecture is shown in Fig-

ure 1, and consists of clients, proxies, and memnodes. Clients

issue requests for transactional B-tree operations. Proxies exe-

cute these operations on behalf of clients by accessing B-tree state

stored at memnodes. Our prototype uses at its core the Sinfonia

platform [6], which comprises the memnodes and a library that

proxies use to communicate with memnodes. Sinfonia provides

a lightweight transactional interface, indicated in Figure 1 by the

dashed line. Proxies use these lightweight transactions to imple-

ment more powerful transactions, and then use the latter to execute

B-tree operations—an approach based upon [5]. Components of

the system communicate using remote procedure calls and may be

physically co-located or separated by a data center LAN.

memnode 

proxy 

client 

minitransaction 

interface 

client client client 

proxy proxy proxy 

memnode memnode 

Figure 1: Minuet architecture.

Minuet’s architecture and design are based upon a prior dis-

tributed B-tree [5]. In the remainder of this section, we give a

detailed overview of this prior system, including the Sinfonia plat-

form, a dynamic transaction layer, and transactional B-tree algo-

rithms. Later on in Sections 3–5, we describe our own contribu-

tions: an extension of the dynamic transaction layer that enables

greater concurrency, and B-tree algorithms that exploit this exten-

sion for better scalability as well as for supporting multi-versioning.

2.1 Sinfonia
Sinfonia is a distributed data sharing service comprising a set

of storage nodes called memnodes, and an application library for

executing data operations [6]. Each memnode exports an unstruc-

tured byte-addressable storage space similar in spirit to an array

of bytes. The Sinfonia library provides fault-tolerant transactional

access to this address space and is linked into the proxies. The Sin-

fonia system provides fault tolerance by masking network failures

and memnode crashes, which simplifies the development of robust

distributed applications on top of the platform.

Sinfonia applications act on the shared state stored at memnodes

by executing minitransactions. A minitransaction can read, com-

pare, and conditionally update data at multiple memory locations,

possibly at multiple memnodes running on different servers. The

application specifies the addresses of the memory locations ahead

of time, and the updates are applied atomically only if all the com-

parisons evaluate positively (or there are no comparisons). In Min-

uet, a proxy might use a minitransaction to read a B-tree node from

a memnode during a B-tree traversal, as well as to update one or

more B-tree nodes in the course of a B-tree update or insertion op-

eration.

Sinfonia uses a two-phase protocol to execute and commit dis-

tributed minitransactions. In phase one, memnodes lock memory

regions touched by the minitransaction and evaluate comparisons.

Sinfonia aborts the minitransaction immediately if a lock is busy

or a comparison fails. In the former case, the application library

retries the minitransaction automatically and transparently to the

application. In the latter case, the library passes control back to

the application and indicates which comparisons failed. The two-

phase protocol is collapsed down to a single phase automatically

whenever only one memnode is involved.

2.2 Dynamic Transaction Layer
As hinted earlier, a minitransaction can be used to execute part of

a B-tree operation such as fetching a B-tree node from a memnode.

However, since the memory locations touched by a minitransac-

tion must be specified in advance, a single minitransaction cannot

traverse a B-tree. Aguilera et al. [5] describe how to use minitrans-

actions to construct a more powerful dynamic transaction that can

read and write objects (e.g., B-tree nodes) arbitrarily using opti-

mistic concurrency control with backward validation [20]. Each

dynamic transaction maintains a read set and write set of objects

it touches. A transactional read first tries to read the object locally

from the write set or read set, and on failure it triggers a minitrans-

action that fetches that object from a memnode and adds it to the

read set. Transactional writes place objects in the write set and de-

fer updating the memnodes until the entire dynamic transaction is

committed. Committing entails executing a minitransaction that (1)

validates the read set (i.e., verifies that the objects in the read set are

identical to their “master copies” at memnodes); and (2) if the val-

idation succeeds, copies the objects in the write set to memnodes.

Validating the entire read set atomically with step (2) ensures that

dynamic transactions are serializable. In order to reduce the CPU

and network overhead due to validation, objects can be tagged with

sequence numbers that increase monotonically on update, and com-

parisons are based solely on these sequence numbers. Furthermore,

it is possible to piggy-back validation onto minitransactions trig-

gered by transactional reads, in which case step (1) can be skipped

entirely on commit whenever the write set is empty.

Dynamic transactions can be used to transform any centralized

data structure implementation into one that is distributed among

multiple memnodes and can be accessed by many clients/proxies

in parallel. Doing so specifically on top of Sinfonia automatically

provides fault-tolerance and enables scalable throughput for read-

only transactions. (For other types of transactions, scalability is

possible but not automatic, as in any optimistic concurrency control

scheme.)

2.3 Distributed B­Tree
Aguilera et al. describe a scalable distributed B-tree implemented

using their dynamic transaction layer [5]. Their implementation

distributes the B-tree by placing different B-tree nodes at different

servers. A distributed memory allocator decides the placement of

B-tree nodes in a way that balances load. The allocator itself is a

data structure implemented using dynamic transactions, and can be

shared easily by multiple applications.
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Figure 4: Copy-on-write example.

Fundamental B-tree operations (get, put, remove) are obtained

by wrapping dynamic transactions around single-threaded code.

This entails using transactional reads and writes to fetch and up-

date B-tree nodes, and introducing safety checks to ensure that the

code does not crash or hang when transactional reads return in-

consistent data, which may happen during a transaction that will

eventually abort. Aside from that, the main implementation chal-

lenge lies in optimizing for performance by reducing the number of

network round trips needed to commit a B-tree operation, and by

avoiding contention.

For lookup and update operations, the B-tree of Aguilera et al.

scales nearly linearly to hundreds of servers thanks to two specific

optimizations. First, to reduce communication, they cache internal

B-tree nodes (i.e., non-leaf nodes) at the proxies1. The cache is

part of the proxy application code, and does not ensure coherency

across proxies or across objects cached at the same proxy. Sec-

ond, to speed up the validation step during dynamic transaction

commitment, they replicate the sequence number of each internal

B-tree node at each memnode. This ensures that the server storing

the root node does not become a bottleneck. Furthermore, it re-

duces the “minitransaction spread” by allowing a B-tree operation

to commit at a single memnode, namely the one storing the leaf

node, unless a B-tree node splits. This enables one-phase commit-

ment, which not only reduces the number of network delays but

also shortens dramatically the period of time for which memnodes

must hold locks on B-tree nodes.

Lazy caching of B-tree nodes at proxies and eager replication

of sequence numbers at memnodes ensure that most B-tree oper-

ations can be committed using only one or two round trips to a

single server. In the best case, a lookup operation traverses the B-

tree in-cache up to leaf level, then fetches the leaf and validates the

path traversed in the same minitransaction. Similarly, an insertion

fetches the leaf in one round trip, and then commits the updated leaf

in one additional round trip provided that the leaf does not split.

