
 49

XConnector:
Extending XLink to Provide Multimedia Synchronization

Débora C. Muchaluat-Saade1,2, Rogério F. Rodrigues1, Luiz Fernando G. Soares1
1TeleMídia Laboratory – Departamento de Informática – PUC-Rio

R. Marquês de São Vicente, 225 – Gávea – 22453-900, Rio de Janeiro, RJ, Brazil
2Departamento de Engenharia de Telecomunicações – Universidade Federal Fluminense (UFF)

R. Passo da Pátria, 156 – São Domingos – 24210-240, Niterói, RJ, Brazil
debora@telemidia.puc-rio.br, rogerio@telemidia.puc-rio.br, lfgs@inf.puc-rio.br

ABSTRACT
This paper proposes XConnector, a language for the creation of
complex hypermedia relations with causal or constraint semantics.
XConnector allows the definition of relations independently of
which resources are related. Another feature is the specification of
relation libraries, providing reuse in relationship definition. The
main goal is to improve linking languages or the linking modules of
hypermedia authoring languages in order to provide multimedia
synchronization capabilities using links. Following this direction, an
extension to W3C XLink is proposed, incorporating XConnector
facilities.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communications
Applications – information browsers.

General Terms
Languages, Standardization.

Keywords
Multimedia synchronization, links, hypermedia connector, XLink,
XConnector.

1. INTRODUCTION
Hypermedia authoring languages must be rich in their semantic
capabilities to express different kinds of relationships among
document components. Besides the traditional referential
relationship, they should provide context relationships, which
capture the hierarchical structure of a document, such as a book and
its chapters, chapters and their sections and so on; and
synchronization relationships, which define both temporal and
spatial ordering of document components. A discussion about other
types of relations can be found in [18].

Regardless the possibility of including objects (images, applets,
scripts, etc.) in web pages, the HTML language only provides

simple uni-directional referential relations, represented by content-
embedded links. Due to this limitation, recent efforts have been
done by W3C in order to provide means for creating more
sophisticated relationships among WWW resources. These efforts
are present in SMIL [16] and XLink [22] recommendations. Both of
them can represent referential and synchronization relations,
although following different approaches. SMIL provides
compositions with specifc semantics for creating synchronization
relations, besides uni-directional single-headed links to capture
simple referential and temporal relations. XLink allows the creation
of more sophisticated referential relations and simple temporal
relations using links.

Hypermedia relations can be expressed by either compositions or
links. Defining synchronization relations using compositions makes
the authoring task easier, since the author can specify with a single
composition what would be alternatively specified using several
links [14]. However, languages usually offer a limited set of
compositions to capture synchronization relations. In SMIL, for
example, there are only three composition types, which are parallel,
sequential and exclusive. As a consequence, complex relationships
must be built through a hierarchy of basic compositions. This
authoring approach obliges the document structure to match its
presentation structure, what may not be necessarily desirable.
Moreover, this may impair the approach inherent advantage of
facilitating the authoring process. The use of links for specifying
synchronization relations allows reserving composite elements for
context relationship specification [2], separating the document
presentation structure from its logical one. Of course, compositions
can still be used for synchronization specification when presentation
and logical structure are the same.

W3C XLink has some limitations as a hypermedia linking language.
This paper addresses these limitations proposing an XML language,
called XConnector, which provides the creation of complex
referential and multimedia synchronization relation types.
XConnector uses the concept of hypermedia connector, already
introduced in [11], which allows the relation specification
independent of which resources1 are related. Different links of the
same type can be created reusing the same connector and defining
different sets of participating resources. Besides presenting
XConnector, this paper shows how XLink can be extended to use

1 A resource is any addressable unit of information that is part of a

hypermedia document. In this text, the word resource is used as
a synonym for: a document component or node; or a node
anchor (portion of the content of a node); or a node attribute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DocEng’02, November 8-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-594-7/02/0011…$5.00.

 50

XConnector facilities. Using the concept of connectors, the
proposed XLink extension will provide more expressiveness but
will also maintain XLink facility of use. Although this paper
proposes an extension to XLink, XConnector could be used to
extend the linking modules of other hypermedia languages, such as
XHTML [21] or SMIL.

In short, the main contributions of this paper, comparing to previous
published work [11] are the detailed definition of constraint
hypermedia connectors, the definition of XConnector as an XML
language, and the extension to XLink, which is a completely new
proposal.

The paper is organized as follows. Section 2 briefly describes the
W3C XLink features and discusses its limitations as a hypermedia
linking language. Section 3 presents the XConnector proposal and
shows how XLink can be extended to use it. Section 4 compares the
proposal to related work and Section 5 is reserved to conclusions
and future work.

2. W3C XLINK LANGUAGE
XLink [22] provides two kinds of links, simple links (simple-type
elements), which are similar to uni-directional HTML hyperlinks,
and extended links (extended-type elements), which offer full XLink
functionality. Extended links allow describing sophisticated
relations with an arbitrary number of participating resources. An
extended link specifies a set of participants and a set of traversal
rules. An example is shown in Figure 1.

