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Abstract—We consider sources and channels with memory ob-
served through erasure channels. In particular, we examine the
impact of sporadic erasures on the fundamental limits of lossless
data compression, lossy data compression, channel coding, and de-
noising.

We define the erasure entropy of a collection of random variables
as the sum of entropies of the individual variables conditioned on
all the rest. The erasure entropy measures the information content
carried by each symbol knowing its context. The erasure entropy
rate is shown to be the minimal amount of bits per erasure required
to recover the lost information in the limit of small erasure proba-
bility. When we allow recovery of the erased symbols within a pre-
scribed degree of distortion, the fundamental tradeoff is described
by the erasure rate—distortion function which we characterize. We
show that in the regime of sporadic erasures, knowledge at the en-
coder of the erasure locations does not lower the rate required to
achieve a given distortion. When no additional encoded informa-
tion is available, the erased information is reconstructed solely on
the basis of its context by a denoiser. Connections between erasure
entropy and discrete denoising are developed. The decrease of the
capacity of channels with memory due to sporadic memoryless era-
sures is also characterized in wide generality.

Index Terms—Channel coding, channels with memory, data
compression, discrete denoising, entropy, erasure channels,
Markov processes, rate-distortion theory, Shannon theory.

1. INTRODUCTION

A. Scope

HE memoryless erasure channel in which symbols are
T replaced by a special erasure symbol independently and
with probabilty e is a very useful abstraction for various types
of data loss or low reliability reception, and plays a fundamental
role in channel coding theory and the information theory of
noisy channels.

Questions of engineering interest that arise when information
is erased can be divided into two major categories according
to whether the recovery of the erased information is lossless or
lossy.

Problems in lossless (or almost lossless in the usual sense)
recovery include the following.
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1. Adding redundancy prior to transmission of nonredundant
data for protection against erasures as well as other noisy
channel uncertainty. A particular interesting class of prob-
lems is the analysis of the capacity of channels formed by
concatenating a noisy channel and an erasure channel.

2. The source is connected directly to the erasure channel,
and the goal is to convey efficiently the erased information
to the receiver knowing the erasure locations, taking ad-
vantage of the redundancy of the source. The fundamental
measure of compression efficiency is the entropy of the
source conditioned on the erasure channel output.

3. Conveying the erased information to the receiver not
knowing the erasure locations. This is a Slepian—Wolf
data compression setup and therefore the compression rate
does not suffer because of the ignorance of the erasure
locations.

4. The problems in items 2 and 3 where the source undergoes
a concatenation of noisy channel and erasure channel.

In lossy recovery, where a distortion measure gauges the
quality of the reproduction of the erased information, problems
of interest include the following.

5. The source is connected directly to the erasure channel, and
the goal is to convey an approximation of the erased infor-
mation to the receiver knowing the erasure locations. In this
case, the fundamental tradeoff of compression efficiency is
represented by a conditional rate—distortion function given
the nonerased information.

6. The same as in item 5 but with a compressor which is igno-
rant of the locations of the erasures. Since those are known
only at the decompressor, the fundamental tradeoff is given
by a Wyner—Ziv rate—distortion function.

7. 1If the erasure channel output is available to the compressor
but not the decompressor, and the nonerased source is
available to neither, the fundamental tradeoff of rate
versus reproduction fidelity is given by a rate—distortion
function for lossy compression of noisy (in this case
partially erased) data.

8. Denoising (or more concretely “derasing”) the output of
the erasure channel. In this case, no coding (either adding
or eliminating redundancy) is allowed, and thus the de-
noiser relies entirely on the redundancy of the source. The
minimum achievable distortion at the output of the erasure
channel is called the “derasurability.”

In each of the above cases we face problems of analysis of ei-
ther channel capacity, lossless data compression rate, rate—dis-
tortion functions, or derasurability. Often, these problems turn
out to elude explicit analysis for even simple models unless we
turn to the asymptotic case of sporadic erasures. In this regime,
the fundamental limits are given by new information measures
we introduce in this paper: erasure entropy and erasure mutual
information.

0018-9448/$25.00 © 2008 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on January 19, 2010 at 18:32 from IEEE Xplore. Restrictions apply.



VERDU AND WEISSMAN: THE INFORMATION LOST IN ERASURES

B. Erasure Entropy

The entropy of a source X7, . .., X,, is equal to the sum of the
conditional entropies of each symbol given all preceding (or all
succeeding) symbols. As the number of symbols grows without
bound, the minimum compression rate converges for almost all
source realizations to the limiting per-symbol entropy (entropy
rate) provided that the source is stationary and ergodic.