Optimistic concurrency control works particularly well in this con-

text because the interior levels of the B-tree change infrequently.

3. TRANSACTIONS WITH DIRTY READS
The concurrency control mechanism used in the B-tree of Aguil-

era et al. [5] suffers from two important drawbacks. First, repli-

cating the sequence numbers of all internal B-tree nodes at each

memnode makes any operation that updates a sequence number,

such as a node split or merge, expensive to commit. Since such op-

erations engage all memnodes, they do not scale and are especially

susceptible to contention. They also cannot make progress at all if

even a single memnode becomes unavailable.

1Note that in their implementation, they did not separate the client
and proxy, and ran all application code, including caching, at the
client. We will continue to use client to refer only to the application
or process issuing requests.

Second, the concurrency control scheme is conservative, and

may abort transactions unnecessarily. Consider Figure 2, and sup-

pose that one transaction reads the node marked “*” by traversing

the tree from the root. If another transaction concurrently causes

a sibling to split (indicated in the figure using dashed lines), then

the original transaction must abort, since the parent has been up-

dated with the new child and thus the first transaction’s copy will no

longer validate. Note that the abort occurs even though the traversal

reached the correct leaf node, which is not modified by any concur-

rent transaction. Furthermore, one operation can cause the other to

stall when their underlying minitransactions contend for a lock on

the parent B-tree node. As explained earlier, a minitransaction that

encounters a busy lock is re-executed, incurring at least two addi-

tional network delays. Such stalls delay the commitment of B-tree

operations, which tends to increase the likelihood of an abort.

To address these challenges, we introduce dirty reads to the set of

transactional operations supported by dynamic transactions (which

in [5] comprised only reads and writes). A dirty read allows a proxy

to fetch an object from its local cache or from a memnode without

adding the object to its read set for validation. (If the object is

written later on, it will first be added to the read set.) With dirty

reads, dynamic transactions may no longer be serializable, but we

observe that it is possible to make B-tree operations strictly serial-

izable even if dynamic transactions provide weaker isolation.

To execute B-tree operations, proxies traverse the tree from the

root node down to one level above the leaves using dirty reads,

and then read the leaf node using an ordinary transactional read.

Thus, in the common case when the transaction does not cause a

B-tree split, the read set contains only a single leaf node rather than

the entire path from root to leaf. This greatly reduces the number

of objects that must be validated, in most cases down to only one

object—the leaf node. Moreover, we no longer need to replicate the

sequence numbers of internal B-tree nodes. This makes insertion

operations even faster and more resilient against failures, and also

reduces the space overhead due to the replicated sequence number

tables. (The table size per server is proportional to the aggregate

capacity of the system, and so as the number of servers increases,

the table size eventually outgrows the capacity of one server.)

Traversing a B-tree using dirty reads requires additional safety

checks to deal with inconsistent data because inconsistencies no

longer force transactions to abort. For example, a traversal search-

ing for a given key k may visit B-tree nodes that do not lie on the

path from the root to the leaf node responsible for key k, and then

commit successfully. Although this is benign in some cases, it can

be fatal in others, such as when the traversal ends at the wrong leaf

node, or a leaf splits and the traversal path does not include the

correct parent node. For instance, consider the scenario depicted in

Figure 3. In this example, one transaction searches for key 11, and

another inserts a new key which causes an internal node split. It is

possible for these transactions to be interleaved in such a way that

the first transaction reads node A after the split and incorrectly con-

cludes that key 11 is not present in the tree. If we use a dirty read of
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Function Traverse(R, k, T )

Input: R – pointer to root of B-tree with at least two levels

k – search key

T – dynamic transaction

Output: sequence of B-tree nodes traversed from root to the leaf

responsible for key k in B-tree rooted at R, or else ⊥ if T

aborted

curPtr := R1

curNode := T.DirtyRead(internal node at curPtr)2

ret := 〈curNode〉3

while isInternal(curNode) do4

if k < lowFence(curNode) OR k > highFence(curNode) then5

T.Abort(), return ⊥6

else7

nextPtr := child of curNode responsible for key k8

if height(curNode) > 1 then9

nextNode := T.DirtyRead(internal node at nextPtr)10

else11

nextNode := T.Read(leaf node at nextPtr)12

end13

ret := ret ◦ 〈nextNode〉14

if height(nextNode) 6= height(curNode) − 1 then15

// Fatal inconsistency!

T.Abort(), return ⊥16

end17

curNode := nextNode18

curPtr := nextPtr19

end20

end21

// Reached leaf node

if k < lowFence(cur) OR k > highFence(cur) then22

T.Abort(), return ⊥23

end24

return ret25

Figure 5: Transactional B-tree traversal using dirty reads.

node A, then this transaction might commit with an incorrect result.

In order to prevent such anomalies, we introduce fence keys at

each node in the tree [28, 17]. Fence keys define the range of keys

that a node is responsible for, whether or not they are present in the

tree. During a search, we compare the fence keys at a node with

the search key k, and abort the transaction if k is out of range. This

guarantees that we either reach the correct leaf node or abort, and

hence prevents anomalies like the one shown in Figure 3.

Our B-tree traversal algorithm is presented in detail in Figure 5.

In this algorithm, T denotes a dynamic transaction, and the oper-

ations T.Read and T.DirtyRead denote a transactional read and

dirty read, respectively.

4. SNAPSHOTS
Serializable transactions, such as those provided by Minuet, sim-

plify greatly the development of complex distributed applications.

However, they are also inherently expensive and can lead to poor

performance, especially for workloads that include long-running

transactions. As an increasing number of organizations recognize

the importance of real-time data analysis, this kind of mixed work-

load will become increasingly common.

Similarly to several recent systems [25, 10], Minuet addresses

this challenge by executing long-running queries, such as scans

over indexes, against consistent snapshots of the data. Proxies can

create snapshots on demand in such a way that queries always ap-

pear to act on the latest data, which guarantees strict serializabil-

ity [34]. This means that transactions (including queries) not only

appear to execute in some serial order (as per serializability), but

moreover this order is consistent with the “happens before” rela-

tion over transactions (i.e., if T1 ends before T2 begins then T2

does not appear to take effect before T1).

Snapshots provide a consistent view of the B-tree at a fixed point

in time, and can be used for a variety of applications, including

archival and WAN replication. Most importantly, we can use snap-

shots to isolate analytics queries from the ambient OLTP workload.

In this case, we can mitigate the cost of snapshot creation by shar-

ing snapshots (see Section 4.3), or by deliberately executing queries

against existing slightly stale snapshots (see Section 6.3).

In the remainder of this section, we describe how to create read-

only snapshots in Minuet in a strictly linearizable way. We then

discuss the extensions necessary to support writable snapshots (i.e.,

clones) and branching versions in Section 5.