<courseload>
 <person xlink:href="students/peterkorb60.xml"
 xlink:label="student"/>
 <person xlink:href="students/patjones62.xml"
 xlink:label="student"/>
 <person xlink:href="profs/jaysmith7.xml"
 xlink:label="prof7"/>
 <course xlink:href="courses/cs101.xml"
 xlink:label="CS-101"/>
 <go xlink:from="student" xlink:to="CS-101"
 xlink:show="replace" xlink:actuate="onRequest"/>
 <go xlink:from="prof7" xlink:to="CS-101"
 xlink:show="replace" xlink:actuate="onRequest"/>
 <go xlink:from="CS-101" xlink:to="prof7"
 xlink:show="replace" xlink:actuate="onRequest”/>
</courseload>

Figure 1. XLink extended link example
Participants may be local resources (resource-type elements) or
remote resources (locator-type elements), considering the resource
where the link is defined. Each participant of an extended link has a
label attribute that is used in the specification of traversal rules. The
example shown in Figure 1 defines four remote participants, three of
them are person elements and one is a course element.

An XLink traversal rule (arc-type element) relates a source label
(from attribute) to a target label (to attribute), besides specifying
when navigation must occur (actuate attribute) and how target node
presentation must be done (show attribute). Since several
participants may share the same label, it is possible to define
multipoint relationships. Thus, traversal rules determine which
participants are source (starting resources) or target (ending
resources) in a link. Navigation may be triggered by user request
(actuate=“onRequest”) or may be done automatically when the
starting resource is loaded (actuate=“onLoad”). The ending
resource presentation may be done in a new window
(show=“new”), may substitute the starting resource presentation
(show=“replace”) or may even be embedded in the presentation

(show=“embed”). Since XLink extended links may define several
traversal rules, each extended link represents a set of relationships
(hypermedia links) among participants, instead of just one. The
example of Figure 1 shows three arc-type elements named go,
where one of them represents a multipoint relationship, since label
“student” is shared by two participants.

XLink also provides semantic attributes (role, arcrole and title) to
describe the meaning of resources within the context of a link, but
they are out of the scope of this paper.

XLink allows defining links that reside in a location separate from
the linked resources. This is useful when resources are read-only or
when they offer no way to embed linking constructs, as for example
creating links anchoring on video content files. In addition, XLink
provides the definition of link repositories, called linkbases,
facilitating link management by gathering several linking elements.

Despite the fact that XLink allows describing more sophisticated
relationships than simple HTML hyperlinks, it also has limitations:

• XLink only provides the specification of causal relations: if a
condition is satisfied, an action must be fired. There is no
support for defining constraint relationships among resources.
Constraint relations have no causality involved. Consider, for
example, a constraint specifying that one participant must
finish its presentation at the same time another participant
begins its exhibition. The occurrence of the presentation of one
participant without the occurrence of the presentation of the
other also satisfies the constraint, which specifies that, if and
only if these two participants are presented, their end and
beginning times have to coincide.

• XLink navigation may be triggered only by user request or
automatically when the starting resource is loaded. There is no
support for other conditions, such as “when a resource content
presentation ends”.

• Although one can create multipoint links using XLink, each
traversal rule only relates a unique condition type for all source
participants, determined by its actuate attribute value. Also, a
unique action type is defined for all target participants, which is
“start the presentation of the target label considering the show
attribute value”. There is no way of defining a multipoint
relation that specifies composite conditions and actions. For
example, one might need to specify: “if A is being presented
and an anchor of B has been selected, pause the presentation of
C and stop the presentation of A”.

• XLink does not allow the specification of spatial relations,
such as a constraint defining that “two participants must be
vertically aligned” or a causality specifying “if A is moved to a
specific position, then start the presentation of B”.

Moreover, XLink does not allow the definition of traversal rule
types independent of the definition of their participants. This
prevents relation definition reuse in distinct traversal rules with the
same traversal behavior and, as a consequence, also introduces
another limitation:

• XLink allows the definition of link repositories but does not
provide the definition of traversal-rule type repositories. This
feature becomes important when complex types of traversal
rules may be defined.

 51

3. EXTENDING XLINK TO PROVIDE
MULTIMEDIA SYNCHRONIZATION
In contrast to XLink, this proposal detach the definition of a relation
from the definition of a relationship. First, it introduces an entity to
define the relation type, called xconnector, following the concept of
hypermedia connector proposed in [11]. Then, as an xconnector
does not specify participating resources, another entity is needed to
define the relationship, which is the extension to XLink. The
extension is very similar to XLink extended links, although it has a
richer semantics. The improvements come from using XConnector
and also from the new way participant labels are bound to traversal
rules, as follows.

An xconnector defines the role of each participant and how they
interact, but it does not specify who they are. Its purpose is similar
to an XLink arc-type element, but it has a richer semantics and is
defined as an independent element and not as a child element of an
extended link.

