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ABSTRACT

A maximum likelihood method for determining the spatial properties of tidal debris

and of the Galactic spheroid is presented. Over small spatial extent, the tidal debris

is modeled as a cylinder with density that falls off as a Gaussian with distance

from its axis while the smooth component of the stellar spheroid is modeled as a

Hernquist profile. The method is designed to use 2.5◦ wide stripes of data that

follow great circles across the sky in which the tidal debris within each stripe is

fit separately. The maximum likelihood method is defined with the ability to fit

any number of tidal streams within the input dataset, as well as, to be able to

remove sections from the probed volume. The effectiveness and correctness of the

algorithm is then demonstrated through the use of three simulated datasets which

mimic the conditions found within real datasets: a single stream and the spheroid,

a single stream and the spheroid with a section of the probed volume removed, and

two streams and the spheroid. The algorithm is shown to perform well under all

conditions using the conjugate gradient method coupled with a line search as the

optimization method.

A probabilistic separation technique which allows for the extraction of the op-

timized tidal streams from the input data set is presented. This technique allows

for the creation of separate catalogs for each component fit in the stellar spheroid:

one catalog for each piece of tidal debris that fits the density profile of the debris

and a single catalog which fits the density profile of the smooth stellar spheroid

component. This separation technique is proven to be effective by extracting the

simulated tidal debris from the simulated datasets. A method to determine the

statistical errors is also developed which utilizes a Hessian matrix to determine the

width of the peak at the maximum of the likelihood surface. This error analysis

method serves as a means of testing the the algorithm with regard to the simulated

datasets as well as determining the statistical errors of the optimizations over ob-

servational data. An heuristic method is also defined for determining the numerical

error in the optimizations.

x



The maximum likelihood algorithm is then used to optimize spatial data taken

from the Sloan Digital Sky Survey. Stars having the color of blue F turnoff stars

0.1 < (g − r)0 < 0.3 and (u − g)0 > 0.4 are extracted from the Sloan Digital Sky

Survey database. In the algorithm, the absolute magnitude distribution of F turnoff

stars is modeled as a Gaussian distribution, which is an improvement over previous

methods which utilize a fixed absolute magnitude Mg0
= 4.2 value to estimate stellar

distances. Fifteen stripes were extracted and used to trace the Sagittarius Dwarf

Spheroidal galaxy tidal stream. These analyses characterize the Sagittarius tidal

stream in both the trailing tidal tail and the leading tidal tail.

Comparing these detections with that of the current models for the Sagittarius

dwarf galaxy disruption shows that there is considerable disagreement. The posi-

tions along the trailing tidal tail correspond well with the model disruption; however,

the leading tidal tail positions differ greatly from those seen in the model disrup-

tions indicating that new models need to be created to better fit the observations.

The widths of the trailing tail show some evidence for increasing as the magnitude

of the angle along the stream increases. This trend is also present in the model

simulation. The leading tidal tail, however, shows a trend in decreasing width as

the magnitude of the angle along the stream increases. Again, this trend is seen in

the model disruption. Both the trailing and leading tidal tails show a distinct trend

in decreasing density as the magnitude of the angle along the stream increases, and

the leading tidal tail of the model disruption shows this trend as well. However, the

model disruption shows that the density along the trailing tidal tail remains rela-

tively constant as the magnitude of the angle along the stream increases. Finally,

the fifteen stripes analyzed contain 9.0% as many F turnoff stars as currently seen

in the Sgr dSph. This implies considerable disruption of the galaxy.

A new orbital plane of the Sagittarius dwarf galaxy has been calculated, using

the fifteen detections of the Sgr stream, with equation −0.207X+0.925Y +0.319Z−
1.996 = 0. The leading tidal tail lies along this plane while the Sgr core and the

trailing tail do not. A second plane was fit to the three southern detections and

the Sagittarius dwarf position and is described by equation 0.024X + 03990Y +

0.136Z−1.801 = 0. The leading and trailing tails are fit well with these two planes,

xi



respectively. There is approximately a 17◦ difference in orientation of these two

planes and may imply a strong precession of the orbit of the Sagittarius dwarf.

The separation technique was applied to the analyzed data to successfully

create a catalog of stars matching the density profile of the Sagittarius tidal streams;

however, these stars do not explicitly represent stars drawn from the Sagittarius tidal

stream. The stream was then successfully extracted from the data resulting in a

much smoother spheroid. Therefore, through the fitting and extraction of all tidal

debris in the data using this method, the smooth component of the spheroid may be

recovered for uncontaminated study to determine the true structure of the smooth

spheroid. The primary use of the stream catalog, beyond analysis of the Sagittarius

stream itself, would be to apply it as a means to generate simulations, thereby

constraining the models used in these simulations, specifically that of the Galactic

potential which would allow for the determination of the distribution of mass, and

therefore dark matter, in the Milky Way.
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CHAPTER 1

Introduction and Historical Review

The heavenly bodies, specifically those of the night sky, have always held an im-

portant place in the history of mankind. They have been revered through religion

spanning much of history and the globe through astrology [1], used as a means to

navigate the world via astronavigation, to tell stories via constellations, or simply to

generate a feeling of awe as one looks up at the vast reaches of space. Those heavenly

bodies have also served as a means to study the universe around us. Without the

study of those bodies, some of the most fundamental concepts of the universe, such

as gravity, may still be unknown and misunderstood. However, through the careful

study of the movements of the planets Kepler and Newton were able to usher a new

era of science. Galileo can arguably be considered to have had the largest impact

upon the field of astronomy; for 400 years ago he pointed the first telescope towards

the sky (a tube containing refractive lenses). Though crude by today’s standards,

this 3x magnification device provided the prototype for the primary method through

which to study the objects of the night sky.

After Galileo’s first telescope, it was desired to create telescopes of greater

magnification. However, the nature of a refractive telescope causes this to be quite

difficult due to chromatic aberration causing the image to blur. This effect was

solved by using a reflective telescope, which uses mirrors to collect light as opposed

to lenses. Although not free of optical aberrations, the reflective telescope design

has proven the superior model and has been used in the design of almost all major

telescopes.

It was upon one of these reflective telescopes, the 100 inch Hooker telescope

at the Mount Wilson Observatory that Edwin Hubble discovered that the Milky

Way was but one many galaxies within the universe. He also discovered that these

other galaxies were retreating away from the Milky Way thus proving the existence

of an expanding universe. [2] Since these incredible discoveries, the astronomical

community has continued to study the universe around us in an effort to understand

1
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its nature, structure, past, and future.

1.1 The Milky Way Galaxy

The Milky Way galaxy is the host galaxy to the Solar planetary system, which

contains the Earth. It is a spiral galaxy, more specifically a SBb/c Hubble type

spiral consisting of four major arms. [3] [4] This means that the Milky Way is a

disk type galaxy with loosely wound spiral arms and a bar structure at its center.

The Galaxy also contains the those features typical of a spiral Galaxy: a roughly

spherical bulge at its center, a planar disk containing the spiral arms, and a halo

with the other structures embedded. It has long been accepted that the Milky Way

has a circular velocity of 220 km s−1 at the Solar distance of about 7.5 kpc from the

Galactic center, and a mass of approximately 6 · 1011 M·, however, recent finding by

the Very Long Baseline Array (VLBA) have determined that the Milky Way has a

rotational velocity of 254 km s−1 at a Solar distance of approximately 8.5 kpc and

has a mass of nearly 3 · 1012 M·. [5]

The disk of the Milky Way contains two populations of stars: a thin disk

with scale height of approximately 55 pc, and a thick disk with scale height of

approximately 375 pc. [6] This thin disk is composed of a younger, more metal rich,

population of stars, while the thick disk is older and more metal poor. The disk of

the Galaxy contains the majority of the gas/dust of the Milky Way; for this reason,

the vast majority of the current star formation of the Galaxy occurs in the disk

and bulge. Despite the relatively small volume occupied by the disk of the Galaxy,

almost all of the light emitted by the Milky Way comes from the disk, due to the

existence of bright young stars in this component.

The stellar halo, or spheroid, of the Milky Way extends over a large volume and

contains the majority of the mass of the Galaxy. This mass is primarily dark matter,

however. Dark matter is a proposed constituent of the Universe that emits/reflects

no light and is observable only via its gravitational mass. The nature of the dark

matter and its distribution within the halo of the Milky Way is unknown. For many

years, the spheroid was imagined to have formed in conjunction with the rest of the

Galaxy and gradually evolved to its current state as the other components collapsed
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inward. [7] [8] It has also long been imagined to have a smooth and continuous power

law density distribution. [9] However, the advancement in technology and analysis

techniques led to the discovery of a large amount of substructure, to be discussed

in section 1.3, and has shown that at least some of the spheroid was constructed

via merger events and that the spheroid was composed of debris from hierarchical

structure formation. [10] The discovery of multiple pieces of substructure has caused

a shift in the thinking regarding the spheroid. The continuing studies and discoveries

have been aided through the development and operation of large scale surveys such

as the Two-Micron All-Sky Survey (2MASS) and the Sloan Digital Sky Survey

(SDSS). Without projects such as these, it would be incredibly difficult to generate

the amount at a high enough accuracy to further this field of study.

1.2 Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) is a large, international astronomy col-

laboration. The survey was originally developed to find, and study, galaxies and the

largest structures within those galaxies in the universe. However, since its incep-

tion, the survey has become one of the most prosperous and influential projects in

astronomical history with major discoveries across the astronomical field (from as-

teroids to cosmology). The SDSS was constructed to perform an imaging survey of

10,000 deg2 of the sky while simultaneously collecting over 1,000,000 galactic spectra

which were to be selected via photometry (from the images). The survey included

two distinct operational phases, SDSS-I and SDSS-II, which were completed from

2000-2005 and 2005-2008, respectively. The first of these phases saw the collection

of over 8,000 deg2 of sky and spectra of galaxies and quasars selected from this imag-

ing. The second phase was composed of three distinct surveys: the Sloan Legacy

Survey, the Sloan Extension for Galactic Understanding and Exploration (SEGUE),

and the Sloan Supernova Survey.

After its completion in the summer of 2008, a seventh and final data release

(DR7) was released to the public including all of the SDSS-I, Sloan Legacy, SEGUE,

and Sloan Supernova data. The Sloan Legacy Survey endeavored to complete the

original SDSS imaging and spectroscopy studies. The surveyed 8,400 deg2 of sky saw
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the detection of 230,000,000 unique objects and spectra of 930,000 galaxies, 120,000

quasars, and 225,000 stars. SEGUE was a project developed specifically to probe the

Milky Way itself in an effort to study the history and structure of the Galaxy. This

effort was completed with the collection of 3,500 deg2 of additional imaging data and

spectra of 240,000 stars targeted across various fields. [11] This new imaging data is

taken along stripes as well, however, the great circles that define the SEGUE stripes

are not necessarily those used for the SDSS proper, nor do they form a contiguous

dataset. The SEGUE survey specifically targets interesting areas, and sparsely

samples all directions of the sky that are visible from the observatory. The Sloan

Supernova Survey discovered and studied supernovae and other variable objects.

[12] [13] This was accomplished by repeatedly surveying of the southern Celestial

Equator (Equatorial stripe) composed of 300 deg2 and the three month project

saw the discovery of over 500 supernova type Ia, which have been spectroscopically

confirmed.

The SDSS data is taken in stripes, that follow great circles, across the sky. The

entire sky is divided up into 144 numbered stripes, 2.5◦ in width, that begin and end

at the survey poles: (l, b) = (209.33◦,−7◦) and (29.33◦, 7◦). The stripes designated

as 10 and 82 are centered on the Celestial Equator with stripe 10 in the north

Galactic cap and stripe 82 in the south. The other stripes are numbered sequentially

with inclinations 2.5◦ apart. If every stripe were imaged across the entire 180◦ length

of stripes, a total of 64,800 deg2 of imaging data would be collected, compared with

the 41,253 deg2 in the entire sky. The overlap between stripes increases towards the

survey poles. The SDSS, however, typically observes only those areas greater than

thirty degrees from the survey poles. There is approximately a 50% overlap at the

end of each stripe and almost no overlap on the survey Equator (at α = 185◦). [14]

The survey was completed using a dedicated 2.5 meter dedicated telescope.

This telescope is housed, operated, and maintained at the Apache Point Observatory

in New Mexico. This telescope is composed of two instruments: an imaging camera

and a pair of spectrographs. The SDSS images are taken with an array of thirty

2,048 x 2,048 pixel charge-coupled device (CCD) cameras. [15] CCDs have become

ubiquitous in the world and have become popular in the world of digital photography,



5

astronomy, microscopy, and other fields. After being theorized by Eugene Lally in

1961 as a means for taking digital images [16] during interplanetary travel, the

device was subsequently invented at the AT&T Bell Lab by Willard Boyle and

George Smith in 1969. [17] The devices operate through the use of accumulated

charge in a capacitor proportional to the intensity of light at a specific location on

the device. In this manner, the collected “light” can be transformed into a digital

image.

The SDSS CCD array operates in a drift-scan mode. This means that the

telescope is panned, in an arc, across the visible sky. This scan produces six “scan

lines” of data, each of which are 13.6◦ wide. The “scan lines” grow in length at a

rate of 15◦ per hour over the course of a run. In each of these scan lines the sky is

imaged with coverage from 3,000 to 11,000 Angstroms in five optical filters: u, g, r, i,

and z. This five filter system means that the time with which an astronomical object

is imaged is a few minutes different for each passband. [18] [19] Drift scans are most

easily completed along the Celestial Equator where the telescope does not move as

the sky moves by at a rate of 15◦ per hour. The SDSS pioneered the driven drift

scan , in which the telescope is moved in combination with the sky moving by, so any

great circle can be scanned. A complete stripe of data is generated when a second

set of six scan lines are observed to fill in the gaps between the scan lines in the first

data collection. This resulting stripe is 2.5◦ wide and its length is dependent upon

the time the sky was observed during the runs used to complete the stripe. Each of

these stripes follows a great circle across the sky and is composed of two or more

runs.

The SDSS spectroscopic studies are completed using two 320-fiber double

(blue/red) spectrographs. This means that the spectrograph can simultaneously

obtain a total of 640 unique objects in both the blue and red part of the spectrum.

The spectral resolution of these instruments are R = 1,800. Additional information

regarding the spectrographs and the SDSS technical specifications, procedures, and

calibrations can be found in [20], [21], and [22]. Further information regarding SDSS

technical details, operation, and specific datasets can be found in the data release

publications: DR1 [23], DR2 [24], DR3 [25], DR4 [26], DR5 [27], DR6 [28], and the
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final and complete release of the entire SDSS catalog in DR7 [29] and the SDSS

website [30].

The SDSS was a well designed, large, and extremely well calibrated imaging

survey. The SDSS spectroscopic study also included a large number of stellar spec-

tra. These two facts have led the SDSS to provide a significant contribution to

the knowledge of the Milky Way, particularly the spheroid. The discovery of new

spheroid substructure has been driven primarily by the SDSS, as is discussed in the

next section.

1.3 The Discovery of Spheroid Substructure

Spheroid substructures can be divided into the study of specific types: globular

clusters, dwarf galaxies, and gravitational unbound structures primarily consisting of

tidal streams. Globular clusters are gravitationally bound groupings of stars which

formed from the same interstellar medium at approximately the same time. This

similar history means that the stars within the cluster have similar properties such

as metallicity and age. Dwarf galaxies are relatively small galactic bodies which are

bound by the Milky Way’s gravitational potential.

Tidal streams are a recent discovery having only been discovered in the past

decade. A tidal stream occurs as a gravitationally bound object (i.e. a globular

cluster or dwarf galaxy) comes under the gravitational potential of another larger

object (i.e. the Milky Way). As the smaller object traverses the gravitational

potential of the Milky Way, and approaches the Galactic center, it comes under the

influence of differential gravitational forces (tidal forces) which cause stars to become

stripped (gravitationally unbound) from the smaller object. As the disrupted object

continues to traverse the potential the stripped stars are drawn out into long streams

of stars (tidal streams) that lead and trail the core of the object. Those stars with

lower energies are drawn into the leading tail, while those with higher energies fall

behind and form the trailing tail. Over time, these tails extend to farther distance

from the core of the original object as more stars are stripped and added to the

tidal tail. Given sufficient time, the entirety of the previously bound structure will

be disrupted, leaving only the tidal stream. The tidal stream itself will continue
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to assimilate into the Milky Way spheroid until all traces of the merger have been

erased.

As previously discussed, the spheroid was thought to have a smooth distri-

bution. The discovery of the Sagittarius (Sgr) Dwarf Spheroidal (dSph) galaxy in

1994 in [31]. As with many important discoveries in the sciences, it was accidental.

During a study of giant stars towards the Galactic center using 2MASS data, a very

large overdensity was discovered which was later identified as the core of the Sgr

dSph. Despite its close proximity to the Milky Way, it was not previously detected

because the Sgr dSph is on the opposite side of the Milky Way center slightly below

the Galaxy’s plane. This positioning requires all observations of the Sgr dSph to be

taken through the Galactic plane and towards the center which introduces a high

amount of foreground contamination.

The existence of stellar tidal streams were theorized only, but evidence to

support this theory was found in the existence of unbound globular cluster stars

and moving groups of stars with no obvious bound progenitor. [32] [33] [34] [35]

The discovery of the Sgr dSph’s associate tidal stream provided irrefutable evidence

of stellar tidal streams and provided the first evidence of a current merger event,

and remains the most impressive example discovered. [36] [37] [38] The tidal stream

circles the entire sky and can be seen to be several kiloparsecs wide.

Since the Sgr tidal stream discovery, the search for and study of tidal streams

has exploded. These studies can be divided into two primary methods: kinematic

and spatial. The kinematic approach is to search for co-moving groups of stars in

phase space. That is to say, identification of groups of stars in a similar location

with common velocities. These co-moving groups potentially indicate they were

once part of a bound structure as opposed to part of the smooth stellar spheroid.

This approach is a very powerful way to discover and study substructure, however,

it is limited in that it requires a spectroscopic study of all of the stars within the

sample in order to generate the phase space characteristics. Since spectroscopy is

somewhat difficult to obtain, the amount of data for use in these types of studies

are somewhat limited.

The spatial technique for substructure studies seeks to determine only those
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places that exhibit an overdensity in the number of star counts. This method uti-

lizes only photometric data (images) which is much easier to obtain than that of

spectroscopic data and therefore benefits from a greater amount of data to analyze.

This type of study is conducted by looking for statistically relevant deviations from

an assumed background distribution, for the stellar spheroid in this case. The rel-

evant deviations are therefore candidate tidal debris that may be analyzed further

for confirmation. Though both techniques have proven to be an effective means of

tidal debris study, the majority of the discoveries of substructure in the spheroid of

the Milky Way have come from the use of photometric data.

Beyond the Sgr tidal stream, a number of other tidal debris streams are

thought to be associated with dwarf galaxies have been discovered. The Mono-

ceros stream was discovered in the Galactic plane towards the Galactic anti-center.

[39] [40] New studies have shown this feature to contain many identifiable streams

that appear to be parallel orbits. [41] [42] Additional debris has been found in

Tringulum-Andromeda which may be connected to the Monoceros stream. [43] [44]

The overdensity in Virgo appears to be composed of one or more structural compo-

nents including the Virgo stellar stream. [45] [46] [47] The Orphan stream is a small,

low-surface brightness tidal stream with an unknown progenitor. [48] [49] The most

recent is the newly discovered Cetus Polar Stream. [50] Nine new low-surface bright-

ness dwarf galaxy satellites of the Milky Way have also been discovered, though no

tidal tails have been discovered to this point. [51] [52] [53] [54] [55] [48] [56] There

is some evidence that these satellite galaxies of the Milky Way were actually part

of a galaxy group and fell into the Galactic potential together. [57]

Globular cluster tidal tails have also been found to span many tens of degrees

across the sky: Pal 5 [58] [59] [60] and NGC 5466 [61] [62]. The Styx stream is

currently thought to be the disruption of Bootes III. [63] At least four streams

associated with globular clusters have also been found with unknown progenitors.