4.1 Copy­on­Write Snapshots
Since Minuet stores data in a distributed B-tree, we can leverage

existing copy-on-write checkpointing techniques to take consistent

snapshots efficiently [36]. At a high level, when a new snapshot

is created, every B-tree node is subsequently copied before being

updated so that the snapshot is not overwritten.

A snapshot is a version of the B-tree identified with a 64-bit

snapshot id, which indicates the (total) order in which snapshots are

created. The latest or tip snapshot is writable, and all prior snap-

shots are read-only. Creating a new snapshot in this context means

making the tip snapshot read-only and creating a new tip with id

one higher than the previous tip. The new tip shares each B-tree

node with the previous snapshot until the B-tree node is overwrit-

ten in the tip snapshot. Each B-tree node is annotated with the

snapshot id at which it was created, which happens by way of a

B-tree split or a copy-on-write. To keep track of the tip snapshot,

we store its id and the location of the corresponding root node at a

well-defined location in Sinfonia’s address space.

Reads can be performed against any snapshot, though the reader

is responsible for keeping track of the location of the root node for

read-only snapshots. Strictly serializable or up-to-date reads must

act on the tip snapshot. In this case, the read fails if a new tip is

created concurrently. When describing operations on a specific B-

tree node, we will say that a read or write occurs at a snapshot s

to make it clear on which snapshot we are operating. For an up-to-

date operation, s will be the tip snapshot.

When we update a B-tree node at snapshot s, we first compare s

with the snapshot id stored in the node. If s is larger than this value,

we copy the node and update the copy, tagging the new node with

snapshot id s. We then adjust the parent of the old node so that it

points to the new node. This update is also performed at snapshot

s, which may force another copy. In general, an update to a leaf

node may require copying all nodes on the path from the root to

the leaf, though the root itself will never be copied as it is copied

already during snapshot creation (described below).

Figure 4 illustrates the copy-on-write procedure. In this diagram,

the root of each snapshot is annotated with its location, given as

a pair containing the memnode and offset. Each node is shown

with its snapshot id, and the leaf node marked with a “*” is being

updated at snapshot 5. Since the leaf node was created at snapshot

3, it must be copied to a new node shown in gray. Similarly the

parent node must be copied before its child pointer can be updated.

The child pointer in the root must also be updated, but since the

root is already at snapshot 5, it does not need to be copied. The old

child pointers are shown as dashed lines.

This copy-on-write procedure can be implemented in Minuet us-

ing dynamic transactions. In order to perform an up-to-date read or

write, a proxy adds its cached copy of the tip snapshot and corre-

sponding root location to the transaction’s read set. Thus, if another

transaction creates a new tip concurrently, the validation will fail,

and the transaction will be aborted and retried. In contrast, when a

proxy reads from a read-only snapshot (i.e., a snapshot earlier than

the tip), the transaction can only abort if the proxy’s cache con-
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Function CreateSnapshot(sid, loc, T)

Input: T – dynamic transaction

Output: sid – snapshot id of the snapshot created

loc – location of root node for the snapshot created

T.Read(tipSnapshotID)1

T.Read(tipSnapshotRootLoc)2

sid := tipSnapshotID3

loc := tipSnapshotRootLoc4

tipSnapshotID += 15

newRootLoc := Allocate(NodeSize, T )6

CopyRoot(tipSnapshotID, tipSnapshotRootLoc, newRootLoc, T )7

tipSnapshotRootLoc := newRootLoc8

T.Write(tipSnapshotID)9

T.Write(tipSnapshotRootLoc)10

return (sid, loc)11

Figure 6: Snapshot creation algorithm.

tained a stale copy of a B-tree node corresponding to that snapshot.

This can happen if one proxy cached an inner B-tree node before

another proxy modified that node and then took a snapshot.

Creating a snapshot simply requires incrementing the tip snap-

shot id. The value before incrementing will be the id of the read-

only snapshot, and the value one greater will be the new tip snap-

shot id. Pseudocode for this procedure is shown in Figure 6. The

objects tipSnapshotID and tipSnapshotRootLoc store the tip

snapshot id and root location, respectively. Lines 1 to 4 read the

tip snapshot id and assign the output variables, while line 5 incre-

ments the tip snapshot id. Additionally, during snapshot creation,

we copy the root of the tree and update the root location of the tip

snapshot (lines 6 to 8). This could be deferred until the first update,

but copying the root at snapshot creation time ensures that the root

node for the tip snapshot remains at a fixed position in Sinfonia’s

address space. This property simplifies application code, including

the snapshot borrowing technique described later on. Note that in

Figure 6, the dynamic transaction used to access the tip snapshot id

is a parameter of the CreateSnapshot procedure—the snapshot is

not actually created until T is committed successfully.

Note that every write and all up-to-date reads must validate the

tip snapshot id and root location. To avoid a contention hotspot and

to ensure that most B-tree operations can commit at a single server,

we replicate these objects across all memnodes just as Aguilera

et al. replicate the sequence numbers for internal B-tree nodes [5].

Abusing notation slightly, in Figure 6 we denote transactional reads

and writes on these replicated objects by T.Read and T.Write (as

for ordinary objects), with the understanding that the reads can ac-

cess any replica and the writes must update all replicas.

Replicating the tip snapshot id and root location increases the

cost to update the tip snapshot id, as we must write to all memnodes

atomically—a contention-prone operation. However, we expect

the frequency of snapshot creation operations to be much lower

than the frequency of B-tree gets and puts, and so we expect the

benefit of efficient validation to exceed the additional update cost.

Furthermore, we mitigate the cost by updating the replicated snap-

shot id using a special blocking minitransaction, which waits at the

memnode for locks to be released instead of aborting when there is

contention for a lock. The waiting time is bounded by a threshold

small enough so that blocking minitransactions do not trigger Sin-

fonia’s recovery mechanism unnecessarily. On occasion the thresh-

old is exceeded, in which case the blocking minitransaction simply

aborts, just like an ordinary minitransaction would.

4.2 Dirty Traversals and Snapshots
One of the ways in which Minuet differs from previous work

is its use of dirty traversals to achieve higher concurrency. How-

ever, we must take care when implementing this technique with

snapshots in order to avoid additional anomalies. Previously, we

addressed the case in which a traversal ended up at the wrong leaf

node due to a node split, but now we must also consider the sce-

nario in which a traversal ends up at the correct leaf node in the

wrong snapshot.

For example, in Figure 4, if the copy-on-write is performed con-

currently with a search terminating at node marked “*”, it is possi-

ble that the search would see the old snapshot of the internal node

rather than the new tip snapshot. If the copy-on-write commits be-

fore the search reaches the leaf, then it is possible that the leaf node

will validate successfully, even though it has an incorrect snapshot

id. Fence keys are not sufficient to solve this problem, as the leaf

node may cover the correct key range but in a stale snapshot.