The extension to XLink proposes a new arc-type definition that can
comprise the current XLink arc-type definition or, instead, refer to
an xconnector and associate its roles to participant labels. This is
indeed a significant difference from XLink, allowing the definition
of the relation type separated from the relationship. This facility
allows reusing the relation type definition and, as a consequence,
providing traversal-rule type databases besides linkbases like XLink.
Moreover, this feature also facilitates link maintenance, since
modifying an xconnector automatically updates all links referring to
it.

Increasing the expressiveness of the linking language without losing
its facility of use is another goal of the proposal. Thus, the idea is to
have expert users defining xconnectors, storing them in libraries and
making them available for others to create links.

Figure 2 shows an xconnector named R, representing a relation with
three different roles, which means three different types of
participants. The figure also illustrates two different links, l1 and l2,
using R. A link is defined by an xconnector and by a set of binds
relating xconnector roles to resources (node anchors or node
attributes) [11]. While xconnector defines the relation type, the set
of binds specifies the interacting resources. Link l1 defines three
binds connecting anchors/attributes of nodes A, B and C to the roles
of xconnector R. Link l2 also defines three binds, but it connects a
different set of nodes (B, C and D). Links l1 and l2 define different
relationships, as they relate different sets of nodes, but represent the
same type of relation, as they use the same xconnector. One may
consider links as instantiations of xconnectors.

One might ask why we need to extend XLink to provide additional
synchronization facilities if we already have XHTML, SMIL and
even the inclusion of SMIL features into XHTML through the
XHTML+SMIL Profile [20]. Two main reasons can be highlighted:

• The first reason is one of the motivations that have raised the
W3C XLink specification, which is to “express links that reside
in a location separate from the linked resources” [22]. This
cannot be done with XHTML, SMIL or XHTML+SMIL.

• The second one is being able to express complex n-ary
synchronization relationships using links.

If we combine XHTML+SMIL and XLink, we may be able to
specify some complex n-ary synchronization relationships using
SMIL facilities, but we certainly will not be able to store them in a
location separate from the linked resources.

A CLink l1
DLink l2

xconnector node anchor or attributebindrole

B

R

xconnector R

R
A CLink l1

DLink l2

xconnectorxconnector nodenode anchor or attributeanchor or attributebindbindrolerole

B

RR

xconnector Rxconnector R

RR

Figure 2. Example of links using the same xconnector R

The main feature of XConnector is that it can be used in conjunction
with hypermedia linking languages regardless of how they define
their document components. The usefulness of extending XLink
with XConnector facilities is that it improves XLink expressiveness,
maintains the possibility of defining relationships separately from
the linked resources and adds the possibility of having relation
databases besides linkbases.

3.1 XConnector
XConnector is an XML-based language providing the definition of
xconnector elements. Each xconnector defines a set of roles (that
will be played by participating resources in a relationship) and how
they actually interact, through a child element called glue [11]. In
order to capture causal and constraint relations, xconnectors are
specialized in causal and constraint types. In both kinds of
xconnectors, the glue describes how roles interact, specifying the
causality or constraint semantics. The complete XML Schema [15]
definition of XConnector is available at http://www.telemidia.puc-
rio.br/specs/xml/XConnector.xsd.

3.1.1 Roles
The definition of roles is based on the concept of event. As stated in
[13], an event is an occurrence in time that can be instantaneous or
can occur over some time period. Reference [8] compares links and
events as different approaches for defining activation and
deactivation information of document components. This proposal
combines both, since xconnectors are defined as relationships
among events that happen over document components. XConnector
basic types of events are presentation, mouseClick, mouseOver,
focus, prefetch and attribution. This set may be extended to include
other relevant event types.

States and transitions of an event state machine, as shown in Figure
3, can be used for authoring xconnector roles. For presentation,
prefetch and attribution events, it is very useful to allow them to be
paused or resumed. On the other hand, pausing or resuming
mouseClick, mouseOver and focus events does not make much
sense. In this case, a simpler event state machine is considered, with
just the prepared and occurring states and transitions between them.
The prefetch event state machine is different from the others,
because when this event naturally ends, it does not return to the
prepared state, but it goes to the finished state. In fact, the prefetch
event must happen before the occurrence of any other event type of
a same resource. Thus, when a prefetch event reaches the finished
state, it actually causes the creation of other state machines
controlling events of the same resource, starting from the prepared
state.

 52

occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end finished
natural

end

only for prefetch events

occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end finished
natural

end

only for prefetch events

Figure 3. Event state machine for authoring xconnector roles

XConnector events, except prefetch, have an associated attribute
called occurrences, which counts how many times its state changes
from occurring to prepared. Presentation and attribution events
also have another attribute named repeat, which indicates how many
times they must still occur.

A role defines an id, an event type and its cardinality. A role id does
not need to be a unique value inside the whole document, since a
role definition cannot be reused in different xconnectors. The role
event type refers to one of the event types previously defined. The
role cardinality specifies the minimal and maximal number of
resources that may play this role (number of binds) when this
xconnector is used for creating a link, as will be defined later. If a
role event type is attribution, the role must also define which is the
corresponding resource attribute name.