[63] [64]

There is also ongoing work to study the nature of the spheroid itself. In [65]

evidence is presented supporting the existence of the Hercules-Aquila cloud as a

spheroid component. Also, in [66] suggests the spheroid is actually composed of an



9

two overlapping, counter-rotating components creating an inner and outer stellar

halo/spheroid.

The Sgr tidal stream has been the most extensively studied stream. Measure-

ments of position, velocity, and metallicity have been taken all across the sky. [39]

[67] [47] [68] [69] [70] [71] [72] [73] These measurements have then been used to model

the disruption of the Sgr dSph. [74] [75] [76] [77] [78] [79]. Despite the large amount

of work done, there is still much that is unknown about the Sgr stream. This is

in part due to the difficulty in comparing models to the data. In fact, the recent

detections of the Sgr tidal stream have proven inconsistent with the simulations. A

self-consistent and robust method for analyzing the Sgr stream, and tidal debris in

general, is needed so that improved simulations can be generated.

1.4 Ongoing Spheroid Questions

Despite all that has been learned of the spheroid within recent history, many of

the biggest questions still remain. It has clearly been shown that the spheroid is not

simply a smooth power law. However, it remains to be seen if there is an underlying

smooth distribution. One way to study this would be to analyze those regions that

contain no substructure; however, it has become almost impossible to guarantee

that an area contains no substructure given the number of substructures discovered

already. A better technique would therefore be to remove the substructure from the

data leaving only spheroid stars which can then be analyzed separately for a smooth

component.

The determination of the existence of a smooth spheroid component would also

serve as a method to study the evolution and formation of the Milky Way. Should a

smooth component not be present, this would be evidence that the entire spheroid

was constructed via hierarchical formation through merger events. However, the

existence of a smooth underlying spheroid component would provide evidence that

the spheroid initially evolved from the Milky Way as its other structural components

and that the substructure was added at a later time via mergers or has had a

significant amount of time to completely relax.

It is also important to determine the distribution of mass within the spheroid.
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Given this is dominated by the dark matter of the Galaxy, which has not yet been

detected directly. Thus, the only possibility is to study dark matter through its

effects on luminous matter. Through the use of computational techniques, it is

possible to simulate merger events through time until the present. This is done,

primarily via N-body computations, by evolving the system until the simulation

matches that which is seen in the observational data.

Tidal streams provide an excellent tracer of the Galactic potential, for they

provide a trail which traces out the Galactic potential through which the disrupted

body passed. [80] Thus, by evolving a simulated galaxy to have the same tidal

stream features and dynamics as the observational data, it is possible to constrain

the Galactic potential, and therefore the mass, and ultimately the dark matter

distribution of the Galaxy. To accomplish these simulations with the needed accu-

racy, it is necessary to have a large number of extremely accurate detections of the

streams all across the sky complete with as much dynamical and statistical infor-

mation as possible. This high level of accuracy and large number of statistics can

be determined via the application of machine learning techniques.

1.5 Machine Learning

Machine learning is part of the artificial intelligence (AI) field of computer

science. Explicitly, machine learning seeks to develop algorithms that can au-

tonomously improve a result. In regards to AI, this would typically be the de-

velopment of algorithms which seek to generate a better result in future actions

based upon the results of actions taken in the past. This is the essence of machine

learning: improving future results through the use of previous results. Machine

learning can be broken down into two distinct types of learning: supervised and

unsupervised.

Supervised learning refers to the development of algorithms that seek to learn

a function via a set of training data. The task of the learner is therefore to pre-

dict the value of an underlying function for any valid point. Through the use of

supervised learners it is possible to perform many tasks such as the classification of

objects according to an underlying model and to perform such tasks as regression
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analysis. Examples of supervised learners are support vector machines (SVMs) and

the maximum likelihood method.

Unlike supervised learning, the unsupervised learning paradigm refers to the

development of algorithms that determine how a set of data is organized. An un-

supervised learner is given no training data, but is simply given a set of data to

effectively determine the underlying model. Unsupervised learners are often used in

clustering problems and in independent or principle component analysis. Methods

such as k-means clustering are unsupervised learners

1.5.1 The Method of Maximum Likelihood

The maximum likelihood method is a common statistical technique for fitting

a mathematical model to a dataset. This method of model estimation seeks to

determine the most likely parameter values given a set of data and an underlying

probability model. Given a parameterized model and some input data generated

according to that model it is possible to determine those parameters. Utilizing

Bayesian statistics, this problem can be reconstructed as the determination of the

a posteriori most likely parameters given the data and the model. The likelihood of

a set of parameters is defined as the probability of obtaining a specific data set for

a given set of model parameters. Utilizing Bayes’ theorem, the a posteriori proba-

bility of a specific set of parameters, given the data and model, can be decomposed

into two terms: the likelihood of the parameters and the prior probability of the

parameters. It is common practice to assume that the prior probability distribution

over the parameters is uniform. When this is the case, the a posteriori probability is

proportional to the likelihood. Therefore, the maximum likelihood method can be

used to determine the most likely model parameters given the data and the model.

[81]

The maximum likelihood method can be decomposed into two distinct tasks:

(1) the development and definition of the likelihood function to be used, and (2) the

optimization over the parameters to find those that maximize the likelihood function

given the data and the model. This latter task will be discussed in sections 2.2.1

and 2.2.2 while the likelihood function will be developed here. It is typically as-
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sumed, during the construction of a likelihood function, that the data points are

independently generated; this means that the total likelihood of the dataset can be

decomposed into the product of the likelihoods for each data point. The essence

of the maximum likelihood method is the definition of a parameterized probability

density function (PDF) that can be used to evaluate the probability of a data point

given the model parameters.

A likelihood function for studying tidal streams within density space is devel-

oped here. The dataset is composed of stellar positions on the sky (l, b) and the

apparent magnitude, g, which is related to the distance, R, given an estimate of

the absolute magnitude, Mg. However, the nature in which the data is collected

causes this distance to be poorly known. This is because the apparent magnitude

is observed while the absolute magnitude can only be estimated through the use of

models. Therefore, a PDF must be constructed that is a function of (l, b, g). Com-

bining this PDF with the fact that each data point is independent, the likelihood

of observing the data is the product of the likelihoods of observing each of the stars

within the dataset, given the model:

L( ~Q) =
n

∏

i=1

PDF (li, bi, gi| ~Q), (1.1)

where the index i runs over the n stars, ~Q is a vector representing the parameters

in the model, and the probability density function (PDF) is a normalized version

of the stellar density function that will be derived in section 2.1. The individual

probabilities are small; therefore to avoid numerical underflow and achieve a higher

level of numerical stability the standard practice of optimizing over the logarithm

of the likelihood function

1

n
lnL( ~Q) =

1

n

n
∑

i=1

lnPDF (li, bi, gi| ~Q), (1.2)

is adopted. The log-likelihood function is optimized over the same parameters.

Section 2.1 discusses the details for combining the stellar density and data models

and defines the PDF as well as the expansion of this PDF to include special cases

that may arise in the data analysis (multiple tidal streams in a single dataset, and
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the need to remove specific sections from the probed volume).



CHAPTER 2

Methods and Algorithms

This chapter discusses all of the techniques, algorithms, and equations that are

used to apply the maximum likelihood method to spatial stellar data. Some of the

methods for the analysis of results from the optimizations, those that require the

use of the stellar density models, are discussed here as well.

2.1 The Probability Density Function

The unique models are what differentiate maximum likelihood problems, for

the models are what give a shape to the likelihood surface which is to be optimized

over. In the instance of fitting tidal debris, there are two main models (tidal stream

and stellar spheroid). These models describe the structures present within the data

and combine to form the PDF. There are also two additional models (the absolute

magnitude distribution and survey efficiency) which serve to model to the errors and

other anomalous behavior that occurs within the data, through both natural means

and those that arise due to assumptions in the structure models. These models and

how they combine to form a usable PDF are described here.

2.1.1 The Tidal Stream Model

Tidal streams tend to have a complex path through the sky caused by the

Galactic potential acting on the host structure as it is disrupted. The stars in the

structures may also bunch up at apogalacticon, the point in the orbit farthest from

the Galactic center, due to their lower velocity at this point in their orbit. It is

also possible for the density of stars to have a complex cross-sectional density that

varies with position along the stream. However, in a small volume through which

the stream passes, such as in a single 2.5◦ wide SDSS stripe, it is reasonable to

approximate the path of the stream as linear. Section 3.3 gives a detailed treatment

of how reasonable this assumption is.

The stream is modeled in a piecewise linear fashion such that each stripe of

14
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SDSS data that is analyzed has its own set of parameters for the tidal debris. The

2.5◦ degree wide stripes of the SDSS were chosen as the probed volume of the data,

partly for easier integration of the SDSS data into the algorithm; however, the

primary reason was to ensure the linearity of the stream within a given volume. In

principle, the algorithm could be run on any 2.5◦ degree wide great circle on the sky

by simply modifying the coordinate transformations necessary for converting from

the SDSS great circle system to the more traditional Galactic coordinate system.

In this piecewise manner, the stream is modeled as a cylinder with length that is

limited by the edge of the data in one stripe. The cross section of this cylinder

is axially symmetric with a density that falls off as a Gaussian distribution with

distance from the cylinder axis. Figure 2.1 shows the shape of the data volume

and the relationship between that volume and the tidal debris parameterized by the

cylinder model.

The great circle coordinate system utilized by the SDSS is used here to measure

the angular position on the sky. The µ coordinate measures the angular distance

along the great circle swept out by each stripe. The angle across the stripe, ν,

is defined to be zero at the mid plane of the stripe, with −1.25◦ < ν < 1, 25◦.

The inclination of each SDSS stripe is the maximum angle between that stripe and

the celestial equator. Therefore, the angles (µ, ν) and the inclination of the stripe

uniquely specify an angular position on the sky. A further discussion of the survey

coordinates can be found in section 4.1.

The position of the cylinder center, and therefore the tidal stream, within a

stripe is specified by the vector, ~c. It is defined to point from the Galactic center

to the axis of the cylinder. This vector would typically need three parameters to

uniquely specify it; however, it is required that the position along the cylinder axis

to which ~c points has ν = 0 (lies in the mid plane of the data stripe), it is possible

to reduce the number of needed parameters by one. Therefore, the stream position

can be uniquely described by the radial distance distance from the sun, R (in kpc),

and the angular position along the stripe, µ (in degrees). Thus, ~c(µ, R) fixes the

center point of a piece of tidal debris within an SDSS stripe and lies along the axis

of the cylinder with which a segment of the tidal debris is modeled.
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Figure 2.1: Stripe and stream parameter definitions. The segment of
a stream which passes through an SDSS stripe is cylindrical within an
individual stripe, with density that falls off as a Gaussian with distance
from its axis. The coordinates µ, ν, and R are used to define SDSS
stripes. These coordinates are adopted to define a vector, ~c(µ, ν = 0, R),
which points to the center of the stream from the Galactic center. The
stream directional vector â(θ, φ) is defined to be of unit length. Finally,
the stream width, σ, is defined as the standard deviation of the Gaussian
that defines the density fall off from the axis of the stream.
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The orientation of the cylinder axis is defined by the unit vector â. Again, three

parameters would typically be needed to uniquely specify an orientation. However,

since the length of the orientation vector is unity, the number of defining parameters

is reduced by one. The vector, â, is parameterized using the two angles θ and φ,

both in radians. Here, θ is the angle between â and the Galactic Z-axis with Z

perpendicular to the Galactic plane and towards the North Galactic Cap. The

azimuthal angle φ is measured counterclockwise about the Z-axis, as viewed looking

down on the Galaxy from the north Galactic pole, starting from the X-axis, which

points in the direction from the Sun to the Galactic Center.

The width of the cylinder is described by the parameter, σ (in kpc). This width

parameter is defined as the standard deviation of the Gaussian distribution that is

used to describe the density fall off with distance from the cylinder axis. Thus, for

a star with spatial coordinates given by ~p, the distance, d, from the cylinder axis is

given by

d =| (~p− ~c)− â ∗ (â · (~p− ~c) | . (2.1)

In practice, this calculation is done by first converting each vector to a Galactocentric

Cartesian coordinate system.

In summary, five parameters are needed to completed define a cylinder with

Gaussian density fall off from the cylinder axis within a single 2.5◦ wide SDSS stripe:

µ, R, θ, φ, and σ. Figure 2.1 graphically depicts the definition of these values with

respect to the stripe volume. Through the use of these parameters, the stellar

density of the stream at point ~p can be described as

ρstream(~p) ∝ e−
d2

2σ2 . (2.2)

The normalization of this and the subsequent spheroid distribution will be consid-

ered once the entire PDF has been assembled.
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2.1.2 The Stellar Spheroid Model

Here, the stellar spheroid is modeled with a Hernquist profile [82]. This is a

modified power law defined as

ρspheroid(~p) ∝ 1

r(r + r0)3
, where (2.3)

r =

√

X2 + Y 2 +
Z2

q2
.

Here X, Y, and Z are Galactocentric Cartesian coordinates. The coordinates X and

Y are in the Galactic plane, with X directed from the Sun to the Galactic center

and Y in the direction of the Solar motion. The coordinate Z is perpendicular to the

Galactic plane and points in the direction of the North Galactic Cap. The stellar

spheroid is thus defined by the two parameters, q and r0 (in kpc). The dimensionless

quantity q is a scaling factor in the Z-coordinate direction. This serves to make the

stellar spheroid oblate (q < 1), spherically symmetric (q = 1), or prolate (q > 1).

The parameter r0 is a core radius that sets the scale of the Hernquist profile for

at small r, ρ ∝ r−1 while at large r, ρ ∝ r−4. The Hernquist profile was chosen for

the stellar spheroid model here, for it is a commonly used density function used to

describe stellar and dark matter spheroids (halos).

There are many components of the Galaxy besides the spheroid. These include

the bulge, bar, thick disk, and thin disk. All these components could, in principle,

be used to create a complete Galactic model. However, due to the data being

used with the algorithm, it is expected that contamination from these non-spheroid

components is very low because the data is far from the plane of the Galaxy (where

disk stars dominate) and the color-selected F turnoff stars used in this work are bluer

than the turnoff of the thick disk stellar population, which is the component with

the largest scale length. Therefore, most disk stars are excluded from the sample.

An explicit discussion of the data used in this work can be found in section 4.1. It

should also be noted that a global spheroid fit is not done within this work, thus it

is only necessary to maintain a reasonable piecewise fit to the data.
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2.1.3 The Absolute Magnitude Distribution Model

It is possible to utilize blue F turnoff stars as a standard candle1 despite the

fact that they do not occur at one distinct absolute magnitude. This is for the F

turnoff stars can be described as a distribution that peaks at a specific absolute

magnitude. By modeling this absolute magnitude distribution in blue F turnoff

stars, it is therefore possible to make use of the large number of stars of this type.

If it were assumed that all color-selected stars have the same magnitude (at the

mean value of the population) their estimated distances from the Sun would have

a slight error causing any substructure in the spheroid to appear to be elongated

along the line of sight. To account for this fact, the “observed” spheroid spatial

density that is elongated along the line of sight is calculated by convolution of the

model with the absolute magnitude distribution function along the line of sight.

The distribution of absolute magnitudes are modeled as a Gaussian with center

of M̄g0
= 4.2 (the mean value of the blue F turnoff star population) and dispersion

σg0
= 0.6. This distribution of the absolute magnitude distribution was determined

through a simplification of the results found in [83]. Thus, the observed absolute

magnitude, Mg0
is

Mg0
= M̄g0

+ ∆Mg0
(2.4)

where M̄g0
= 4.2 and ∆Mg0

has a Gaussian distribution with zero mean and standard

deviation 0.6. To account for this distribution in the absolute magnitudes, the

probability of observing a star per unit apparent magnitude per unit solid angle

is first derived, assuming all stars are of absolute magnitude M̄g0
= 4.2. This

result is then convolved in apparent magnitude with a Gaussian of dispersion 0.6

centered at zero. The result is the probability of observing a star per unit apparent

magnitude per unit solid angle, but with the absolute magnitude distribution taken

into account.

Several density functions in different spaces will be needed, so to make this

discussion more clear some definitions must first be described. The density ρA(x) is

defined as the density within the “A” coordinate space, while x refers to a generic

1For a discussion of standard candles please see Appendix A.
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variable set in this space. Thus, six densities are defined as:

ρX(~x), ρR(R, Ω), ρg4.2
(g4.2, Ω), ρg0

(g0, Ω), ρR(R(g0), Ω), ρXc
(~x), (2.5)

where the first three densities describe the model in Cartesian, spherical, and ap-

parent magnitude coordinate systems;

ρX(~x) =
dV

dxdydz
, ρR(R, Ω) =

dV

dRdΩ
, and ρg4.2

(g4.2, Ω) =
dV

dg4.2dΩ
. (2.6)

The densities that take into account the distribution on the absolute magnitude

space are denoted by ρg0
(g0, Ω), ρR(R(g0), Ω), and ρXc

(~x), where the subscript c

stands for convolved. All coordinate systems are centered at the Sun, with So-

lar position assumed to be 8.5 kpc from the Galactic center, and the direction from

the Sun to the Galactic center is in the positive X-direction. It should be noted that

a distinction has been made between R and R; R denotes the actual distance each

star is from the Sun, while R(g0) denotes the distance a star of apparent magnitude

g0 would appear if it had an absolute magnitude of Mg0
= 4.2. A distinction has

also been made between g0 and g4.2. Here, g0 denotes the actual reddening-corrected

apparent magnitude of a star, while g4.2 denotes the apparent magnitude a star at

distance R would be calculated to have if it had an absolute magnitude Mg0
= 4.2.

This convention is adopted for the remainder of this manuscript.

The Galactocentric Cartesian density, ρX is the actual spatial density of stars

as described in equations 2.2 and 2.3 for the the stream and spheroid, respectively.

The ultimate goal is to calculate ρXc
, the observed Galactocentric Cartesian density

that is elongated along our line of sight which accounts for the Gaussian distribution,

with dispersion ∆Mg0
, of absolute magnitudes. This density, ρXc

is obtained through

the sequence of transformations

ρX(~x)→ ρR(R, Ω)→ ρg4.2
(g4.2, Ω)→ ρg0

(g0, Ω)→ ρR(R(g0), Ω)→ ρXc
(~x). (2.7)

The relationship between these densities is determined by the transformations which

take one coordinate space to the other. The X → R mapping is the well known
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spherical coordinate transform,

ρR(R, Ω) = R2ρX(~x). (2.8)

If all of the stars had an absolute magnitude Mg0
= 4.2, then apparent mag-

nitude would be measured as

g4.2 = 4.2 + 5 log10(
R

10pc
), therefore (2.9)

R = R(g4.2) = 100.2(g4.2−4.2−10) (kpc), and

dR = ln 10
5

Rdg4.2.