To address this problem, we introduce one additional piece of

state in each B-tree node: the snapshot id for which the node has

been copied, if any. For instance, in Figure 4, we would store 5

in both of the nodes that were copied (in addition to the snapshot

id for which each node was created), as their copies have snapshot

id 5. Note that this quantity is well defined, as each node can be

copied at most once.

During a read or write at snapshot s, if the search encounters a

node that has been copied to a snapshot id less than or equal to s,

then it aborts because the traversal should visit the copy (or a copy

of the copy, etc.) instead. Otherwise, if the node has the appropriate

fence keys, then it is guaranteed to be on the correct traversal path.

Note that while this procedure guarantees correctness, it can lead

to performance problems when validation is done using the tech-

nique described so far. In particular, now when a node is copied due

to a copy-on-write operation, we must change its sequence number

since we have updated its state. This could cause operations (e.g.,

scans over multiple leaf nodes) on old snapshots to fail to validate

and abort unnecessarily. Fortunately, since such snapshots are read-

only and since we always fetch leaf nodes directly from Sinfonia,

we can avoid validating leaf nodes entirely by using appropriate

safety checks on fence keys.

4.3 Borrowed Snapshots
While we expect the frequency of snapshot creation operations in

Minuet to be low relative to gets and puts, such operations are quite

heavyweight, as they involve updating the replicated snapshot id

and root location atomically at all memnodes. Thus, relatively few

concurrent snapshot creation requests can greatly degrade the per-

formance of both the snapshots and get/put operations, which must

validate the tip snapshot id. To address this potential bottleneck,

we apply two optimizations. First, we create all snapshots one-at-

a-time using a centralized service, which reduces dramatically con-

tention on the replicated tip snapshot id object. Second, we observe

that since the snapshots returned by this service are all read-only,

several operations can share the same snapshot without interfering.

While other systems allow users to explicitly request that multiple

queries be run against the same snapshot (e.g., query sessions in

HyPer [25]), we introduce a technique that automatically decides

which queries should share a snapshot. The technique, called bor-

rowed snapshots, enables one query to use a snapshot created by a

concurrent query provided that this preserves strict serializability.

The high-level idea behind borrowing is as follows. Suppose

that clients A and B try to create snapshots concurrently, and B’s

request is queued behind A’s. If A’s snapshot is created while B

is already waiting in the queue, then A’s snapshot reflects the state

of affairs at some point in time during the execution of B’s request.

Consequently, B can borrow this snapshot (instead of creating its

own) safely without compromising strict serializability.

The pseudocode for creating a snapshot with borrowing is shown
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Function CreateSnapshotProc()

Output: sid – the snapshot id that was created or borrowed

loc – Sinfonia address of the root node for sid

Variables: sid, loc – snapshot id and root node address, shared/static

(initially sid = 0 and loc is the address of the initial root node)

mutex – mutual exclusion lock, shared/static

numSnapshots – atomic integer, shared/static (initially 0)

tmpNum1 := numSnapshots1

lock(mutex)2

tmpNum2 := numSnapshots3

if tmpNum2 < tmpNum1 + 2 then4

// unable to borrow, must create new snapshot

Dynamic transaction T5

CreateSnapshot(sid, loc, T ) // see Figure 66

if T.Commit() = false then continue at line 57

++numSnapshots8

else9

// safe to borrow last snapshot, nothing to do

end10

retSid := sid11

retLoc := loc12

unlock(mutex)13

return retSid, retLoc14

Figure 7: Snapshot creation service (SCS).

in Figure 7. CreateSnapshotProc is a remote procedure exported

by one or more servers in the cluster. Multiple servers can be

used for fault tolerance, but in order to avoid contention (on the

replicated tip snapshot id object) all proxies should route snap-

shot requests to the same server, for example one chosen using

distributed leader election. Proxies invoke CreateSnapshotProc
concurrently, and portions of the procedure are executed in paral-

lel by the server’s executor threads. The main portion, however, is

executed inside a critical section between lines 2 and 13. Inside

the critical section, the executor thread decides at line 4 whether

it will create a new snapshot or borrow (i.e., reuse) the snapshot

created most recently. The decision depends on the value of the

atomic integer numSnapshots, which records the total number

of snapshots that have been created by all threads. A thread reads

this counter first at line 1, before the critical section, and then again

at line 3, inside the critical section. If the counter increases by

two or more between these two reads, then it follows that in the

mean time some other thread has started and finished a call to Cre-
ateSnapshotProc at line 6. Thus, the former thread can borrow

the snapshot created by the latter thread. Indeed this occurs at lines

11–12. Otherwise, the executor thread calls CreateSnapshotProc
directly at line 6 and returns the output of that call.

Note that the decision to share a snapshot among two transac-

tions can be made both inside the snapshot creation service (SCS),

as described above, and also in a distributed fashion at the proxies.

For example, if transactions T1, T2 try to create snapshots concur-

rently at proxy A, and in parallel transactions T3, T4 do so at proxy

B, then A and B could allow only T1 and T3 to invoke the SCS,

T3 could borrow from T1 inside the service, and finally T2 and T4

could borrow from T1 and T3 (respectively) at the proxies. For

simplicity, in this paper we consider sharing only at the SCS and

not at the proxies. We evaluate the performance of this scheme

empirically in Section 6.

4.4 Garbage Collection
As the system runs and snapshots are created, Minuet will even-

tually run out of memory. To address this, we periodically garbage

collect old snapshots. Minuet records a global lowest snapshot id,

which is the smallest snapshot id to which a client can issue queries.

This value can be set by the user, or set to increment automatically,

for instance always supporting queries over the ten most recent

1 2

3

4

5

6

7

8

9

10

Figure 8: Example version tree.

snapshots. A background process periodically goes through the

B-tree nodes stored at each memnode and collects those that have

been copied to a snapshot less than or equal to the lowest snapshot

id. These nodes are safe to delete, as they are never referenced by a

snapshot newer than the lowest snapshot id. Any other B-tree node

may be referenced from a snapshot higher than the lowest snapshot

id, and for that reason cannot be deleted.

5. WRITABLE CLONES
Creating sequential read-only snapshots is useful for many an-

alytics tasks, but for more complex problems, it is often desirable

to modify parallel versions of the data directly. Many users are fa-

miliar with the branching functionality found in most version con-

trol systems, and this feature can be useful for more sophisticated

analytics tasks as well. For example, an analyst working on a pre-

dictive model might wish to validate a hypothesis by experiment-

ing with slightly modified data. While she could export the data

and modify it separately, there are several advantages to creating a

branch within the same system instead. First, if we change only a

small fraction of the data, it may be much more efficient, in both

time and space, to use a copy-on-write approach rather than export-

ing the entire data set. Maintaining several versions in the same

system also allows us to issue transactional queries across different

versions of the data, which may be useful for integrity checks and

to compare the results of an analysis.