Roles are specialized in action roles, condition roles and property
roles. Different types of roles are used depending on the xconnector
type. In constraint xconnectors, only property roles are allowed. In
causal xconnectors, any type of role may be used.

Action roles capture actions that can be executed over resources.
Types of actions are illustrated in Figure 3 by labeled arcs causing
transitions in the event state machine (except natural end). Besides
the action type, an action role may define a delay to be waited before
the action is executed; values to be assigned to participant attributes
if the role event type is attribution; and a value to be assigned to the
event repeat attribute, if the event type is presentation or
attribution2. An action role example is “pause the presentation of a
resource after a three-second delay”. Action roles may also define a
show attribute, having the same meaning of the XLink show
attribute, whose possible values are “new”, “embed” and “replace”.
The behavior of the starting resources when a link is followed can
almost always be modeled by another action of a multipoint link.
One exception is when the show attribute has the “embed” value,
justifying why it was included in XConnector.

In causal xconnectors, conditions must be satisfied in order to
trigger actions. Conditions are captured by the condition role type,
which defines a logical expression evaluating event states, event
state transitions or attribute values. When evaluated, a condition
returns a boolean value. Conditions may be simple or compound.

A simple condition can be a comparison using comparators “eq” (=),
“dif” (≠), “lt” (<), “lte” (≤), “gt” (>) or “gte” (≥), testing an event
state transition, an event state value, an event attribute value such as
repeat and occurrences, as explained previously, or even a resource
attribute value. When the expression is evaluated over an event state

2 As a future work, those delay and attribute values should be

parameterized, allowing the same xconnnector to be used
defining different parameter values.

transition, the condition is considered to be true only at the moment
the transition occurs.

Any condition may be negated and a compound condition consists
of a binary logical expression involving two other conditions over
the same event and based on the operators “and” or “or”. A
compound condition role example is “the presentation of a
participant finished for the second time”, which would be specified
as “[(event-type = “presentation”), ((transition = “stops”) AND
(occurrences = “2”))]”.

The third and last type of role is the property role type. A property
can be an event state value, the time instant an event state transition
occurs, an event attribute value or a resource attribute value. While a
condition always returns a boolean value when evaluated, a property
returns any type of value, depending on the property type. Event
transition and attribute value properties may specify an offset that
can be added to the property result. For example, a property may
specify “five seconds after the time instant a presentation event
stops” or “the screen vertical position plus 50 pixels”.

3.1.2 Glue
As previously mentioned, an xconnector is defined by a set of roles
and a glue, where the glue specifies how its roles interact. Every
xconnector role must be used in the glue. A constraint xconnector
has a constraint glue, which defines a property expression relating
property roles. A causal xconnector has a causal glue, which
defines both a trigger expression, relating condition and property
roles, and an action expression, relating action roles. When the
trigger expression is satisfied, the action expression must be
executed.

A property expression can be simple or compound. A simple
property expression can compare either property roles of the same
type or a property role to a value of the same type of the property
result. The comparison can use comparators “eq” (=), “dif” (≠), “lt”
(<), “lte” (≤), “gt” (>) or “gte” (≥). For example, suppose one
property role P specifying the starts transition of a presentation
event and a property role Q specifying the stops transition of a
presentation event. If a simple property expression S1 defines that “P
= Q”, S1 will be evaluated as true if the first presentation event starts
at the same time the other presentation event stops. As another
example, suppose a property role H specifying the screen horizontal
position attribute value. If a simple property expression S2 specifies
that “H ≥ 100”, S2 will be evaluated as true if the horizontal position
of a participant playing the H role is greater than 100. Any property
expression may be negated and a compound property expression
consists of a binary logical expression, based on the operators “and”
or “or”, involving two property expressions. Although property
expressions can be used in causal xconnectors, their main utility is
in the specification of constraint xconnectors, as follows.

Table 1 illustrates a constraint xconnector expressing a spatial
synchronization relation specifying “two nodes must be horizontally
aligned by their tops”.

A trigger expression can be simple or compound. A simple trigger
expression refers to the id of a condition role. A compound trigger
expression consists of a binary logical expression, based on the
operators “and” or “or”, involving either two trigger expressions, or
one property and one trigger expression. Any trigger expression may
be negated and may specify minimal and maximal delays to its
evaluation. For example, given that a trigger expression C is true at

 53

instant t, C’ defined as C with min-delay=”t1” and max-delay=”t2” is
true at the interval [t+t1, t+t2].

Table 1. Example of constraint xconnector
Role type

 and id
Event type

(cardinality)
attribute

name offset

Property P1 attribution (1,1) top 0
Property P2 attribution (1,1) top 0

Glue type Property expression
Constraint P1 = P2

Compound trigger expressions can relate any number of condition
and property roles. However, one restriction is necessary to
guarantee causal link consistency. Every trigger expression may
only be satisfied at an infinitesimal time instant, requiring that at
least one condition role of each causal xconnector define an event
state transition condition.

