Basic electrical formulas:

Chart on left shows the formulas used to calculate electricity. Power (watts), current (amperage), resistance, voltage. You must know at least two factors for correct calculations. http://waterheatertimer.org/Formulas-for-Ohms-law.html

Notice there are several ways to calculate each factor. Resistance Ohms = volts \div amps (V/I) Resistance Ohms = volts² \div watts (V²/P) Resistance Ohms = watts \div amps² (P/I²) Example: test 4500 watt 240 volt water heater element Correct ohm reading = 240² (V²) \div 4500 (P) = 12.8 ohms

volts x amps = watts (power)

P = Power I = Current V/R VxI v^2/R P/V Ρ I $I^2 x R$ VP/R Watts Amps Ohms Volts V²/P IXR V R VPXR v/i P/I^2 P/I V = Voltage R = Resistance

Power (watts) = V (volts) x I (amps) What is maximum wattage that can be achieved from 240 volt circuit with 30 amp breaker. 240 volt x 30 amp = 7200 watt.

Example: 4500 watt element, 240 volt water heater circuit, how many Amps are used? 4500 watt ÷ 240 volt = 18.75 amps

http://waterheatertimer.org/Figure-Volts-Amps-Watts-for-water-heater.html

volts = amps x resistance (ohms)

V = I x R is sometimes shown as E (energy) = IR
If the multimeter reads 12 amps on the wire and resistance on the load is 10 ohms, how many volts are present?
12 ohms x 10 amp = 120 volt

1000 watts = 1 kilowatt (Kw)

Run 100 watt light bulb for 10 hours = 1000 watt hours = 1 kilowatt hours (Kwh) If electricity costs 18¢ per Kwh, then running 100 watt bulb for 10 hours costs 18¢ If you use 100-watt-equalivalent LED bulb, it consumes 20 watts for same lumens of light. Run LED bulb for 10 hours x 20 watts = 200 kilowatt (Kw) or .2 Kwh costing 3.6¢ instead of 18¢.

.002931 Kw needed to raise 1 pound of water 1°F http://waterheatertimer.org/How-many-kilowatts-needed-to-heat-water.html

1 horsepower = 745.6998 watts

If you have 2 Hp motor and 240 volt circuit, what size circuit breaker and wire are needed? You have watts and volts, but don 't know what amp circuit breaker.

Motors are inductive load, and require more amps when starting.

The inrush needed for motor start means the calculation for motors is not straightforward. Standard Charts are needed that show amp draw, overcurrent protection and wire size.

http://waterheatertimer.org/Color-codewire.html#motor

What size wire is used for 30 amp breaker? Specific size wire is used for each size circuit breaker Distances over 100 feet require larger wire and breaker Standard Charts are needed http://waterheatertimer.org/Color-codewire.html

Volts and amps on a wire are inversely proportional.

When volts go up, amps go down.

When volts go down on the line, then amps go up.

If you have a 8000 watt lighting system that can be wired for either 120 volts or 240 volts, which is the best choice?

8000 watts divided by 240 volts = 33.3 amps requiring 40 amp breaker and #8 gauge wire.

8000 watts divided by 120 volts = 66.6 amps requiring 70 amp breaker and #4 gauge wire.

Larger wire costs more, especially if the load is spread over a large area like commercial lighting. The mathematics shows that using 240 volts is a less expensive way to handle the 8000 watt load.

Power companies utilize the inverse relationship between volts and amps when transmitting electricity. They transmit high voltage, low amperage electricity. This reduces heat loss from high amperage, and lets them use smaller wire and transmit electricity longer distance at less cost.

http://waterheatertimer.org/What-is-3-phase-electric.html

When wiring a house, the maximum is 12 boxes per circuit breaker http://waterheatertimer.org/Basic-house-wiring.html

Commercial wiring is 3-phase while residential wiring is single phase. What is the difference? http://waterheatertimer.org/difference-between-single-phase-and-3-phase.html

More resources:

http://waterheatertimer.org/pdf/Basic-Water-heater-formulas-and-terminology.pdf http://waterheatertimer.org/pdf/Water-heater-Formulas-and-terminology.pdf http://waterheatertimer.org/pdf/Formulas-for-Three-Phase_Circuits.pdf

Electrical Formulas For Finding Amperes, Horsepowers, Kilowatts and kVA

To Find	Single-Phase	Alternating Current Two-Phase'), Four-Wire	Three-Phase	Direct Current
Kilowatts	$\frac{I \times E \times pf}{1000}$	$\frac{1 \times E \times 2 \times pf}{1000}$	$\frac{1 \times E \times 1.73 \times pf}{1000}$	<u>I × E</u> 1000
kVA	1 × E 1000	$\frac{1 \times E \times 2}{1000}$	I × E × 1.73 1000	-
Horsepower	I × E × % EFF × pf	$I \times E \times 2 \times \% EFF \times pf$	$I \times E \times 1.73 \times \% EFF \times pf$	I × E × % EFF
(Output)	746	746	746	746
Amperes when Horsepower	HP × 746	HP × 746	HP × 746	HP × 746
is Known	$E \times \% EFF \times pf$	$2 \times E \times \% EFF \times pf$	$1.73 \times E \times \% EFF \times pf$	$E \times \% EFF$
Amperes when Kilowatts	KW × 1000	KW × 1000	KW × 1000	KW × 1000
is Known	E × pf	$2 \times E \times pf$	1.73 × E × pf	E
Amperes when	kVA × 1000	kVA × 1000	kVA × 1000	
kVA is Known	E	2 × E	1.73 × E	_

Average Efficiency and Power Factor Values of Motors

When the actual efficiencies and power factors of the motors to be controlled are not known, the following approximations may be used.

