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This paper shows, by means  of an operator called a splitting operator, that the Douglas-Rachford  splitting 
method for finding a zero of the sum of  two monotone  operators is a special case of the proximal point 
algorithm, Therefore, applications of  Douglas -Rachford  splitting, such as the alternating direction method 
of  multipliers for convex programming decomposit ion,  are also special cases of  the proximal point 
algorithm. This observation allows the unification and generalization of  a variety of  convex programming 
algorithms. By introducing a modified version of the proximal point algorithm, we derive a new, generalized 
alternating direction method of  multipliers for convex programming.  Advances of this sort illustrate the 
power and generality gained by adopting monotone operator theory as a conceptual framework. 
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I. Introduction 

The theory of maximal set-valued monotone operators (see, for example, [4]) 
provides a powerful general framework for the study of convex programming and 
variational inequalities. A fundamental algorithm for finding a root of a monotone 
operator is the proximal point algorithm [48]. The well-known method of multipliers 
[23, 41] for constrained convex programming is known to be a special case of the 
proximal point algorithm [49J. This paper will reemphasize the power and generality 
of the monotone operator framework in the analysis and derivation of convex 
optimization algorithms, with an emphasis on decomposition algorithms. 

The proximal point algorithm requires evaluation of resolvent operators of the 
form ( I + A T )  -1, where T is monotone and set-valued, h is a positive scalar, and I 
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denotes the identity mapping. The main difficulty with the method is that I +AT 
may be hard to invert, depending on the nature of T. One alternative is to find 
maximal monotone operators A and B such that A + B = T, but I + AA and I + AB 
are easier to invert that I +  AT. One can then devise an algorithm that uses only 

operators of the form ( I+AA)  -1 and ( I + A B )  -1, rather than ( I + A ( A + B ) )  -~= 
( / + A T )  -~. Such an approach is called a splitting method, and is inspired by 
well-established techniques from numerical linear algebra (for example, see [33]). 

A number of authors, mainly in the French mathematical community, have 
extensively studied monotone operator splitting methods, which fall into four 
principal classes: forward-backward [40, 13, 56], double-backward [30, 40], Peace- 
man-Rachford  [31], and Douglas-Rachford [31]. For a survey, readers may wish 

to refer to [1 I, Chapter 3]. We will focus on the "Douglas-Rachford"  class, which 

appears to have the most general convergence properties. Gabay [13] has shown 
that the alternating direction method of multipliers, a variation on the method of 
multipliers designed to be more conducive to decomposition, is a special case of 
Douglas-Rachford splitting. The alternating direction method of multipliers was 
first introduced in [16] and [14]; additional contributions appear in [12]. An 

interesting presentation can be found in [15], and [3] provides a relative accessible 
exposition. Despite Gabay's result, most developments of the alternating direction 

method multipliers rely on a lengthy analysis from first principles. Here, we seek 
to demonstrate the benefit of using the operator-theoretic approach. 

This paper hinges on a demonstration that Douglas-Rachford splitting is an 

application of the proximal point algorithm. As a consequence, much of the theory 
of the proximal point and related algorithms may be carried over to the context of 
Douglas-Rachford splitting and its special cases, including the alternating direction 

method of multipliers. As one example of this carryover, we present a generalized 
form of the proximal point algorithm - -  created by synthesizing the work of 
Rockafellar [48] with that of Gol'shtein and Tret 'yakov [22] - -  and show how it 
gives rise to a new method, generalized Douglas-Rachford splitting. This in turn 
allows the derivation of a new augmented Lagrangian method for convex program- 
ming, the generalized alternating direction method of multipliers. This result illus- 
trates the benefits of adopting the monotone operator analytic approach. Because 
it allows over-relaxation factors, which are often found to accelerate proximal 
point-based methods in practice, the generalized alternating direction method of 
multipliers may prove to be faster than the alternating direction method of multipliers 
in some applications. Because it permits approximate computation, it may also be 

more widely applicable. 
While the current paper was under review, [28] was brought to our attention. 

There, Lawrence and Spingarn briefly draw the connection between the proximal 
point algorithm and Douglas-Rachford splitting in a somewhat different - -  and 
very elegant - -  manner. However, the implications for extensions to the Douglas- 
Rachford splitting methodology and for convex programming decomposition theory 
were not pursued. 
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Most of the results presented here are refinements of those in the recent thesis 

by Eckstein [11], which contains more detailed development, and also relates the 

theory to the work of  Gol'shtein [17, 18, 19, 20, 21, 22]. Some preliminary versions 
of our results have also appeared in [10]. Subsequent papers will introduce applica- 
tions of the development given here to parallel optimization algorithms, again 
capitalizing on the underpinnings provided by monotone operator theory. 

This paper is organized as follows: Section 2 introduces the basic theory of 
monotone operators in Hilbert space, while Section 3 proves the convergence of a 

generalized form of the proximal point algorithm. Section 4 discusses Douglas- 
Rachford splitting, showing it to be a special case of the proximal point algorithm 
by means of a specially-constructed splitting operator. This notion is combined with 

the result of  Section 3 to yield generalized Douglas-Rachford splitting. Section 5 

applies this theory, generalizing the alternating direction method of multipliers. It 
also discusses Spingarn's [52, 54] method of  partial inverses, with a minor extension. 
Section 6 briefly presents a negative result concerning finite termination of Douglas- 
Rachford splitting methods. 

2. Monotone operators 

An operator T on a Hilbert space Y( is a (possibly null-valued) point-to-set map 
T:  Y(~2 ~. We will make no distinction between an operator T and its graph, that 
is, the set {(x, y)[y ~ T(x)}. Thus, we may simply say that an operator is any subset 
T of T e x t ,  and define T ( x ) =  T x = { y ] ( x , y ) c  T}. 

If T is single-valued, that is, the cardinality of Tx is at most 1 for all x c ~,  we 
will by slight abuse of notation allow Tx and T(x) to stand for the unique y c Y 
such that (x, y) c T, rather than the singleton set {y}. The intended meaning should 
be clear from the context. 

The domain of a mapping T is its "project ion" onto the first coordinate, 

dom T = { x  E Ygl3y6 Y(: (x, y ) c  T} = { x c  ~[  Tx#O}. 

We say that T has full domain if dora T --- Yg. The range or image of T is similarly 
defined as its projection onto the second coordinate, 

im T= {y c YfI 3x  6 Y(: (x, y) ~ T}. 

The inverse T -1 of  T is { ( y , x ) l ( x , y ) 6  T}. 
For any real number e and operator T, we let cT be the operator {(x, cy) ] (x, y) ~ T}, 

and if A and B are any operators, we let 

A + B =  {(x, y + z)l(x, y ) c  A, (x, z)E B}. 