An action expression can also be simple or compound. A simple
action expression refers to the id of an action role. A compound
action expression consists of a binary expression, based on the
operators “par”, “seq” and “excl”, involving two action expressions.
Parallel (par) and sequential (seq) compound actions respectively
specify if the execution of actions must be done in any order or in a
specific order. Exclusive (excl) compound action specifies that only
one of the actions must be fired3.

When the maximal cardinality value of a role is greater than one,
several participants may play the same role. In this case, a qualifier
must be specified each time this role is used in the glue expressions.
Table 2 presents possible qualifier values.

Table 2. Role qualifier values
Role type Qualifier Semantics
condition all all conditions must be true
condition any at least one condition must be true
property all all properties must be considered
property any at least one property must be considered
action par all actions must be executed in parallel
action excl only one of the actions must be executed

Table 3 illustrates a causal xconnector example expressing a
temporal synchronization relation. The xconnector specification is
interpreted as “if a group of participants is being presented (C1) and
another participant is selected (C2), stop the presentation of a group
of participants (A1) and start the presentation of another participant”.
In order to stop the presentation of the same group of participants
that played role C1, a link using this xconnector must create two
binds for each participant in the group, one to role C1 and another to
A1.

Table 3. Example of causal xconnector
Role type and

id
Event type

(cardinality) Condition Action

Condition C1
presentation

(1, unbounded) state=occurring

Condition C2 mouseClick (1, 1) transition=stops

3 When only one of the actions must be executed, the document

formatter (browser) should decide which one to be performed or
it may ask the user to do it.

Action A1
presentation

(1, unbounded) stop

Action A2 presentation (1, 1) start

Glue type Trigger expression Action expression
Causal all(C1) AND C2 seq(par(A1), A2)

3.2 Extending XLink to use XConnector
In order to incorporate XConnector facilities into XLink, arc-type
elements must be modified. Attributes from, to, show and actuate
become deprecated and a new attribute, named xconnector, used for
identifying a valid xconnector URI, is introduced. Moreover, arc-
type elements must define a set of bind-type child elements. Each
bind-type element specifies which participating resource plays a
specific role of the xconnector used by the arc-type parent element.
A bind-type element must have a label attribute to identify an XLink
participant label and a role attribute to identify the id of one of the
xconnector roles. Note that the semantics of this role attribute is
different from the XLink homonym attribute. This new arc-type
element specification gives more flexibility to link definition since
the number of labels associated to the same traversal rule is not
limited to two, as it is in XLink.

Although the extension to XLink maintains XLink arc-type
attributes specifying traversal behavior, let us show an example of
how current XLink semantics would be represented using the new
proposal. In order to represent the example given in Figure 1
(Section 2) using XConnector, each traversal rule defining different
show and actuate attribute values has to be converted to an
xconnector. In that example, all go elements have the same values
for these attributes, so they are represented by the same xconnector.
Figure 4 illustrates the definition of this causal xconnector identified
by “xlink-replace-onRequest”.

<xconnector id=“xlink-replace-onRequest”
 xsi:type=“CausalHypermediaConnector” >
 <condition-role id=“from” event-type=“mouseClick”
 max=“unbounded”>
 <condition xsi:type=“EventTransitionCondition”
 transition=“stops”/>
 </condition-role>
 <action-role id=“to” event-type=“presentation”
 action-type=“start” show=”replace” max=“unbounded”/>
 <glue>
 <trigger-expression
 xsi:type=“SimpleConditionExpression”
 condition-role=“from” qualifier=“any”/>
 <action-expression
 xsi:type=“SimpleActionExpression”
 action-role=”to” qualifier=“excl”/>
 </glue>
</xconnector>

Figure 4. xconnector “xlink-replace-onRequest”
Note that, as XLink labels can be used by several resources, the max
cardinality attribute of each role in Figure 4 is set to “unbounded”.
Although several resources may share the same label in XLink,
actually a traversal rule specification generates several point-to-point
arcs. Since the recommendation does not constraint the application
behavior in this case and xconnector authors may choose the desired
behavior in this situation, the qualifier for action role “to” was
chosen to be “excl” in the example.

Figure 4 presents the specification of the traversal-rule type using
XConnector. In order to complete the link definition, Figure 5
presents the specification of the new XLink extended element,
reusing the same xconnector “xlink-replace-onRequest” in all

 54

traversal rules. Note that, since we are now able to define different
labels as sources of the same traversal rule, in the new XLink
example, we just needed two go elements, instead of three,
preserving the semantics of the example illustrated in Figure 1.

