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Introduction

Introduction, research goals

Change detection in optical aerial image pairs

new built-up regions, building operations
planting of trees, fresh plough-land
groundwork before building-over etc

Large (many years) time differences → different seasons,
illumination conditions, vegetations etc.

Input – preliminary registered orthophotos:

Image 1 (G1) Image 2 (G2)
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Introduction

Task formulation

Binary image segmentation problem:
Classifying each pixel s of the image lattice S as ‘change’ (below:
white) or ‘background’ (i.e. unchanged, with black)
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Feature extraction and integration Global intensity statistics

Feature definition

Global statistics of intensity co-occurrences
Feature vector of pixel s is pair of intensity values of s in the two
images: g(s) = [g1(s), g2(s)]T , g1(s) ∈ G1, g2(s) ∈ G2

Global statistics in changed/background regions:
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Feature extraction and integration Global intensity statistics

Feature density modeling

Multi-Gaussian Intensity-based (MGI) change detection: ‘change’
class is modeled by a 2-D uniform pdf, while ‘background’ with a
mixture of Gaussians in the g(s) feature space

Class ‘background’:

P
(
g(s)

∣∣bg
)

=

K∑

i=1

κi · η
(
g(s), µi ,Σi

)

using fixed K (e.g. K = 5) and EM parameter estimation

Class ‘change’:

P
(
g(s)

∣∣ch
)

=

{ 1
(b1−a1)·(b2−a2)

, if g(s) ∈ Γ

0 otherwise,

where g(s) ∈ Γ iff a1 ≤ g1(s) ≤ b1 and a2 ≤ g2(s) ≤ b2
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Feature extraction and integration Global intensity statistics

Validation of the Intensity Feature

Result of the intensity based ML pixel classification

φg(s) = argmaxψ∈{ch,bg}P
(
g(s)

∣∣ψ
)

False alarms in textured image regions
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Feature extraction and integration Local block correlation

Feature extraction 2

Second feature: local block correlation

c(s): normalized cross correlation between the v × v
neighborhoods of pixel s in G1 resp. G2 images (used v = 17).
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Feature extraction and integration Local block correlation

Feature extraction 2

Feature statistics

P
(
c(s)

∣∣ch
)

= η
(
c(s), ϑch, ς

2
ch

)
=

1√
2πς2

ch

exp
(
−(c(s) − ϑch)

2

2ς2
ch

)

P
(
c(s)

∣∣bg
)

= η
(
c(s), ϑbg, ς

2
bg

)
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Feature extraction and integration Local block correlation

Feature extraction 2

Result of the correlation based ML pixel classification

φc(s) = argmaxψ∈{ch,bg}P
(
c(s)

∣∣ψ
)

False alarms in homogenous image regions
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Feature extraction and integration Feature integration

Feature of feature selection

Feature selection based on local contrast

νi(s), i ∈ {1, 2}: variance of the gray levels over the v × v
neighborhood of s in Gi

Joint variance vector: ν(s) = [ν1(s), ν2(s)]T

Local variance (contrast) maps:

ν1(.) ν2(.)
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Feature extraction and integration Feature integration

Feature integration

Partitioning the pixels of the ‘training’ image pairs:

Sν1,ν2 = {s ∈ S|ν1(s) ≈ ν1, ν2(s) ≈ ν2}
Reliability ‘histogram’ of the intensity map φg :

hg [ν1, ν2] =
number of correctly classified pixels inSν1,ν2

number of erroneously classified pixels inSν1,ν2

Reliability ‘histogram’ of the correlation map φc :

hc[ν1, ν2] =
number of correctly classified pixels inSν1,ν2

number of erroneously classified pixels inSν1,ν2
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Feature extraction and integration Feature integration

Feature integration

Reliability histograms hg and hc with 2-D Gaussian density
approximations:
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Feature extraction and integration Feature integration

Feature integration

Gaussian models for the reliability of the g/c features:

P
(
ν(s)

∣∣hg
)

= η
(
ν(s), µg,Σg

)

P
(
ν(s)

∣∣hc
)

= η
(
ν(s), µc ,Σc

)

Contrast-based feature selection-map (red where the correlation
feature is estimated as more reliable):