We will use the symbol I to denote the identity operator {(x, x) [x ~ ~}. Let ( . ,  • } 
denote the inner product on ~. Then an operator T is monotone if 

( x ' - x , y ' - y } > ~ O  V ( x , y ) , ( x ' , y ' ) ~ T .  
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A monotone operator is maximal if (considered as a graph) it is not strictly contained 
in any other monotone operator on Y(. Note that an operator is (maximal) monotone 
if and only if its inverse is (maximal) monotone. The best-known example of maximal 

monotone operator is the subgradient mapping af  of a closed proper convex function 
f :  Y~-~ ~ ~ {+co} [42, 44, 45]. The following theorem, originally due to Minty [36, 37], 

provides a crucial characterization of maximal monotone operators: 

Theorem 1. A monotone operator T on ~( is maximal if and only if im(I  + T) -- Y(. [] 

For alternative proofs of Theorem 1, or stronger related theorems, see [45, 4, 6, 

or 24]. All proofs of the theorem require Zorn's lemma, or, equivalently, the axiom 

of  choice. 
Given any operator A, let JA denote the operator ( I  + A) -~. Given any positive 

scalar e and operator T, Jcr = ( I +  cT) -1 is called a resolvent of T. An operator C 
on Y( is said to be nonexpansive if 

Ily'-yll<~ ]]x'-xlJ V(x,y) ,  ( x ' , y ' ) c  C. 

Note that nonexpansive operators are necessarily single-valued and Lipschitz con- 

tinuous. An operator J on ~ is said to be firmly nonexpansive if 

l i y ' -y[12<~(x ' -x ,y ' -y )  V ( x , y ) , ( x ' , y ' ) 6 J .  

The following lemma summarizes some well-known properties of firmly nonexpan- 
sive operators. The proof is straightforward and is omitted (or see, for example, 
[48] or [11, Section 3.2.4]). Figure 1 illustrates the lemma. 

Lemma 1. (i) All firmly nonexpansive operators are nonexpansive. (ii) An operator J 
is firmly nonexpansive if and only if 2 J -  I is nonexpansive. (iii) An operator is firmly 
nonexpansive if and only if  it is of  the form ½(C+I) ,  where C is nonexpansive. (iv) 
An operator J is firmly nonexpansive if and only if I - J is firmly nonexpansive. [] 

We now give a critical theorem, The "only if" part of the following theorem has 

been well known for some time [48], but the " i f"  part, just as easily obtained, 
appears to have been obscure. The purpose here is to stress the complete symmetry 
that exists between (maximal) monotone operators and (full-domained) firmly 
nonexpansive operators over any Hilbert space. 

Theorem 2. Let c be any positive scalar. An operator T on Y( is monotone ~ and only 
if its resolvent JeT = (I + cT) ~ is firmly nonexpansive. Furthermore, T is maximal 
monotone if and only if J~r is firmly nonexpansive and dom(J~.r) = ~. 

Proof. By the definition of the scaling, addition, and inversion operations, 

( x , y ) c  T <=5 (x+ey,  x) c ( I + c T )  -I. 
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Fig, I. Illustration of the action of firmly nonexpansive operators in Hilbert space. If J is nonexpansive, 
then J(x')-J(x) m u s t  lie in the larger sphere, which has radius Ilx'-xl[ and is centered at 0. If J is 
firmly nonexpansive, then J(x')-J(x) must lie in the smaller sphere, which has radius ½[[x'-x H and is 
centered at ½(x'-x). This characterization follows directly from J being of the form ~1l +vC,l where 
C is nonexpansive. Note that if J(x')-J(x) lies in the smaller sphere, so must (1 -J) (x ' ) -  (1 -J)(x), 
illustrating Lemma l(iv). 

Therefore ,  

T m o n o t o n e  ¢:> ( x ' - x , y ' - y ) > ~ O  V(x , y ) ,  ( x ' , y ' ) c  T, 

¢:> ( x ' - x ,  cy'-cy)>~O V ( x , y ) , ( x ' , y ' ) c T ,  

¢:> ( x ' - x + c y ' - c y ,  x ' - x ) > ~ [ I x ' - x l l  z V ( x , y ) , ( x ' , y ' ) c  T, 

¢:> ( I  + cT) -~ f irmly nonexpans ive .  

The first c la im is es tabl ished.  Clear ly ,  T is max ima l  if  and  on ly  if  cT is max imal .  

So, by Theorem 1, T is max ima l  i f  and  only  if  im( I+eT)=-Y( .  This is in turn  true 

i f  and  only  i f  ( I +  cT) -~ has d o m a i n  Y(, es tab l i sh ing  the second  s ta tement .  []  

Coro l l a ry  2.1. An operator K is firmly nonexpansive if  and only if  K -l - I is monotone. 

K is firmly nonexpansive with full  domain i f  and only i f  K - ~ -  I is maximal 
monotone. [] 

Coro l l a ry  2.2. For any c > 0, the resolvent JeT of  a monotone operator T is single- 
valued. I f  T is also maximal, then J~T has full  domain. [] 

Corollary 2.3 (The Repre sen t a t i on  Lemma) .  Let e > 0 and let T be monotone on ~. 

Then every element z o f  Y{ can be written in at most one way as x +  cy, where y c Tx. 
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I f  T is maximal, then every element z of Y( can be written in exactly one way as x + cy, 
where y ~ Tx. [] 

Corollary 2.4. The functional taking each operator T to (I  + T) -~ is a bijection between 

the collection of  maximal monotone operators on Y( and the collection of  firmly 
nonexpansive operators on 2(. [] 

Corollary 2.1 simply restates the c = 1 case of the theorem, while Corollary 2.2 

follows because firmly nonexpansive operators are single-valued. Corollary 2.3 is 

essentially a restatement of  Corollary 2.2. Corollary 2.4 resembles a result of  Minty 

[37], but is not identical (Minty did not use the concept of firm nonexpansiveness; 

but see also [28]). A root or zero of an operator T is a point x such that Tx ~0. 

We let zer(T) = T-~(0) denote the set of  all such points. In the case that T is the 

subdifferential map Of of a convex function f, zer(T) is the set of all global minima 
o f f  The zeroes of a monotone operator precisely coincide with the fixed points of  

its resolvents: 

Lemma 2. Given any maximal monotone operator T, real number c > O, a n d  x ~ gg, 

we have Oc Tx if and only if Jet(x) = x. 

Proof. By direct calculation, JeT = {(X + cy, X) I ( X, y) C T}. Hence, 

Oe rx  <=> (x,O)~ T ~ (x ,x)cJcT.  

Since Jcr is single-valued, the proof  is complete. [] 

3. A generalized proximal point algorithm 

Lemma 2 suggests that one way of finding a zero of a maximal monotone operator  
T might be to perform the iteration z k+~= Jc~(zk), starting f r o m s o m e  arbitrary 

point z °. This procedure is the essence of the proximal point algorithm, as named 

by Rockafellar [48]. Specialized versions of this method were known earlier to 
Martinet [34, 35], and another development appears in [5]. Rockafellar 's analysis 

allows c to vary from one iteration to the next: give a maximal monotone operator 
T and a sequence of positive scalars {ck}, called stepsizes, we say that {z ~} is 
generated by the proximalpoint algorithm if z k+l = Jcj (Z k) for all k >~ 0. Rockafellar 's  
convergence theorem also allows the resolvents Jc~r to be evaluated approximately,  
so long as the sum of all errors is finite. A related result due to Gol 'shtein and 

Tret 'yakov [22] considers iterations of the form 

Z k+l  ~" (1 - - p k ) Z  k q - p k J e T ( z k ) ,  

where {pk}k°~=oC__ (0, 2) is a sequence of over- or under-relaxation factors. Gol 'shtein 
and Tret 'yakov also allow resolvents to be evaluated approximately,  but, unlike 
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Rockafellar, do not allow the stepsize c to vary with k, restrict Y{ to be finite- 
dimensional, and do not consider the case in which zer(T)=0.  The following 
theorem effectively combines the results of Rockafellar and Gol'shtein-Tret'yakov. 
The notation " -~"  denotes convergence in the weak topology on Y(, where "--*" 
denotes convergence in the strong topology induced by the usual norm (x, x} ~/2. 