In this section we describe how to add support for branching

versions to Minuet using a slight modification of the copy-on-write

method discussed in the previous section. This type of branching

has been explored before in the context of single-machine databases

[26, 23], but to our knowledge has never been incorporated into a

distributed data store like Minuet.

5.1 Branching Versions
We support branches using the same basic copy-on-write algo-

rithm described in Section 4. The main difference is that in addi-

tion to creating snapshots with monotonically increasing ids, it is

also possible to create a branch from an existing read-only snap-

shot. This leads to a (logical) tree of (physical) B-tree versions,

as illustrated in Figure 8. The internal vertices of this version tree

correspond to read-only snapshots, while the leaves are writable or

tip snapshots of the B-tree. Thus, in Figure 8, clients can write

to snapshots 7, 9, and 10, while the other versions are read-only.

Clients can create a new branch from any existing version, which

will create a new leaf in the version tree to which updates can be

applied.

Since there is no longer a natural total order on snapshots, it

is no longer obvious how to assign ids to snapshots. One option

is to encode the structure of the version tree into the snapshot id,

for example using the Dewey id labeling scheme common in XML

processing. Unfortunately, this would mean we could no longer

bound the size of a snapshot id, as it would grow with the number

of branches. To avoid this, we will continue to impose a total or-

der on the snapshots by serializing snapshot creation and assigning
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snapshot ids using a monotonically increasing integer. (A 64-bit in-

teger is large enough to preclude overflow in practice.) This limits

somewhat the concurrency of snapshot creation, but we expect this

to be a reasonable trade-off as snapshots are relatively infrequent.

Since there is no longer a unique tip snapshot id to validate, we

must also change how we perform up-to-date reads and writes. For

instance, if a client has read data at snapshot 5 in the version tree

from Figure 8, the “correct” tip snapshot might be either 7 or 10.

By default, we follow the branch created first (i.e. the one with the

lowest snapshot id) when retrying a dynamic transaction, but the

user can explicitly specify an alternative. This defines a mainline

of snapshot ids in the version tree that starts at the root and ends at

the tip snapshot used for up-to-date operations.

To keep track of the version tree, we introduce a snapshot cat-

alog containing meta-data about each snapshot. This catalog in-

cludes the id of each snapshot, the location of the root node, and

the first branch created from the snapshot (if any). We call this last

value the branch id of a snapshot. When the branch id is NULL, no

branches have been created from the snapshot, and it is writable.

We store the catalog in Sinfonia using a separate B-tree with-

out snapshot support. This automatically ensures that the catalog

is durable and available. As with the tip snapshot id in Section 4,

popular snapshot ids in the catalog may become bottlenecks during

validation. For this reason, we modify the tree that stores the cata-

log to replicate the leaf nodes across all memnodes and cache them

at proxies. This improves performance, since we expect the leaves

to be updated infrequently but read frequently. We do not repli-

cate internal nodes because we use dirty traversals, as described in

Section 3, to limit the number of internal validations.

In our B-tree with branching versions, basic B-tree operations

are similar to those described in Section 4. Up-to-date reads and

writes must validate the branch id of the desired snapshot and retry

if the validation fails (i.e., if the branch id becomes non-null). As

before, B-tree nodes are copied before they are updated, and we

assign the copy the snapshot id at which the write occurs.

To create a new snapshot, we increment the global snapshot id

and create a new entry with this id in the catalog. We must also allo-

cate a root node to anchor the new snapshot, and update the branch

id of the snapshot from which it was created. These operations

must be performed atomically using a dynamic transaction. Note

that creating a new branch is identical to creating a new snapshot.

Intuitively, creating a new snapshot simply creates the first branch

from an existing snapshot, and additional branches are created in

the same way, except that the branch id does not change.

The technique of borrowed snapshots from Section 4.3 can be

used equally well with branching versions. In fact, the catalog sim-

plifies matters somewhat because borrowing can occur at each of

the tip snapshots independently. Note, however, that borrowing

cannot be used when creating a new branch, as branching creates a

new writable snapshot that cannot be shared.

Unfortunately, the dirty traversal technique described in Sec-

tion 4 does not work out-of-the-box in the context of branching

versions. In the remainder of this section, we explain the technical

issues that arise, as well as a suitable workaround.

5.2 Dirty Traversals
Recall that in Section 4, every B-tree node is tagged with both

the snapshot id at which the node was created, and the minimum

snapshot id to which the node was copied. Consider a traversal at

snapshot t that visits a B-tree node that was created at snapshot x

and later copied to snapshot y > x. In Section 4, the traversal

continues as long as x ≤ t < y and the search key is within the

range defined by the fence keys at the B-tree node, otherwise it

aborts. For example, if t ≥ y then the traversal should instead

be at a B-tree node created at version y (or later). With branching

versions, the same rule does not apply because snapshot y may have

been created in a branch different from the one containing snapshot

t, such as in Figure 8 with x = 1, y = 5 and t = 9.

The naive analog of dirty traversals for branching versions would

record for each B-tree node the snapshot id x at which the node was

created, and the set of snapshot ids (descendants of x in the version

tree) to which the node was copied. We will refer to this set as the

descendant set of a B-tree node. Given this set and a method to de-

termine whether two snapshot ids lie along the same directed path

in the version tree (i.e., one derives directly or indirectly from the

other), it is possible to decide correctly whether a B-tree traversal

should continue or abort immediately at some tree node. (As usual,

we also take fence keys into account.) Unfortunately the descen-

dant set can grow without bound as snapshots are created and the

version tree expands, which makes the naive technique impractical.

Our approach to making dirty traversals work with branching

versions is to modify the above naive approach in a way that bounds

the size of the descendant set. Part of the solution is to restrict

the branching factor of the version tree, say to some constant β.

However, this alone does not bound the size of the descendant set,

which could be as large as the number of tip snapshots in the ver-

sion tree. For example, in Figure 8 the version tree has branching

factor β = 2 and yet if a B-tree node created at snapshot id 1 is

copied-on-write to snapshots 7, 9 and 10, then the descendant set

at that B-tree node would contain 3 > β entries.

The second part of our solution is to enforce the following in-

variant:

If a B-tree node created at snapshot x is copied to

some subset C of descendants of x in the version tree,

then there is a subset C′ ⊆ C of size at most β such

that for every y ∈ C, C′ contains an ancestor of y.

(A vertex in the version tree is its own ancestor/descendant.)

We enforce this invariant by introducing discretionary copy-on-

write operations. Going back to the example of Figure 8, if a B-tree

node is created at snapshot x = 1, and then copied-on-write at 7,

9 and 10, then the invariant with β = 2 requires that the node also

be copied at a common ancestor of 7 and 10 that is different from 1

(i.e., either 3 or 5). For example, one could have C = {3, 7, 9, 10}
and C′

= {3, 9}, with the descendant set of the B-tree node equal

to C′. In practical terms, this means that if the B-tree node is over-

written first at snapshot 7 and later at 10, then the latter write trig-

gers a discretionary copy-on-write at, say, snapshot 3, and updates

the descendant sets of the copies at both 1 and 3. The end result

is as if the B-tree node created at snapshot 1 was first copied at

snapshot 3, and subsequently at 7 and 10.