Thus, the relationship between ρR and ρg is given by

ρg4.2
(g4.2, Ω) =

dg4.2

dR
ρR(R, Ω) =

ln 10

5
R3ρX(~x) =

ln 10

5
R3(g4.2)ρX(~x). (2.10)

The measured g0 magnitude is given by

g0 = g4.2 + ∆Mg0
. (2.11)

Since g0 is the sum of independent random variables, its density is the convolution

of the two densities, i.e., we have that ρg0
(g0, Ω) = ρg ∗ ρ∆Mg0

(g0, Ω), where the

convolution is in the g-dimension. Thus,

ρg0
(g0, Ω) =

∫

∞

−∞

dg ρg4.2
(g, Ω)N (g0 − g; u), (2.12)

where N is the Gaussian density function given by:

N (x; u) =
1

u
√

2π
e
−x2

2u2 , (2.13)

with u = 0.6. Switching back from apparent magnitude to spherical coordinates,

ρR(R(g0), Ω) =
5

ln 10

ρg0
(g0, Ω)

R(g0)
. (2.14)
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Since the coordinate spaces Xc and R are related by the spherical coordinate trans-

formation, the results may now be collected and the convolved density ρXc
can be

written in terms of ρX as follows:

ρXc
(~x) =

1

R2(g0)
ρR(R(g0), Ω), (2.15)

=
5

R3(g0) ln 10
ρg0

(g0, Ω),

=
5

R3(g0) ln 10

∫

∞

−∞

dg ρg(g, Ω) · N (g0 − g; u),

=
1

R3(g0)

∫

∞

−∞

dgR3(g) · ρX(~x(R(g), Ω)) · N (g0 − g; u),

where (R(g0), Ω) are the angular coordinates of ~x.

The convolved stellar density function ρXc
has been derived, for a generic

stellar density ρX , which could represent either the stream or the spheroid densities

in their present context:

ρcon
stream(l, b,R(g0)) =

1

R3(g0)

∫

∞

−∞

dgR3(g) · (2.16)

ρstream(l, b,R(g0)) · N (g0 − g; u)

and

ρcon
spheroid(l, b,R(g0)) =

1

R3(g0)

∫

∞

−∞

dgR3(g) · (2.17)

ρspheroid(l, b,R(g0)) · N (g0 − g; u).

In practice, the convolution is performed separately on the stream and spheroid den-

sities, to compute the function ρcon
stream(l, b,R(g0)) and ρcon

spheroid(l, b,R(g0)). The con-

volution integral is calculated numerically using the technique of Gaussian quadra-

ture. Gaussian quadrature is a quadrature rule in which an n point rule yields the

exact result of a polynomial of degree 2n − 1 through the suitable choice of the

evaluation points xi and corresponding weights wi. A detailed description of the

Gaussian quadrature technique can be found in [84].
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2.1.4 The Combined Probability Density Function

The complete PDF with the combination of the stream and spheroid densities

can now be computed. To do this, the following quantities are required: the stellar

densities for the stream and spheroid, as derived in section 2.1.3; the volume over

which the density is defined; the detection efficiency for finding stars as a function

of apparent magnitude; and a normalization factor to describe the fraction of stars

in each of the two components, which will be defined as the parameter ǫ.

The detection efficiency is a result of the SDSS being a magnitude limited

survey. In a magnitude limited survey the survey finds all stars out to a certain

magnitude limit, however this includes really bright things that have large distances,

as well as dim objects that are very close. Therefore, the closer an object is to the

magnitude limit, the higher the chance that the object is not detected at all. There-

fore a detection efficiency function, E , describes the percentage of stars detected at

a given magnitude. In Figure 2 of [39] the authors present measurements for the

detection efficiency of the SDSS at various magnitudes. These measurements were

fit using a sigmoid curve and resulted in the efficiency function

E(g0) =
s0

es1(g0−s2) + 1
, where (2.18)

~s = (0.9402, 1.6171, 23.5877),

and ~s is the vector of parameters s0, s1, ands2.

The dimensionless normalization parameter, ǫ, defines the fraction of stars in

the data that are in the stream and the fraction that are in the spheroid. A separate

normalization parameter, ǫ, is measured for each stripe of data. Therefore, the value

of ǫ for a given stripe gives only the relative number of stars that comprise the

stream as compared to the smooth spheroid for that dataset and does not measure

the fraction of stars in the stream as a function of position within the Galaxy.

The concept of constrained and unconstrained variables is introduced here.

Instead of explicitly using ǫ to define the fraction of stars within the stream, a new

variable f has been defined as just this, while 1 − f defines the fraction of stars

within the spheroid. If this were not the case, the likelihood would need to be
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maximized subject to the constraint that the parameter ǫ be between zero and one.

To avoid this constraint, the unconstrained value of ǫ is used. The fraction of stars

within the stream is therefore defined as

fstream =
eǫ

1 + eǫ
. (2.19)

Similarly, the fraction of stars within the spheroid is

fspheroid = 1− fstream =
1

1 + eǫ
. (2.20)

According to this definition, if ǫ is ∞ all stars are part of the stream, if ǫ is −∞ all

stars are part of the spheroid, and if ǫ is zero then the stars are split equally amongst

the stream and spheroid. All other parameters used are naturally unconstrained and

do not require a similar treatment.

Eight parameters are thus needed to fit a piece of tidal debris within a stellar

spheroid utilizing the models described previously: five for the stream (µ, R, θ, φ, σ),

two for the spheroid (q, r0), and the normalization parameter ǫ. The union of these

eight parameters define the parameter vector ~Q.

Thus, the PDF is given by

PDF (l, b,R(g0)| ~Q) =
eǫ

1 + eǫ

E(R(g0))ρ
con
stream(l, b,R(g0)| ~Q)

∫ E(R(g0))ρcon
stream(l, b,R(g0)| ~Q)dV

+
1

1 + eǫ

E(R(g0))ρ
con
spheroid(l, b,R(g0)| ~Q)

∫ E(R(g0))ρcon
spheroid(l, b,R(g0)| ~Q)dV

, (2.21)

where the integrals are taken over the entire volume probed by the input dataset.

These integrals cannot be solved analytically for our function, thus a numeri-

cal technique must be used. First, an integration mesh is defined which divides the

total volume along each dimension (µ, ν, andg) into many small wedge shaped vol-

umes. The edges of the volume elements are fixed along constant µ, ν, andg. Then,

the center of each sub-volume is found and the values for the stream and spheroid

probabilities calculated at those points, using the density functions derived in sec-

tion 2.1.3. The volume of each sub-volume is then calculated and this is multiplied
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by its respective stream and spheroid probabilities to calculate the contribution of

the sub-volume to the stream and spheroid integrals. Finally, the contribution of the

sub-volumes to the stream and spheroid integrals is summed over all sub-volumes

calculate the total stream and spheroid integrals, respectively. The bounds of the

volumes used within the numerical integration are set to correspond exactly with

that of the data set analyzed.

2.1.5 Removing Sections from the Volume

It is necessary to provide a means to remove sections from the probed volume.

There are many instances when this may be needed. It is possible that artifacts exist

within the data. There may also be sections of data missing due to observation effects

such as poor seeing. It is also possible that a section of data may be removed because

it may influence the optimization of the algorithm. For example a globular cluster is

a dense grouping of stars within a very small volume. Should the algorithm be left

to fit a dataset with a structure like this, the algorithm may calculate inaccurate

values, for the globular cluster would not exist within the models. Thus it may be

desired to simply remove all tightly bound structures of this type. However, the

corresponding volume must also be removed from the optimization for the lack of

stars within that part of the volume could cause inaccuracies in the calculation of

the maximum likelihood parameters. Therefore, it would be useful to be able to

remove these sections devoid of stars, either due to absent or removed data, from

the probed volume as well.

In theory, it is a simple task to remove the unwanted sections from the volume

of a numerical integral. Since the numerical integral is defined as the sum of all

sub-volumes, it is simply a matter of not adding the unwanted sub-volumes into

the sum. Upon inspection, however, this becomes troublesome in that it requires

the unwanted sections to exactly correspond with the sub-volumes. This must be

so in order to avoid any over(under)lapping which would inaccurately remove the

affected volume. It is therefore a better solution to actually subtract the results of

the unwanted sections from the total volume.

The procedure for removing an unwanted section of the volume is as follows.
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First, calculate the integrals over the total volume as previously defined, let this be

~Itot containing the spheroid and stream integrals, respectively. Where

~Itot = (
∫

E(R(g0))ρ
con
spheroid(l, b,R(g0)| ~Q)dV,

∫

E(R(g0))ρ
con
stream(l, b,R(g0)| ~Q)dV ).

(2.22)

Then, calculate the integrals over the volume that is to be removed, let this be ~Icut.

In practice, the integral over the volume to be removed must be of a finer granularity

than that over the total volume. Therefore, δµcut < δµ, δνcut < δν, and δgcut < δg.

This, however, is only the lower bound and a much finer granularity should be used

to ensure an accurate calculation of ~Icut. The final volume can then be calculated

as

~Ifin = ~Itot − ~Icut. (2.23)

This technique can be expanded to an arbitrary number of removed volumes, j, by

simply removing all subsequent volumes as in the same manner. Therefore, the final

integrals over the volume after removing an arbitrary number of sections would be

~Ifin = ~Itot −
j

∑

i=0

~Icuti, (2.24)

where ~Icuti is the ith volume to be removed of j total volumes to be removed. This

modification to the integral can thus be added to the PDF

PDF (l, b,R(g0)| ~Q) =
eǫ

1 + eǫ

E(R(g0))ρ
con
stream(l, b,R(g0)| ~Q)

Ifin
stream

+
1

1 + eǫ

E(R(g0))ρ
con
spheroid(l, b,R(g0)| ~Q)

Ifin
spheroid

, (2.25)

where Ifinstream
denotes the stream (second) component of ~I and similarly Ifinspheroid

denotes the spheroid (first) component of ~I.

2.1.6 Multiple Pieces of Tidal Debris

Another useful addition to the algorithm is the ability to fit multiple pieces

of tidal debris within a single dataset. It is conceivable and quite common for
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there to be multiple pieces of substructure within a single stripe of data. In some

instances it could be possible to remove the additional structures and utilize the

method described in section 2.1.5; however, this will not always be possible, nor will

it always be the best course of action. Thus, the PDF must be expanded again to

account for the addition of fitting multiple streams.

The addition of simultaneously fitting an additional stream is accomplished as

follows. The procedure can later be expanded to an arbitrary number of streams.

First, an additional component must be added to the PDF to account for the second

stream and will have a structure mimicking that of the original stream. This means

that an additional integral must be calculated for this stream

~I = (
∫

E(R(g0))ρ
con
spheroid(l, b,R(g0)| ~Q)dV, (2.26)

∫

E(R(g0))ρ
con
stream1

(l, b,R(g0)| ~Q)dV,
∫

E(R(g0))ρ
con
stream2

(l, b,R(g0)| ~Q)dV )).

where ~I now contains three components, one for the spheroid and one for each

stream. An additional normalization factor is needed to accommodate the new

stream. Therefore, there will be an additional 6 parameters that need to be fit to

completely parameterize the new stream and normalize it with the other components

properly. The new normalization factors are

fstream1
=

eǫ1

1 + eǫ1 + eǫ2
(2.27)

fstream2
=

eǫ2

1 + eǫ1 + eǫ2

fspheroid =
1

1 + eǫ1 + eǫ2

where ǫ1 and ǫ2 denote the value of ǫ corresponding to the first and second stream,

respectively.

Combining these changes and generalizing to an arbitrary number of streams,
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k, the PDF becomes

PDF =
k

∑

i=1





eǫi

(1 +
∑k

j=1 eǫj )

ρcon
stream(l, b,R(g0)| ~Qstreami

)

Istreami





+
1

(1 +
∑k

i=1 ǫi)

ρcon
spheroid(l, b,R(g0)| ~Qspheroid)

Ispheroid

, (2.28)

where i and j denote the ith and jth stream of k total streams, and Istreami
denotes

the ith stream component (or the (i + 1)th of ~I.

2.1.7 The Complete Probability Density Function

It is now possible to construct a complete PDF which contains the most likely

situations which may arise during data analysis. This can be accomplished by

merging the PDFs from equations 2.25 and 2.28. Therefore, let

fstreami
=

eǫi

1 +
∑k

j=1[e
ǫj ]

(2.29)

fspheroid =
1

1 +
∑k

j=1[e
ǫj ]

where i and j denote the ith and jth stream, respectively, of k total streams. Also

let

~Icom = (Ifin
spheroid, Ifin

streami
), (2.30)

where ~Icom is a k+1 length vector composed of a spheroid integral component and k

stream integral components. Here, Ifin
spheroid refers to the spheroid (1st) component of

~Ifin defined in equation 2.24, and Ifin
streamk

refers to the ith stream (or (i+1)th total)

component of ~Ifin defined in equation 2.24. The superscript of com here denotes

complete.

The above can now be substituted into the combined PDF defined in equa-

tion 2.21 to get a complete PDF

PDF =
k

∑

i=1



Pstreami

ρcon
stream(l, b,R(g0)| ~Qstreami

)

Icom
streami




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+Pspheroid

ρcon
spheroid(l, b,R(g0)| ~Qspheroid)

Icom
spheroid

, (2.31)

where i and j denote the ith and jth stream of k total streams, Icom
spheroid denotes the

spheroid (1st) component of ~Icom, and Icom
streami

denotes the ith stream component (or

the (i + 1)th total component) of ~Icom.

2.2 Optimization

Given a likelihood function (equation 1.2), a PDF to utilize that likelihood

function (equation 2.31), and an optimization technique to traverse the parame-

ter space, it is possible to find the optimum parameters for the models given the

data. This section describes the optimization techniques used to find this optimum

parameter set, and will also discuss the computational complexity of the problem.

2.2.1 Conjugate Gradient Technique

Gradient methods are a group of well known and studied optimization tech-

niques including the techniques of steepest descent, coordinate descent, and conju-

gate gradient. All of these techniques are iterative and local methods of functional

minimization/maximization. “Iterative” means each successive step within the al-

gorithm is dependent upon the last, in contrast to asynchronous algorithms which

have no strict “arrow of time” dependence. “Local” means the algorithm only has

knowledge of the parameter space directly around the current point, unlike global

optimization methods which are able to probe the entire parameter space equally.

Gradient methods work by determining the optimum direction in which the current

evaluation point should move in order to increase in “goodness of fit.” Thus, the

point is moved along the gradient direction and a new direction is calculated at

this new evaluation point. This results in a new direction to be traversed, and the

process is repeated until convergence. A further discussion of gradient methods can

be found in [81]. In the instance of the tidal stream problem, the conjugate gradient

method was implemented. This method was chosen because the likelihood function

is well-behaved and therefore well suited to gradient methods, and the conjugate

gradient method tends to have the fastest convergence rate of the gradient methods.
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The conjugate gradient method utilizes a fixed point gradient calculation. This

is accomplished by perturbing the current parameter value, Qi, by a small amount,

hi, henceforth referred to as the step size of the gradient. The function is then

evaluated again using the new parameter (Qi + hi). Utilizing the function value

at the original point and at this perturbed point it is then possible to calculate ith

component of the gradient direction as

Gi =
L(Qi + hi)− L(Qi)

hi

∣

∣

∣

∣

∣

all other Qj fixed
, (2.32)

where L( ~Q) is the evaluation of the likelihood function with parameters ~Q, Qi de-

notes the ith component of the parameter vector, and hi is the step size corresponding

to the ith parameter. For the tidal stream problem, a double sided gradient calcu-

lation has been implemented. This involves twice perturbing the parameter by the

step size: once as obtain Qi + hi and again to obtain Qi − hi. The function is then

evaluated at both these new points and the evaluation values used to generate ith

component of the gradient direction as

Gi =
L(Qi + hi)− L(Qi − hi)

2hi

∣

∣

∣

∣

∣

all other Qj fixed
, (2.33)

where the denominator has become 2hi since the distance between the evaluated

points has doubled. This gradient vector is then used to define a directional vector

~D as

~D = ~G. (2.34)

The positive value of the gradient is used in order to maximize the value of the like-

lihood function. In the steepest descent method, the parameters are then updated

using this direction, and the process repeated. In the conjugate gradient method,

the above direction is used for only the first iteration of the algorithm. For all sub-

sequent iterations, the direction searched is conjugate to the direction searched in

the previous iteration, and therefore conjugate to all previous directions searched.
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Two vectors, u and v are conjugate with respect to a matrix, A, if

~uTA~v = 0. (2.35)

In the special case that A = I, where I is the Identity matrix, conjugate vectors are

orthogonal. This condition maintains that all directions are non-interfering and, in

general, is found to dramatically increase the speed of functional optimization.

The conjugate to previous directions can be found through the use of a multi-

plier, Bi, based upon the current gradient vector and the previous gradient vector.

Thus,

Bi =
~Gi · ( ~Gi − ~Gi−1)

~G2
i−1

, (2.36)

where Bi is the multiplier for iteration i, ~Gi denotes the gradient vector for iteration

i, and ~Gi−1 is the gradient vector from the (i− 1)th iteration. This value can then

be used to calculate the new directional vector

~Di = ~Gi + Bi ∗ ~Di−1, (2.37)

where Di is the directional vector for iteration i, ~Gi is the gradient vector determined

for iteration i, Bi is the multiplier calculated for iteration i, and ~Di−1 is the direction

vector from iteration (i − 1). It should be noted that it is common practice to

occasionally reset the direction back to the pure gradient direction. This is for after

a number of iterations the directions begin to lose conjugacy because no direction

exists that is completely non-interfering with all previous directions. This can result

in a slower convergence rate. The standard reset occurs when the iteration number

is a multiple of the dimensionality of the function, or the number of parameters

being fit with the technique. This practice is adopted here.

The above formulas are thus combined to construct an iterative procedure for

the conjugate gradient. First, the search is initiated with an initial set of param-

eters. The gradient vector is populated using the appropriate step sizes and the

direction found using equation 2.34. The parameters are then changed along this

direction, and the iteration ends. For the second iteration, the gradient vector is
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again populated, however the direction is now calculated using equation 2.37. The

parameters are again updated by moving them along the directional vector, and the

second iteration ends. The optimization then continues in this manner of using the

conjugate directions until convergence while resetting to the gradient direction ev-

ery N iterations, where N is the number of parameters being optimized over. Here,

convergence is achieved when all components of the gradient vector fall below a pre-

set value, thus when the gradient becomes too flat. For all optimizations reported

in this manuscript, a value of max(gi) < 0.00001 has been used as a convergence

condition, where max(gi) denotes the maximum component over all components of

the gradient vector.

The step size, hi, is uniquely defined for each parameter. This is because of

the large variety of parameters that occur within the models and are all on differing

scales. If the step size is too large, the gradient will be an inaccurate representation

of the local parameter space. If the step size is too small, numerical errors may occur

in the calculation of several numerical integrals which could introduce noise into the

parameter space. These errors would exhibit as incorrect directions in the search

algorithm which could cause the optimization to take much longer than needed or

completely fail altogether. The independently chosen step sizes are tabulated in

Table 2.1. These values were derived under two considerations. First, a series of

gradient vectors were calculated using differing step sizes. This allowed for the

change in the gradient to be observed as a function of step size. Also, the parameter

space was examined through the generation of parameter distribution plots which

showed the likelihood function value versus the parameter value. Combining these

two methods, a value for the step size of each parameter was determined that would

be small enough to provide a very accurate gradient calculation, yet large enough to

overcome any numerical anomalies that may occur in the behavior of the parameters

distribution.

2.2.2 Line Search Technique

After the conjugate gradient method determines the search direction for the

current iteration, a line search determines the optimal distance along that direction
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Table 2.1: Perturbation values used for the gradient and Hessian

Parameter Step Size (h)
q.............. 4 · 10−6

r0 (kpc)... 8 · 10−4

ǫ............... 1 · 10−6

µ (deg)..... 3 · 10−5

R (kpc).... 4 · 10−5

θ (rad)..... 6 · 10−5

φ (rad)..... 4 · 10−5

σ (kpc)..... 4 · 10−6
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that should be moved. The line search technique seeks to determine the value, α,

that maximizes the function

Φ(α) = L( ~Qk + α~Dk), (2.38)

where ~Dk is the search direction at iteration k and ~Qk vector of parameters at

iteration k. After determining the α∗ which maximizes Φ(α), an update over the

parameters is performed

~Qk+1 ←− ~Qk + α∗ ~Dk (2.39)

which determines the initial point for the (k + 1)th iteration.

