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Abstract— We define the erasure entropy of a collection of
random variables as the sum of entropies of the individual
variables conditioned on all the rest. The erasure entropy rate of
a source is defined as the limit of the normalized erasure entropy.
The erasure entropy measures the information content carried
by each symbol knowing its context. In the setup of a source
observed through an erasure channel, we offer an operational
characterization of erasure entropy rate as the minimal amount
of bits per erasure required to recover the erased information in
the limit of small erasure probability. When we allow recovery of
the erased symbols within a prescribed degree of distortion, the
fundamental tradeoff is described by the erasure rate-distortion
function which we characterize. When no additional encoded
information is available, the erased information is reconstructed
solely on the basis of its context by a denoiser. Connections
between erasure entropy and discrete denoising are also explored.

Keywords: Shannon Theory, Entropy, Data Compression,
Rate-Distortion Theory, Discrete Denoising, Markov processes,
Erasure Channels.

I. INTRODUCTION

The entropy of a source {X1, . . . Xn} is equal to the sum of
the conditional entropies of each symbol given all preceding
(or all succeeding) symbols. The minimum expected number
of bits of a compressed version of {X1, . . . Xn} is equal to
the entropy plus at most one bit. Moreover, as the number
of symbols grows without bound, the minimum compression
length converges for almost all source realizations to the
limiting per-symbol entropy (entropy rate) provided that the
source is stationary and ergodic.

Conditioning on the past or the future leads to the same
measure of information content. However, what if we condi-
tion on both the past and the future?

Definition 1: The erasure entropy of a collection of discrete
random variables {X1, . . . Xn} is

H−(X1, . . . Xn) =
n∑

i=1

H(Xi|X\i) (1)

where

X\i = {Xj , j = 1, . . . n, j �= i}. (2)

In addition, analogously to the conventional entropy, we
define the erasure entropy rate as the limiting normalized
erasure entropy, i.e. the limit of the arithmetic mean of the
conditional entropies of each symbol given all preceding and
succeeding symbols.

Definition 2: The erasure entropy rate of a process X =
{Xi}∞−∞ is

H−(X) = lim sup
n→∞

1
n

H−(X1, . . . Xn). (3)

Erasure entropy is strictly lower than the conventional
entropy (unless the source is memoryless, in which case they
are identical). As we will see, there are processes with zero
erasure entropy and nonzero entropy. Regarding images or
other data indexed by multidimensional sets, the representation
of entropy as a sum of conditional entropies given the past
requires an artificial definition of a “past”, while erasure
entropy does not suffer from that drawback.

What is erasure entropy good for? What properties does
the entropy of a symbol conditioned on both the past and the
future have?

For example, if one of the symbols in a text is erased,
erasure entropy quantifies the number of bits it takes to convey
the erased symbol knowing the rest of the text.

A cornerstone in the theory of reversible computing was
put forward by Landauer [1] establishing a proportionality
(Boltzmann’s constant) between the entropy of a symbol
(physically stored in a computer memory for example) and the
increase in the thermodynamical entropy of the overall system
when the symbol is erased. When the stored information
source has memory, the increase in thermodynamical entropy
incurred by an erasure is proportional to the erasure entropy
rather than to the conventional Shannon entropy.

For the simulation of a Markov random field via Gibbs
sampling, each pixel value is generated by its conditional
distribution given the other pixels in its Markov neighborhood,
using as values for the neighboring pixels those that were
generated in the previous iteration. With probability one, this
simulation gives, in the limit of many iterations (and of large
image) a sample from the desired Markov random field (e.g.
[2]). The number of random bits per pixel per iteration required
for this simulation is equal to the erasure entropy of the field.

In the regime of low erasure rate, the erasure chan-
nel emerges as a convenient paradigm to obtain nontriv-
ial Shannon-theoretic operational characterizations of erasure
entropy. These characterizations are related to the minimal
amount of additional (encoded) information required to re-
cover the erased information either losslessly, almost loss-
lessly, or within a prescribed degree of distortion. In the ab-
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sence of any additional information it is impossible to perfectly
recover the erased symbols. However, the recent body of work
on discrete denoising, starting with [3], has shown efficient
universal algorithms that exploit the information in the context
of the erased (or, in general, contaminated) symbols in order
to achieve the minimal distortion that would be feasible by an
algorithm with perfect knowledge of the source statistics. We
show in this paper that, at least for binary symmetric channels
and bit-error rate distortion, the best achievable noncausal
denoising performance and the erasure entropy are tightly
coupled. In a follow-up to this paper, [4] studies the problem
of universal estimation of erasure entropy rate.