Conditioning on the past or the future leads to the same mea-
sure of information content. However, what if we condition on
both the past and the future? We define the erasure entropy of
a collection of random variables as the sum of the individual
entropies conditioned on all the other variables. The erasure en-
tropy rate of a stationary random process is equal to the entropy
of any of its values conditioned on all past and future values, or
equivalently, the decrease in entropy that ensues by eliminating
one value from the ensemble.

Erasure entropy rate of a stationary source is strictly lower
than the conventional entropy rate (unless the source is memo-
ryless, in which case they are identical). Regarding images or
other data indexed by multidimensional sets, the representation
of entropy as a sum of conditional entropies given the past re-
quires an artificial definition of a “past,” while erasure entropy
does not suffer from that drawback.

What is erasure entropy good for? Here are some illustrative
applications.

 If one of the symbols in a text is erased, erasure entropy
quantifies the number of bits it takes to convey the erased
symbol knowing the rest of the text.

* For the simulation of a Markov random field via Gibbs
sampling, each pixel value is generated by its conditional
distribution given the other pixels in its Markov neighbor-
hood, using as values for the neighboring pixels those that
were generated in the previous iteration. This simulation
gives, in the limit of many iterations (and of large image),
a sample from the desired Markov random field (e.g., [11]).
The number of random bits per pixel per iteration required
for this simulation is equal to the erasure entropy of the
field.

* The information content in the samples of a continuous-
time Markov process is given by the entropy of a Markov
chain. If the process is then sampled at twice the rate, the
additional information content of the new samples is given
by the erasure entropy of a Markov chain.

* The counterpart of the Markov order estimation problem
in Markov random fields has been studied in [16], which
finds the erasure entropy useful in the proof of consistency
of an estimator of the Markov neighborhood size.

e Landauer [28] put forward the principle that the entropy
of a symbol physically stored in a computer memory and
the increase in the thermodynamical entropy of the overall
system when the symbol is erased are equal modulo a scale
factor (Boltzmann’s constant). According to that principle,
when the stored information source has memory, the in-
crease in thermodynamical entropy incurred by an erasure
should be proportional to the erasure entropy rather than to
the conventional Shannon entropy.

In the regime of sporadic erasures, we show in this paper

that the erasure channel emerges as a convenient paradigm to
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obtain Shannon-theoretic operational characterizations of era-
sure entropy. These characterizations are related to the minimal
amount of additional (encoded) information required to recover
the erased information either losslessly, almost losslessly, or
within a prescribed degree of distortion.

In a follow-up to this paper, [43] studies the problem of uni-
versal estimation of erasure entropy rate.

C. Organization

Section Il introduces erasure information measures: We begin
in Section II-A by establishing some basic properties of erasure
entropy and erasure entropy rate, as well as examples of explicit
computation. In the case of a kth-order Markov process we show
the relationship between conventional entropy rate and erasure
entropy rate. In Sections II-B and -C we introduce the related
notions of erasure divergence and erasure mutual information,
and explore some of their properties.

The basic operational characterization of erasure entropy is
obtained by considering a memoryless erasure channel where
the destination wants to recover the erased symbols losslessly
or almost losslessly. As shown in Section III, the amount of in-
formation required per erasure is lower-bounded by the erasure
entropy, a bound that becomes tight for small erasure proba-
bility.

In Section IV, we examine the setup where the erasures are al-
lowed to be reconstructed within a certain distortion, and in par-
ticular, we analyze the tradeoff of distortion versus the amount
of information per erasure that an encoder needs to provide upon
observation of both the clean source and the location of the era-
sures. For vanishing erasure probability the fundamental limit
is shown in Section IV-A to be given by the erasure rate—dis-
tortion function defined as the minimal mutual information be-
tween a source symbol and its reconstruction conditioned on
all other source symbols, where the minimization is over all
conditional distributions of the reconstruction symbol given the
source symbol and its contexts that satisfy the average distor-
tion constraint. In Section IV-B, we show that in the regime of
sporadic erasures, the rate required to achieve a given distortion
does not increase if the encoder is unaware of the location of the
erasures. This surprising result is obtained by showing that the
memoryless Wyner—Ziv rate distortion function is the same as
in the case when both compressor and decompressor have ac-
cess to the erased version of the source. In Section IV-C, we
explore the counterpart of the Shannon lower bound and condi-
tions for its tightness. The erasure rate—distortion function of a
general stationary binary source under Hamming loss is given
an explicit characterization in Section IV-D, and shown to admit
a water-flooding interpretation. Section IV-E examines the form
of the erasure rate—distortion function for a couple of additional
canonical processes and fields, including Gaussian sources with
Euclidean distortion and the Ising model. Section IV-F develops
an upper bound on the rate distortion function of the binary
symmetric Markov source in terms of its erasure rate—distor-
tion function. Section IV-G deals with the case where the com-
pressor has no access to the erased symbols and the nonerased
symbols must be reproduced almost losslessly.