A begin the line search, a bracketing method is first employed to ensure that

a maximum of the function is within the range being searched. This is done by

determining a range over which the center of three points has a greater likelihood

than the other two. In this way, an initial set of three points are used at zero,

one, and two times the length of the directional vector, ~Dk. The likelihood is then

evaluated at these three points. Should the center of these three points have a

likelihood that is not greater than the other two, the endpoint with the greater

likelihood becomes the new center point, while the center becomes a new endpoint,

and a new second endpoint is calculated by expanding along the range to two times

the current expansion factor, along the search direction. Iteration of the bracketing

method continues in this manner until the center point is found to have the greatest

likelihood of the three points.

The three points calculated during the bracketing process are then passed to

the line search algorithm proper which uses them to fit a parabolic function and

determine its peak. This is done by performing likelihood evaluations along the

search direction and iterates as follows: initially a guess is made for the value of α

by fitting a parabola via the calculation:

u = a2
1 ∗ (L2 − L3) + a2

2 ∗ (L3 − L1) + a2
3 ∗ (L1 − L2), (2.40)

b = a1 ∗ (L2 − L3) + a2 ∗ (L3 − L1) + a3 ∗ (L1 − L2),

α = 0.5 ∗ u

b
,
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where a1, a2, and a3 are the factors multiplied by the current direction that produce

the parameters with likelihood L1, L2, and L3, respectively. The initial line search

iteration sets the values a1, a2, and a3 to the values returned from the bracketing

method. α is then the current guess for the value to maximize equation 2.38. The

likelihood Lα is then calculated using the parameters generated using equation 2.39

assuming α = α∗. The new order of the three points is:

if : α > a2 and Lα > L2; then : 1, 2, α, (2.41)

if : α > a2 and Lα < L2; then : 2, α, 1,

if : α < a2 and Lα > L2; then : α, 2, 3,

if : α < a2 and Lα < L2; then : 1, α, 2.

In short, the distance along the search direction is reduced based upon the value

of α and its corresponding likelihood. These new points are then used to calculate

a new guess for α using equations 2.40, 2.41, and 2.39. Iteration continues until

convergence, where the difference between subsequent α calculations drops below

a preset value. If the line search determine a move that is smaller than a preset

tolerance, the algorithm discontinues execution, for there was a negligible movement.

If this occur during a step using a conjugate direction, the algorithm continues for

one additional iteration utilizing the gradient direction as the search direction in

order to determine if further optimization is possible.

2.2.3 Run Time and Distributed Computing

The numerical integrals that must be calculated within the likelihood function

dominate the runtime of the algorithm. A typical dataset contains approximately

100,000 stars, while testing has shown the volume integral requires a minimum of

1.4 million subvolumes to be produce good scientific results, and the convolution

integral requires a minimum of 30 points to accurately fit the absolute magnitude

distribution reasonably. The minimum number of model evaluations per likelihood

calculation is

Z = γΓ + n, (2.42)
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where γ is the number of points used in the convolution integral, Γ is the number

of points used in the volume integral, n is the total number of stars in the dataset,

and Z is the total number of model evaluations per likelihood calculation. There-

fore, in determining the likelihood, there exists a trade-off between the accuracy of

that likelihood evaluation and the time it takes to do the evaluation. The largest

contributer to this runtime is the volume integral; however, increasing the precision

of this integral leads to polynomially longer calculation times (scaling as δ3).

Utilizing the minimum values stated above (γ = 30, Γ = 1, 400, 000) and as-

suming a dataset of size n = 100, 000 a single likelihood calculation on a single

processor will take approximately one minute (optimizing using a single stream and

no volume removed). A single conjugate gradient optimization will take anywhere

from 100-1,000 iterations, with an estimated twenty-five likelihood calculations per

iteration, thus an average of 12,500 likelihood evaluations can be expected. There-

fore, at one minute an evaluation an estimated 12,500 minutes, or approximately

200 days, would be required for a single optimization on a single processor. Clearly

parallel processing is required to make progress on the science.

2.2.4 A Generic Maximum Likelihood Evaluator

A generic maximum likelihood evaluator (GMLE2) has been developed with

the tidal stream application as its flagship test application. [85] Through the use

of the GMLE package the tidal stream algorithm is able to use a number of com-

putational architectures and environments: including a homogeneous cluster, a het-

erogeneous grid of clusters, the highly connected environments of a supercomputer,

and even the extremely disconnected environment of volunteer computing on the

worldwide scale.

The GMLE package has been developed in two frameworks: the Simple Actor

Language System and Architecture (SALSA) distributed language which utilizes

an actor-oriented structure and leverages the ubiquitousness of the Java environ-

ment to create heterogeneous grids for use as a distributed computing environment

[86]; and the message passing interface (MPI) library designed for use in homoge-

2GMLE has been made publicly available. The download and information regarding its use can
be found at http://wcl.cs.rpi.edu/gmle.
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neous workstation clusters as well as massively parallel computational environments

(i.e. supercomputers). [87] Through the use of the GMLE packages, the compu-

tational requirements needed by the tidal stream algorithm have been fulfilled and

the enormous runtimes have been dramatically reduced. Utilizing 88 nodes on the

Rensselaer Grid results in a speedup of approximately 65 times over the single pro-

cessor. Through the use of 512 nodes an IBM BlueGene/L system3 a speedup of

approximately 150 times was seen over the single processor. A complete optimiza-

tion can now be performed in a matter of hours in the supercomputing environment

or a few days in the grid environment. It should be noted that the communication

time for this application is very low, with the total communication time making up

less than ten percent of the total runtime. Also, the scalability of the application

is quite apparent in that the number of identical probability evaluations within the

algorithm create an extremely data parallel environment which may be exploited

through the use of larger numbers of nodes. Through the use of more precise inte-

gral calculations, both volume and convolution, an even higher degree of scalability

will be achieved given the larger number of evaluation points. This is, of course,

assuming a relatively fixed communication time. These increases in the number of

evaluation points would serve to reduce the amount of numerical error observed in

the algorithm. This reduced error would therefore provide more accurate scientific

results, to a point.

The GMLE MPI package has also been developed to utilize the Berkeley Open

Infrastructure for Network Computing (BOINC) Internet computing framework.

[88] This framework allows for worldwide volunteer computing in which users donate

computational resources by downloading the BOINC client and attaching the desired

project. The BOINC application MilkyWay@home4, has been created, so anyone

can donate resources toward the tidal stream algorithm. The alpha stage project

currently is maintaining approximately 16,350 users, spanning over 130 countries,

3The BlueGene/L used for these tests and the majority of the results presented in this
manuscript is housed and maintained at the Computational Center for Nanotechnology Innova-
tions (CCNI) which is based on the Rensselaer Polytechnic Institute campus and at the Rensselaer
Technology Park

4Information regarding the use of MilkyWay@home and the projects current status can be
found at http:
milkyway.cs.rpi.edu.
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and donating approximately 43,850 hosts. This equates to an average of 103.425 Ter-

aFLOPS placing the MilkyWay@home project at spot 17 on the top 500 computers

November 2008 list5. Since the BOINC infrastructure is naturally asynchronous, the

MilkyWay@home project has implemented many asynchronous optimization tech-

niques to take advantage of this unique environment. None of the results provided

by these techniques were used in the analyses presented in this manuscript.

2.3 Analysis Methods

In this section, the method of statistical error analysis developed and imple-

mented for use with the tidal stream algorithm is presented. Also, the probabilistic

method for separating stars into a separate catalog for each structure that fits the

density profile of that structure is defined.

2.3.1 Errors in the Estimated Parameter Values

The utilization of a gradient method for optimization places a limit on the

accuracy of the final parameter estimates returned by the optimization. This accu-

racy depends upon the shape of the likelihood surface at its maximum. The shape

of the surface is, in turn, governed by the number of stars within the input catalog

used in optimization. The fewer stars within the catalog the wider the peak will be

at the maximum and also the larger the statistical error. The error is also affected

by the accuracy with which the maximum can be numerically determined. This

latter point will be discussed in section 3.2.1 during the discussion of an analysis

of a simulated dataset. A discussion of the method for determining the achievable

accuracies and estimated errors regarding the shape of the likelihood surface will be

presented here.

The error in each parameter is estimated by assuming the likelihood surface is

well approximated as a Gaussian near the maximum. First, the Hessian matrix, H,

of the parameters is calculated. The Hessian matrix is a square matrix of second-

order derivatives of the likelihood function in which each element denotes one of

all possible second-order partial derivatives. The Hessian matrix can be computed

5Information regarding the top 500 supercomputers list can be found at http://www.top500.org.
The November 2008 list can be found at http://www.top500.org/list/2008/11/100.
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numerically using a finite difference formula, similar to that used in the conjugate

gradient method

Hij =
H1

ij −H2
ij −H3

ij + H4
ij

4hihj

, where, (2.43)

H1
ij = L(Qj + hj , Qi + hi)|all other Qk fixed ,

H2
ij = L(Qj − hj, Qi + hi)|all other Qk fixed ,

H3
ij = L(Qj + hj , Qi − hi)|all other Qk fixed ,

H4
ij = L(Qj − hj, Qi − hi)|all other Qk fixed ,

where Qj is the jth component of parameter vector ~Q, Qi is the ith component of

parameter vector ~Q, hj is the step size for the jth parameter of Qj , and hi is the

step size for the ith parameter of Qi. In practice, the step sizes, hk, which are used

here are the same as that used in the finite difference gradient calculation found in

table 2.1.

If the Hessian matrix is negative/positive definite then the point at which the

Hessian is evaluated at is a local maximum/minimum. If after optimizing over a

given dataset a maximum has been achieved, then the evaluated Hessian matrix

should be negative definite. A variance matrix, V, can then be constructed using

the inverse of the Hessian matrix and the number of stars in the dataset, n:

V =
1

n
H−1, (2.44)

where H−1 denotes the inverse of the Hessian matrix, and the matrix values are

scaled by the number of stars in the dataset. Given that the Hessian matrix was

negative definite, its inverse must also be negative definite, and therefore so will be

the variance matrix. The major diagonal elements of the variance matrix define the

negative of the variance of the parameters at the point returned via the optimiza-

tion; the square root of these values is the standard deviation of the corresponding

parameter.
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2.3.2 Separating the Tidal Debris from the Spheroid

Given a dataset and a maximum likelihood PDF, it is possible to separate the

data into subsets that have the density profile of each component that was fit during

optimization (in this case a spheroid component with a Hernquist profile plus one

or more stream components). It is possible to populate catalogs of independent

structures in such a manner that the density distribution of that structure is ac-

curately represented; however, it is not possible to populate a catalog for a given

structure with only stars that are physically from that structure. For example, if

a star selected from the dataset is computed to be in a stream with probability

0.6 and to be in the spheroid with probability 0.4, the star would be put in the

stream catalog with probability 0.6 and in the spheroid catalog with probability 0.4.

However, there is a 48% chance that the star is placed in the wrong catalog.

For each star, the probability, Ti, that it is drawn from the ith stream popula-

tion is calculated given the parameters where Ti is defined as

Ti(l, b,R(g0) | ~Q) =
Si(l, b,R(g0) | ~Q)

S(l, b,R(g0) | ~Q) + B(l, b,R(g0) | ~Q)
, (2.45)

where

B(l, b,R(g0) | ~Q) = Pspheroid

ρcon
spheroid(l, b,R(g0)| ~Qspheroid)

Icom
spheroid

(2.46)

and

S(l, b,R(g0) | ~Q) =
k

∑

i=1



Pstreami

ρcon
stream(l, b,R(g0)| ~Qstreami

)

Icom
streami



 (2.47)

and Si(l, b,R(g0) | ~Q) is defined as the ith component of the sum in equation 2.47.

After probability, Ti is calculated it is tested against a random number, λ,

generated uniformly on the interval 0 and 1. The star is placed into the ith stream

catalog with probability equal to Ti and the spheroid catalog with probability 1 −
∑k

1 Ti. Thus, distinct population catalogs are created for each structure that was

optimized over: one for the smooth spheroid, and one for each tidal stream.

This nondeterministic approach of testing the star probability against a ran-

dom number to extract the tidal debris from the stellar spheroid is used because of

the definition of the stream model. Since the stream probability is defined solely as a
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function of the stars distance from the stream axis, simply assigning all stars with a

probability greater than some threshold value to a stream catalog would result in all

stars within a given distance of the stream axis to be assigned to that catalog. This

would not be an accurate description of either the stream or spheroid populations

as this would result in a cylinder of stars being carved out of the data rather than

a set of stars that fit a specific distribution with Gaussian cross-section in density.

This separation technique has proved very useful as a means of analyzing the

results of the optimization. The effectiveness of the model fits is able to be estimated

from these separations and the separate catalogs themselves will be very useful in

fitting tidal disruption models. The structure catalogs are not a very good method

for selecting spectroscopic follow-up targets to further study the characteristics of

stars drawn from a specific population (composition and velocity data, for exam-

ple). These follow-up targets may be better selected through the explicit use of the

probability, Ti, that a star is drawn from that population, rather than on the catalog

which is a random assignment based upon this probability.



CHAPTER 3

Validating the Algorithm via Simulated Datasets

The accuracy and correctness of the algorithm was tested with simulated datasets

that were designed to mimic those conditions found within the observed data: a

dataset with one tidal stream and a smooth spheroid; a dataset with one tidal

stream, a smooth spheroid, and a section of volume that needs to be removed; and

a dataset with multiple tidal streams and a smooth spheroid. The successful testing

upon these three datasets provide ample support for the correctness of the algorithm

under any of these, or combination of these situations. This chapter provides the

results of these three tests, as well as the method with which the simulated datasets

were created.

3.1 Generating the Datasets

The spheroid is modeled globally as a smooth Hernquist profile (section 2.1.2)

while the stream is modeled locally as a cylinder with density that decreases as a

Gaussian from its axis (section 2.1.1). These distributions were generated separately

and then merged to create a test dataset.

3.1.1 Generating the Tidal Debris

Tidal debris is simulated using an active generation technique. Thus, every

star that is generated is a valid stream star according to the local model. Using a

set of parameters that define the stream the vectors defining the cylinder position,

~c, and orientation, â, are calculated. Three random numbers are then generated: a

uniform random number which defines the position along the stream axis, and two

Gaussian random numbers (with mean zero and standard deviation defined via the

stream width parameter, σ) which define the cross-sectional coordinate of the star.

A Galactocentric Cartesian coordinate is calculated for the generated star through

the use of the cross-sectional coordinate and the position along the stream axis.

The generated star is then converted from the Galactocentric Cartesian coor-

42
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dinate system used in generation to the observed Galactic coordinate system: lon-

gitude, latitude, and apparent magnitude. To this point, a fixed value of Mg0
= 4.2

for the absolute magnitude of the dataset has been assumed. [39] To account for

the intrinsic absolute magnitude distribution of F turnoff stars, a random number,

drawn from a Gaussian distribution with mean 0 and standard deviation 0.6 (see

section 2.1.3 for the reasoning behind this number), is generated for each star. This

random number is then added to the generated star’s apparent magnitude and ef-

fectively spreads the structure in a manner similar to that seen in the observed

data.

Finally, stars are inserted into the simulated stream dataset with a probability

given by the efficiency function (described in section 2.1.4). In this manner, stars

near the magnitude limit of the data rejected from the sample with a probability

equal to the efficiency of object detection as a function of apparent magnitude as

in the observed dataset. This process is repeated until the desired number of stars

have been generated and added to the dataset.

3.1.2 Generating the Stellar Spheroid

Unlike the active generation technique used to generate a simulated tidal

stream, the simulated stellar spheroid must be constructed using a rejection sam-

pling technique. The active technique is not applicable here due to the significantly

increased complexity of the global spheroid model over that of the simple Gaussian

model used to locally describe the stream. It does not work, however, to simply gen-

erate randomly over the three dimensions of the stripe (µ, ν, R), since the volume

elements are not uniformly distributed in these variables; the distribution across

the stripe, in ν, varies according to the cos(ν), while the distribution along the

radial distance, R, must account for the ever increasing volume as the distance is

increased. Fortunately, the angle along the stripe, µ, may be generated uniformly,

for at a given distance, R, and angle through the stripe, ν, the volume of stars will

be constant along the stripe.

The volume element within a stripe is given by:

dV = R2 cos(ν)drdµdν. (3.1)
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Integrating this volume element over the whole volume results in a stripe volume of

V =
R3

max

3
(µ+ − µ−)(sin(ν+)− sin(ν−)). (3.2)

Here, Rmax denotes the maximum radial distance of the stripe and the positive and

negative subscripts refer to the maximum and minimum (respectively) values of that

coordinate within the stripe. Using this equation it is then possible to extract the

functions with which to generate over for each variable. As previously stated, µ can

be generated uniformly about the stripe, while the functions for ν and R are found

by taking the inverse of equation 3.2 with respect to ν and R to get the functions

ν = sin−1(u ∗ (sin(ν+)− sin(ν−)) + sin(ν−)), (3.3)

R = Rmaxw
1

3 ,

where u and w denote uniform random numbers between zero and one which can

be used to generate uniformly over the spheroid.

Once a star has been generated according to the above functions, the proba-

bility of the star is calculated according to the PDF (2.1.7) of the algorithm. This

probability is then divided by the total probability possible for a star in order to

construct a weighted probability of the given star to be in the dataset. The total

probability possible of a star is simply the maximum value of the PDF that can be

returned given the current volume and parameter set that is being generated over.

This weighted probability for the star to be in the dataset is then tested against a

random number generated uniformly between zero and one. The star is added to

the dataset if the probability of the star being in the dataset is greater than that

of the random number; otherwise, it is rejected. This process is repeated until the

desired number of stars have been added to the dataset.

3.1.3 Achievable Accuracies

For the simulated datasets, the “true” parameter values are known, for they are

the values used to generate the simulated dataset. These values are compared with

the “measured” maximum likelihood values. The difference is a set of achievable
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accuracies that can be expected from the optimizations.

The statistical errors were determined via the Hessian method described in

section 2.3.1. Numerical errors driven primarily by the accuracy with which the

numerical integrals are calculated within the likelihood function were estimated

heuristically. It is possible to determine these numerical errors heuristically. This

means that the numerical errors are estimated and do not comprise a true error bar.

To determine the errors heuristically, the accuracy of the likelihood for a fixed

number of points in the numerical integrals was calculated. This was done by

observing the change in likelihood caused by increasing/decreasing the number of

integral points. The “error” in a given parameter is then estimated by perturbing

that parameter, holding all others constant, by increasingly larger/smaller amounts

until the deviation in likelihood, from the optimized parameter values, caused by

the perturbation in parameter values is slightly greater than the value observed

by modifying only the number of integration points. Through this procedure, it

is possible to estimate the variance in a parameter with respect to the number of

integration points.

Finally, it should be noted that there exist systematic errors within the SDSS

data that is not present within the simulated datasets used for testing this algorithm.

These systematic errors are unknown and are inherent to the data. All error bars

quoted in regards this observed (“real”) data assumes that the models used are

accurate representations of the stellar density functions, including the those used

for the smooth stellar spheroid, tidal debris, and absolute magnitude distribution of

F turnoff stars.

3.2 Testing

After generating the smooth spheroid and stream-like populations using the

above methods and combining them to form a complete dataset, the maximum like-

lihood method developed in chapter 2 was run on the datasets to determine the

“measured” parameter values. Three data sets were created and tested indepen-

dently: a simulation of SDSS stripe 82, a simulation of SDSS stripe 86 containing

a section of missing volume, and a simulation of SDSS stripe 82 with two streams.
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After analyzing these stripes, a series of tests to verify the robustness of the models

were performed. The results of these tests are discussed below.