Efficiencies²)

Туре	Power Factor	
DC motors, 35 horsepower and less	80% to 85%	
DC motors, above 35 horsepower	85% to 90%	
Synchronous motors (at 100% power factor)	92% to 95%	
"Apparent" Efficiencies (= Efficiency × Power Factor); Three-phase induction motors, 25 horsepower and less	70%	
Three-phase induction motors above 25 horsepower	80%	

Fault-Current Calculation on Low-Voltage AC Systems

In order to determine the maximum interrupting rate of the circuit breakers in a distribution system, it is necessary to calculate the current which could flow under a threephase bolted short circuit condition. For a three-phase system the maximum available fault current at the secondary side of the transformer can be obtained by use of the formula:

$$I_{SC} = \frac{kVA \times 100}{KV \times \sqrt{3} \times \% Z}$$

where:

- I_{SC} = Symmetrical RMS amperes of fault current.
- kVA = Kilovolt-ampere rating of transformers.
- KV = Secondary voltage in kilovolts.
- % Z = Percent impedance of primary line and transformer.
- In three-wire, two-phase circuits the current in the common conductor is 1.41 times that in either other conductor.

E = Volts I = Amperes

% EFF = Percent Efficiency pf = Power Factor

2)These figures may be decreased slightly for singlephase and two-phase induction motors.

http://waterheatertimer.org/Figure-Volts-Amps-Watts-for-water-heater.html

To find	Single phase	3-phase	Direct current
Kilowatts	<u>I x E x PF</u>	<u>I x E x 1.73 x PF</u>	<u>I x F</u>
	1000	1000	1000
KVA	<u>I x E</u> 1000	<u>l x E x 1.73</u> 1000	_
Horsepower (output)	<u>l x E x % Eff x PF</u>	<u>l x E x 1.73 x %Eff x PF</u>	<u>I x E x %Eff</u>
	746	746	746
Amperes when Horsepower is known	<u>HP x 746</u>	<u>HP x 746</u>	<u>HP x 746</u>
	E x %Eff x PF	1.73 x E x %Eff x PF	E x %Eff
Amperes when Kilowatts is known	<u>KW x 1000</u>	<u>KW x 1000</u>	<u>KW x 1000</u>
	E x PF	1.73 x E x PF	E
Amperes	<u>KVA x 1000</u> E	<u>KVA x 1000</u> 1.73 x E	_
E=Volts I = Amperes	%Eff = Percent efficiency	PF = Power factor HP = Horsepower	KVA = Kilovolt-Amps

Table 13 Electrical formulas for Amperes, Horsepower, Kilowatts and KVA

Average Efficiency and Power Factor Values of Motors:

When actual efficiencies and power factors of the motors to be controlled are not known, the following approximations may be used:

Efficiencies:	
DC motors, 35 hp and less:	80% to 85%
DC motors, above 35 hp:	85% to 90%
Synchronous motors (at 100% PF):	92% to 95%
"Apparent" efficiencies (Efficiency x PF):	
3-phase induction motors, 25 hp and less:	70%
3-phase induction motors above 25 hp:	80%
	00%

Table 14 Ratings for 3-Phase, Single-Speed, Full-Voltage Magnetic Controllers for Nonplugging and Nonjogging Duty

Size of	Continous	Continous Horsepower at ^[1]					
Controller Curren	Current Rating (A)	60 Hz 200 V	60 Hz 230 V	50 Hz 380 V	60 Hz 460 or 575 V	Current Rating (A)	
00	9	1-1/2	1-1/2	1-1/2	2	11	
0	18	3	3	5	5	21	
1	27	7-1/2	7-1/2	10	10	32	
2	45	10	15	25	25	52	
3	90	25	30	50	50	104	
4	135	40	50	75	100	156	
5	270	75	100	150	200	311	
6	540	150	200	300	400	621	
7	810		300		600	932	

^[1] These horsepower ratings are based on typical locked-rotor current ratings. For motors having higher locked-rotor currents, use a larger controller to ensure its locked-rotor current rating is not exceeded.

Table 15

5 Ratings for 3-Phase, Single-Speed, Full-Voltage Magnetic Controllers for Plug-Stop, Plug-Reverse or Jogging Duty

Size of Controller	Continous		Service-Limit			
	Current Rating (A)	60 Hz 200 V	60 Hz 230 V	50 Hz 380 V	60 Hz 460 or 575 V	Current Rating (A)
0	18	1-1/2	1-1/2	1-1/2	2	21
1	27	3	3	5	5	32
2	45	7-1/2	10	15	15	52
3	90	15	20	30	30	104
4	135	25	30	50	60	156
5	270	60	75	125	150	311
6	540	125	150	250	300	621

[1] These horsepower ratings are based on typical locked-rotor current ratings. For motors having higher locked-rotor currents, use a larger controller to ensure its locked-rotor current rating is not exceeded.

Table 16Power Conversions

From	to kW	to PS	to hp	to ft-lb/s
1 kW (kilowatt) = 10 ¹⁰ erg/s	1	1.360	1.341	737.6
1 PS (metric horsepower)	0.7355	1	0.9863	542.5
1 hp (horsepower)	0.7457	1.014	1	550.0
1 ft-lb/s (foot-pound per sec)	1.356 x 10 ⁻³	1.843 x 10 ⁻³	1.818 x 10 ⁻³	1

VL = Line Voltage VP = Phase (Element) Voltage IL = Line Current (Amps) ILL = Line Current (Unbalanced Phase) IP = Phase Current (Amps) WT = Total Watts R1 = R2 = R3 = Element Resistance Rc = Circuit Resistance in Ohms Measured from Phase to Phase