In Section V, we study the decrease in channel capacity due
to erasures of the channel outputs, and show that the erasure
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mutual information emerges naturally in the answer to this ques-
tion in the regime of sporadic erasures. In contrast to the cases of
lossless and lossy compression, where the fundamental limits in
the case of sporadic nonerasures are given by the conventional
Shannon entropy and rate distortion functions, in the problem
of channel coding, the unavailability of most outputs leads to a
fundamental limit different from the conventional maximal mu-
tual information rate.

Relationships between erasure information measures and dis-
crete denoising [39] are revealed in Section VI. Tight bounds
on the minimum per-symbol distortion achievable by a non-
causal denoiser which only has access to the discrete memo-
ryless channel output are given in Section VI-A in terms of the
erasure entropy rate. Interestingly, for a causal denoiser the same
bounds hold upon replacing erasure entropy rate by Shannon’s
entropy rate [12]. Section VI-B shows that erasure divergence
plays arole in quantifying the loss due to mismatched denoising,
analogous to that shown in [31] to be played by standard diver-
gence in quantifying the loss due to mismatched filtering (causal
denoising).

II. ERASURE INFORMATION MEASURES

In this section, we define erasure entropy, erasure divergence,
and erasure mutual information. These measures coincide with
the conventional quantities when the collections contain only
one element (i.e., n = 1 below).

A. Erasure Entropy

Definition 1: The erasure entropy of a collection of discrete

random variables { X7, ..., X,,} is
H™(X1,..., Xn) = Y H(X;|Xy) (1)
i=1
where

Using the chain rule of entropy we can express the erasure
entropy in terms of unconditional entropies as

H™(Xy,...

In addition, analogously to the conventional entropy, we de-
fine the erasure entropy rate as the limiting normalized erasure
entropy, i.e., the limit of the arithmetic mean of the conditional
entropies of each symbol given all preceding and succeeding
symbols.

Definition 2: The erasure entropy rate of a process X =
{Xl}iooo is

H~(X) = limsup lH_(Xl,...
n

n—oo

y Xn)- “)
Theorem 1: For any collection of discrete random variables

{X41,..., X}
H (Xy,...,X,) <H(Xy,...,X,) 5)

with equality if and only if { X, ..., X,,} are independent.
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Proof:

= Z[H(XﬂXi_l) — H(X;|X{™ 5 X7)] 6)

=1

= I(Xi X7 X1 @)
i=1

> 0. 3

The condition for equality in (5) is obtained by induction using
equality in (8). ]

According to (7), the difference between Shannon and erasure
entropy is the information that the present provides about the fu-
ture knowing the past, or equivalently that the present provides
about the past knowing the future, since in the proof of The-
orem 1 we can interchange the future X7, ; and the past X f_l.

Denoting the reversed process X = X,,—r+1, k=1,...,n

H(X1,7Xn)_H_(X1,,Xn)zl(j(_n_)Xn) (9)

where the “directed information” [29] is defined as
W™ = Y™ =Y I(Ys WYy,
=1

(10)

Expressed in terms of unconditional conventional entropies,
the difference in (9) is referred to as the dual total correlation
in [25].

Note that unlike entropy, erasure entropy is not associative.
For example, H (X1, X5, X3) < H~((X1,X>2), X3), with
strict inequality unless X; — X3 — X5. Also, unlike entropy,
erasure entropy is not invariant to one-to-one transformations
of the collection of random variables.

Theorem 2: For any stationary process

H™(Xq,..., Xp_1).