Theorem 3. Let T b e  a maximal  monotone operator on a Hilbert space Y~, and let {z k} 
be such that 

Zk+l=(1--pk)Zk  +pkWk Vk~>0, 

where 

I I w k - ( / +  ckT)-l(zk)ll ~< ~k VK~O, 

and {ek}k~=O, {Pk}k~_O, {Ck} C [0, 00) are sequences such that 

oo 
E~= Y, ek<oO, Z l l = i n f p k > 0 ,  Zl2=suppk<2,  g = i n f c k > 0 .  

k -0  k~0 k~0 k~0 

Such a sequence {z k} is said to conform to the generalized proximal point algorithm. 
Then i f  T possesses any zero, {z k} converges weakly to a zero o f  T. I f  T has no zeroes, 

then {z k} is an unbounded sequence. 

Proof. Suppose first that T has some zero. For all k, define 

Q~, = I - J c k r =  I - ( l  +ckT)  -~. 

We know that Ok is firmly nonexpansive from Lemma l(iv). Note also that any 
zero of T is a fixed point of ( I+ CkT)  -~ by Lemma 2, and hence a zero of Ok for 
any k. For all k, define 

•k-el = (1 - - p k ) Z  k + pkJckT( Z k) = ( l -- PkQk)(zk). 

For any zero z* of T, 

lie k+l -z*ll2 = IJz k --PkQk(Z k) --Z*II 2 

= I]Zk--Z*]12--2pk(z k --Z*, Qk(zk))+p2kl[Qk(zk)]12. 

Since 0e Qk(z*) and Ok is firmly nonexpansive, we have 

I1£ k+l -z*H2~< ]]z k -- Z*]]2--pk(2-- pk)l[Qk(Zk)]l 2 

~< ]lz ~ -z*ll2-,~,(2-&)llO~(z~)l] =. 

As A~(2-/12) > 0, we have that [l~k+~ _ z*l] ~ [IZk -- Z*II. Now, Ilzk*~-- ~k+'ll <- Pkek, SO 

I[Z k+l --Z:~]] ~ I[Z k+l - -Z*I]  ~-HZ k+l -zTk+']] <~ lie k - z* l l  +pkek. 

Combining this inequality for all k, 

k 
I[zk+'-z*l[ <- I lz°-z* l l  + E p,e,~< I l z ° - z* l [+2&,  

i-O 
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and {z k} is bounded. Furthermore, 

II z ~+'  - z *  LI 2 = II e k + '  - z *  + ( z  > '  - ~k+l)112 

= lick+l-- Z*l12+Z(ff k + ' -  Z*, 2k+l--zk+l)-t-l lzk+l--zk+l}} 2 

~< I}- ~k+~ -z*}l~+ 2lie k+' -z*ll IIz ~+~ -e~+'ll + {I Zk+l - ek+lll2 

<~ IIz~- z*lle- & ( 2 -  &)lIOk(z~)ll~ 

+2pkek(llZ o z , I I + 2 E 0  + a 2 - -  P k S k .  

E Since {ek} is summable,  so is {e~}, hence 2=~k=o 82<o0. It follows that for all k, 

]lz k+' - z'I] 2~< Ilz ° -  z*ll2 + 4E,(llz ° -  z'l] q- 2E1) 
k 

+ 4 E ~ - a , ( 2 - & )  2 IIO,(z')ll ~. 
i=0 

Letting k ~ e% we have that 

ILQ,(z*)ll2<oo ~ lim Qk(zk)=O. 
i=0 k+oo 

For all k, define (x  k, yk )  to be the unique point in T such that x k + cky k = z k (here 

we use the Representation Lemma, Corollary 2.3). Then Qk(z  k) ~ 0  implies that 

z k - x k ~ O .  Furthermore, since {ok} is bounded away from zero, we also have 
C k l O k ( Z  k ) = yk -* 0. 

Now, {z k} is bounded, and so possesses at least one weak cluster point. Let z ~ 

be any weak cluster point of  {zk}. Let {zk(J)}~= 0 be a subsequence such that 
z k(j) -~  z °°. Since z k - x k ~  O, we also have x k ( J ) - ~  z ~. 

Let (x, y) be any point in T. By the monotonicity of T, we have that (x - x k, y - yk) >~ 

0 for all k. Taking the limit over the subsequence k ( j )  and using that x k(j) -~ z ~ 

and yk ~ 0, one obtains ( x - z  °~, y - 0 ) I > 0 .  Since (x, y) was chosen arbitrarily, we 
conclude from the assumed maximality of  T that (z ~, 0)~ T, that is z°~6 zer(T).  

It remains to show that {z k} has only one weak cluster point. Consider any zero 

z* of  T. Since l i zk-z*l l<~ [ [ z ° - z * I I + 2 E l  for all k, 

~* = lira infllzk-- Z*I] 
k~.oo 

is finite and nonnegative, and one may show that IIz k - z*ll-+ a*. Now take any two 
weak cluster points z] ° and z2 of {zk}. By the reasoning above, both are zeroes of 

T, and hence 

a~ = lim Ilzk- zTIl, a2-- lim [(zk-z211 
k~oo k~oo 

both exist and are finite. Writing 

ilzk z~l[2 ilzk z~ol l2q_2(zk  z T ,  zTo z 2 ) q _ l l  ~o o~,2 - -  Z I  - -  Z 2  , 
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one concludes that 

lira (z k - z l  , z ? -  z ~ )  1 2 2 o o  oO 2 
k~oo 

Since z~ is a weak cluster point of  {Zk}, this limit must be zero. Hence, 

2 2 

Reversing the roles of z~ and z~, we also obtain that 

We are then forced to conclude that IIzT-z~ll = 0, that is, z7 = z~. Thus, {z k} has 

exactly one weak cluster point. This concludes the proof  in the case that T possesses 

at least one zero. 

Now consider the case in which T has no zero. We show by contradiction that 
{z k} is unbounded.  Suppose that {z k} is bounded,  that is, there is some finite S such 

that IIzk[[<S for all k. Let 

g = sup {ek}. 
k>~0 

Then let 

r = 2S/min{ 1, A~}+ g +  1. 

We claim that for all k, one has Ilzk[I, ]lwkll, [[Jc~r(zk)[( < r--1 .  Clearly, IIzkl[ < S< 
r - 1 ,  so the claim holds for z k. Now, w ~ = p),~(zk+~-(1--pk)zk),  SO 

1 ( 1 2S ]JWkl]<~ Ilzk+l]l--(1--pk)l]zk[I)<~(S+S)=--<~r--1. 
Pk AI 

Finally, 

2S 

Now, let h : N n ~  [0, oo] be the convex function 

h(x) [ +oo, Itx[I > r, 

and let T ' =  T+Oh, so that 

V(x), Ilxfl < r, 
T ' ( x ) =  (y+axlycT(x),a~>O}, IIx[[=r, 

0, [ixlJ>r. 