The rest of the paper is organized as follows. Section
II shows some basic properties of erasure entropy, as well
as examples of explicit computation. In the case of a kth
order Markov process we show the relationship between
conventional entropy rate and erasure entropy rate. The basic
operational characterization of erasure entropy is obtained by
considering a memoryless erasure channel where the destina-
tion wants to recover the erased symbols losslessly or almost
losslessly. As shown in Section III, the amount of information
required per erasure is lower bounded by the erasure entropy, a
bound that becomes tight for small erasure probability. In Sec-
tion IV we examine the setup where the erasures are allowed to
be reconstructed within a certain distortion, and in particular,
we analyze the tradeoff of distortion versus the amount of
information per erasure that an encoder that observes both
the clean source and the location of the erasures needs to
provide. For vanishing erasure probability the fundamental
limit is the erasure rate-distortion function defined as the
minimal mutual information between a source symbol and its
reconstruction conditioned on all other source symbols, where
the minimization is over all marginal conditional distributions
of the output given all inputs that satisfy the average distortion
constraint. In Section IV we also explore the counterpart of
the Shannon lower bound and conditions for its tightness.
The erasure rate-distortion function is determined for Gaussian
sources with Euclidean distortion and for binary sources. Some
relationships between erasure entropy and discrete denoising
[3] are revealed in Section V. For the binary symmetric
channel, very tight bounds on the minimum error probability
achievable by a noncausal denoiser which only has access to
the binary symmetric channel output are given in terms of
the erasure entropy rate. Interestingly, for a causal denoiser
the same bounds hold upon replacing erasure entropy rate by
Shannon’s entropy rate [5].

Additional related results, as well as proofs of all results
stated below, are given in [6].

II. BASIC PROPERTIES

Theorem 1: For any collection of discrete random variables
{X1, . . . Xn},

H−(X1, . . . Xn) ≤ H(X1, . . . Xn) (4)

with equality if and only if {X1, . . . Xn} are independent.
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Fig. 1. Entropy rate and erasure entropy rate of a binary Markov chain with
transition probability p.

Note that unlike entropy, erasure entropy is not associative.
For example, H−(X1, X2, X3) ≤ H−((X1, X2), X3), with
strict inequality unless X1 − X3 − X2. Also, unlike entropy,
erasure entropy is not invariant to one-to-one transformations
of the collection of random variables.

Theorem 2: For any stationary process

H−(X) = lim
n→∞

1
n

H−(X1, . . . Xn) (5)

= lim
n→∞H(X0|X−1

−n, Xn
1 ) (6)

= H(X0|X−1
−∞, X∞

1 ). (7)
Theorem 1 implies that a collection of random variables has

zero erasure entropy if it has zero entropy. The converse is of
course not true: if X1 = X2 a.s. then H(X1, X2) = H(X1)
whereas H−(X1, X2) = 0. Similarly, H−(X) = 0 does not
necessarily imply H(X) = 0 as the following example reveals.

Example 1: Let Zi be iid with Zi
d= Z. Let Y2i = Y2i+1 =

Zi. Construct now {Xi} by letting Xi = Yi+U where P [U =
0] = P [U = 1] = 1

2 and U is independent of {Zi}. The
source {Xi} is stationary and ergodic. Its entropy rate, H(X),
is readily seen to be given by 1

2H(Z). On the other hand, the
erasure entropy of {Xi} is 0 because it is possible to decide
the value of U with vanishing error probability by observing
a sufficiently long sample path of {Xi} and, for each i, Xi is
a deterministic function of (Xi−1, Xi+1, U).

Example 2: Let X be a first-order homogeneous binary
Markov chain with PX1|X0(0|1) = PX1|X0(1|0) = p. Then

H(X) = h(p) = p log2

1
p

+ (1 − p) log2

1
1 − p

(8)

whereas,

H−(X) = h−(p) def= 2h(p) − h(2p(1 − p)) (9)

The entropy and erasure entropy of the first-order homoge-
neous binary symmetric Markov chain are shown in Figure 1.
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It is interesting to note that in Example 2

lim
p→0

H(X)
H−(X)

= ∞

The result in Example 2 can be checked by particularizing
the following formula.