<courseload>
 <person xlink:href="students/peterkorb60.xml"
 xlink:label="student"/>
 <person xlink:href="students/patjones62.xml"
 xlink:label="student"/>
 <person xlink:href="profs/jaysmith7.xml"
 xlink:label="prof7"/>
 <course xlink:href="courses/cs101.xml"
 xlink:label="CS-101"/>
 <go xconnector:xconnector=”xlink-replace-onRequest”>
 <bind xconnector:label=”student”
 xconnector:role=”from”/>
 <bind xconnector:label=”prof7”
 xconnector:role=”from”/>
 <bind xconnector:label=”CS-101”
 xconnector:role=”to”/>
 </go>
 <go xconnector:xconnector=”xlink-replace-onRequest”>
 <bind xconnector:label=”CS-101”
 xconnector:role=”from”/>
 <bind xconnector:label=”prof7”
 xconnector:role=”to”/>
 </go>
</courseload>

Figure 5. Extended XLink/XConnector example
Comparing the XLink example shown in Figure 1 to its
corresponding extended XLink/XConnector definition shown in
Figures 4 and 5, one might think that the complexity to use
XConnector is much higher than XLink. If you consider that most
users would have to define xconnectors, this conclusion would make
sense. However, the idea is to have expert users to write xconnector
libraries representing several types of hypermedia relations, such as
the one shown in Figure 4. Common users will just need to use them
to create links, writing XML code like the one shown in Figure 5,
which is very reasonable.

The previous example showed a simple referential relationship
among participants in order to illustrate how arc-type element
syntax was modified in the XLink extension proposal. The
following examples show how extended XLink can provide
complex multimedia synchronization among link participants.

Suppose that an XLink defines A, B, C and D as its participating
resource labels (label C refers to anchor1 of participant C). If we
would like to create a synchronization relation using the causal
xconnector defined in Table 3, the same XLink must define an arc-
type element identifying this xconnector URI and the set of binds
shown in Figure 6. This traversal rule represents the following
temporal synchronization relation: “if participants A and B are being
presented and anchor1 of participant C is selected, stop the
presentation of A and B and start the presentation of participant D”.
In the figure, participants A and B are drawn twice to represent that
they play both condition and action roles.

Participant B Participant B

Participant A

Participant C
anchor1

C1

C2

A1

A2

Participant A

Participant D

Participant B Participant B

Participant A

Participant C
anchor1

C1

C2

A1

A2

Participant A

Participant D

Figure 6. Set of binds of an XLink temporal relationship among
participants A, B, C and D

As another example, we could create another arc-type element
relating participants A and B, using the xconnector defined in Table

1, where the set of binds would be the ones shown in Figure 7. This
link represents the following spatial synchronization relation:
“participants A and B must be horizontally aligned by their top
attributes”.

Participant A Participant B
top

attribute
top

attribute

P1 P2Participant A Participant B
top

attribute
top

attribute

P1 P2

Figure 7. Set of binds of an XLink spatial relationship between

participants A and B
Note that we may have consistency problems when xconnectors are
used to create links. One example is when the number of XLink
participants sharing the same label is lower than the minimal or
greater than the maximal cardinality value of a role bound to this
label. Another example is when someone misused an xconnector to
create links and did not define binds correctly for all its roles.
Problems may also occur when a link refers to an xconnector URI
that became invalid for any reason. In all theses cases, document
formatters must identify inconsistencies.

Some advantages of extending XLink in order to incorporate the
concepts of XConnector can now be highlighted more clearly:

• Enhanced expressiveness for the linking language –
XConnector allows the definition of new types of XLink
traversal rules representing multimedia spatio-temporal
synchronization relations with causal or constraint semantics:
o traversal rules can define truly multipoint relations

specifying composite conditions and actions, since glue
expressions may relate any number of roles;

o besides usual presentation and mouseClick events, other
kinds of events may be used to define conditions and
actions, such as content prefetch;

o the whole life cycle of an event, as defined by its state
machine, may be used in the definition of condition and
actions, giving authors more flexibility and expressiveness
to specify relations.

• Increased language reuse – An already defined type of traversal
rule, represented by an xconnector, can be reused by several
arc-type elements in the same XLink extended link or even
inside different extended links.

• Facility of link maintenance – when an xconnector is modified,
all links referring to it are automatically updated.

• Maintenance of facility of use despite the enhanced
expressiveness – Applying the same idea of linkbases to
xconnectors, connector-bases may be defined to create libraries
of xconnectors that can be reused to create links.

As an example of xconnector library, consider the thirteen well-
known synchronization relations defined by Allen [1]. Although
Allen specified a complete set of all possible relationships that can
exist between two intervals, they do not precisely express the causal
or constraint semantics that should exist between the time intervals
[4]. For instance, the meets relation only specifies that the end of
interval x should coincide with the beginning of y, but several
interpretations could be given. The meets relation could be
considered either a simple constraint, or a starting causality (the end
of x must cause the start of y) or even a stopping causality (the
beginning of y must cause the stop of x). Therefore, a hypermedia

 55

authoring language should provide means for specifying both
causality and constraint relations if it wants to provide all possible
interpretations of Allen’s relations. A connector-base for Allen’s
relations unambiguously specifying the relation semantics desired is
available at http://www.telemidia.puc-
rio.br/specs/xml/allen_base.xml. Similarly, a connector-base
providing spatial synchronization relations can also be defined.