Since d o m T ~ i n t ( d o m 0 h ) = d o m T n { x l ] l x [ l < r } ¢ 0 ,  T' is maximal monotone 
[46]. Further, dom T'  is bounded,  so z e r ( T ' ) # 0  [43]. Since Ilzkll, Ilwkll, and 
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]lJc~r(zk)ll are all less than r for all k, the sequence {z k} obeys the generalized 
proximal  point  i teration for T', as well as for  T. That  is, 

Zk+l=(1--pk)zk +pkwk Vk~>0, 

where 

IJ w k - (x  + 

By the logic of  the first part  of  the theorem,  {z k} converges weakly to some zero z ~° 
o f  T'. Fur thermore ,  as {Izkll ~< r -  1 for  all k, IIz~ll <~ r -  I < r, and so T'(z ~) = T(z~),  

and z ~ is also a zero of  T. This is a contradict ion;  hence,  we conclude that  {z ~} 

cannot  be bounded .  [] 

Figure 2 is in tended to clarify the role of  the relaxation factor Ok in the convergence 
of  the method.  It illustrates the case where ek = 0, forcing exact evaluat ion of  the 
resolvent.  For  p c (0, 2), let 

zk+'(p) = (1 - p ) z  k + p ( I  + c k T ) - l ( z  k) = (1 - p ) z  k + pw k. 

From the figure, it is clear that 

I l z k + ' ( x ) - z * l l  = IIw k - z * l l  ~< Llz~+l(p)- z*ll 

for  all p < 1 and z* c zer T, so choosing p < 1 is unlikely to be beneficial. On the 
other  hand,  there may be an interval (1, tS) c (1, 2) on which p ~ (1, iS) implies 

dist(zk+l(p),  zer T) < dist(zk+l(1), zer T). 

Thus, it should be possible for  over-relaxat ion to accelerate convergence.  In at least 
one impor tant  appl icat ion of  the proximal  point  algorithm, the method of  multipliers 

for  convex programming,  such accelerat ion has been experimental ly  confirmed 

[2, pp. 129-131]. 

Possible range of z k+l (p) 

w k _Z k 

Fig. 2. Illustration of the use of the relaxation parameters. Here, w k = zk+l (1)=  (I + CkT)-l(7.k), and z* 

is an arbitrary member of zer T. The angle 0 must be at least 90 degrees by the monotonicity of T. 
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4. Decomposition: Douglas-Raehford splitting methods 
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The main difficulty in applying the proximal point algorithm and related methods 
is the evaluation of inverses of operators of the form ! + A T, where A > 0. For many 
maximal monotone operators, T, such inversion operations may be prohibitively 
difficult. Now suppose that we can choose two maximal monotone operators A and 
B such that A + B = T, but J~A and J~B are easier to evaluate that J~r. A splitting 
algorithm is a method that employs the resolvents JAA and JaB of A and B, but does 

not use the resolvent JAr of the original operator T. Here, we will consider only 
one kind of splitting algorithm, the Douglas-Rachford scheme of Lions and Mercier 

[31]. It is patterned after an alternating direction method for the discretized heat 

equation that dates back to the mid-1950's [7]. 

Let us fix some A > 0 and two maximal monotone operators A and B. The sequence 
{zk~ °° ~ o  is said to obey the Douglas -Rach ford  recursion for A, A, and B if 

z k+l = JAA((2JaB -- I ) (Zk) )  + ( I  -- JAB)(Zk). 

Given any sequence obeying this recurrence, let (x k, b k) be, for all k >~ 0, the unique 
element of B such that x k + A b  k = z  k (again using the Representation Lemma, 

Corollary 2.3). Then, for all k, one has 

( I  - JAB)(z k) = x k + ab k - x k = Ab k, 

(2JAB -- I ) ( z  k) = 2x k -- (x  k + Ab k) = x k - Ab k. 

Similarly, if (yk,  a k ) c A ,  then J a a ( y k + A a k ) = y  k. In view of these identities, one 
may give the following alternative prescription for finding z k+L from zk: 

(a) Find the unique (yk+~, a k+~) e A such that yk+l + Aak+l = x k _ A b  k. 

(b) Find the unique (x k+l, b k+l) E B such that xk+l+Ab k+l =yk+~+Abk. 

Lions' and Mercier's original analysis of  Douglas-Rachford splitting [31 ] centered 
on the operator 

G~,A,B =S~ao ( 2 J ~ B - - I ) + ( I - - J ~ B ) ,  

where o denotes functional composition; the Douglas-Rachford recursion can be 
written z k+*= GA,a,B(zk). Lions and Mercier showed that GA,A.B is firmly nonexpan- 
sive, from which they obtained convergence of {zk}. Our aim is to broaden their 

analysis by exploiting the connection between firm nonexpansiveness and maximal 
monotonicity. 

Consider the operator 

Sa,A,B = (GA,a.B) - 1 -  1. 

We first seek a set-theoretical expression for SAoaW. Following the algorithmic 
description (a)-(b) above, we arrive at the following expression for G~,A,B: 

Ga.A,8 = {(u+Ab, v +  Ab) l (u  , b ) ~  B, (v, a ) e  A,  v +  Aa = u -  Ab}. 
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A simple manipula t ion  provides an expression for Sa,am = (Ga,Am) -~-  I: 

sa,~,B = (G~ ,~ ,B )  -~ - I 

= {(v+Ab,  u - v ) l ( u  , b)~ B, (v, a)E A, v+Aa = u-Ab} .  

Given any Hilbert space ~ ,  A > 0, and operators A and B on ~,  we define Sa,Am 

to be the splitting operator of  A and B with respect to A. We now directly establish 

the maximal  monotonic i ty  o f  SA.a.B. 

Theorem 4. I r a  and B are monotone then Sa,A, B is monotone. I r a  and B are maximal 
monotone, then Sa,A,B is maximal monotone. 

Proof.  First we show that  Sa.A,8 is monotone .  Let u, b, v, a, u', b', v', a ' ~  2( be such 
that (u,b), (u ' ,b ' )~B,  (v,a),  (vr, a ' )6A,  v + A a = u - A b ,  and v '+Aa '=u ' -Ab ' ,  
Then 

and 

1 ( u - v ) - b ,  a' 1 
a A A ( u ' - v ' ) - b ,  

( ( v ' +  Ab') - (v + Ab), ( u ' -  v') - (u - v)} 

= A ( ( v ' + A b ' ) - ( v + A b ) , A  l ( u ' - v ' ) - b ' - A  ~ ( u - v ) + b )  

+ A((v' + A b ' ) - ( v +  Ab), b ' - b )  

= A ( v ' -  v, A - ' ( u ' -  v') - b ' -  A-~(u - v) + b) 

+ A Z ( b ' - b ,  A ' ( u ' - v ' ) - b ' - A - ' ( u - v ) + b )  

+ A ( v ' -  v, b ' - b ) + A 2 ( b ' - b ,  b ' - b )  

= A(v ' -v ,  a ' - a ) + A ( b ' - b ,  u ' - u ) - A ( b ' - b ,  v ' - v ) - A 2 ( b ' - b ,  b ' - b )  

+ A(v ' -v ,  b ' - b ) +  A2(b'-b, b ' - b )  

= A ( v ' - v ,  a ' - a ) +  A(b ' -b ,  u ' - u ) .  