Our adaptation of dirty traversals to branching versions incurs

space overhead in two ways. First, it requires additional space at

each B-tree node to record the descendant set, which consists of

up to β snapshot ids. Second, it allocates additional B-tree nodes

during discretionary copy-on-write operations. The latter increases

the space overhead of copy-on-write by at most a factor of two

because at most one discretionary copy is made for a given B-tree

node for each ordinary copy. In cases where a user creates a branch

in the version tree temporarily and then deletes it, the discretionary

copies can be garbage collected to save space.

Finally, we point out that the size of the descendant set can be

controlled in a fine-grained manner according to a user-defined pol-

icy. For example, when a user creates a side branch temporarily for

“what-if” analysis, a larger β is helpful because it simplifies cre-

ation of sub-branches and reduces the frequency of discretionary
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Figure 9: Minuet experimental server utilization.

copy-on-writes. On the other hand, using a large β along the main-

line of the version tree (e.g., 〈1, 2, 4, 6, 9〉 in Figure 8) might be

overkill because for most of the B-tree nodes at those versions, the

descendant sets might contain only one or two elements. Thus, for

snapshots along the mainline it may make sense to fix β = 2.

6. EXPERIMENTS
In this section we evaluate the performance of Minuet on a vari-

ety of synthetic microbenchmarks.

6.1 Experimental Setup
We performed all experiments on a cluster of commodity ma-

chines. Each machine has two six-core 2.67 GHz Intel Xeon X5650

processors, 96 GB of RAM, and a 10 GigE network interface. Each

core has two hyperthreads, but in order to limit contention, we pin

processes so that only one hyperthread per core is in use at any

given time. We run Sinfonia on the cluster in primary-backup repli-

cation mode so that each server acts as both a primary node and a

backup (to a different memnode). We disable logging in order to

maintain all state in memory, though Minuet will work with any of

Sinfonia’s fault tolerance options at some cost to performance.

To generate a standard repeatable workload, we used the open-

source Yahoo Cloud Serving Benchmark (YCSB) [14]. YCSB can

generate key-value operations and range scans, and has been used

to benchmark a variety of distributed storage systems. In order to

ensure that Minuet receives sufficient load, we scale the number of

YCSB clients with the size of our experiment. On each server, the

YCSB client runs on one processor (six cores) and Minuet on the

other, as shown in Figure 9. For the processor running Minuet, we

run one memnode on two cores, and one proxy on three cores. The

final core is reserved for processing interrupts. The YCSB client

on each server sends requests only to the proxy on the local host.

We compare the performance of Minuet against a modern com-

mercial main-memory database, which we will refer to as CDB. We

configured this system to emulate a key-value store, and replicated

all the data once so that each data item is stored on two servers.

This matches the primary-backup replication we used for Minuet.

We allocated five cores to CDB, as with Minuet, and configured the

system according to its documentation. The YCSB client makes

synchronous requests to the CDB process on the same host.

In all our experiments, we configured both Minuet and CDB with

14-byte keys and 8-byte integer values. In Minuet we used the mul-

tiversion B-tree described in Sections 3 and 4, with 4kB tree nodes.

The CDB schema provides a single table and stored procedures for

read, insert and update operations. We implemented our own stored

procedure for the YCSB scan operation, which retrieves a given

number of consecutive keys (and their values) starting at a given

search key. Unless otherwise specified, each data point presented

in this section is the average of three trial runs, where the system

was pre-loaded with 100 million key-value pairs chosen uniformly

at random. Note that we fix the tree size even as we increase the

number of machines, and so our results show how throughput scales

on a fixed size problem (often called strong scaling). Error bars in-

dicate the sample standard deviation of the trials.
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Figure 10: Minuet load throughput.

6.2 Latency and Throughput

Dirty traversals. To evaluate the benefit of dirty traversals, we

measure throughput for Minuet when loading uniformly random

keys starting with an empty B-tree. We ran the YCSB load phase

for exactly 60 seconds and measured the aggregate throughput, as

well as mean and 95th %-ile latency. In one run we used dirty

traversals and did not replicate any B-tree node sequence numbers.

In another run we disabled dirty traversals and replicated inner B-

tree node sequence numbers as in Aguilera et al. [5]. The results

for various scales are presented in Figure 10.

As shown in the figure, aggregate throughput scales much bet-

ter with dirty traversals enabled—up to a factor of two better than

the version without dirty traversals on 35 hosts. Mean latency (not

shown) with dirty traversals is under 2.5 ms at all points, which

is up to 1.8 times lower than the version without dirty traversals.

However, dirty traversals make relatively little difference on aver-

age throughput for uniform single-key operations when the tree is

pre-populated, since there is much less contention. We omit the

graph for lack of space, and point out that when the workload

is skewed, a larger B-tree can experience contention just like the

smaller B-tree used in our microbenchmarks. Furthermore, dirty

traversals still have the advantage of allowing us to remove the

replicated sequence number table. The practical benefits of this

are explained in Section 3.

Latency-throughput trade-off. In this experiment, we measure

the latency per operation of Minuet and CDB. We used a 10-node

instance of each system and varied the amount of load offered by

YCSB. In order to reach peak throughput, we ran the YCSB client

with 64 threads for Minuet and 512 threads for CDB, which yielded

the best performance. The latency-throughput curves are shown

in Figure 11. For read operations, Minuet mean latency is below

0.4ms at load levels up to 90% of peak throughput, which beats

CDB latency by an order of magnitude. (Note that the y-axis scale

is 10× higher on the plot for CDB than on the plot for Minuet.)

Inserts and updates in Minuet take less than 1ms on average for

20% to 80% peak throughput, and their latency is more than an

order of magnitude less than in CDB.

Somewhat surprisingly, Minuet has relatively high latency at less

than 20% of peak throughput. We speculate that this is due to the

network driver tuning the interrupt throttling rate according to the

offered load. Measurements of round trip time (using ping) at vari-

ous loads corroborate this hypothesis.

Scalability for single-key transactions. We tested the peak through-

put of Minuet against CDB for single-key read, update, and insert

workloads. Figure 12 shows aggregate throughput for scales of 5

to 35 hosts. The performance curves show comparable throughput
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Figure 11: Minuet and CDB latency-throughput trade-off with

15 hosts.
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Figure 12: Minuet and CDB throughput scalability for single-

key transactions.

and good scaling for both systems, though Minuet scales slightly

more linearly and has slightly faster reads at larger scales. There is

also a greater difference in performance between reads and writes

(i.e., updates or inserts) in Minuet than in CDB. Reads are up to

50% better than writes in Minuet, but less than 10% faster in CDB.