φν(s) = argmaxχ∈{g,c}P
(
ν(s)

∣∣hχ
)
.
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Feature extraction and integration Feature integration

Feature integration

Initial feature integration rule:

φ∗: final change mask

φ∗(s) =

{
φg(s) if φν(s) = g
φc(s) if φν(s) = c

Result of the pixel-by-pixel approach:

output φ∗(s) map ground truth

Observation: improved, but still noisy result
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Feature extraction and integration Feature integration

Towards a Robust Segmentation Approach

Global labeling optimization over the image instead of
pixel-by-pixel segmentation

pixel level feature descriptions
interaction constraints between neighbouring pixels

Conventional Markov Random Field approaches must be
extended:

multi layer model for considering the different label maps
particular role of the ν(s) feature:

switching ON and OFF the g(s) respectively c(s) features into the
integration process
data dependent dynamic links are needed in the graph
application of Mixed Markov models
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A Mixed Markovian image segmentation model Introduction to mixed Markov models

Image Segmentation with Conventional MRFs

2-D pixel lattice → graph: S = {s}
nodes: image points (s is a pixel)
edges: interactions → cliques

Goal: generate a K -colored segmented image, with segmentation
classes: L = {C1, . . . ,CK }

Here: K = 2; C1=change and C2=background.

fs: local feature observed at pixel s

ωs: label of pixel s which marks its segmentation class
Segmentation with Markov Random Fields (MRF):

Pixels’ feature-values must agree with the class models specified
by their label:

Classes are characterized by probability density functions e.g.
P(fs|ωs = background).

Segmented image is “smooth”: We penalize, if two neighboring
pixels have different labels
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A Mixed Markovian image segmentation model Introduction to mixed Markov models

Image Segmentation with Conventional MRFs

Global labeling: ω = {ωs|s ∈ S}}
Observation process: F = {fs|s ∈ S}
MAP estimation of the optimal global labeling:

ω̂ = argmaxω∈ΩP(ω|F)

where Ω denotes the set of all the possible global labelings.
(Hammersley-Clifford theorem): P(ω|F) can be factorized into
individual terms whose domains are the cliques of the graph.

P(ω|F) ∝
∏

s∈S

P(fs|ωs)

︸ ︷︷ ︸
P(F|ω)

· 1
Z

exp

(
−
∑

C∈C

VC(ω)

)

︸ ︷︷ ︸
P(ω)

where C is an arbitrary clique and VC is the potential of C.
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A Mixed Markovian image segmentation model Introduction to mixed Markov models

Step forward to Mixed Markov models

In MRFs two nodes directly interact if and only if they are
connected by a (static) edge
In Mixed models the connections can also be data dependent
Two types of nodes:

regular nodes: same role as nodes of MRF’s
address nodes: their ‘labels’ are pointers to regular nodes

Regular nodes A and B may interact iff they are connected by (i) a
(static) edge OR (ii) a chain of a static edge and a dynamic
address pointer

Three cases when A and B regular nodes may interact (address nodes
are marked by white circles, edges by lines, pointers by dotted arrows)
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A Mixed Markovian image segmentation model Introduction to mixed Markov models

Probability modeling in Mixed Markov models

A priory probability of a global labeling:

P(ω) =
1
Z

exp

(
−
∑

C∈C

VC
(
ωC , ω

A
C

)
)

where C is a clique and ωC is the set of labels inside C:

ωC = {ω(q)|q ∈ C}

while ωA
C is the set of node labels pointed by the address nodes of

clique C:

ωA
C = {ω̃(a)

∣∣a ∈ A ∩ C, ω(a) 6= nil}

A is the set of address nodes and ω̃(a) = ω(ω(a)) for a ∈ A
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A Mixed Markovian image segmentation model Proposed model

4-layer Mixed Markov model for Change Detection

s → {sd , sc , sν , s∗}

Regular layers

Sg, Sc : change masks based on the
g(s) resp. c(s) features
S∗: combined layer – output change
mask

Address layer

Sν : switch layer providing
configurable, data-driven inter-layer
connections

Node labels: ω(si): i ∈ {d , c, ν, ∗}, s ∈ S

Cliques and clique potentials:

Singletons: data – label consistency
Intra-layer connections: smooth label maps VC2

Inter-layer interactions: label fusion VC3
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A Mixed Markovian image segmentation model Proposed model

Singleton terms

Assuming conditional independent observations, let be:

P(F|Ω) =
∏

s∈S

P
(
g(s)|ω(sg)

)
· P
(
c(s)|ω(sc)

)
· P
(
ν(s)|ω(sν)

)

where we use previously defined densities for theSg and Sc

layers:

P
(
g(s)|ω(sg) = bg

)
=

K∑

i=1

κi · η
(
g(s), µi ,Σi

)

P
(
g(s)|ω(sg) = ch

)
= 1/[(b1 − a1) · (b2 − a2)]

P
(
c(s)

∣∣ω(sc) = ψ
)

= η
(
c(s), ϑψ , ς

2
ψ

)
, ψ ∈ {ch,bg}

Singletons of Sν will be later given.
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A Mixed Markovian image segmentation model Proposed model

Intra-layer Doubleton Potentials

Doubleton cliques: smoothing priors of the
segmentation within each layer.

The potential of an intra-layer clique C2 = {si , r i} ∈ C2,
i ∈ {g, c, ∗, ν}:

VC2
=

{
−δi if ω(si) = ω(r i )

+δi if ω(si) 6= ω(r i )

for a constant δi > 0.
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A Mixed Markovian image segmentation model Proposed model

Inter-layer interactions

Inter-layer cliques: ω(s∗) should mostly be equal either to ω(sg) or
to ω(sc), depending on the ‘vote’ of the ν(s) feature.

Edge between s∗ and sν

Address node sν should point either
to sg or to sc :

∀s ∈ S : ω(sν) ∈ {sg , sc}
The directions of the address pointers are influenced by the
singletons of Sν :

P
(
ν(s)|ω(sν) = sχ

)
= P

(
ν(s)|hχ

)
, χ ∈ {g, c}
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A Mixed Markovian image segmentation model Proposed model

Inter-layer interactions

The potential function of the inter-layer clique C3 = {s∗, sν}:

VC3

(
ω(s∗), ω̃(sν)

)
=

{
−ρ if ω(s∗) = ω̃(sν)
+ρ otherwise

where ρ > 0, and ω̃(sν) = ω
(
ω(sν)

)
.
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A Mixed Markovian image segmentation model Proposed model

Labeling optimization

MAP estimation of the optimal global labeling ω̂:

ω̂ = argmin
ω∈Ω

{∑

s∈S

− log P
(
g(s)|ω(sg)

)
+

+
∑

s∈S

− log P
(
c(s)|ω(sc)

)
+
∑

s∈S

− log P
(
ν(s)|ω(sν)

)
+

+
∑

i ;{s,r}∈C2

VC2

(
ω(si), ω(r i )

)
+
∑

s∈S

VC3

(
ω(s∗), ω̃(sν)

)}

Optimization by simulated annealing (Modified Metropolis
algorithm)

Output: labeling of the S∗ layer.
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Experiments

Test datasets and reference methods

Database: three sets of optical aerial image pairs provided by the
Hungarian Institute of Geodesy Cartography & Remote Sensing
(FÖMI) and Google Earth.

Data set SZADA: images by FÖMI from 2000 resp. 2005. Seven -
also manually evaluated - photo pairs, covering in aggregate
9.5km2 area at 1.5m/pixel resolution.
Data set TISZADOB: five photo pairs from 2000 resp. 2007 (6.8km2)
with similar size and quality parameters to SZADA.
Test pair ARCHIVE, an aerial image taken by FÖMI in 1984 and a
corresponding Google Earth photo from around 2007.

Manually generated ground truth masks

Metrics: number of false and missed alarms

4 reference methods: PCA, Hopfield, MLP, Parzen
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Experiments

Ground truth generation

Change prototypes considered for ground truth generation (a) new built-up regions (b) building operations
(c) planting of trees (d) fresh plough-land (e) groundwork before building over
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Experiments

Quantitative comparison
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Experiments

Qualitative comparison
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Experiments

Qualitative comparison
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