By the monotonic i ty  of  A and B, the two terms in the final line are nonnegative,  

so we obtain that  ( ( v ' +  Ab') - (v + Ab), ( u ' -  v') - (u - v)) >~ 0, and SA.Am is monotone .  
It remains to show that S~,A,B is maximal  in the case that  A and B are. By Theorem 

1, we only need to show that (I-t-Sa,A,B) -1=- G&A,B =JaA o ( 2 J x B - I ) +  ( I - J A B )  has 

full domain.  This is indeed the case, as JAA and JaB are defined everywhere. []  
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Combining Theorems 4 and 2, we have the key Lions-Mercier  result: 

Corollary 4.1. I f  A and B are maximal monotone, then Ga,A,B = (I  + Sa,a,B) -1 is firmly 

nonexpansive and has full domain. [] 

There is also an important relationship between the zeroes of  Sa,A,B and those of 

A + B :  

Theorem 5. Given A > 0 and operators A and B on Y{, 

zer(S~,A,B) = Z*  ~= {u + Ab[b ~ Bu, - b  ~ Au} 

c_{u+ A b l u c z e r ( A +  B ) , b ~  Bu}. 

Proof. Let S = Sa,A,B. We wish to show that zer(S) is equal to Z* .  Let z e zer(S). 

Then there exist some u, b, v, a ~ W such that v + 3,b = z, u - v = 0, (u, b) ~ B, and 

( v , a ) c A .  So, 

u - v = O  ~ u = v  ~ A a = - ) ~ b  ~ a = - b ,  

and we have u + A b = z ,  (u, b ) ~ B ,  and ( u , - b ) e A ,  hence z ~ Z * .  Conversely, if 

z c Z * ,  then z = u +,~b, b e Bu, and - b  c Au. Setting u = v and a = - b ,  we see that 

(z, 0) c S. Finally, the inclusion Z *  _c {u + 3,b I u ~ zer(A + B), b c Bu} follows because 

b ~ B u  and - b e A u  imply that u c z e r ( A +  B). [] 

Thus, given any zero z of  S~,a,B, JaB(z) is a zero of A + B. Thus one may imagine 
finding a zero of A +  B by using the proximal point algorithm on SA,a,B, and then 

applying the operator  J~B to the result. In fact, this is precisely what the Douglas-  

Rachford splitting method does: 

Theorem 6. The Douglas- Rachford iteration zk+l= [ JaA ° (2 JAB- - I )+ ( I - - J aB) ]z  k is 
equivalent to applying the proximal point algorithm to the maximal monotone operator 

SA,A,B, with the proximal point stepsizes ckfixed at 1, and exact evaluation of  resolvents. 

Proof. The Douglas-Rachford  iteration is z k+l= Ga,A,B(Zk), which is just z k+l= 
(I+S~,A,B)-~(Zk). D 

In view of  Theorem 3, Theorem 5, and the Lipschitz continuity of  JaB, we 
immediately obtain the following Lions-Mercier  convergence result: 

Corollary 63 [31]. I f  A +  B has a zero, then the DougIas-Rachford splitting method 
produces a sequence {z k} weakly convergent to a limit z of  the form u + &b, where 
u E z e r ( A + B ) ,  b~Bu ,  and - b e A u ,  I f  procedure (a)-(b)  is used to implement 
the Douglas-Rachford iteration, then {xk}={JxB(zk)} converges to some zero of  
A + B .  [3 

Theorem 3 also states that, in general Hilbert space, the proximal point algorithm 
produces an unbounded sequence when applied to a maximal monotone operator  
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that has no zeroes. Thus, one obtains a further result apparently unknown to Lions 

and Mercier: 

Corolllary 6.2. Suppose A and B are maximal monotone and z e r ( A + B ) = 0 .  Then 

the sequence {z k} produced by the Douglas-Rachford splitting is unbounded. I f  pro- 

cedure (a)-(b)  is used, then at least one of  the sequences {x k} or {b k} is unbounded. [] 

Note that it is not necessary to assume that A + B  is maximal;  only A and B need 

be maximal. 

Because the Douglas-Rachford  splitting method is a special case of the proximal 

point algorithm as applied to the splitting operator Sa,A,B, a number  of  generalizations 

of  Douglas-Rachford  splitting now suggest themselves: one can imagine applying 

the generalized proximal point algorithm to S,~,A.m with stepsizes ck other than 1, 

with relaxation factors Pk other than 1, or with approximate  evaluation of the 
resolvent Ga,A.B. We will show that while the first of these options is not practical, 

the last two are. 

Consider, for any c > 0, trying to compute ( I +  eSx,A.B)-J(Z). Now, 

( l  + cSA,a,~) -~ = {((1 - c)v + cu + Ab, v + Ab) [ (u, b) ~ B, (v, a) c A, v + Aa = u - Ab}. 

Thus, to calculate (1 + eS~,A.~)-~(z), one must find (u, b) c B and (v, a) ~ A such that 

1 
( 1 - c ) v + c u + A b = z ,  a = A  ( u - v ) - b .  

Alternatively, we may state the problem as that of finding u, v c X such that 

z = - ( c u + ( 1 - c ) v ) e A B u ,  - z + ( ( I + c ) u - c v ) ~ A A v .  

This does not appear  to be a particularly easy problem. Specifically, it does not 
appear  to be any less difficult than the calculation of J~(A+m at an arbitrary point 

z, which, when using a splitting algorithm, we are expressly trying to avoid. 

That calculation involves finding (u, b) ~ B such that (u , ) t - l (z  - u) - b) ~ A. 

Consider, however, what happens when one fixes e at 1. Then one has only to find 

( u , b ) ~ B  such that u + X b = z ,  

( v , a ) ~ A  s u c h t h a t v + A a = u - A b .  

The conditions (u, b) ~ B, u + Ab = z uniquely determine u = J~.B(z) and b = (z - u)/)t  

independently of  v. Once u is known, then v is likewise uniquely determined by 
u = JX,A(U- Ab). We have thus achieved a decomposition in which the calculation 
of  Js ..... = (1+ Sx.A,R) -1 is replaced by separate, sequential evaluations of  JXA = 

( I  + 3~A) -1 and J ~  = (1 + )LB) -1. This procedure is essentially the procedure (a)-(b)  
given above. It seems that keeping e = 1 at all times is critical to the decomposition. 
Spingarn [54] has already commented on this phenomenon in the more restrictive 
context of  the method of partial inverses. 
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The formulation of the splitting operator &,A,B is a way of combining A and B 

having the special property that evaluating the r e s o l v e n t  G;t,A,B=(Iq-S&A.B) -1 

decomposes into sequential evaluations of J~A and JAB. Simple addition of operators 
does not have such a decomposition property. Furthermore, the close relationship 
between zer(&,A,8) and z e r ( A + B )  makes &,A,B useful in finding zeroes of A +  B. 