Scalability for multi-index transactions. We also evaluate the

performance of Minuet and CDB for transactions that access more

than one index. To that end, we extend the CDB schema with a

second table and add stored procedures that atomically read two

rows, update two rows, or insert two rows. Each table is hash-

partitioned independently and not replicated. Similarly, for Minuet

we create two B-trees, and define dynamic transactions that access

both B-trees atomically. We extend YCSB to generate operations

where the key for each table is drawn uniformly at random. We

pre-load each table with 10M keys drawn uniformly at random.

Figure 13 presents the aggregate throughput for dual-key oper-

ations in Minuet and our extension of CDB. Minuet scales nearly

linearly and at 35 servers performs about 250K dual-key reads, or

over 50K dual-key inserts. In contrast, the modified CDB does

fewer than 1200 transactions per second and performance drops

with scale. This is because each dual-key transaction in CDB en-

gages all servers.

6.3 Snapshot Experiments
In Minuet, snapshots are designed to support long running queries

concurrently with short transactional operations. In this section, we

evaluate how well this technique works and investigate the impact

of snapshot creation on the performance of transactions.
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Figure 14 is a time series showing the impact of a single snap-

shot on the throughput of a 100% update workload executing on 25

servers. For this experiment, we repeatedly executed a one-second

YCSB workload and measured the throughput after each run. We

issued a single snapshot request after the fifth run (at 20 s). The

results indicate that while snapshot creation is a heavyweight oper-

ation, its impact is relatively short-lived, and the throughput returns

to its pre-snapshot levels within 20-30s. We observe that snapshots

will have a fairly minor effect on the performance of read opera-

tions since the latter do not trigger copy-on-write. Thus, Figure 14

demonstrates a worst-case scenario; we would expect less disrup-

tion in a workload with a combination of reads and writes instead

of 100% updates.
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Figure 16: Scalability of scans.

Range scans with snapshots. To evaluate how well Minuet sup-

ports long-running operations, we issue scans over consecutive keys

using YCSB’s scan request type. When run in Minuet without

snapshots, these long scans may never commit, as any concurrent

update or insert within the scan’s read set will force the scan to

abort. Consequently, we execute scans in Minuet by first creating a

snapshot and then running the scan against that snapshot. As noted

in Section 4, this ensures that the scans will be strictly serializable

and that they will eventually terminate, as snapshots are read only.

To evaluate this technique, we run a 100% update workload as

described previously, and concurrently run one additional YCSB

client that issues scans from a single thread. By default we set the

scan size to 1M keys (10% of the data set).

When the number of scans is large, throughput can suffer con-

siderably due to the use of blocking minitransactions (described in

Section 4.1) and contention due to the large number of copy-on-

write operations. However, for many applications, it may not be

necessary that all long-running operations be strictly serializable;

ordinary serializability may suffice. Thus, we also experiment with

an additional parameter—the minimum time between snapshots.

When this is set to 0, the algorithm behaves as described previ-

ously, and a snapshot is taken for every scan, guaranteeing strict

serializability. However, when this parameter is set to k > 0, a

new snapshot will be created at most once every k seconds, and ad-

ditional scan operations will use the most recent snapshot. In some

ways this is a more aggressive form of borrowed snapshots (see

Section 4.3), but it does not guarantee strict serializability as the

scans may see a consistent view of the database that is out-of-date

by as much as k seconds.

Figure 17 shows the impact of long running scans on the update

throughput for different values of k. The topmost line shows the

update throughput without any scans, and is similar to that shown

in Figure 12. The remaining lines show the behavior for k = 0,

k = 5, k = 30, and k = 60. Unsurprisingly, the performance is

best when k is large. With k = 60, the update throughput is 50-

70% of the throughput without scans. As the frequency of snap-

shots increases (i.e. k gets smaller), snapshot creation becomes

a bottleneck, and the update throughput drops significantly. With

k = 0 (i.e. a snapshot taken at every scan), the throughput is less

than 10% of that with no scans.

We also measure the average latency of both scan and update

operations when they are running concurrently in the configura-

tion described above. Figure 18 shows the latency of scans with

15 hosts as we vary k from 0 to 60s. We do not show the cor-

responding update latency due to lack of space, but it follows a

simple curve, ranging from approximately 16ms at k = 0 to less

than 3ms at k ≥ 30, approaching 2ms at k = 60. As expected,

the update latency decreases as k increases: since there are fewer

snapshots, a smaller fraction of the updates trigger a copy-on-write,

and thus they execute more quickly. The behavior of the scan la-
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tency is more complex, which we expect is due to two competing

factors. On one hand, as k increases, the fraction of scans that must

create a new snapshot decreases, which should decrease the aver-

age latency. On the other hand, the update throughput increases

with larger k, which means that more memnode resources will be

used to process updates. This would tend to increase the average

scan latency. The combination of these effects leads to the curved

shape in Figure 18. Note, however, that the average scan latency

with concurrent updates is never more than 1.4 times the scan la-

tency with no concurrent updates, which suggests that snapshots

are successful in isolating the scans from the update workload.

Borrowed snapshots. While setting k > 0 is similar to borrow-

ing snapshots, it does not guarantee strict serializability. To mea-

sure the performance of the strictly serializable borrowed snapshot

technique described in Section 4.3, we need a workload with some

contention between snapshots. For this experiment, we partitioned

15 YCSB clients so that 3 of them run a 100% scan workload, and

the 12 execute a 100% update workload. Figure 15 shows the scan
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throughput for scans of different sizes (note the log scale on the x

axis). With relatively short scans (1000 keys), the number of snap-

shots is very high, and borrowing snapshots improves the through-

put by more than an order-of-magnitude. As the scan size increases,

however, snapshot creation ceases to be the bottleneck. With scans

of 1,000,000 keys, the performance of the two methods is essen-

tially identical.

Scan scalability. In our final experiment, we evaluate how well

long one-million key scans scale with system size. As snapshot

creation will become a bottleneck when k = 0, we fix the mini-

mum time between snapshots to k = 30s in order to measure the

peak throughput with a modest amount of staleness. As in the bor-

rowed snapshot experiment, we partition the YCSB clients so that

80% of them execute updates and the other 20% execute scans.

Figure 16 shows the throughput of the scans in keys/s as we scale

the total number of servers from 5 to 35. The curve is almost per-

fectly linear, which suggests that 30s is a large enough snapshot

interval to avoid a bottleneck on snapshot creation. We attempted

to compare Minuet with CDB on scan performance, but CDB was

unable to perform long scans due to internal memory limitations for

individual queries. (Our servers had excess DRAM.) Barring this

limitation, we expect that CDB would not scale at all because each

scan would engage all servers, as in our multi-index operations.