4. RELATED WORK
Since hypermedia links may represent several types of relation, a
link needs to characterize the relation type and specify the set of
related components. Although the definition is conceptually divided
in two parts, hypermedia languages/models usually have a unique
entity to capture both parts, the link itself.
The relation type captured by a link depends on the expressiveness
of the authoring language used. In HTML4 and Microcosm [10],
links are uni-directional and single-headed representing the
traditional hyperlink navigation behavior. SMIL [16] links are also
uni-directional and single-headed, but they can be either triggered
by user interaction or other triggering conditions, such as temporal
events. In Dexter [7] and AHM [6], links may be bi-directional and
multi-headed, but are used only to capture hypermedia relations that
depend on user interaction. Dexter has no support for temporal
relationships and AHM provides point-to-point synchronization arcs
to capture temporal constraints between two parts of a presentation.
Labyrinth [3] and NCM [17, 18] provide the definition of complex
multipoint relationships among components based on different
concepts of event. In NCM, a link is defined as a causal or
constraint relationship among events that happen over document
nodes, analogous to the ideas used in XConnector. In fact, many of
XConnector features came from NCM links. In Labyrinth, an event
is treated as a separate model entity that can be attached to a link in
order to describe causal relationships. A Labyrinth event defines a
condition and a list of actions, similar to a causal xconnector
behavior.
Hypermedia languages/models also differ in the way the link entity
is treated. In HTML, for example, links are embedded in node
content, preventing reuse of the same resource without inheriting
previously defined links. Other models allow the definition of a link
as an independent entity, such as Dexter, AHM, Microcosm, XLink,
Labyrinth and NCM. In Dexter and AHM, links are considered a
type of document component and, different from most models, links
can even be used to link other links [6]. In NCM, Microcosm and
XLink, links can only connect nodes. In NCM, links are contained
in composite nodes and must relate nodes recursively contained in
the composite node. NCM composite nodes can be reused, but links
alone cannot. Microcosm and XLink provide independent link
repositories that can be reused in several documents.
Although most hypermedia languages/models provide a unique
entity to capture relationship definitions, some of them already
divide the definition in two parts, the first specifying the relation and
the second, the related participants. In XLink, for example, the
definition of participating resources and the definition of traversal
rules are done with different child elements of an extended link. In
NCM, a link is defined by sets of source and target endpoints and
another attribute called meeting point, which specifies the composite

4 HTML script programming was not considered for comparison.

traversal behavior. However, in both cases, traversal behavior is
embedded in the link definition and cannot be handled
independently.
Other hypermedia models provide predefined sets of relation types
that can be used for creating relationships in a document. These
models actually break the definition of a relationship in two parts
and provide relation types separately from relation instances.
Madeus [9] high-level constraints and the typed transitions of Petri-
net based models like I-HTSPN [19] and caT [12] are examples.
However, these models do not provide the definition of user-defined
relation types.
Addressing relation type definition, reference [11] proposed another
first-class entity, called hypermedia connector, whose main purpose
is describing the relation independent of which participants are
related. XConnector uses and extends this idea and proposes an
authoring language for defining connectors to represent referential
and synchronization relations. XConnector alone does not provide
the definition of links, as it only allows specifying the relation type.
Another language must be used to complete the link definition,
specifying its set of participants. That language can be XLink,
following the proposal presented in this paper, or any other
hypermedia authoring language willing to take profit of XConnector
facilities.
Note that features like automatically computing link sources and
destinations, offered by Microcosm generic links and the virtual
links of NCM and Labyrinth, are concerns of the linking language
and not of XConnector. Another issue is the definition of the link
context [5]. XConnector does not have the duty to define link
specifiers, identifying component anchors, and consequently link
specifier contexts, as proposed by AHM [6]. This is responsibility of
the linking language using XConnector.

5. CONCLUSIONS
This paper presented XConnector, a language that can be used to
extend existing linking languages in order to provide multimedia
synchronization facilities for WWW resources using links. The
paper defined how XLink can be extended to incorporate
XConnector facilities.

The use of connectors also provides the possibility of defining
relations as composite elements, augmenting even more the
flexibility for expressing and reusing relation specifications.
Composite connectors represent groups of several connectors and
components, modeling more elaborated relationships among
components of a document [11]. Although composite connectors
could be provided, they were not discussed in this paper, since their
definition requires the definition of document components. The
main goal of this paper was to present a hypermedia connector
authoring language that can be used together with a hypermedia
linking language, regardless of how the latter defines its document
components.

Connectors could be used in a broader sense to represent any kind of
relation, besides the synchronization relation types focused in this
work. For example, we could have a version connector to represent
the ancestor/descendant relation of versioned resources, or we could
have a channel connector to represent the publish-subscribe
paradigm used in notification mechanisms. A future work is to
extend XConnector and create new connector-bases to represent
other kinds of relations found in the hypermedia domain.

 56

The specification of synchronization relations separate from
participating resources is indeed a form of defining link templates,
which must be understood by document formatters. As a future
work, this proposal will be generalized for document structures,
making the definition of composition templates possible.
Composition templates will define relationships among components
of a composition. For example, the SMIL par and seq compositions
could be seen as templates that would be interpreted by SMIL
players, as well as other user-defined kinds of compositions. Link
and composition templates could then be treated as high-level
language elements by document authors.