Theorem 3: For a homogeneous kth-order Markov source

H(X) =
H−(X) + H(X1, . . . Xk|X−1, . . . , X−k)

k + 1
. (10)

III. LOSSLESS COMPRESSION

For jointly distributed processes
X = (. . . , X−1, X0, X1, . . .) and Z = (. . . , Z−1, Z0, Z1, . . .)
let H(X|Z) denote the conditional entropy rate defined by

H(X|Z) = lim sup
n→∞

1
n

H(Xn|Zn).

Theorem 4: Suppose that the source X goes through a
discrete memoryless erasure channel with erasure probability
e, and denote the output process by Z. If X is stationary,

H(X|Z) ≥ eH−(X) for all e ∈ [0, 1] (11)

H(X|Z) = eH−(X) + o(e), (12)

where o(e)/e → 0 as e → 0.

If X is ergodic, the Slepian-Wolf theorem [7], and its exten-
sion to stationary and ergodic sources [8], give an operational
characterization for H(X|Z), namely, the information rate that
an encoder needs to supply to the observer of Z in order to
recover the erased symbols almost losslessly even if the output
of the channel Z is not available to the encoder. Having Z
available to the encoder does not save any rate but enables
strictly lossless recovery of the erasures. It also simplifies the
achieving schemes, cf. [9].

Other operational characterizations of erasure entropy in the
setting of lossless compression are possible as the following
example illustrates

Example 3: Let {Yt}t∈[0,T ] be a random telegraph signal:
a binary valued continuous time Markov process with both
transition rates equal to λ; thus, the switching times are a
Poisson point process of rate λ. Suppose n uniformly spaced
samples of the signal, {Yt}t∈{T/n,2T/n,...,T}, are to be loss-
lessly stored. The sampled process is a first-order symmetric
binary Markov chain with transition probability

p = P [Poisson(λT/n) is odd] =
1 − e−2λT/n

2
. (13)

Storage of {Yt}t∈{T/n,2T/n,...,T} requires (for large n) es-

sentially h
(

1−e−2λT/n

2

)
bits/sample. Suppose now that we

require a higher-precision approximation of the random
telegraph signal by sampling it at twice the rate to ob-
tain {Yt}t∈{T/2n,T/n,3T/(2n)...,T}. Given the knowledge of
{Yt}t∈{T/n,2T/n,...,T}, it is not necessary to double the storage
requirements for the new n samples. It suffices to spend
h−

(
1−e−λT/n

2

)
bits/sample.

IV. LOSSY COMPRESSION

A. Erasure Rate-Distortion Function

As in Section III, suppose that the source X goes through a
discrete memoryless erasure channel with erasure probability
e, and denote the output process by Z. An encoder that knows
the realization of X and the location of the erasures wants
to spend a rate R per erasure to obtain a distortion D under
some distortion criterion.

More formally, a scheme for blocklength n and rate R
consists of an encoder, which is a mapping T : Xn ×
Zn → {1, . . . , �2neR�}, and a decoder, which is a sequence
of mappings {X̂i}n

i=1, where X̂i : {1, . . . , �2neR�} × Zn →
X̂ . The scheme operates as follows: the encoder maps the
source and erasure sequences (Xn, Zn) into an index T =
T (Xn, Zn), and the decoder generates a reconstruction X̂n =
(X̂1, . . . X̂n), where X̂i = X̂i(T,Zn). The performance of
a scheme is measured by its expected distortion per erased
symbol according to a given distortion measure ρ : X × X̂ →
R.

A rate distortion pair (R,D) is achievable if for every ε > 0
and sufficiently large n there exists a scheme for blocklength
n and rate R with

E

⎡
⎣ 1
|{1 ≤ i ≤ n : Zi = e}|

∑
1≤i≤n:Zi=e

ρ(Xi, X̂i)

⎤
⎦ ≤ D + ε.

(14)
The rate distortion function Re(D) is the infimum of rates R
such that (R,D) is achievable. Re(D) is the minimum amount
of information required per erasure to achieve expected dis-
tortion of D per erasure.

Definition 3: For a stationary source X, define the erasure
rate-distortion function

R−(D) = min I(X0; Y0|X\0) (15)

= H−(X) − max H(X0|X\0, Y0), (16)

where the minimum in (15) is over all PY0|X∞
−∞ such that

E [ρ(X0, Y0)] ≤ D.