3.2.1 Simulated Stripe 82

A dataset that mimics the observable data in SDSS stripe 82 was generated as

the first test dataset. The dataset was created with a smooth spheroid and a single

stream. The simulated dataset was generated based upon the parameters seen in

the “Generated” column of table 3.1 and was limited to the volume defined by the

bounds: (310◦ < µ < 59◦), (−1.25◦ < ν < 1.25◦), and (16 < g0 < 22.5). The dataset

was generated with a total of 205,708 simulated stars of which 28,498(13.85%) stars

are in the stream. A density plot of the simulated dataset can be seen in figure 3.1.

The maximum likelihood algorithm was ran on this dataset eight times, each

time starting from a different randomized set of input parameters. Randomized,

here, means that a random perturbation of each of the actual parameters (those

used to generate the dataset) was used to generate the input parameter set. The

perturbation used was 75% of the parameter’s actual value. Parameters outside this

range are in principle allowed, provided they are within the bounds of the stripe;

however, the likelihood surface becomes very flat at sufficient distance from the cor-

rect values. This causes the gradient to be very small and the gradient measurement

to be dominated by numerical errors. Therefore, if the input parameters are too far

away from the correct values, the optimization will not converge because there will

not be enough information to choose a correct direction.

The optimization algorithm was allowed to run to convergence for these eight

datasets. Of the eight, five optimized to the correct parameter values, two op-

timized to a local maximum, and one did not converge (presumably because the

input parameter set was too distant from the true values).

The local maximum is comprised of approximately the correct parameter val-

ues with the exception of the stream orientation parameters, θ and φ, and the stream

width parameter, σ. This means that the stream position and approximate number

of stars within the stream is found correctly, as are the spheroid parameters. The

discrepancy in the other three parameters is an artifact of the small volume over
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Figure 3.1: Stripe 82 simulated dataset density wedge plot. Plotted
here is a Sun-centered density plot of the 205,708 stars generated to
mimic SDSS stripe 82. The plane of the plot is along the angle ν =
0.0. The reddening corrected apparent magnitude g0 is labeled along the
radial spokes, with g0 = 23 denoted at the circle of constant magnitude.
The angle about the stripe, µ, is marked in degrees about this circle.
The simulated stream is easily discernible at the coordinates (µ, g0) =
(33.4◦, 21.4)
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which the algorithm probes, and is caused by there being a valid fit to the data

with parameters that are at a high inclination to the stripe. The width parame-

ter, therefore, grows to compensate this incorrect angle. The local maximum exists

primarily when the stream passes through the stripe plane at low inclination; the

closer to perpendicular the stream and the data plane, the lower the ability for the

algorithm to fit the data in this manner.

The average of the five successful optimizations was calculated and are re-

ported in the “Optimized” column of table 3.1. The Hessian method was utilized to

generate a set of error bars for the simulated data and these values can be seen in the

“Achievable Accuracy” column of table 3.1. The heuristic errors were also calculated

using the method described in section 3.1.3 and are given in the “Numerical Error”

column of table 3.1. The two remaining columns in table 3.1, “Deviation” and “Std.

Dev. of the Optimizations”, denote the difference between the “Optimized” value

of the parameter and the “Generated” value of the parameter and the standard

deviation of the parameter values returned from the five optimizations, respectively.

As can be seen, the optimized parameter sets varied very little. It should be noted

that if the theoretical deviation is large for a given parameter, then the likelihood

changes very little with variation in that parameter. This can, therefore, lead to a

larger deviation between optimized and true value of the parameter and can also

make it more difficult for the algorithm to numerically find the maximum, for the

gradient will be very small at this point. The errors calculated via the Hessian

method assume the maximum of the likelihood has been found exactly.

A close examination of table 3.1 shows that all parameters have a “Deviation”

smaller than that of the corresponding “Achievable Accuracy” with the exception of

r0. It has been found that the likelihood surface that corresponds to this parameter

is exceptionally flat. Therefore, since the likelihood changes so little compared to

perturbations in this parameter, it is not being calculated accurately enough to

reach the “Generated” value. The true error bar should thus be taken as the sum,

in quadrature, of the “Achievable Accuracy” and the “Numerical Error” columns as

described in section 3.1.3. Once this is done, the “Optimized” value of all parameters

are within the error bar of the “Generated” value. In most cases the numerical error
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Table 3.1: Stripe 82 Simulated Dataset Results

Parameter Generated Achievable Accuracy Numerical Error Optimized Deviation Std. Dev. of Optimizations
q 0.670 0.013 0.000 0.671 0.001 0.0004

r0 (kpc) 13.500 0.276 0.150 13.917 0.417 0.016
ǫ -1.828 0.005 0.002 -1.833 0.005 0.005

µ (deg) 31.361 0.233 0.050 31.443 0.082 0.064
R (kpc) 29.228 0.167 0.040 29.217 0.011 0.010
θ (rad) 1.445 0.032 0.003 1.421 0.024 0.0005
φ (rad) 3.186 0.049 0.001 3.182 0.004 0.002
σ (kpc) 2.854 0.033 0.015 2.858 0.004 0.009
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is negligible in comparison to the statistical error.

The average of the returned parameter sets was then used to create two sep-

arate catalogs that trace the density structure of the stream and spheroid via the

separation algorithm described in section 2.3.2. A density plot of each of these

catalogs can be found in figure 3.2. The stream density profile (left) has clearly

been extracted from that of the stellar spheroid leaving a smooth Hernquist profile

(right).

3.2.2 Simulated Stripe 86 With Volume Removal

A dataset that mimics the observable data in SDSS stripe 86 was generated

to test the effect of removing a section of volume from the probed space on the

accuracy of the model parameter determinations. This stripe was chosen because

there is a small angle, about the stripe, in the stripe 86 dataset that needs to be

removed before analysis. The dataset was created with a smooth spheroid and a

single stream. The simulated dataset was generated based upon the parameters seen

in the “Generated” column of table 3.2 and was limited to the volume defined by the

bounds: (310◦ < µ < 420◦(60◦)), (−1.25◦ < ν < 1.25◦), and (16 < g0 < 22.5). After

generating the dataset, a volume, 21.6◦ < 22.3◦, was removed in order to simulate

the same missing volume in the observed data. As with the observed data, the

removed volume passes through the center of the stream to be fit. After generation

and removing the small volume above, the dataset contained a total of 198,732

simulated stars of which 29,800(15.0%) stars are in the stream. A density plot of

the simulated dataset can be seen in figure 3.3.

The algorithm was allowed to converge over fourteen input parameter sets

generated according to the same method as in section 3.2.1. Of these fourteen

optimizations, five converged to the true parameters (those used to generate the

dataset), while eight converged to a local maximum of similar origin to that discussed

in section 3.2.1, and one did not converge (presumably due to the input parameters

being too distant from the true values). The local maximum has a lower likelihood

value than that of those that converged to the true parameters.

The average of the five successful optimizations is reported in the “Optimized”
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Figure 3.2: Stripe 82 simulated dataset separated density wedge plots. Plotted here, in the same manner as
figure 3.1, is the same 205,708 star simulated dataset, however, the stars have been plotted separately based
upon the catalogs returned from the separation algorithm. Thus, the stream (left) and the spheroid (right)
can be seen after the stream has been extracted. The spheroid is clearly recovered as a smooth Hernquist
profile after the removal of the stream component.
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Figure 3.3: Stripe 86 simulated dataset with volume section removed
density wedge plots. Plotted here, in the same manner as figure 3.1,
is the 198,732 star simulated dataset. The stream is clearly visible at
(µ, g0) = (16.3◦, 21.3). To simulate the conditions found in SDSS stripe 86,
a small angle of the data volume, 21.6◦ < 22.3◦, has been removed. It
should be noted that the removed volume is in the center of the tidal
stream to be fit.
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column of table 3.2. The Hessian method was utilized to generate a set of error bars

for the simulated data and these values can be seen in the “Achievable Accuracy”

column of table 3.2. The two remaining columns in table 3.2, “Deviation” and “Std.

Dev. of the Optimizations,” are defined in the same manner as in section 3.2.1. As

in the previous simulated test results, the optimized parameter sets vary very little.

The average of the optimized parameter values corresponds very well with

those values used to generate the data set. In general, the removal of a section of

the volume appears to have no affect upon the achievable accuracy as calculated

via the Hessian method. However, several optimized results fall just slightly outside

of the 1σ error level when considering only the statistical error. However when

taken in quadrature the statistical and numerical errors account for all deviations

aside from that seen in φ. While the peak appears to be very sharp as according

to the Hessian method, it would appear that this angle is harder to fit, in principle.

It is quite possible that this parameter is difficult to fit in this instance since the

removed volume passes through the center of the tidal debris, this may influence

the angle just enough to prevent as accurate a fit as should be possible. However,

even though φ falls outside the 1σ error bar, and falls just outside the 2σ error bar,

it is well inside the 3σ errors, and having one parameter in eight at this level seems

reasonable.

The separated stream and spheroid components are shown in figure 3.4. The

stream density profile (left) has clearly been extracted from that of the stellar

spheroid leaving a smooth Hernquist profile (right). According to the above re-

sults, the algorithm is still able to optimize to the true set of parameters for a set

of data with a section of volume that needs to be removed. This is accomplished

even in the unfortunate instance that the removed volume passes through the tidal

stream to be fit.

3.2.3 Simulated Stripe 82 With Two Streams

To test the impact of simultaneously fitting two tidal streams a second sim-

ulated tidal stream, consisting of 20,000 simulated stars, was added to the dataset

from section 3.2.1. The parameters with which the second stream was generated
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Table 3.2: Stripe 86 Simulated Dataset Results

Parameter Generated Achievable Accuracy Numerical Error Optimized Deviation Std. Dev. of Optimizations
q 0.633 0.007 0.005 0.643 0.010 0.000

r0 (kpc) 16.657 0.310 0.184 16.638 0.019 0.018
ǫ -1.735 0.005 0.001 -1.734 0.001 0.000

µ (deg) 16.312 0.352 0.029 16.451 0.139 0.004
R (kpc) 26.077 0.162 0.042 25.899 0.178 0.004
θ (rad) 1.403 0.025 0.003 1.423 0.020 0.000
φ (rad) 0.086 0.004 0.003 0.074 0.012 0.001
σ (kpc) 2.425 0.033 0.008 2.462 0.037 0.006
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Figure 3.4: Stripe 86 simulated dataset with volume section removed separated density wedge plots. Plotted
here, in the same manner as figure 3.1, is the same dataset found in figure 3.3, however, the stars have been
plotted separately based upon the catalogs returned from the separation algorithm. Thus, the stream (left)
and the spheroid (right) can be seen after the stream has been extracted. The spheroid is clearly recovered
as a smooth Hernquist profile after the removal of the stream component, despite the missing volume of
data.
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can be found in table 3.3 (subscript “2”). With the addition of this new stream,

the dataset contains 225,708 stars of which 28,498 (12.63%) are the first stream and

20,000 (8.86%) are the second stream. The stripe volume and spheroid parameters

are the same as for the dataset in section 3.2.1. The dataset can be found in fig-

ure 3.5 Testing of this simulated dataset was performed in a similar manner as the

previous with a total of fourteen randomized starts for the optimization.

The results of these fourteen optimizations saw five converge to the true pa-

rameter values (those used to generate the dataset), while the remaining nine op-

timizations converged to some combination of local maximums created via the two

tidal streams. The existence of two pieces of tidal debris within the data created

two local maxima within the likelihood surface, one for each tidal stream. Thus, it

was suspected that three local maxima would be found within the dataset: when the

true parameters are found for the first stream and the local maximum of the param-

eters found for second stream; when the true parameters are found for the second

stream and the local maximum of the parameters are found for the first stream; and

when the local maximum of the parameters are found for both streams. However,

this final possibility of converging to the local maximum of the parameters for both

streams proved to not exist. Of the fourteen optimizations, none were found to

converge to this configuration of parameters, so it would appear that the combina-

tion of local maximums does not necessarily produce a local maximum itself. The

nine optimizations that did not converge to the true parameter values were, there-

fore, found to converge to the local maximum created by parameters of one stream

while the other converged to the true values. This is a very important result, for it

proves that when optimizing over multiple streams, one of those streams converge

to the correct parameter values. It should be noted that those optimizations to

the true parameters, did indeed have the highest likelihood; while the optimizations

to the true parameters of the second stream and the local maximum of the first

stream (the original and larger stream) had the second highest likelihood; and the

optimizations to the true parameters of the first stream and the local maximum of

the second stream saw the lowest likelihood of all convergences. The results of the

optimizations can be found in table 3.3.



57

Table 3.3: Stripe 82 Simulated Dataset with Two Streams Results

Parameter Generated Achievable Accuracy Numerical Error Optimized Deviation Std. Dev. of Optimizations
q 0.670 0.007 0.002 0.671 0.001 0.001

r0 (kpc) 13.500 0.283 0.214 13.885 0.385 0.055
ǫ1 -1.827 0.017 0.001 -1.841 0.014 0.002

µ1 (deg) 31.361 0.228 0.052 31.438 0.077 0.016
R1 (kpc) 29.228 0.169 0.028 29.233 0.005 0.012
θ1 (rad) 1.445 0.038 0.007 1.479 0.034 0.124
φ1 (rad) 3.186 0.017 0.006 3.205 0.019 0.006
σ1 (kpc) 2.854 0.088 0.009 2.767 0.087 0.030

ǫ2 -2.182 0.005 0.000 -2.177 0.005 0.001
µ2 (deg) 1.000 0.121 0.037 1.093 0.093 0.011
R2 (kpc) 25.000 0.116 0.058 24.824 0.176 0.017
θ2 (rad) 1.000 0.021 0.002 0.974 0.026 0.006
φ2 (rad) -1.660 0.003 0.002 -1.663 0.003 0.001
σ2 (kpc) 1.500 0.048 0.007 1.497 0.003 0.003
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Figure 3.5: Stripe 82 simulated dataset with two tidal streams density
wedge plot. Plotted here, in the same manner as figure 3.1, are the
225,708 stars generated by adding an additional stream to the dataset
created in section 3.2.1. The simulated streams are easily discernible at
the coordinates (µ, g0) = (33.4◦, 21.4) and (µ, g0) = (1.0◦, 21.2).
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The optimized results correspond very well with those values used to generate

the dataset. As can be seen, the vast majority of the results fall easily within the 1σ

errors with regards to just the statistical errors, with the others easily falling within

the 2σ level. This, by itself seems reasonable a reasonable occurrence, yet when

taken in quadrature the complete error bar accounts for all but two parameters at

the 1σ level, and those are just inside the 2σ level of error. As with the volume

removal, the addition of a second stream seems to have little or no effect upon the

achievable accuracies as derived via the Hessian method. This shows that even under

complicated circumstances, the maximum likelihood algorithm is a good choice to

achieve accurate results.

The average of the returned datasets was then used to create separate catalogs

for each structure within the dataset: a catalog of the stars in the first stream, a

catalog of stars in the second stream, and a catalog of the smooth stellar spheroid

stars. This was accomplished via the separation algorithm, and these catalogs have

been plotted in figure 3.6. The stream density profile of both pieces of tidal debris has

clearly been extracted (left and center) leaving a smooth Hernquist profile (right).

The above results show that the optimization algorithm performs admirably

when posed with the task of simultaneously fitting multiple pieces of tidal debris

within the same dataset. These results also show that when multiple streams are fit,

the local maximum problem still exists; however, this only occurs in the convergence

to the local maximum of a single stream, not both. This important find, implies

that when fitting multiple debris pieces that at least one of the optimized parameter

sets is the true optimal parameters.

3.3 Robustness of the Models

The previous sections have shown that the optimization algorithm produces

the optimum parameters (those used to generate the datasets) given the data is

drawn from the models developed for the algorithm. This section will examine how

the results of optimizations over data that is not drawn from the models within the

algorithm and the validity of various assumptions in those models.



60

Figure 3.6: Stripe 82 simulated dataset with two tidal streams separated density wedge plots. Plotted here,
in the same manner as figure 3.1, is the same dataset found in figure 3.5, however, the stars have been
plotted separately based upon the catalogs returned from the separation algorithm. Thus, the original first
stream (left), from the dataset seen in figure 3.1, and the second added stream (center) can be seen to be
completely recovered and separate from the spheroid (right). The spheroid is clearly recovered as a smooth
Hernquist profile after the removal of the stream components. The addition of multiple streams clearly does
not affect the fitting or the separation algorithms.
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3.3.1 Impact of Magnitude Distribution

To examine the necessity of modeling the absolute magnitude distribution in F

turnoff stars, a series of optimizations were allowed to run to convergence in which

the optimizations were completed assuming no absolute magnitude distribution.

Thus, all stars within the dataset were assumed to have an absolute magnitude,

M̄g0
= 4.2 These tests were completed using the dataset from section 3.2.1. The

results of these optimizations showed that the stream positional parameter, µ, and

the spheroid parameter r0, were relatively unaffected by this simpler model. How-

ever, the rest of the parameters deviated wildly from their generated values with

the stream parameters R, θ, and φ representing the worst of the parameters and

reaching upward of 34σ in error.

3.3.2 Stream Model Correctness

Next, the robustness of the cylindrical stream model with Gaussian fall-off

from the axis was examined. To do this, a reproduction of the Sgr dwarf galaxy tidal

disruption generated in [79] was created using a semi-analytic N-body approach. The

reproduction was created using the same parameters for the Galactic potential and

kinematic values. The NEMO Stellar Dynamics Toolbox [89] was used to evolve

an orbit for the Sgr dwarf disruption. Specifically, a Plummer sphere composed

of one million particles (representing the Sgr dwarf) was allowed to evolve in a

Galactic potential that is spherically symmetric and has velocity dispersion of 114

km s−1. The system was allowed to evolve for 3.18 Gyr until it reached the present

position of the Sgr dSph. The result of this reproduction is plotted in figure 3.8

and is consistent with that found in [79]. A volume corresponding with that of

SDSS stripe 82 was extracted from this simulation of the Sgr dSph disruption and

combined with the model spheroid created for the dataset seen in section 3.2.1. This

new dataset was then used as input to the optimization algorithm and it was allowed

to run to convergence.

Utilizing the optimized parameters derived from optimizing over the dataset

created above, a new simulated stream was created using the method derived in

section 3.1.1. By generating this new simulated stream, a means of comparison is
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thus derived for comparing the disruption data and the model data within a single

stripe. In order to compare the two datasets, a cross section of the two streams,

1 kpc thick, and centered at the optimized stream center is plotted in figure 3.7.

Along with this cross section, a histogram over the cross section is plotted beneath

the respective cross section. Figure 3.7 (left) depicts the cross section and histogram

of the stream generated via the N-body disruption, while figure 3.7 (right) depicts

the stream generated according to the model using the parameters returned from

optimizing over the dataset created using the N-body disruption data. It can be seen

that the distribution of the N-body stream is, indeed, not Gaussian; however, the

drawback to using an N-body model is that there are no correct model parameters

with which to compare the results. The optimized center and direction of the N-

body stream, as seen in figure 3.7 (left) and figure 3.8 are reasonable. In order

to determine the error in the fitting of the stream center, what is meant by the

center of an asymmetric distribution must be defined; however, the optimized center

determined by the algorithm seems a reasonable choice.