Despite the impracticality of using stepsizes other than 1, it is possible to use 

varying relaxation factors, and to evaluate GA,A, B =(I+SA,A,B)  - l  approximately, 
obtaining a generalized Douglas-Rachford splitting method. The properties of  this 
(new) method are summarized by the following theorem: 

Theorem 7. Given a Hilbert space Yg, some z° 6 Yg, ~ > O, and maximal monotone 
k 00 C n operatorsAandBon3f,  let{z } k ~ 0 _ ~ ,  ~ k~oo c ~  k ~  c " /u t ~ = o - ~  , iv  t k = ~ - ~  ,{ak}~=o-c[0,°o), 

co  C co  {fik}k=O-- [0, o0), and {pk}k=o_c (0, 2) conform to the following conditions: 

(Wl) Ilu -L.(z")ll 3k Vk>~O, 

(T2) I[Vk+~--LA(ZUk--Zk)l[-<--a~ Vk>~O, 

z k + l = z k - ~ p k ( v k + l - - u k  ) Vk~>0, 

co  co  

o~ k < oo, Y~ flk < oO, 0 < inf & ~< sup Pk < 2. 
k = 0  k=0  k>~0 k ~ 0  

Then ~f zer(A + B) # 0, {z k } converges weakly to some element of  Z* = { u + Ab [ b ~ Bu, 
- b  E Au}. I f  zer(A + B) = 0, then {z k} is unbounded, 

Proof. Fix any k. Then llUk--JAB(Zk)I j ~</3k implies that 

1t(2u k - z k) - (2J~8 - I)(zk)ll <~ 2ilk. 

Since JAa is nonexpansive, 

IJJaA( 2 u k  -- z k )  - -  J AA(2 4 8  -- I ) ( Z  k) OJ <~ 2flk, 

and so 

I[ v~+'  - L ~ ( 2 L ~  - t ) (  z ~) II <- 2 3 ~  + ~ ,  

I I ( V  k +  1 "It- Z k - -  U k ) - -  [ J A A ( 2 J A B  - -  I) + ( I -Jau)](z  k) II ~< 3/3k + c~k. 

Let ek = 3ilk + ak for all k. Then 

oo  co  co  

E ek=3 Y 3k+ E ~k<oo. 
k = O  k=O k ~ O  

We also have 

z k + l = z k + p k ( V k + l - - u k ) = ( l - - p k ) Z k + p k ( v k + l + Z  k - u k ) .  
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Thus, letting yk = v k + l  .~_ zk _ u k  w e  have 

oo 

0 < inf Pk <~ sup Pk < 2, ~ ek < +oo, 
k ~ O  k ~ O  k - 0  

{lyk--Ga.A,B(z~)ll<~ek Vk~>0, Zk+l=-(1--pk)zk+pkyk 

The conclusion then follows from Theorems 3 and 5. [] 

Vk>~O. 

In at least one real example [11, Section 7.2.3], using the generalized Douglas- 
Rachford splitting method with relaxation factors Pk other than 1 has been shown 

to converge faster than regular Douglas-Rachford splitting. This example involved 
a highly parallel algorithm for linear programming which will be described in a 

later paper. There, a choice of Pk = 1.5 for all k appeared to converge to a given 
accuracy about 15% faster than the choice Pk = 1 for all k. Thus, the inclusion of 
over-relaxation factors is of some practical significance. In addition, the convergence 
of Douglas-Rachford splitting with approximate calculation of resolvents had not 
been formerly established. 

5. Some interesting special eases 

We now consider some interesting applications of splitting operator theory, namely 
the method of partial inverses [52, 54] and the generalized alternating direction 

method of multipliers. We begin with a brief discussion of the method of partial 

inverses. 
Let T be an operator on a Hilbert space Yg, and let V be any linear subspace of 

2g, V" denoting its orthogonal complement. Then the partial inverse Tv of T with 

respect to V is the operator obtained by swapping the V= components of each pair 
in T, thus [52, 54]: 

rv= {(xv + yv~, yv + xvi)l(x, y)~ 7"}. 

Here, we use the notation that for any vector z, Zv denotes the projection of z on 

V, and zvJ- its projection onto V ±. 
Spingarn has suggested applying the proximal point algorithm to Tv to solve the 

problem 

(ZV) Find ( x , y ) ~ T  such that x ~ V a n d y c V  ±, 

where T is maximal monotone. In particular, if T = Of where f is a closed proper 
convex function, this problem reduces to that of minimizing f over V. One 
application of this method is the "progressive hedging" stochastic programming 
method of Rockafellar and Wets [51]. 

Consider now the operator 

Nv= Vx  v=={(x ,y) lxc  V,y~ V±}. 
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It is easily seen that Nv is the subdifferential O(6v) of the closed proper convex 

function 

0, x~  V, 
By(x)= +oo, x ¢  V, 

and hence that Nv is maximal monotone. Now consider the problem 

(ZV') Find x such that O c ( T + N v ) x ,  

which is equivalent to (ZV). 

If one forms the splitting operator SA,A,B with ,~ = 1, A = Nv = VX V 1, and B = T, 

one obtains 

Sl .v×vLv={(v+b,  u - v ) ( ( u ,  b)~ T, vc  V, a c V ±, v + a  = u - b } .  

= { ( ( u - b ) v + b ,  u - ( u - b ) v ) ( ( u ,  b )c  T} 

= { ( u v + b w ,  by+urn)](u, b)~ T} 

-=T v. 

Thus, the partial inverse Tv is a special kind of splitting operator, and applying the 

proximal point algorithm to Tv is a specialized form of Douglas-Rachford splitting. 
Naturally, one can apply the generalized proximal point algorithm to Tv as easily 
as one can apply the regular proximal point algorithm, and one can allow values 

of,~ (but not G) other than 1. Following a derivation similar to Spingarn's (1985b), 
one obtains the following algorithm for (ZV): 

Start with any x°e  V, y°c  V ~. 
At iteration k: 

Find )7 k c Y( such that II3~ k - JAT(X k + y k)II <~ fi k. 
Let ~k = (X k +yk)  _)~k. 

Let x k+l = (1 --pk)Xk+pk(Yk)V . 
Let yk+l= (1 - -pk)yk+pk( fk)v  ~. 

Here {pk}k~_-0 and {/3k}~_0 are sequences meeting the restrictions of Theorem 7. 
It is interesting to compare this method to Algorithm 1 of [54]. In cases where 
T = Of the computation of 37 k reduces to an approximate, unconstrained minimiz- 
ation o f f  plus a quadratic term. 

In addition to partial-inverse-based methods, the class of Douglas-Rachford 
splitting algorithms also includes the general monotone operator method of 
Gol'shtein [20], and related convex programming methods [18, 19]. Demonstrating 
this relationship is rather laborious, however, and interested readers should refer 
to [11, Section 4.3]. 



310 J. Eckstein, D.P. Bertsekas / On Douglas-RachJbrd splitting 

We now turn to our second example application of splitting operator theory, the 
derivation of  a new augmented Lagrangian method called the generalized alternating 

direction method of  multipliers. 