Theorem 5: If X is a stationary ergodic Markov source, of
arbitrary order, then

lim
e→0

Re(D) = R−(D). (17)

B. Shannon Lower Bound for R−(D)

For simplicity, assume here that X is either finite or X = R.
Also assume X̂ = X and that d is a difference distortion
measure (i.e., d(x, x̂) = d(x − x̂)), where, when X is finite,
addition and subtraction of elements is modulo the size of the
alphabet (for some assumed ordering of the elements of X ).
This is the setting in which the Shannon Lower Bound (SLB)
applies. The SLB (e.g. [10]) states that for any stationary and
ergodic process X

R(D) ≥ H(X) − φ(D), (18)
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where φ(D) is the maximum-entropy function defined by

φ(D) = max
N :E[d(N)]≤D

H(N), (19)

the maximization being over random variables N taking values
in X (and H(N) stands for differential entropy if X is not
countable). Note the concavity of φ, which is a consequence
of the concavity of entropy. Equality in (18) holds if and only
if X has the decomposition

Xi = Yi + Ni, (20)

where N is an iid process with components achieving the
maximum in (19), independent of the process Y.

We now proceed to develop a parallel bound for R−(D).
To this end, let ND denote the achiever of the maximum in
(19) and define

S(D) = {P ∈ M(X ) : ∃PY ∈ M(X ) s.t. P = PY ∗ PND
},

where ∗ denotes (discrete- when X is discrete) convolution.
The SLB for R−(D) is given by:

Theorem 6: For any stationary source X

R−(D) ≥ H−(X) − φ(D) (21)

with equality if and only if

PX0|X\0
∈ S(D) a.s. (22)

Note that whenever the source X has the decomposition in
(20), it certainly satisfies (22), since (20) in particular exhibits
a joint distribution under which

PX0|X\0
= PY0|X\0

∗ PNd
a.s. (23)

Thus Theorem 6 implies that when the distortion level D is
such that the SLB for R(D) holds with equality, the SLB
for R−(D) also holds with equality. The opposite implication
does not hold as the examples below show. Furthermore, there
are cases (cf. [11]) where the SLB for R(D) is known to hold
with equality for a distortion region of the form D ≤ D∗,
where D∗ is not explicitly known, while the larger threshold
value for tightness of the SLB for R−(D) may be explicitly
characterizable, as in examples to follow.

C. R−(D) for Binary Sources with Hamming Distortion

Consider now R−(D) for a binary source, under Ham-
ming loss. As we now show, R−(D) can be given rather
explicitly in parametric form for a general process. For p ∈
[0, 1], let Rb (p, D) denote the rate distortion function of the
Bernoulli(p) source:

Rb (p, D) =
{

h(p) − h(D) for 0 ≤ D ≤ min{p, 1 − p}
0 otherwise.

(24)
Theorem 7: Let X be a binary stationary source and define

the [0, 1/2]-valued random variable

U = min{P (X0 = 1|X\0), P (X0 = 0|X\0)}. (25)

The erasure rate-distortion function R−(D) for the source X
is given in parametric form by

D(∆) = E [min {U,∆}] =
∫

[0,∆]

udFU (u) + ∆ [1 − FU (∆)]

(26)
and

R(∆) = E [Rb (U,∆)] =
∫

(∆,1/2]

h (u) dFU (u)−h(∆) [1 − FU (∆)] ,

(27)
where FU is the CDF of U and ∆ ∈ [0, esssup U ].

Remarks:

• Theorem 6, applied to the binary case, implies that the
SLB for R−(D) is tight for 0 ≤ D ≤ essinf U . This is
consistent with Theorem 7 as, for 0 ≤ ∆ ≤ essinf U ,
D(∆) = ∆ and R(∆) = H−(X) − h(∆).

• If X is a kth-order Markov source, U , as defined in (25),
is discrete, assuming at most 22k different values. The
characterization in Theorem 7 gives R−(D) explicitly
for any such source. This is in contrast to the case for
R(D), which is not explicitly known even for the binary
symmetric first-order Markov process [11].

• If X is not Markov, e.g., a hidden Markov process, U
may have no point masses and, in fact, have a singular
distribution. In such cases, the distribution of U can be
approximated arbitrarily precisely by expressing it as a
solution to an integral equation, of the type obtained by
Blackwell in [12]. This then leads to arbitrarily precise
approximations for R−(D) via the characterization in
Theorem 7.