The validity of a linear fit to a tidal stream is addressed by estimating the

curvature of the Sgr tidal stream within SDSS stripe 82. Assuming the distance to

the center of the stream to be 29 kpc as found in [67], it can be calculated that the

2.5◦ wide SDSS stripe would be 1.3 kpc thick at this distance. Assuming the stream

intersects the stripe plane at an inclination of 30◦, as according to [90], the length

of the stream in stripe 82 would then be 2.5 kpc. The radius of curvature of the

trailing Sgr tidal stream within the orbital plane can then be estimated via fitting a

circle to the two southern detections in [67] and is determined to be approximately

18 kpc. Therefore, the deviation from linear of a 2.5 kpc long stream segment

can be found to be d = 0.6 kpc at its edge. This is much smaller than that of

the width of the stream at this point (6 kpc) according to [90]. Thus, the linear

approximation of a stream over a 2.5◦ wide stripe is quite reasonable, unless the

stream passes through the stripe plane at incredibly low inclinations such that the

stream direction is approximately parallel to the stripe plane.
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Figure 3.7: Cross-sections of Sgr N-body simulation stream (left panel)
and simulated stream (right panel). The upper figure in both panels show
the 1 kpc thick cross-section of the respective data set. The cross-sections
are centered at the best-fit value of the optimization of the center in the
N-body simulation from figure 3.8. Here the axes are perpendicular to
the stream direction. The X-axis is 0.053X + 0.055Y + 0.997Z and the Y-
axis is 0.055X +0.997Y −0.058Z, where X,Y,Z are Galactocentric Cartesian
coordinates with the Sun at X = -8.5 kpc and moving in the direction
of positive Y. The lower figure of both panels is a histogram of those
stars within the cross section binned along the X-axis. The heavy dashed
line shows a Gaussian distribution with standard deviation given by σ

from the fit to the N-body simulation. Note that the cross-section of
the N-body simulation is non-Gaussian and somewhat asymmetric. Also
note the model simulated stream is well fit by a Gaussian. The density
distributions in the left and right panels are not the same, however, the
algorithm still fits a reasonable center for the non-Gaussian N-body data
set.
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Figure 3.8: Disruption of one million particle simulated Sgr dSph as seen
in the Sgr X-Y orbital plane. A spherical dark matter halo (q = 1) and
velocity dispersion νhalo = 114 km s−1 was used. For clarity, the stream
was sampled 1 in 100. The thin line denotes the future orbit of the core
while the dotted line denotes the past orbit. The past orbit is not closed,
but actually follows the lower trailing stream. The arrow shows the
center (tail) and direction returned by optimizing over the stars within
the SDSS stripe 82 volume.
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3.3.3 Spheroid Model Correctness

Finally, the effect of an incorrect spheroid model on the optimization was

tested. It is far easier to modify the model fit by the algorithm than to generate

many differing datasets with various spheroid densities. Therefore, the dataset used

in section 3.2.1 was fit multiple times here using an incorrect spheroid model. The

exponential component of the Hernquist model was modified for these tests. The

dataset was optimized using an exponential in the Hernquist of 3.5, 2.5, and 2.0

as compared to the value of 3.0 used to generate the data. The results from these

tests can be seen in table 3.4. In all cases, the stream parameters experienced little

to no change and were within the achievable accuracies calculated for this dataset.

As expected the spheroid parameters are incorrect, yet represent the best model

profile fit to the simulated date within the volume of the stripe. The results of this

test successfully shows that tidal debris can be successfully and accurately fit even

if the spheroid model is incorrect. This is incredibly important and useful, for it

means that all tidal debris can be fit, characterized, and extracted from the spheroid

allowing the spheroid to be studied without contamination from tidal debris and the

correct model for the stellar spheroid density profile to be determined.
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Table 3.4: Results of Tests Fitting an Incorrect Stellar Spheroid Model

Optimization
Parameter Generated Achievable Accuracy α = 3.5 α = 2.5 α = 2.0
µ (deg) 31.361 0.233 31.449 31.526 31.457
R (kpc) 29.228 0.167 29.094 29.326 29.108
θ (rad) 1.445 0.032 1.426 1.452 1.437
φ (rad) 3.186 0.049 3.172 3.168 3.160
σ (kpc) 2.854 0.033 2.869 2.848 2.865



CHAPTER 4

SDSS Data Analysis

The application of the maximum likelihood algorithm to characterize the Sgr dwarf

tidal stream in SDSS photometric data is described here. This chapter will describe

the data that was used and give an in-depth analysis of the results extracted from

each of the datasets the maximum likelihood algorithm was applied to.

4.1 The Datasets

All of the data analyzed in this manuscript was taken from the SDSS photo-

metric catalog. The results presented here contain results derived from both SDSS

DR6 and SDSS DR7 data. The southern Galactic cap analysis was completed with

SDSS DR6 catalog while all of the north Galactic cap analysis was completed using

data from the SDSS DR7 catalog. The SDSS data is organized into a series of great

circle stripes that are 2.5◦ wide. The maximum likelihood algorithm presented here

takes advantage of this stripe structure to fit the tidal debris using a simple geomet-

ric model in a piecewise manner, such that each stripe is analyzed separately. All

sources, from a given stripe, that were identified as point sources were selected that

have the color of blue F turnoff stars. It was shown in [39] that the Sgr turnoff is

much bluer than that of the thick disk stars and even slightly bluer than the stellar

halo, in general. Selecting those stars consistent with the colors of the Sgr turnoff

will preferentially select those stars in the stream and helps to limit the amount of

contamination from other Galaxy components.

Those sources with colors 0.1 < (g−r)0 < 0.3 and (u−g)0 > 0.4, that were not

EDGE or SATURATED, and with magnitude g0 > 16 were added to the dataset.

The subscript “0,” here denotes that reddening corrected magnitudes were selected.

All of the selected stars are have b > 30◦ (or b < −30◦ for those southern stripes)

and have distances R > 2.3 kpc. All stars are therefore far from the Galactic plane

and behind the dust. It can be reasonably estimated that all reddening occurs due

to the total amount of dust along that line of sight in the sky. The amount of dust

67
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along a given line of sight is determined through the well known dust map created

in [91]. The color cut in (g − r)0 is taken to select only those blue F turnoff stars

with which the average absolute magnitude is taken to be M̄g0
= 4.2. The color

cut in (u− g)0 is performed in order to remove contamination of the sample by low

redshift quasi-stellar objects (QSOs).

As mentioned previously in this manuscript, the SDSS is organized into a series

of great circles across the sky and the maximum likelihood algorithm presented here

is designed to leverage this survey design by analyzing the spatial properties of

structures over small volume. Thus, a single dataset is comprised of only those stars

that make up an SDSS stripe. Therefore, all datasets are 2.5◦ wide. Stars brighter

than g0 = 16 were removed to avoid saturated stars. At this magnitude most if

not all contamination by disk stars is avoided since magnitude g0 = 16 corresponds

to the approximate distance of R = 2.3 kpc. The datasets are typically limited

to g0 < 22.5. This is because the efficiency function, described in section 2.1.4,

begins to fall rapidly at approximately this value. However, the Sgr stream is seen

at much fainter magnitude (g ≈ 23) in F turnoff stars. In instances where the Sgr

stream is observed at these faint magnitudes, the faint limit on the stripe is increased

accordingly such that the stripe can be analyzed with regard to the Sgr stream.

The angular length of each stripe is, in general, ∆µ ≈ 140◦. However, the

angular lengths of the stripes used in these analyses are shorter to reduce the com-

plexity of the model required to describe the data. For example, the Monoceros

stream ([39] [40]) is seen towards the anti-center of the Galaxy and is apparent in

the data along the edge of many stripes within the north Galactic cap. Therefore,

the angular length of these stripes were chosen to specifically remove all instances

of this structure. Similarly, a section of data is removed around globular clusters

and the optimization over these datasets is then performed using the algorithmic

method for removing a section from the probed volume seen in section 2.1.5. The

Hernquist profile is often not a good fit to the data towards the Galactic center.

These sections are removed to prevent the occurrence of these poor fits.
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4.1.1 Fitting the Datasets

The datasets constructed in the method described above are then used as input

to the maximum likelihood algorithm. In all cases of the observed data, a number

of optimizations were completed such that five of these optimizations were found to

converge to the “best-fit” parameters. “Best-fit” is defined here as the parameters

which result in the highest likelihood. The optimizations are completed using a set

of randomized input parameters, where randomized, here, is the perturbation about

an initial set of parameters chosen by eye. These amount of these perturbations is

typically 75% as was used when testing the algorithm, however, in certain instances

parameters grow too large for this to be an adequate method. In this instance,

a perturbation by 25% of the total range of the parameter is used. For example,

should the angular positional parameter µ = 200◦ and the angular length is limited

by 150◦ < µ < 250◦, a perturbation by 75% is too large. Therefore, the perturbation

is taken to be 25% of the total angular length. Thus, the perturbation amount would

be by 25% of 100◦ and the initial parameter of 200◦ would be randomly perturbed

by 25◦.

The spheroid is a complicated thing that contains numerous pieces of sub-

structure. This often demands that multiple streams be simultaneously fit even if

only one piece of substructure is being analyzed. This is because other pieces of

substructure can influence the optimization of the maximum likelihood algorithm.

This problem becomes particularly bad when there are two pieces of substructure

very near each other. In these instances, the algorithm tends to fit both pieces of

substructure as a single entity, thereby invalidating the results obtained. For this

reason all of the datasets in the North Galactic cap are fit using three streams si-

multaneously. The datasets from the South Galactic cap appear to be much less

complicated and are adequately fit using a single stream.

The existence of the local maxima described in section 3.2 will be assumed

from this point on. That is to say, some number of optimizations will converge to a

local maximum associated with this phenomenon. However, only the results of those

five optimizations that converged to the “best-fit” parameters will be presented here.

It can also be assumed that some number of optimizations will not converge at all
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due to the randomized parameters being too distant from the “best-fit” parameters

to provide an accurate direction for the gradient. Finally, the results for the stellar

spheroid will be given on a stripe-by-stripe basis with those results for the tidal

debris; however, these results will not be approached until a complete discussion of

the results over all stripes is possible in section 5.3.

4.2 SDSS Stripe 82

SDSS stripe 82 is located in the south Galactic cap along the celestial equator.

Therefore, the great circle coordinates, µ and ν, used to describe angular position

along a stripe are exactly the more common equatorial coordinates, right ascension

(α) and declination (δ), respectively. The angular length about the stripe was

limited to 109◦ where 310◦ < µ(α) < 59◦. A globular cluster was also found within

the data and a volume section removed with coordinates 323.2◦ < µ(α) < 323.6◦

and −1.0◦ < ν(δ) < −0.7◦. The final dataset was composed of 115,907 F turnoff

stars. A plot of the entire dataset can be seen in figure 4.1.

The average results from five optimizations to the “best-fit” can be seen in

table 4.1 in the “Optimized” column. Additionally, the statistical and numerical

errors are presented within the appropriate column as calculated via the Hessian

and heuristic methods, respectively. Finally, the standard deviation of these five

optimizations are presented in the final column. Utilizing the results of the op-

timizations, the separation algorithm was used to generate separate catalogs for

the Sgr stream and the stellar spheroid. These catalogs are plotted separately in

figure 4.2. The stream (left) has clearly been extracted from the stellar spheroid

(right).

The stream normalization parameter, ǫ, provides a means for determining the

number of stars within the stream. Here, ǫ = −1.827 and using equation 2.19 it can

be calculated that there are 16,050 stars in the Sgr stream in stripe 82 out of the

total 115,907 stars in the dataset. Performing a calculation that parallels that of

equation (10) of [90] it is possible to estimate the total stellar mass in stripe 82 as a

fraction of the Sgr dwarf itself. First, the number of stars must be calculated from

figure 6 of [39] that are within the color cut (0.1 < (g − r)0 < 0.3) and magnitude
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Figure 4.1: SDSS stripe 82 dataset density wedge plot. Plotted here is
a Sun-centered density plot of the 115,907 F turnoff stars selected from
DR6 with colors 0.1 < (g − r)0 < 0.3 and (u − g)0 > 0.4. The plane of
the plot is along the angle ν = 0.0. The reddening corrected apparent
magnitude g0 is labeled along the radial spokes, with g0 = 23 denoted at
the circle of constant magnitude. The angle about the stripe, µ, is marked
in degrees about this circle is limited to the angle 310◦ < µ < 419◦(59◦).
The Sgr tidal stream is easily discernible at the approximate coordinates
(µ, g0) = (31◦, 21.5).
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Table 4.1: SDSS Stripe 82 Results

Parameter Optimized Statistical Error Numerical Error Std. Dev. of Optimizations
q 0.458 0.023 0.005 0.001

r0 (kpc) 19.404 0.581 0.090 0.051
ǫ -1.827 0.005 0.001 0.000

µ (deg) 31.373 0.244 0.080 0.008
R (kpc) 29.218 0.184 0.070 0.012
θ (rad) 1.444 0.044 0.010 0.001
φ (rad) 3.184 0.034 0.008 0.002
σ (kpc) 2.862 0.025 0.008 0.009
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Figure 4.2: SDSS stripe 82 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 115,907 star dataset, however, the stars have been plotted separately based upon the
catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the stellar spheroid
(right) can be seen after the stream has been extracted. The Sgr stream has clearly been extracted from the
stellar spheroid.
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limits (16 < g0 < 22.5) of the data used in optimization. This amounts to 2,184

stars. This is now substituted into equation (10) of [90], replacing the previous

value used for G/G-type stars, and results in an estimate of the total number of F

turnoff stars currently in the Sgr dwarf itself of 1,798,700 stars. The percentage of

F turnoff stars in stripe 82 versus in the Sgr core itself is therefore 0.9%. Therefore,

stripe 82 contains 0.9% of the Sgr dSph’s current F turnoff stars. Also, in [90], the

width of the Sgr stream in stripe 82 is estimated to have a FWHM of 6 kpc. The

stream width, as determined by the maximum likelihood method, is σ = 2.86 which

corresponds to a FWHM of 6.7 ± 0.06 kpc which is in good agreement with the

previously stated value.

4.3 Additional SDSS Stripes

Sixteen additional stripes containing Sgr tidal debris have been analyzed.

These are the two southern SDSS stripes beyond stripe 82 (stripes 86 and 79),

and twelve of the contiguous northern stripes (stripes 23, 22, 21, 20, 19, 18, 17,

16, 15, 13, 11, and 9). These analyses were completed in a similar fashion to that

done for stripe 82. Table 4.2 provides a listing of dataset statistics for each of the

stripes analyzed including the volume limits, number of stars comprising the data

set, and the SDSS data release the data was extracted from. The number of streams

optimized are also presented here. Additional information regarding specific stripes

can be found below. The values and results for stripe 82 have been duplicated here

for completeness.

Stripe 86: A data artifact was removed at 21.6◦ < µ < 22.3◦.

Stripe 82: A globular cluster was removed at 323.2◦ < µ < 323.6◦ and −1.0◦ <

ν < −0.7◦.

Stripe 23: A globular cluster was removed at 207◦ < µ < 209◦ and −1.25◦ < ν <

−0.8◦.

Stripe 22: Two globular clusters were removed: (1) 207◦ < µ < 209◦ and 0.8◦ <

ν < 1.25◦; and (2) 202◦ < µ < 204◦ and −0.5◦ < ν < 0.4◦.
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Stripe 18: A globular cluster was removed at 197.0◦ < µ < 198.0◦ and −1.25◦ <

ν < −1.0◦.

Stripe 17: Two globular clusters were removed: (1) 182.4◦ < µ < 183.0◦ and

0.9◦ < ν < 1.25◦; and (2) at 197.0◦ < µ < 199.0◦ and 0.4◦ < ν < 1.25◦.

The results of the optimizations for the Sgr tidal stream are presented in

table 4.3 with supplemental derived results in table 4.4. The complete data sets

and the results of extracting the Sgr tidal debris using these optimizations can be

found in figures 4.3-4.30. It should be noted that number of stream stars quoted

in table 4.3 and used for the calculation of the “% of Sgr dSph itself” values in

table 4.4 corresponds to the number of stars extracted via the separation algorithm

and not the theoretical value calculated via the ǫ parameter, though in practice

there is negligible difference between these two values.
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Table 4.2: SDSS Stripe Dataset Statistics

Stripe µmin µmax g0min
g0max

# streams # stars DR
86 310◦ 60◦ 16 22.5 1 111,642 6
82 310◦ 59◦ 16 22.5 1 92,789 6
79 311◦ 56◦ 16 22.5 1 92,789 6
23 133◦ 230◦ 16 22.5 3 65,336 7
22 131◦ 225◦ 16 22.5 3 66,201 7
21 133◦ 210◦ 16 22.5 3 60,503 7
20 133◦ 249◦ 16 22.5 3 105,909 7
19 135◦ 230◦ 16 22.5 3 84,046 7
18 135◦ 240◦ 16 22.5 3 95,462 7
17 135◦ 235◦ 16 22.5 3 91,626 7
16 135◦ 240◦ 16 22.5 3 107,033 7
15 135◦ 240◦ 16 22.5 3 108,460 7
13 135◦ 235◦ 16 22.5 3 118,836 7
11 150◦ 229◦ 16 23.0 3 97,434 7
9 170◦ 235◦ 16 23.5 3 95,435 7
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Table 4.3: SDSS Stripe Results

Stripe µ R (kpc) θ (rad) φ (rad) σ (kpc) # stream stars
86 16.312◦ ± 0.400◦ 26.077± 0.178 1.403± 0.028 0.086± 0.017 2.425± 0.110 16,695
82 31.373◦ ± 0.257◦ 29.218± 0.197 1.444± 0.045 3.184± 0.035 2.862± 0.026 16,925
79 38.273◦ ± 0.316◦ 30.225± 0.250 2.215± 0.060 0.323± 0.069 2.774± 0.231 9,460
23 132.483◦ ± 0.265◦ 16.767± 0.540 0.437± 0.042 −1.568± 0.510 1.177± 0.039 1,016
22 135.914◦ ± 0.109◦ 18.138± 0.357 0.720± 0.021 −1.236± 0.319 1.667± 0.096 2,433
21 141.681◦ ± 0.788◦ 21.218± 0.509 0.550± 0.161 −0.279± 0.521 1.088± 0.649 3,560
20 148.028◦ ± 0.579◦ 22.784± 0.463 0.801± 0.198 −0.198± 0.177 1.124± 0.161 4,371
19 151.499◦ ± 0.472◦ 23.491± 0.302 0.700± 0.126 −0.099± 0.113 0.906± 0.162 5,266
18 157.138◦ ± 0.500◦ 25.298± 0.408 1.041± 0.107 −0.327± 0.101 2.226± 0.142 7,380
17 161.983◦ ± 0.573◦ 25.696± 0.394 2.011± 0.097 2.894± 0.057 2.569± 0.221 8,889
16 177.479◦ ± 0.876◦ 28.296± 0.416 1.343± 0.061 −0.093± 0.039 4.366± 0.333 21,621
15 184.577◦ ± 0.617◦ 31.162± 0.522 1.863± 0.061 3.205± 0.104 3.191± 0.779 16,502
13 196.970◦ ± 0.413◦ 36.908± 0.334 1.701± 0.119 0.192± 0.039 3.756± 0.327 17,578
11 206.137◦ ± 6.687◦ 40.365± 6.474 1.234± 0.737 3.301± 0.422 3.585± 1.506 9,011
9 219.735◦ ± 0.340◦ 43.449± 0.482 1.703± 0.040 1.333± 0.049 4.789± 0.366 19,505
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Table 4.4: SDSS Stripe Results Supplemental

Stripe l b FWHM (kpc) % Sgr dSph itself
86 134.776◦ −72.342◦ 5.71± 0.26 0.9%
82 159.223◦ −57.558◦ 6.74± 0.06 0.9%
79 163.312◦ −48.400◦ 6.53± 0.54 0.5%
23 205.701◦ 30.331◦ 2.77± 0.09 0.1%
22 207.239◦ 33.876◦ 3.93± 0.23 0.2%
21 209.187◦ 39.691◦ 2.56± 1.53 0.3%
20 212.030◦ 45.983◦ 2.65± 0.38 0.2%
19 215.528◦ 49.248◦ 2.13± 0.38 0.3%
18 220.540◦ 54.432◦ 5.24± 0.33 0.4%
17 226.857◦ 58.485◦ 6.05± 0.52 0.5%
16 249.882◦ 70.967◦ 10.28± 0.78 1.2%
15 273.334◦ 73.435◦ 7.51± 1.83 0.9%
13 315.112◦ 69.808◦ 8.84± 0.77 1.0%
11 332.370◦ 62.125◦ 8.44± 3.53 0.5%
9 348.825◦ 50.971◦ 11.28± 0.86 1.1%
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Figure 4.3: SDSS stripe 86 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 111,642 F turnoff stars within
the volume limits of SDSS stripe 86. The angle about the stripe, µ, is
limited here to 310◦ < µ < 420◦(60◦). A small angle of data 21.6◦ < µ < 22.3◦

needed to be removed and can be seen passing through the Sgr tidal
debris. This debris easily discernible at the approximate coordinates
(µ, g0) = (20◦, 21.5).
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Figure 4.4: SDSS stripe 86 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 92,789 star dataset as in figure 4.3, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stellar spheroid (right) can be seen after the stream has been extracted. The Sgr stream has clearly been
extracted from the stellar spheroid despite the removal of the volume that cuts straight through the stream.
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Figure 4.5: SDSS stripe 79 dataset density wedge plot. Plotted here, in
the same manner as figure 4.1, is the 92,789 F turnoff stars within the
volume limits of SDSS stripe 79. The angle about the stripe, µ, is limited
here to 311◦ < µ < 416◦(56◦). The Sgr tidal stream is easily discernible at
the approximate coordinates (µ, g0) = (45◦, 21.5).
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Figure 4.6: SDSS stripe 79 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 92,789 star dataset as in figure 4.5, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stellar spheroid (right) can be seen after the stream has been extracted. The Sgr stream has clearly been
extracted from the stellar spheroid.
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Figure 4.7: SDSS stripe 23 dataset density wedge plot. Plotted here, in
the same manner as figure 4.1, is the 65,336 F turnoff stars within the
volume limits of SDSS stripe 23. The angle about the stripe, µ, is limited
here to 133◦ < µ < 230◦.
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Figure 4.8: SDSS stripe 23 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 65,336 star dataset as in figure 4.7, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.9: SDSS stripe 22 dataset density wedge plot. Plotted here, in
the same manner as figure 4.1, is the 66,201 F turnoff stars within the
volume limits of SDSS stripe 22. The angle about the stripe, µ, is limited
here to 131◦ < µ < 225◦.