Consider a general finite-dimensional optimization problem of the form 

(P) minimize f ( x ) + g ( M x ) ,  
X E ~  n 

where f :~n_~ ( _ ~ ,  + ~ ]  and g :~'~-~ ( - ~ ,  + ~ ]  are closed proper convex, and M 
is some m x n matrix. By writing (P) in the form 

(P') minimize f ( x ) + g ( w )  

subject to M x  = w, 

and attaching a multiplier vector p e ~ to the constraints M x  = w, one obtains an 
equivalent dual problem 

(D) maximize - ( f * ( - M V p )  + g*(r) ) ,  
p E ~ ' "  

where * denotes the convex conjugacy operation. One way of solving the problem 
(P)-(D) is to let A = o [ f * o  ( - M S ) ]  and B =Og*, and apply Douglas-Rachford 

splitting to A and B. This approach was shown by Gabay [13] to yield the alternating 

direction method of  multipliers [16, 14, 12, 13, 15], 

x k+l = arg min{f(x) + (pk, Mx)  +½A I]Mx - w ~ [[2}, 
x 

w k+l = arg min{g(w) _(pk, w)+½,~ IIMx k+~- wl12}, 
w 

pk+l : p k  + A ( M x  k+l - wk+l). 

This method resembles the conventional Hestenes-Powell method of multipliers for 
(P'), except that it minimizes the augmented Lagrangian function 

L (x, w, p) : f ( x )  + g(w) + (pk, M x  - w> +½4 IIMx - wll 2, 

first with respect to x, and then with respect to w, rather than with respect to both 
x and w simultaneously. Notice also that the penalty parameter A is not permitted 
to vary with k. We now show how Theorem 7 yields a generalized version of  this 
algorithm. Let the maximal monotone operators A = O[f* o ( - M S ) ]  and B = 0g* be 
defined as above. 

A pair (x, p) c E" × R ~ is said to he a Kuhn-  Tucker pair for (P) if (x, - M V p )  ~ Oj 
and (Mx, p) ~ Og. It is a basic exercise in convex analysis to show that if (x, p) is a 
Kuhn-Tucker  pair, then x is optimal for (P) and p is optimal for (D), and also thal 
if p ~ zer (A+ B), then p is optimal for (D). We can now state a new variation o~ 
the alternating direction method of multipliers for (P): 

Theorem 8 (The generalized alternating direction method of multipliers). Conside 

a convex program in the form (P), minimiz%~a,, f ( x ) +  g (Mx) ,  where M has fu, 
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column rank. Let p °, z ° 6 ~  m, and suppose we are given A > 0  and 

o o  

k = O  

{v~}~%o_~[o,~c), E ~k<oo, 
k = O  

oc~ C 
{Pk}k=o-- (0, 2), O< inf pk~<sup pk <2.  

k - - O  h > O  

Suppose k 0o k ~ k ~o {X } k=l, and {w }k=o, conform, for {P }k=o all k, to 

]Ix k+' - a rgmin{f(x)  + (pk, Mx)+½a [[Mx - w k [12}11 ~</zk, 

II wk+l - arg min{g(w) - (pk,  W) -t- ½a I[pkMX k+l +- (1 -- Pk ) wk -- W [I 2} II <~ Pk, 

pk+l = pk  q_ a ( p k M x  k+l + (1 -- pk )W k -- Wk+l). 

Then if  (P) has a Kuhn-Tucker pair, {x k} converges to a solution of (P) and {pk} 
converges to a solution of the dual problem (D). Furthermore, {w k} converges to Mx*, 
where x* is the limit of {xk}. I f  (D) has no optimal solution, then at least one of the 
sequences {pk} or {w k} is unbounded. 

Proof. Let 

Z k = p k + a w k  Vk>~O, 

qk=pk  + A(Mxk+l--wk) Vk>~O, 

/3o= {Ip°- L,(p° + aw°)tl, 

ilk : auk Vk>-l ,  

where )IMI] denotes the 12-norm of the matrix M, 

- sup{I]Mxll~ 

We wish to establish that the following hold for all k ~> O: 

(gl) Ilpk-A~(z~)ll<_/3k, 
(Y2) I}q k - J*a (2p  k-zk)ll_< ~ ,  

(Y3) zk+l=Zk+pk(qk--pk).  

For k = 0 ,  (Y1) is valid by the choice of/30. Now suppose (Y1) holds for some k; 
~ee show that (Y2) also holds for k. Let 

o? k = arg r a in{ f  (x) + (p k, MX) + ½a 11Mx - w k[[2}, 

fik = (pk  _ AW k) + AMUck. 
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The existence of  a unique 2k is assured because f is p roper  and M has full co lumn 
rank. Then 

0 c O~[ f (x )  + (pk, M x )  +½A [IMx - w k [12]x=ek 

0 ~ of(.~ k) + M m p  k + AM~-(M.~ k - w k ) 

OE~f(Z~)+MT~ ~ 

- M : ~  k ~ o f (~  k) 

~ c ~f*(-Mm ~ ~) 

- M Y  k ~ O [ f * o  ( - M : ) ] ( / ~  k) = A/~ k. 

Also 

SO 

~k + A ( - M . ~ k )  = p k -  Awk 

/~k = ( I +  AA)-~(p k - Aw k) = J~,A(2p k -- Zk). 

Thus, from 

Ilx k+~ - arg min{f (x)  + (p~, M x )  + ~A 11Mx - w k 112} II <~/xk, 
x 

qk = p k  + A ( M x ~ + l _ w k ) ,  

we obtain 

Ilxk+l--~kll ~<~ ,  I[qk--~kl l<~AI}M}}#k,  

establishing (Y2) for k. 

Suppose that  (Y1) and (Y2) hold  for some k. We now show that (Y3) holds fo~ 
k and (Y1) holds for  k +  1. Let 

S k = Zk + p k ( q k _ p k )  

= pk  + AW k + A p k ( M x k + l  _ wk) 

= pk  + h (pkMxk+~+ (1 -- Ok)Wk), 

and also 

#~ = arg min{g(w) - (pk, w)+½A II(pkMx k*~ + (1 - p k ) w  k) - wll2}, 
w 

~k = pk  + A ( p k M x  k÷z + (1 -- pk)W k -- ff~k). 
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The existence of ~k is guaranteed because g is proper. We then have 

0 6 0 ~ [ g ( w )  - ( p k ,  w)+½h l](pkMxk+~+ (1 - -pg)w k) -- wll2]w=,~k 

0 ~ Og(ff 'k) _ p k  + A (~k  _ (pkMxk+,  + (1 - pk)Wk))  

pk  + h (pkMX k+~ + ( 1 -- Pk)wk -- W~) = gg ~ Og(w ~) 

#k ~ Og*(ffk) = Bgk. 

As 

313 

gk + ,~ ~k  = pk  __ h (p~MXk+~(1 -- Pk) W k -- ~,k) = Sk, 

we have gk= jAs(sk). 