7. RELATED WORK
Minuet leverages ideas from many areas of research. In this sec-

tion we give an overview with a focus on design features and APIs.

B-trees and multiversioning. B-trees are ubiquitous and there is

a large body of work on optimizing them for specific use cases.

Prior work on concurrency control in B-trees focuses mostly on

lock-based techniques for centralized implementations [18]. To

our knowledge, Lehman and Yao’s B-link tree [28] was the first to

use fence keys for concurrency control, enabling lock-free lookups.

Minuet uses optimistic concurrency control and includes two fence

keys per B-tree node, whereas B-link trees require only a high

fence. Fence keys have also been used in write-optimized B-trees

[17] and for verification of B-tree integrity [19].

A wide variety of multiversion B-trees have been proposed in

the literature. Copy-on-write (CoW) methods, like that used by

Minuet, are inspired by the path-copying algorithm from Driscoll

et al. [16], and have been widely used in file systems [12, 21, 9].

CoW B-trees have good query performance, but updates can be

expensive due to path copying [37]. Per-key versioning avoids this

problem by storing multiple versions of individual keys in the same

B-tree node, but reads may be slower as they may have to traverse

multiple versions in each node [27, 29, 7].

Several other proposals for versioned dictionaries are related to

Minuet. Log-structured access methods, such as the log structured

merge tree (LSM-tree) [33] and the log-structured history data ac-

cess method (LHAM) [31], are widely used for multiversion data.

Recently, Google released LevelDB, a single-node ordered key-

value store based on the LSM-tree that supports multi-key updates

and read-only snapshots [3]. Unlike Minuet, all of these methods

use secondary storage, and are optimized for write (append) opera-

tions at the expense of reads. The stratified B-tree of Twigg et al. is

another recent multiversion data structure [39]. It is cache oblivi-

ous and designed to take advantage of fast sequential I/O by storing

data using a collection of arrays. Operations on data are extremely

fast in the amortized sense, but the worst-case cost of insertions can

be high due to splitting and merging of arrays. In contrast to all of

these methods, Minuet uses in-memory storage, is read-optimized,

and designed for scalability in a shared nothing environment.

Rodeh proposed a multi-version B-tree that supports branching

versions, with applications to file systems [36], but relatively few

other systems have considered how to make use of branching ver-

sions. Landau et al. proposed novel queries for branching versions:

vertical queries access a version and its ancestors in the version

tree, while horizontal queries access multiple descendants of the

same version [26]. Jiang and Salzberg proposed the BT-tree, which

uses per-key versioning to support branching versions with vertical

and horizontal queries [23]. None of these projects addressed the

problems of concurrency control or scale-out.

Distributed data structures. Johnson and Colbrook’s data struc-

ture and Boxwood [24, 30] are distributed B-trees. Neither provides

multiversioning or transactions, and both rely on subtle protocols

and locking schemes. Aguilera et al. [5] proposed a transactional

B-tree (on which Minuet is based) that is simple conceptually but

fails to scale for insertions and lacks multiversioning. Najaran et al.

proposed a similar multi-dimensional tree which scales well but is

not balanced, so operations run in linear time in the worst case [32].

Many peer-to-peer systems, including file sharing systems, use

distributed data structures internally. Most use distributed hash ta-

bles, and hence fail to provide efficient ordered traversals. A few

support distributed range queries efficiently, including BATON [22],

which is based on a balanced binary tree, and P-Ring [15], which

uses a ring structure coupled with a B-tree-like splitting algorithm.

These projects focus on dealing with the high churn found in peer-

to-peer environments, and provide weak consistency.

Cloud storage and indexing systems. The number of cloud stor-

age systems has grown rapidly in recent years. The vast major-

ity (e.g., most key-value stores) fail to provide efficient ordered

traversals, multiversioning, and consistency guarantees. Google’s

BigTable [11] (and its open-source variant HBase [2]) and Yahoo’s

PNUTS [13] use key range partitioning for efficient range queries.

These systems are disk-based and support only per-record atom-

icity. While all of them are multi-versioned, only BigTable and

HBase allow users to access specific versions directly. PNUTS also

supports materialized views and secondary indexes, but they are

maintained asynchronously. In contrast, Minuet supports strictly

serializable transactions across multiple keys and indexes.

CouchDB is a distributed data store for JSON data [1]. It uses

a B+-tree on each node internally, and supports partial replication

and merging, which is somewhat similar to Minuet’s branching ver-

sions. However, CouchDB provides only eventual consistency and

is designed to store documents rather than simple key-value pairs.

Some recent projects propose using overlays like BATON [22]

to range partition data for efficient ordered traversals in cloud stor-

age systems. The ec-Store index [40] extends BATON with adap-

tive replication for load balancing and uses optimistic multiversion

concurrency control to provide snapshot isolation. All transactions

are serialized at a single node in the system, which limits scalabil-

ity. (Minuet serializes only snapshot creation operations.) The CG-

index [41] also uses BATON, but focuses on providing secondary

indexes over data that is already partitioned across a cluster.

Hybrid OLTP and Analytics. The HyPer database system uses

snapshots to support both OLTP transactions and long-running an-

alytics queries efficiently in a single platform [25]. HyPer is a

single-node system that leverages hardware-assisted copy-on-write

provided by the virtual memory manager, which enables extremely

fast checkpoints for analytics queries. ES2 is a distributed system

for OLTP and OLAP, and supports multiversioning for read-only

analytics queries [10]. Its index is based on the ec-Store system

described earlier. In contrast to these systems, Minuet scales to

894



hundreds of cores and TBs of memory while supporting multiver-

sioning with writable snapshots and branching versions.

Other storage systems. VoltDB [4] is a distributed OLTP system

based upon H-Store [38]. VoltDB is extremely fast and scalable

for workloads that can be partitioned effectively using hashing. In

order to reduce synchronization overheads, only one thread can ac-

cess a given partition. Range queries over partitioned tables are

supported but do not scale because each query engages all servers.

Hyder is a write-optimized distributed transaction processing sys-

tem that leverages flash storage [8]. Hyder marshals a binary-tree

index structure into a shared log, and uses copy-on-write to update

the index in an append-only manner. In that sense, transactions are

executed against a snapshot of the database. Hyder lacks branching

versions and does not offer special support for analytics.

8. CONCLUSIONS
Minuet allows emerging data-centric businesses to meet strate-

gic imperatives by supporting both transactional and analytic work-

loads in a single scalable platform. It also offers a powerful feature

that enables sophisticated “what-if” analysis, data sharing, archiv-

ing, and data protection. Compared to a modern industrial strength

main-memory database, Minuet provides superior latency and is

competitive on aggregate throughput for simple transactions. Un-

like conventional hash-partitioned systems, it also enables scalable

analytics queries. Our solution unifies traditionally disparate sys-

tems and workloads into a single platform that we hope will enable

a whole new class of online use-cases and services.
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