86

Figure 4.10: SDSS stripe 22 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 66,201 star dataset as in figure 4.9, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.11: SDSS stripe 21 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 60,503 F turnoff stars within the
volume limits of SDSS stripe 21. The angle about the stripe, µ, is limited
here to 133◦ < µ < 210◦.
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Figure 4.12: SDSS stripe 21 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 60,503 star dataset as in figure 4.11, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.13: SDSS stripe 20 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 105,909 F turnoff stars within
the volume limits of SDSS stripe 20. The angle about the stripe, µ, is
limited here to 133◦ < µ < 249◦.
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Figure 4.14: SDSS stripe 20 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 105,909 star dataset as in figure 4.13, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.15: SDSS stripe 19 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 84,046 F turnoff stars within the
volume limits of SDSS stripe 19. The angle about the stripe, µ, is limited
here to 135◦ < µ < 230◦.
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Figure 4.16: SDSS stripe 19 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 84,046 star dataset as in figure 4.15, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.17: SDSS stripe 18 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 95,462 F turnoff stars within the
volume limits of SDSS stripe 18. The angle about the stripe, µ, is limited
here to 135◦ < µ < 240◦.
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Figure 4.18: SDSS stripe 18 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 95,462 star dataset as in figure 4.17, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.19: SDSS stripe 17 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 91,626 F turnoff stars within the
volume limits of SDSS stripe 17. The angle about the stripe, µ, is limited
here to 135◦ < µ < 235◦.
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Figure 4.20: SDSS stripe 17 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 91,626 star dataset as in figure 4.19, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.21: SDSS stripe 16 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 107,033 F turnoff stars within
the volume limits of SDSS stripe 16. The angle about the stripe, µ, is
limited here to 135◦ < µ < 240◦.
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Figure 4.22: SDSS stripe 16 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 107,033 star dataset as in figure 4.21, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.23: SDSS stripe 15 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 108,460 F turnoff stars within
the volume limits of SDSS stripe 15. The angle about the stripe, µ, is
limited here to 135◦ < µ < 240◦.
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Figure 4.24: SDSS stripe 15 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 108,460 star dataset as in figure 4.23, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.25: SDSS stripe 13 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 118,836 F turnoff stars within
the volume limits of SDSS stripe 13. The angle about the stripe, µ, is
limited here to 135◦ < µ < 235◦.
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Figure 4.26: SDSS stripe 13 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 118,836 star dataset as in figure 4.25, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.27: SDSS stripe 11 dataset density wedge plot. Plotted here,
in the same manner as figure 4.1, is the 97,434 F turnoff stars within the
volume limits of SDSS stripe 11. The angle about the stripe, µ, is limited
here to 150◦ < µ < 229◦.
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Figure 4.28: SDSS stripe 11 dataset separated density wedge plots. Plotted here, in the same manner as
figure 4.1, is the same 97,434 star dataset as in figure 4.27, however, the stars have been plotted separately
based upon the catalogs returned from the separation algorithm. Thus, the Sgr tidal stream (left) and the
stars remaining after extracting those Sgr stream stars (right) can be seen. The Sgr stream has clearly been
extracted from the background distribution.
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Figure 4.29: SDSS stripe 9 dataset density wedge plot. Plotted here, in
the same manner as figure 4.1, is the 95,435 F turnoff stars within the
volume limits of SDSS stripe 9. Due to the increased magnitude range
the circle has been moved to constant magnitude g0 = 23.5. The angle
about the stripe, µ, is limited here to 170◦ < µ < 235◦.
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Figure 4.30: SDSS stripe 9 dataset separated density wedge plots. Plotted here, in the same manner
as figure 4.1 but with the circle at constant magnitude g0 = 23.5, is the same 95,435 star dataset as in
figure 4.29, however, the stars have been plotted separately based upon the catalogs returned from the
separation algorithm. Thus, the Sgr tidal stream (left) and the stars remaining after extracting those Sgr
stream stars (right) can be seen. The Sgr stream has clearly been extracted from the background distribution.



CHAPTER 5

Discussion and Conclusions

Here the significance of the maximum likelihood results obtained in chapter 4 are

reviewed. First, the integrated view of the Sgr leading and trailing tails are pre-

sented. Then, the results of the Hernquist profile fits are reviewed. Finally, the

overall implications of this work will be covered.

5.1 The Sagittarius Tidal Stream

5.1.1 Trailing Tail

Previous authors [67] detected the position of the Sgr tidal debris within

stripe 82 (α, R) = (33.99◦ ± 1◦, 29 kpc) using A colored blue horizontal branch

(BHB) stars. The maximum likelihood result here shows a slight shift in angle to

(31.27◦ ± 0.25◦, 29.22 ± 0.20 kpc). While the radial distance is consistent, the an-

gular shift is slightly larger than expected but is not alarming, for the definition of

the center of the stream is somewhat subjective and could introduce some error in

this comparison. Also, the comparison between F turnoff stars and BHB stars may

introduce more error in comparison should there be any amount of segregation in

the type of star along the tidal stream. Finally, it should be noted that an angular

position of α = 33◦ was calculated for the Sgr stream within stripe 82 in F turnoff

stars in [39], providing a much closer value to that found via the maximum likelihood

method.

The direction of the Sgr stream in stripe 82 can also be compared to those

results found in [90]. They estimate the angle between the observational plane and

the Sgr stream to be 30◦ and the angle between the normal to the line of sight

toward a point and the tangent of the stream at that point to be 10◦. The first

of these angles can be calculated from the “best-fit” parameters by calculating the

angle between the directional vector, â, and the observational plane of stripe 82.

This is calculated to be 30◦±03◦, corresponding exactly with that found previously.

The second of these angles can be calculated by finding the line-of-sight vector to
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the center of the stream, determining a normal to that, and then finding the angle

between this normal and the stream directional vector, â. This is calculated to

be 22.5◦ ± 2◦. This difference can be explained by the dramatic improvement in

accuracy of the maximum likelihood method over that which can be accomplished

by an estimate by eye for this angle which is much more difficult to determine.

The position of the tidal debris within stripe 86 was detected at (l, b, R) =

(134.776◦,−72.342◦, 26.077 kpc). This is significantly different from the detection

in A colored stars in [67] of (l, b, R) = (148.8◦,−70.8◦, 30 kpc). Since the maximum

likelihood method is of higher accuracy, and the results fit much more consistently

with a smooth path/orbit needed to connect the other trailing tail detections (stripe

79 and 82) with the Sgr core, the maximum likelihood measurement is believed to

be correct.

The detection of the Sgr stream in stripe 79 completes the analysis of the

trailing tidal tail in the South Galactic cap. The position and angle of the stream

are consistent with a smooth orbit from the Sgr core through the three detections.

The widths increase systematically, within the errors, the farther from the Sgr core

the detection. This may imply that the stream grows in width and also decreases

in density, with distance from the core of the disrupted galaxy. This decrease in

density is seen most dramatically in the detection of stripe 79.

The three southern detections have been plotted with respect to the Sgr dSph

orbital plane. Figure 5.1 shows the Sgr dSph orbital plane face on. The Sgr dSph

orbital plane is roughly perpendicular to the Galactic plane, thus this figure roughly

corresponds to viewing the Milky Way edge on. The tail of the arrows denote the

detection of the tidal debris while the direction of the arrow corresponds to the

spatial direction of the debris that was fit via the maximum likelihood algorithm.

The length of the arrow is arbitrary and is simply a multiple of the directional unit

vector â. Similarly, the Sgr dSph orbital plane edge on can be seen in figure 5.2

which is similar to viewing the Milky Way face on. As can be seen in these two

figures the detections the vast majority of the detections are in good agreement with

each other.

Figure 5.3 views the Sgr dSph orbital plane face on and shows the detections
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Figure 5.1: Plotted here is a reproduction of figure 3 from [67]. Overlayed are arrows denoting the position
(tail) and spatial direction of the Sgr tidal debris for each SDSS stripe analyzed as calculated via the maximum
likelihood algorithm. The fits seem reasonable within the errors to form a smooth orbit. From top right
going counter-clockwise the stripes are 9,11,13,15-23 and 79, 82, and 86. 1-σ errors are shown in angle with
outlined arrows while 1-σ errors in position are depicted with solid points (the larger of the angular and
distance error is taken as the radius of the point).
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Figure 5.2: Plotted here is a reproduction of figure 4 from [67]. Overlayed are arrows denoting the position
(tail) and spatial direction of the Sgr tidal debris for each SDSS stripe analyzed as calculated via the
maximum likelihood algorithm. 1-σ errors are shown in angle with outlined arrows while 1-σ errors in
position are depicted with solid points (the larger of the angular and distance error is taken as the radius
of the point).The fits seem reasonable, within the errors, to lie within a reasonable orbital plane, aside from
those fits for stripes 23, 22. In stripes 23 and 22 the Sgr stream occurs along the edge of the data which may
influence the accuracy of the angle determination.
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(position and direction) of the southern stripes. However it also depicts a subsam-

pling of those stars determined to fit the density profile of the Sgr tidal stream via

the separation algorithm. These observational results are then overlayed upon a

simulation of the Sgr dSph disruption which replicates that found in [79]. It can

be seen that the three detections in the trailing tail correspond very well with the

trailing tail of the simulation.

5.1.2 The Leading Tail

The leading Sgr tidal stream is a very prominent feature in the northern SDSS

data. The field of streams in [49] made this quite apparent and also discovered

the bifurcated section of the Sgr tidal stream. This is a forking of the Sgr tidal

stream which can be seen in figure 5.4 above the main Sgr branch on this plot, but

is displayed much more prominently in the, now famous, field of streams image.

This thesis is focused solely on fitting the main Sgr stream within the data. The

bifurcated section was, in theory, fit during optimization since the northern SDSS

data was fit with three simultaneous streams, but no action was taken to analyze

these other streams as they were beyond the scope of this work.

Figure 5.1 depicts the positional and directional results of all optimizations to

the northern SDSS data analyzed here. As can be seen the detections are in good

agreement with each other, within the errors, and form a smooth orbit from stripe

23 to the Sgr core and around the trailing tidal tail. Figure 4 of [47] performed

a similar study using F turnoff stars, by fitting the the turnoff of the Sgr stream.

While the results presented in table 1 of [47] are, in general, very similar in Galactic

latitude determinations for each of the stripes, there is considerable difference in

Galactic longitude determinations. These differences seem to systematically grow,

as the stream is traced from higher to lower stripe numbers. This corresponds with

an increase in the distance of the Sgr tidal stream. A similar effect is observed in the

distance determinations at each of these detections. The distances presented in [47]

are consistently larger than those determined via the maximum likelihood method.

A possible explanation for this discrepancy could be that the fits performed

in [47] were simultaneously fitting the main Sgr stream as well as its bifurcated
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Figure 5.3: Plotted here is the Sgr dSph orbital plane face on. The green
star denotes the Solar position while the galaxy is consistent in size and
shape with the Milky Way. The white dots are simulated stars of the Sgr
dSph disruption consistent with that found in [79]. The dotted red arrow
shows the orbital path of the Sgr dSph during the simulated disruption.
The pink arrows denote the position (tail) and spatial direction of the Sgr
tidal debris for each SDSS stripe analyzed as calculated via the maximum
likelihood algorithm. The cyan points are a subsampling of those stars
found to fit the density profile of the Sgr tidal stream. From top right
going counter-clockwise the stripes are 9, 11, 13, 15-23 and 79, 82, and
86. The trailing tail of the simulation fits the observational data very
while; however, the leading tail clearly does not match the observational
data.
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Figure 5.4: Density polar plot in Galactic coordinates of all Northern
Galactic cap data analyzed via the maximum likelihood algorithm. Galac-
tic latitude, b, is denoted along circles of constant radius while Galactic
longitude is denoted by the azimuthal angle. The Sgr tidal stream can
be seen as the overdensity that crosses the entirety of the data.
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section. This would have the effect of moving the center of the detected structure

further away, caused by the stream being much wider due to the combination of

two distinct pieces of the stream. This effect could also explain the differing Galac-

tic longitude determinations as well, for fitting the Sgr stream and its bifurcated

section simultaneously at a larger distance would affect the determination of where

on the sky the stream center is. For these reasons, it is difficult to compare the

results presented in these two means. The stream appears to be well fit in both

cases, however. This exemplifies the difficulty and need for determining a consistent

definition of the “center” of a detection.

Figure 5.2 shows the detections via the maximum likelihood algorithm in the

orbital plane of the Sgr orbital plane. It can be seen that the parameter determina-

tions, in general, find a consistent direction within the plane. The major exceptions

to this would be stripes 23, 22, and 9. The Sgr stream in stripes 23 and 22 occurs

at the edge of the dataset analyzed; therefore, it is quite possible that the angle

determination may be negatively affected in this instance. The Sgr stream debris

in stripe 9 is at a much greater distance than any other stripe, and the efficiency

function at this magnitude drops rapidly. For this reason it may simply be that an

accurate angle determination under these conditions may be incredibly difficult or

even unable to achieve.

As with the southern stripes, the detections in the north are presented with

the simulated Sgr dSph disruption, and those stars fitting the stream density profile

superimposed in figure 5.3. While the observations of the trailing tail agree very

well with the simulation, the observations of the leading tidal tail differ dramatically

from those seen in the simulation. This shows that the current models for the Sgr

dSph disruption are flawed. Therefore, these models need to be updated to fit this

newly available data and take advantage of the improved results.

5.2 Global Stream Analysis

Compiling the analyses of the number of F turnoff stars in the Sgr tidal stream

versus the number seen currently in the Sgr dSph shows that within the fifteen stripes

analyzed there are 9.0% the number of F turnoff stars currently in the stream as the
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core. This shows considerable disruption of the Sgr dSph, for this number represents

only the stars in the stripes studies which is but a fraction of those stars in the tidal

stream.

The width of the stream within all fifteen stripes has been plotted versus the

angle along the stripe in figure 5.5. Angle along the stripe has been calculated,

here, as the angle from the Sgr dSph core to the stream detection with positive

angles representing the leading tail and negative angles representing the trailing

tail. The trailing tail appears to show a trend in increasing width while the leading

tail shows a distinct decrease in stream width with angle from the Sgr dSph. A

possible explanation for this feature is would be the existence of the bifurcation in

the leading tail. This bifurcation appears to cause the stream to break into two

smaller streams; the separation between the two pieces becomes more prominent

with angle along the stream. The width of the stream in the simulated disruption

of the Sgr dSph within seven stripes, along the leading and trailing tails, are also

plotted in figure 5.5. This simulated data follows the same trends as that seen in

the observations: widths along the leading tail decrease with angle along the stream

while there is evidence that the stream increases in width as the magnitude of the

angle along the stream increases along the trailing tail.

The density of the stream within all fifteen stripes has been plotted versus

the angle along the stripe in figure 5.6. Angle along the stripe is defined here as

before, while the density is a linear density defined as the number of stars per

kiloparsec along the stream at the detection point, corrected for the angle between

the stripe and the stream, and then corrected for the thickness of the stripe at

the detection distance because the farther away the stream the larger the volume

subtended by the angle. A correction for edge effects, the tidal debris falling outside

the angular stripe limits or the stream being far enough away to to lose stars due to

falling survey efficiency at faint magnitudes have been taken into account here. The

efficiency effect was corrected by binning the stars by distance and correcting the

bins based on the efficiency function prior to the directional correction described

above. If a portion of the stream was cut out due to the stripe limits, then the

number of stream stars was correct by estimating the amount of stream that was
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Figure 5.5: The width (FWHM) at each of the detections has been plotted versus the angle along the stream
(solid dots) while the asterisks denote the width calculated in the model disruption of the Sgr dSph for those
stripes. Here, angle along the stripe denotes the angle from the Sgr dSph core to the stream detection with
positive angles representing the leading tail and negative angles representing the trailing tail. There is a
clear trend in decreasing width as the magnitude of the angle increases along the stream in the leading tail
and some evidence of the width increasing with the magnitude of the angle along the stream in the trailing
tail. These trends are observed in the simulated data as well.
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cut out based on symmetry.

There is a definitive trend that the stream density decreases with distance from

the core. Densities were also calculated for the simulated disruption within seven

stripes along the leading and trailing tail and plotted in figure 5.6. The decreasing

trend in observed in the leading tail in the simulation, as well; however, the trailing

tail shows a constant density in the simulation. Again, a clear need for improved

models to match the data can be seen here.

From figure 5.2, it can be seen that the detections of the leading tidal tail lie

along a consistent line as do the detections of the trailing tail, but that these are

not consistent with the orbital plane of [69] which has equation

−0.064X + 0.970Y + 0.233Z + 0.232 = 0. (5.1)

This implies that a new orbital plane is needed. Using all fifteen detections, a least

squares method was applied to find the best fit plane to these points. The resulting

plane has equation

−0.207X + 0.925Y + 0.319Z − 1.996 = 0 (5.2)

and correlation value of 0.992. A similar fit was performed in the same manner

but adding in the position of the Sgr dSph core for an eighteenth point. The plane

resulting from this fit has equation

−0.159X0.940Y + 0.302Z − 0.807 = 0 (5.3)

and correlation value of 0.981. The fit with the Sgr core is closer to the original

value of equation 5.1 and has a lower “goodness of fit” than that of the fit without

the Sgr core. Attempts were made to align the Sgr dSph core with the plane of the

leading tidal tail by adjusting the distance and angular position on the sky (within

reasonable errors) but without success.