The condition on w k÷l is just [[ w k÷~- ~k [I ~ uk, SO [[pk+l_ ~k I[ ~< hPk. We also have 

zk÷l =pk+l + hwk+l 

= pk + A ( p k M x  k+~ + ( 1 - Pk ) W k -- W k+l) + AW k+~ 

= pk  + A ( p k M x  k+l + (1 -- pk)W k) 

k 

Thus, (Y3) holds for k, and (Y1) holds for k + l  by Ilpk+'- "ll By induction, 
then, (Y1)-(Y3) hold for all k. The summability of {~k} and {Uk} implies the 
summability of {/3k} and {C~k}. Suppose (P) has a Kuhn-Tucker pair. Then by 
Theorem 7, {z k} converges to some element z* of{p + Awl w E Bp, - w  c Ap} .  Applying 
the continuous operator JaB to {z k} and using (Y1), we obtain pk  ._>p, and wk--> w*, 

where (p*, w*) c B and p* + Aw* = z*. By rearranging the multiplier update formula, 
we have 

(pk+~ - P  k) + a (w k+~ - w k) = ap~ ( M x  k÷~ - w k) 

for all k i> 0. Taking limits and using that Pk is bounded away from zero, we obtain 
that ( M x  ~+~ - w k) --> O, hence M x  k --> w*. As M has full column rank, x k --> x*, where 
x* is such that M x * =  w*. We thus have (p*, w*)= (p*, M x * ) ~  B =Og*, and so 
( M x * , p * ) e O g .  Now, we also have that - - M ~ g k e o f ( Y ~ k ) ,  or, equivalently, 
(_MTi6k, ~k) E of, for all k. Using 

0 <~ IIq '~ _ ~ k  II = liP k + a ( M x  k+' - z k) _ g k  [I ~ a [[MlltXk --> O, 

we have by taking limits that ~gk._>p, and since Ijxk-~kll ~</~k-~0, we also have 
~k _~ X*. Therefore, ( - M r p  *, x*)  ~ of  by the limit property for maximal monotone 
operators (e.g., [4]). We conclude that (x*, p*) is a Kuhn-Tucker pair for (P), and 
we obtain the indicated convergence of {xk}, {pk}, and {Wk}. 

Now suppose that (D) has no optimal solution. Then zer(A + B) must be empty, 
and by Theorem 7, {z k} must be an unbounded sequence. By the definition of {zk}, 
either {pk} or {w k} must then be unbounded. [] 
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The convergence of the alternating direction method of multipliers with either 
approximate  minimization or relaxation factors was previously unknown, and, due 

to the complexities of  the convergence proofs, would have been difficult to derive 

from first principles. Thus, Theorem 7 demonstrates the power of the monotone 
operator theoretical framework. 

In a practical iterative optimization subroutine, it may be difficult to tell if the 
condition 

x k+l - arg r a i n { f  (x) - (pk ,  M x )  + ½h [[ Mix - w k [I 2} I /zk 

has been satisfied. For more implementable stopping criteria, which, under appropri-  

ate assumptions, imply these kinds of conditions, we refer to Rockafellar [48]. 

Essentially, i f f  is strongly convex, such a condition is implied by a certain bound 

on the smallest-magnitude subgradient of the minimand at x k+l. Thus, for any x 
such that O x [ f ( x )  + (pk,  M x }  +½h I IMx - w k II 2] contains a member  of  sufficiently small 

norm, one may halt the minimization and set x k+l = x. This idea is adapted from a 

stopping rule for the method of multipliers due to Kort  and Bertsekas [27] (see also 

[2, p. 329]). A similar discussion applies to the computat ion of  w k+l. 

6. Concerning finite termination 

The device of  the splitting operator allows many results related to the proximal 

point algorithm to be carried over to Douglas-Rachford  splitting and its special 

cases. In this section we briefly give a negative result that suggests that one aspect 

of  proximal point theory, that of  finite termination, will be difficult or impossible 

to carry over. We concentrate on a certain "staircase" property of monotone 
operators. 

A monotone operator T on a Hilbert space ~ is said to be s taircase if  for all 

y ~ im T, there exists some 3(y)  > 0 such that 

wc rx, llw-yll< (y  y c  rx. 

T is called locally s taircase at  zero if 0 ~ im T and such a condition holds for the 
single case y = 0, that is, there exists 6 > 0 such that 

w e  r x ,  l l w l l < 3 ( y  ) ~ Oc Tx. 

We use the term "staircase" because an operator on R t with the staircase property 

has a graph that resembles a flight of  stairs (see Figure 3). The idea of a staircase 
operator  is closely related to the so-called "diff-max" property of convex functions 
[8, 9, 29]. In brief, a convex function h is diff-max if and only if (Oh) -1 is staircase. 
In general, if the closed convex function h is polyhedral on R", both Oh and 
(Oh) -1=  oh* are staircase [8]. 
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Fig. 3. A staircase operator on ~.  

Luque [32], building on earlier observations by Rockafellar [48], proved that the 

exact proximal point algorithm, when each iterate is computed exactly, converges 
finitely when applied to any operator T which is locally staircase at zero. The basic 
proof  is very simple: suppose we have z k + ~ = ( I + A T )  az k for all k~>0. Then 
( z k - ' - - z k ) / h  C Tz k for all k ~  > 1. For large enough k, we have  [[(zk-l--zk)/l~[[ ~.8, 

implying 0c  Tz k and z k+t= z k. This basic line of analysis dates back to the finite- 

termination results of  [1] for the method of multipliers. 

We will now show, however, that S~.AW need not be staircase, even if both A and 

B are staircase. 

Theorem 9. There exist maximal monotone operators A and B on R n, both staircase, 
such that Sx,A,u is not staircase for some choice o f  A > O, and the exact proximal point 

algorithm, without over- or under-relaxation, does not converge finitely when applied 

to S~,A,~. 

Proof. We need to consider only the case of  R 2, and operators of the form N v  = 

V × V z, where V is a linear subspace, which were seen to be maximal monotone 
in the previous section. All operators of this form are staircase (in fact, for any 
y 6 V ~, 8(y)  may be taken arbitrarily large). Define the following linear subspaces 
of E2: 

Then 

w-- -  { (x l ,  x2) I x~ = o} = {(x, ,  O) lx ,  c ~}, 

u = {(x~, x2) l x ~ :  x~} = {(x, x ) l x  E ~}. 

W ~ = {(x~, x2) lx~ = 0} = {(0, x2) lx2 ~ ~}, 

U ± ~- {(Xl, x2) lx  2 : - X l }  = { ( - z ,  z)  lz  c [~}. 

Following the discussion of partial inverses in the previous sections, 

S1,Nw, fu = { ( x w + y w ~ , y w + x w - ) l x c  U, y e  U ±} 

= {((x,  z) ,  ( - z ,  x) ) [  a, b c ~} .  
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Now, S1,Nw, uu((x~, x2)) ~ (0, 0) if and only if Xl = x2 = 0. Thus S1,Nw, N~ is not locally 
staircase at zero, and cannot be staircase. 

Let S = S1,Nw, N." Then Js = (I + S) -1 = { ( ( x -  z, x + z), (x, z ) ) lx  , z ~ ~}, or by 
change of variables, 

Js = {((a, b) ,½(a+b , -a+b) ) [a ,  bcR}.  

Thus application of the operator .Is is equivalent to multiplication (on the left) by 
the matrix 

i] 
To obtain finite convergence of the iteration z k+l= Js(z k) from any starting point 
z ° other than (0, O) would require that J be singular, which it is not. [] 

Lefebvre and Michelot [29] do present a mild positive result relating to partial 
inverses (and hence to Douglas-Rachford splitting), but under fairly stringent 
assumptions. Although Luque's finite convergence theory may be hard to use in the 
context of  Douglas-Rachford splitting, his convergence rate techniques do have 
application. They have already been used in the context of partial inverses 
[53, 54, 55], and we will exploit them in other splitting contexts in future papers. 
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