As a validation for the proposed ideas, XConnector was
incorporated into the HyperProp hypermedia system [18]
implementation. Using JAXP (Java API for XML Processing), an
XML parser for XConnector was implemented, allowing users to
import connector-bases to the system and use hypermedia
connectors to create causal and constraint NCM links. The
HyperProp formatter was also adapted to understand and play
documents with links using causal and constraint hypermedia
connectors.

6. REFERENCES
[1] Allen J.F. “Maintaining Knowledge about Temporal Intervals”,

Communications of the ACM, 26(11), Nov. 1983.
[2] Antonacci M.J., Muchaluat-Saade D.C., Rodrigues R.F.,

Soares L.F.G. “Improving the expressiveness of XML-based
Hypermedia Authoring Languages”, Multimedia Modeling
Conference, Nagano, Japan, November 2000.

[3] Díaz P., Aedo I., Panetsos F. “Modeling the Dynamic Behavior
of Hypermedia Applications”, IEEE Transactions on Software
Engineering, 27(6), June 2001.

[4] Duda A., Keramane C. “Structured Temporal Composition of
Multimedia Data”, IEEE International Workshop on
Multimedia Database Management Systems, NY, Aug. 1995.

[5] Hardman L., Bulterman D.C.A., van Rossum G. “Links in
hypermedia: the requirement for context”, ACM Conference on
Hypertext, Seattle, Washington, November 1993.

[6] Hardman L. “Modelling and Authoring Hypermedia
Documents”, PhD Thesis, University of Amsterdam, 1998.
Available at http://www.cwi.nl/~lynda/thesis

[7] Halasz F., Schwartz M. “The Dexter Hypertext Reference
Model”, Communications of the ACM, 37(2), February 1994.

[8] Hardman L., Schmitz P., Ossenbruggen J., Kate W., Rutledge
L. “The Link vs. the Event: Activating and Deactivating
Elements in Time-Based Hypermedia”, New Review of
Multimedia and Hypermedia, Taylor Graham, Vol. 6, 2000.

[9] Jourdan M., Layaïda N., Roisin C., Sabry-Ismail L., Tardif L.
“Madeus, an Authoring Environment for Interactive
Multimedia Documents”, ACM Multimedia Conference 98,
England, September 1998.

[10] Lowe D., Hall W. “Hypermedia & The Web: an Engineering
Approach”, John Willey & Sons, 1999.

[11] Muchaluat-Saade D.C., Soares L.F.G. “Hypermedia Spatio-
Temporal Synchronization Relations also Deserve First-Class
Status”, Multimedia Modeling Conference, Amsterdam,
November 2001.

[12] Na J., Furuta R. “Dynamic Documents: Authoring, Browsing
and Analysis Using a High-Level Petri Net-Based Hypermedia
System”, ACM Symposium on Document Engineering -
DocEng'01, Atlanta, USA, November 2001.

[13] Pérez-Luque M.J., Little T.D.C. “A Temporal Reference
Framework for Multimedia Synchronization”, IEEE Journal
on Selected Areas in Communications, 14(1), January 1996.

[14] Rodrigues L.M., Antonacci M.J., Rodrigues R.F., Muchaluat-
Saade D.C., Soares L.F.G. “Improving SMIL with NCM
Facilities”, Journal of Multimedia Tools and Applications,
16(1), Kluwer Academics Publisher, January 2002.

[15] “XML Schema Part 0: Primer”, W3C Recommendation, May
2001. Available at http://www.w3.org/TR/xmlschema-0/

[16] “Synchronized Multimedia Integration Language (SMIL 2.0)”,
W3C Recommendation, August 2001. Available at
http://www.w3.org/TR/smil20

[17] Soares L.F.G., Casanova M., Rodriguez N. “Nested Composite
Nodes and Version Control in an Open Hypermedia System”,
International Journal on Information Systems, 20(6), Elsevier
Science, England, September 1995.

[18] Soares L.F.G., Rodrigues R.F., Muchaluat-Saade D.C.
“Modeling, Authoring and Formatting Hypermedia Documents
in the HyperProp System”, ACM Multimedia Systems Journal,
8(2), March 2000.

[19] Willrich R., Saqui-Sannes P., Senac P., Diaz M. “Hypermedia
Document Design Using the HTSPN Model”, Multimedia
Modeling Conference, Toulouse, France, November 1996.

[20] “XHTML+SMIL Profile”, W3C Note, January 2002. Available
at http://www.w3.org/TR/XHTMLplusSMIL

[21] “XHTML 1.1 – Module-based XHTML”, W3C
Recommendation, May 2001. Available at
http://www.w3.org/TR/xhtml11

[22] “XML Linking Language (XLink) Version 1.0”, W3C
Recommendation, June 2001. Available at
http://www.w3.org/TR/xlink

	INTRODUCTION
	W3C XLINK LANGUAGE
	EXTENDING XLINK TO PROVIDE MULTIMEDIA SYNCHRONIZATION
	XConnector
	Roles
	Glue

	Extending XLink to use XConnector

	RELATED WORK
	CONCLUSIONS
	REFERENCES