The fifteen detections are plotted on the new orbital plane of equation 5.2 in

figures 5.7 and 5.8. Figure 5.7 shows no considerable change from that of figure 5.1;
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Figure 5.6: The density in each stripe of the Sgr stream has been plotted versus the angle along the stream
(solid dots) and the asterisks represents those densities calculated in the model disruption of the Sgr dSph.
Here, angle along the stripe denotes the angle from the Sgr dSph core to the stream detection with positive
angles representing the leading tail and negative angles representing the trailing tail. Density, here, is a
linear density defined as the number of stars within the stream at the detection point after rotating the
portion of the stream to be aligned with the plane then normalized by the thickness of the stripe at that
point and corrected for edge effects. A prominent trend towards density decreasing as the magnitude of the
angle along the stream increases is observed in both the leading and trailing tail. This trend is also observed
in the simulation along the leading tail; however, the density appears to remain quite constant along the
trailing tail of the simulation.
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however, figure 5.8 clearly shows that all the detections of the leading tail lie on a

well defined plane, while the Sgr core and the three detections of the trailing tail do

not.

The least squares method was again applied to find the best-fit plane to tthe

three trailing tail detections and the Sgr dSph core position, resulting in the plane

equation

0.024X + 03990Y + 0.136Z − 1.801 = 0, (5.4)

with correlation value 0.992. These points have been plotted along this plane edge

on in figure 5.9. Clearly the trailing tail detections and Sgr core are well described by

this plane. The two planes of equations 5.2 and 5.4 are approximately 17◦ different

in orientation. The leading and trailing tail appear to lie along differing orbital

planes with the Sgr core lying in the orbital plane of the trailing tail. This may

imply a strong precession in the orbital plane of the Sgr dSph which in turn would

imply a non-spherical Galactic potential.

The results of the maximum likelihood optimizations and tidal debris extrac-

tions provide a set of very accurate determinations to use in construction of a better

disruption model. Not only are summary statistics available for use in determining

the correctness of a simulation, but a catalog of stars fitting the density profile of

the tidal stream has been generated. This provides a brand new means in which the

validity of the simulations may be tested, and will serve the constrain the models

for the Galaxy.

5.3 The Stellar Spheroid

The results for the stellar spheroid are very interesting. They do not yet give

a definitive answer as to the structure of the spheroid because the results returned

from the maximum likelihood algorithm are so greatly varied. These results can

be seen in table 5.1. The values for the flattening parameter q have a range of

0.314 < q < 0.633, so the stellar spheroid is clearly oblate; the exact value of the q

parameter remains ill-defined. However, with one exception, the analysis of all the

contiguous stripes show much greater correspondence than when the three southern

stripes are included. The average of q over all stripes is q = 0.588. This is consistent
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Figure 5.7: Plotted here are the fifteen maximum likelihood detections of the Sgr tidal stream on the orbital
plane in equation 5.2 viewed face on. The Galactic center, Solar position, and Sgr dSph position are plotted
along with the detected and spatial directions calculated via the maximum likelihood method. Very little
has changed in appearance as compared to figure5.1.



121

Figure 5.8: Plotted here are the fifteen maximum likelihood detections of the Sgr tidal stream on the orbital
plane in equation5.2 viewed edge on. The Sgr dSph position are plotted along with the detected and spatial
directions calculated via the maximum likelihood method. Clearly the detections of the leading tail lie along
the calculated orbital plane while the trailing tail detections and the Sgr dSph do not.
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Figure 5.9: Plotted here are the three maximum likelihood detections of the trailing Sgr tidal stream on
the orbital plane in equation5.4 viewed edge on. The Sgr dSph position are plotted along with the detected
and spatial directions calculated via the maximum likelihood method. Clearly the detections of the trailing
tail lie along the calculated orbital plane along with the Sgr dSph. Comparing this figure with figure 5.8
suggests that the leading and trailing tails lie along different orbital planes.
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with the range of values fit in [92] ( 0.5 < q < 0.8), though the values found here

seem tend to be more oblate, this could be explained in the slight differences in

models used to model the spheroid.

The core radius, r0, varies even more greatly than that of the flattening pa-

rameter, q. The values for r0 were found in the range 1.844 < r0 < 25.952. As with

q, the values found among the contiguous datasets of the North Galactic cap were

found to maintain a more consistent value than those of the three southern stripes.

It should also be noted that those values found in the southern stripes are almost a

factor of two larger than those found in the northern stripes. The average over all

stripes gives r0 = 9.187 kpc.

There are a couple of reasons why the spheroid results are not definitive. It

is highly likely that there is more substructure in the spheroid than was fit via the

maximum likelihood algorithm in this work. Remnants of past mergers may exist in

large enough overdensities to interfere with the maximum likelihood fits but not a

high enough overdensity to actively fit. Another possibility is that a global structure

such as the spheroid cannot be accurately fit over such a small volume as done in

this study. It is possible that optimizing over multiple stripes simultaneously would

yield more consistent results.

The single most likely cause for the spheroid results, however, is that the

Hernquist model does not accurately represent the smooth component of the stellar

spheroid density profile. However, how does one determine the smooth component

of a structure without knowing where the non-smooth components are? Until now,

it has been an arduous task to attempt to extract uncontaminated samples from

the data that represent the smooth spheroid. Yet, the results are still ill-defined as

in [92]. This is where the maximum likelihood technique presented here can greatly

aid in the spheroid studies, by enabling the removal of all the substructure from the

spheroid leaving only the smooth component behind.

As shown in section 3.3, tidal debris can be accurately fit despite an incorrect

spheroid model. Therefore, it is possible to run the maximum likelihood algorithm

on the data to fit tidal debris, and then extract that tidal debris from the data

as shown numerous times here. Once, the tidal debris has been removed, all that
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Table 5.1: Spheroid results by stripe.

Stripe q r0 (kpc)
86 0.633± 0.010 16.657± 0.370
82 0.458± 0.024 19.404± 0.588
79 0.342± 0.005 25.952± 0.671
23 0.552± 0.009 11.938± 0.471
22 0.314± 0.019 2.879± 0.860
21 0.534± 0.015 6.514± 0.668
20 0.541± 0.009 10.218± 0.315
19 0.524± 0.013 5.951± 0.363
18 0.572± 0.009 7.367± 00.310
17 0.591± 0.010 5.461± 0.294
16 0.545± 0.010 5.489± 0.353
15 0.537± 0.013 6.942± 0.576
13 0.526± 0.012 6.985± 0.511
11 0.566± 0.053 4.206± 1.966
9 0.547± 0.017 1.844± 0.307
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should remain the smooth component of the spheroid. This smooth spheroid data

can then, in principle, be fit to great accuracy, and the correct stellar spheroid

structure determined.

5.4 Overview

The maximum likelihood method for fitting tidal debris has proven to be an

extremely effective means at analyzing spatial star data. In this manner, fifteen

distinct SDSS stripes of F turnoff star data have been successfully analyzed with

regard to the Sgr tidal stream. A Galactic coordinates density plot can be seen

in figure 5.4 The results of the maximum likelihood optimizations have provided

positional, orientation, and size information regarding the tidal debris while simul-

taneously determining the flattening and core radius of the stellar spheroid. Through

the use of a probabilistic separation technique, the tidal debris can then be extracted

from the data set for separate analysis of the tidal debris and the stellar spheroid.

After removing the tidal debris, the remaining spheroid stars it is then possible to

study the structure of the smooth component of the spheroid itself. The remaining

stars after extracting the Sgr tidal stream can be seen in figure 5.10.

The extracted tidal debris star catalog, seen in figure 5.11, has many uses.

This catalog can then be used for comparison with simulations. By creating a cat-

alog of stars that accurately represent the debris characteristics, these simulations

will be able to be better constrained, thereby producing the most accurate represen-

tations of how the Galaxy attained its current state. Specifically, by constraining

the Galactic potential used in these simulations it will be possible to determine the

distribution of mass in the Milky Way, and since the primary mass component of

the Milky Way is dark matter it will thus be possible to determine the distribution

of dark matter in the Galaxy.

Though it does not contain stars that are explicitly stream stars, the catalog

as a whole represents the spatial characteristics of the stream at that point in the

sky, the tidal debris star catalog could potentially be used in follow-up studies.

This is not to say a survey should target all stars in a the star catalog, but the

probability that a star is as stream star could potentially be used to maximize the
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Figure 5.10: Density polar plot in Galactic coordinates are those stars in
the Northern Galactic cap remaining after removing those stars found to
fit the density profile of the Sgr tidal stream via the separation algorithm.
The main Sgr tidal stream has been clearly removed while the bifurcated
section of the stream remains.
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Figure 5.11: Density polar plot in Galactic coordinates are those stars
in the Northern Galactic cap found to fit the density profile of the Sgr
tidal stream via the separation algorithm.
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chance of actually targeting a stream star. By specifically targeting tidal debris

stars, it may then be possible to perform studies regarding the stellar properties

and characteristics of stars from the disrupted body. This could then provide insight

into the disrupted body itself, which would be especially useful should the body be

completely disrupted.

5.5 Future Work

There are a number of endeavors that will be pursued both using and regarding

the maximum likelihood algorithm. The primary endeavor will be to analyze the

SDSS data with regards to other substructure. For instance, fitting the bifurcated

section of the Sgr stream along with the Virgo stellar stream would reduce the

amount of substructure and would provide not only interesting results regarding

these structures themselves, but after extracting these structures from the spheroid,

a large sample of reasonably smooth spheroid data should be available for study in

order to determine the true density profile of the stellar spheroid.

It will also be useful to extend the ability of the algorithm to fit not only

multiple streams simultaneously, but multiple stripes simultaneously. This ability

would, in theory, provide a much better fit to the global spheroid population and if

the substructure has already been previously removed the structure of the spheroid

can be constrained. It may also prove useful to have the ability to maintain continu-

ity between stream segments along adjacent stripes being fit simultaneously. This

would mean that the stream axis must meet at the edges of the stripe to maintain a

piecewise curve. With this addition to the algorithm it may be possible to provide

even more accurate results as the streams would be somewhat more constrained.

The addition of multiple star types would be useful as well, in that it would provide

more data as well as probing different populations. For example, the addition to

use BHB stars would provide the ability to study much more different structures

not possible through the use of F turnoff stars.
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davári, L. N. Carey, F. J. Castander, A. J. Connolly, K. R. Covey, I. Csabai,
J. J. Dalcanton, M. Doi, F. Dong, D. J. Eisenstein, M. L. Evans, X. Fan,
D. P. Finkbeiner, S. D. Friedman, J. A. Frieman, M. Fukugita, B. Gillespie,
K. Glazebrook, J. Gray, E. K. Grebel, J. E. Gunn, V. K. Gurbani, P. B.
Hall, M. Hamabe, D. Harbeck, F. H. Harris, H. C. Harris, M. Harvanek,
S. L. Hawley, J. Hayes, T. M. Heckman, J. S. Hendry, G. S. Hennessy, R. B.
Hindsley, C. J. Hogan, D. W. Hogg, D. J. Holmgren, J. A. Holtzman, S.-i.
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Ichikawa, Ž. Ivezić, S. Jester, D. E. Johnston, A. M. Jorgensen, M. Jurić, S. M.
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den, C. Stoughton, M. A. Strauss, M. SubbaRao, A. S. Szalay, I. Szapudi,
P. Szkody, M. Tegmark, A. R. Thakar, D. L. Tucker, A. Uomoto, D. E. Vanden
Berk, J. Vandenberg, M. S. Vogeley, W. Voges, N. P. Vogt, L. M. Walkowicz,
D. H. Weinberg, A. A. West, S. D. M. White, Y. Xu, B. Yanny, D. R. Yocum,
D. G. York, I. Zehavi, S. Zibetti, and D. B. Zucker. The Fourth Data Release
of the Sloan Digital Sky Survey. ApJS, 162:38–48, jan 2006.
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M. A. Carr, F. J. Castander, D. Cinabro, R. J. Cool, K. R. Covey, I. Csabai,
C. E. Cunha, J. R. A. Davenport, B. Dilday, M. Doi, D. J. Eisenstein, M. L.
Evans, X. Fan, D. P. Finkbeiner, S. D. Friedman, J. A. Frieman, M. Fukugita,
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Matched-Filter Analysis of the Tidal Tails of the Globular Cluster Palomar 5.
AJ, 124:349–363, jul 2002.

[60] C. J. Grillmair and O. Dionatos. A 22◦ Tidal Tail for Palomar 5. ApJ, 641:L37–
L39, apr 2006.

[61] C. J. Grillmair and R. Johnson. The Detection of a 45◦ Tidal Stream Associated
with the Globular Cluster NGC 5466. ApJ, 639:L17–L20, mar 2006.

[62] V. Belokurov, N. W. Evans, M. J. Irwin, P. C. Hewett, and M. I. Wilkinson.
The Discovery of Tidal Tails around the Globular Cluster NGC 5466. ApJ,
637:L29–L32, jan 2006.

[63] C. J. Grillmair. Four New Stellar Debris Streams in the Galactic Halo. ApJ,
693:1118–1127, mar 2009.

[64] C. J. Grillmair and O. Dionatos. Detection of a 63◦ Cold Stellar Stream in the
Sloan Digital Sky Survey. ApJ, 643:L17–L20, may 2006.

[65] V. Belokurov, N. W. Evans, E. F. Bell, M. J. Irwin, P. C. Hewett, S. Koposov,
C. M. Rockosi, G. Gilmore, D. B. Zucker, M. Fellhauer, M. I. Wilkinson, D. M.
Bramich, S. Vidrih, H.-W. Rix, T. C. Beers, D. P. Schneider, J. C. Barentine,
H. Brewington, J. Brinkmann, M. Harvanek, J. Krzesinski, D. Long, K. Pan,
S. A. Snedden, O. Malanushenko, and V. Malanushenko. The Hercules-Aquila
Cloud. ApJ, 657:L89–L92, mar 2007.

[66] D. Carollo, T. C. Beers, Y. S. Lee, M. Chiba, J. E. Norris, R. Wilhelm,
T. Sivarani, B. Marsteller, J. A. Munn, C. A. L. Bailer-Jones, P. R. Fiorentin,
and D. G. York. Two stellar components in the halo of the Milky Way. Nature,
450:1020–1025, dec 2007.

[67] H. J. Newberg, B. Yanny, E. K. Grebel, G. Hennessy, Ž. Ivezić, D. Martinez-
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[76] M. A. Gómez-Flechoso, R. Fux, and L. Martinet. Sagittarius, a dwarf spheroidal
galaxy without dark matter? A&A, 347:77–91, jul 1999.

[77] A. Helmi and S. D. M. White. Simple dynamical models of the Sagittarius
dwarf galaxy. MNRAS, 323:529–536, may 2001.

[78] D. R. Law, S. R. Majewski, M. F. Skrutskie, and K. V. Johnston. Modeling
the Tidal Tails of the Sagittarius Dwarf Galaxy. In F. Prada, D. Martinez
Delgado, and T. J. Mahoney, editors, Satellites and Tidal Streams, volume
327 of Astronomical Society of the Pacific Conference Series, pages 239–+, dec
2004.



142

[79] D. R. Law, K. V. Johnston, and S. R. Majewski. A Two Micron All-Sky Survey
View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails.
ApJ, 619:807–823, Feb 2005.

[80] K. V. Johnston, H. Zhao, D. N. Spergel, and L. Hernquist. Tidal Streams as
Probes of the Galactic Potential. ApJ, 512:L109–L112, feb 1999.

[81] R. Fletcher. Practical Methods of Optimization. Wiley-Interscience, New York,
NY, second edition, 1987.

[82] L. Hernquist. An analytical model for spherical galaxies and bulges. ApJ,
356:359–364, Jun 1990.

[83] H. J. Newberg and B. Yanny. The Milky Way’s stellar halo - lumpy or triaxial?
Journal of Physics Conference Series, 47:195–204, Oct 2006.

[84] Michael T. Heath. Scientific Computing. McGraw-Hill, New York, NY, second
edition, 2002.

[85] T. Desell, N. Cole, M. Magdon-Ismail, H. Newberg, B. Szymanski, and
C. Varela. Distributed and Generic Maximum Likelihood Evaluation. In 3rd

IEEE International Conference on e-Science and Grid Computing, pages 337–
344, Dec 2007.

[86] Carlos A. Varela and Gul Agha. Programming Dynamically Reconfigurable
Open Systems with SALSA. ACM SIGPLAN Notices. OOPSLA’2001 Intrigu-

ing Technology Track Proceedings, 36(12):20–34, dec 2001.

[87] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard . Parallel Com-

puting, 22(6):789–828, sep 1996.

[88] David P. Anderson, Eric Korpela, and Rom Walton. High-Performance Task
Distribution for Volunteer Computing. e-Science, pages 196–203, 2005.

[89] P. Teuben. The Stellar Dynamics Toolbox NEMO. In R. A. Shaw, H. E. Payne,
and J. J. E. Hayes, editors, Astronomical Data Analysis Software and Systems

IV, volume 77 of Astronomical Society of the Pacific Conference Series, pages
398–+, 1995.

[90] K. Freese, P. Gondolo, and H. J. Newberg. Detectability of weakly interact-
ing massive particles in the Sagittarius dwarf tidal stream. Phys. Rev. D,
71(4):043516–+, feb 2005.

[91] D. J. Schlegel, D. P. Finkbeiner, and M. Davis. Maps of Dust Infrared Emis-
sion for Use in Estimation of Reddening and Cosmic Microwave Background
Radiation Foregrounds. ApJ, 500:525–+, jun 1998.



143

[92] E. F. Bell, D. B. Zucker, V. Belokurov, S. Sharma, K. V. Johnston, J. S. Bullock,
D. W. Hogg, K. Jahnke, J. T. A. de Jong, T. C. Beers, N. W. Evans, E. K.
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APPENDIX A

Standard Candles

A “standard candle” is an object that has a well known intrinsic brightness which

allows for the estimation of the star’s distance throught the inverse square law

of brightness. The inverse square law simply states that the apparent brightness

(magnitude) of a star will decrease with the square of the distance. The absolute

magnitude is defined as the apparent magnitude a star would have if it were 10 pc

away. Using this definition, it is possible to calculate the distance of a star using

the observed brightness of the star, its apparent magnitude, g, via the equation

g −Mg = 5 log
d

10pc
, (A.1)

where g is the star’s apparent magnitude, Mg is the star’s absolute magnitude, and

d is the star’s distance.

The best stars for use as standard candles are variable stars, such as Cepheids

or RR Lyraes, which have very well defined period-luminosity relationships, this al-

lows for the calculation of a very precise absolute magnitude and therefore the most

accurate distance estimate possible. However, these are rare and do not provide a

significant sampling over the sky nor of all stellar populations. Other star types that

make good standard candles are those that occur at approximately a constant abso-

lute magnitude on a color-magnitude diagram (CMD). A color magnitude diagram

depicts a star’s magnitude versus the difference of two color filters, these diagrams

closely parallel those of Hertzsprung-Russell (H-R) diagrams which depict luminos-

ity versus temperature. Therefore stars that occur approximately along a horizontal

line on these diagrams make good standard candles. Blue horizontal branch (BHB)

stars, one type of A colored star, are a good example of this; these stars are very

bright, and can therefore be seen at large distances, and are at a relatively constant

absolute magnitude. However, these stars are still somewhat low in number and do

not occur in sufficient numbers for a study of this type.
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