Example 4: Consider the binary symmetric Markov source,
as in Example 2, with transition probability p ∈ [0, 1]. Let
pmin = min{p, 1− p}. In this case U in (25) is distributed as

U =

{
p2

min

p2+(1−p)2 w.p. p2 + (1 − p)2

1/2 w.p. 2p(1 − p).
(28)

With the distribution in (28), it is possible to solve the
parametric equation in Theorem 7 to yield

R−(D) =

⎧⎪⎨
⎪⎩

h−(pmin) − h(D) for 0 ≤ D ≤ p2
min

p2+(1−p)2

2p(1 − p)
[
1 − h

(
D−p2

min

2p(1−p)

)]
p2

min

p2+(1−p)2 < D ≤ pmin

0 otherwise.
(29)

A plot of the erasure rate-distortion function R−(D) for the
binary Markov chain with pmin = 1/8 is given in Figure 2.
The SLB for R−(D) is tight up to D∗ = 0.02, whereas the
SLB for R(D) is tight in a smaller unknown region. In this
example, erasure entropy and entropy are h−(1/8) ≈ 0.329,
and h(1/8) ≈ 0.544, respectively.

R−(D) for Gaussian Sources

Example 5: Let X be a stationary Gaussian process with a
bounded and strictly positive spectral density SX(ejw). Then,
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Fig. 2. Solid curve is R−(D) for the binary symmetric Markov source
with pmin = 1/8. The dashed curve is the SLB for R−(D). The upper
dotted curve is Rb (1/8, D), the rate distortion function of the Bernoulli(1/8)
source, which is also the SLB for the rate distortion function of the binary
symmetric Markov source with pmin = 1/8.

under Euclidean distortion,

R−(D) =

{
1
2 log

σ2
x−
D for 0 ≤ D ≤ σ2

x−
0 D > σ2

x− ,
(30)

where

σ2
x− =

[
1
2π

∫ π

−π

dw

SX(ejw)

]−1

. (31)

To see why this follows from Theorem 6 note that in this case
X0, conditioned on X\0, is, with probability one, Gaussian of
variance σ2

x− . So, in particular, PX0|X\0
∈ S(D) a.s. for every

D ≤ σ2
x− .

V. DENOISING

Discrete denoising deals with the minimization of the dis-
tortion achieved by an algorithm that observes the output of
the channel but, in contrast to the settings in Sections III
and IV, has no other information on the input realization.
DUDE [3] is a noncausal discrete universal denoiser which,
upon knowledge of the channel transition matrix, exploits the
information in the context of the noisy symbols to achieve
the same performance as if it knew the statistics of the input.
Empirically, it was observed in [3] that the compressibility
of a denoised source is a good indication of the quality of
reconstruction.

Denoising for binary symmetric channels under bit-error
rate distortion turns out to be tightly coupled to entropy (in
the causal setting) and to erasure entropy (in the noncausal
setting). Defining

fδ(α) = min
{

α − δ

1 − 2δ
, δ

}
, (32)

let
εδ = min

a,b
max

δ≤α≤1/2
|fδ(α) − [ah(α) + b]| , (33)

where h denotes the binary entropy function (in bits). Let a∗
δ ,

b∗δ be the achievers of the minimum in (33).

For a stationary binary process X = {Xt} corrupted by
a BSC(δ) let F(X, δ) and D(X, δ) denote, respectively, the
filterability and denoisability (i.e., the minimum bit error rate
in reproducing X from its noise-corrupted observation in the
causal and non-causal case). For any stationary binary process
X = {Xt} and δ ∈ [0, 1/2), it can be shown that

|F(X, δ) − [a∗
δH(Z) + b∗δ ]| ≤ εδ,

where Z denotes the response of the BSC(δ) to X. This fact is
used in [5] to bound the sensitivity of the filtering performance
to the order in which a multi-dimensional data array is scanned
into a one-dimensional signal. As the following theorem
shows, a similar bound holds for the denoising problem, upon
replacing entropy rate with erasure entropy rate:

Theorem 8: For any stationary binary process X = {Xt}
and δ ∈ [0, 1/2),∣∣D(X, δ) − [

a∗
δH

−(Z) + b∗δ
]∣∣ ≤ εδ

Thus, the entropy and erasure entropy determine the filter-
ability and denoisability respectively to within εδ . This also
implies that two noisy processes with the same erasure entropy
rate can differ in their denoisability by no more than 2εδ . For
example, ε0.25 < 0.03.

Definition 4: For the distributions PX1,...Xn
and QX1,...Xn

,
the erasure divergence D− is defined in terms of the condi-
tional divergence as

D−(PX1,...Xn
|| QX1,...Xn

) =
n∑

i=1

D
(
PXi|X\i

‖ QXi|X\i
|PX\i

)
,

The erasure divergence is shown in [6], among other things, to
play a key role in bounding the loss due to denoising a source
using a denoiser which was tailored for a different source.
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