; (1D

Proof: The proof is quite different from the analogous re-
sult for conventional entropy [19]. According to the definition
of erasure entropy

x H(X;|X{ 7 X7) (12)
n—2 . .
J J i—1 vn—1
=3 (- D) e
j=1
n—1 . .
J_J—-1 i—1yn
+> <E - m) H(X;|X{ X 0) (13)
7j=1
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n—2 . .
J J i—1 vn—
<3 (27 - ) moiddagh

j=1
(i j-1
- —1 vn—
S awnagh s
j=1
n—1 . . . .
S0 ()
. n—1 n n n—1
7j=1
x H(X;1X{7' X7
n—1 n—1
— - H(X,_{| X2 15
(221 -5 Hexalxy ) (15)
1 n—1
j—1 vn—
:jZH(XﬂXf Xrh
j=1
1 n—2
—;H(Xn,1|X1 ) (16)
1 1
= H (X1,...,Xpn-1) — —H(X,| X271 17
e HT (X Xmy) = S H (X X570) A7)
1 1
< H (X1,....,.Xn_1) — —H(X,| X! 18
< H Xy Xa) = SHXIXPY ()
where

* (12) <« the term in braces is simply %;

* (13) « stationarity;

* (14) < dropping the conditioning variables Xy and X";
* (17) < stationarity and the definition of erasure entropy;
* (18) < adding the conditioning variable X;. O

Theorem 3: For any stationary process

H-(X) = lim %H‘(X17...7Xn) (19)
= lim H(Xo| X7, XF) (20)
= H(Xo|XZL, X7°). 1)

Proof: Definition 2 and Theorem 2 imply (19). To show
(20), first note that

1 1< j—1vn
~H (Xl,...,Xn):;ZH(XﬂXf Xy)

i=1

1 & 1 vitn
zgz;H(XAXLnX;H) 22)
]:
= H(Xo| X2, XT) (23)

where (22) follows by introducing further conditioning random
variables and (23) follows from stationarity. The reverse in-
equality only holds asymptotically: Choose a positive integer k;
then for n > k

1
_Hi(Xlw'an)
n

n—k n

1 1on

== >+ + > P H(XX{TIXG )
j=1  j=k+1 j=n—Fk+1
2% 1
itk
< loglAl+ - ST HOGIXTXT) @)
j=k+1

2k n — 2k _

= log|A| + — H(Xo| X2 XT) (25)
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where |A| stands for the cardinality of the alphabet, (24) results
from upper-bounding conditional entropy by the logarithm of
the cardinality of the alphabet and from removing some of the
conditioning random variables; and (25) follows from station-
arity. Taking the limit n — oo, we see that < holds in (20). Fi-
nally, (21) follows from the bounded convergence theorem and
the version of the martingale convergence theorem in [8] that
implies

P k—o0

Xo|X 1 X —)PX0|X:;,7X1°° a.s. (26)

O

Theorem 1 implies that a collection of random variables has

zero erasure entropy if it has zero entropy. The converse is of

course not true: if Xy = X, a.s. then H(Xy, Xo) = H(X7)

whereas H~ (X1, X3) = 0. Similarly, H~(X) = 0 does not

necessarily imply H(X) = 0 as the following stationary er-
godic example reveals.

Example 1: Let W; be independent and identically dis-
tributed (i.i.d.) with positive entropy. Let Yo; = Y2,41 = W,.
Construct now {X;} by letting X; = Y, where

PlU=0]=P[U=1]= -

and U is independent of {W;}. The source {X;} is stationary
and ergodic with H(X) = 1H(W). On the other hand,
H~(X) = 0 because it is possible to decide the value of U
with vanishing error probability by observing a sufficiently
long sample path of {X;} and, for each 7, X; is a deterministic
function of (X;_1, X;+1,U).

Markov chains provide simple examples of computation of
erasure entropy rates.

Example 2: Let X be a first-order homogeneous binary
Markov chain with Px,|x,(0[1) = Px,|x,(1]0) = p. Then

1 1
H(X)=h(p)éplog;+(1—p)10g1_ 27)
and noticing that H(X|Xo) = h(2p(1 — p)),
H™(X)=h"(p) £ 2h(p) — h(2p(1 = p)). ~ (28)

The entropy and erasure entropy of the first-order homoge-
neous binary symmetric Markov chain are shown in Fig. 1. It is
interesting to note that in Example 2

H(X)

The result in Example 2 can be checked by particularizing the
following formula.

Theorem 4: For a homogeneous kth-order Markov source

H~(X)+ H(X1,..., XX 1,..., X )

’ ’

E+1

H(X) = (29)

Proof: Letn > k. The following holds for all arguments
in the state space, which we drop for the sake of brevity:

Py -1 me -1 =
Xo| X2, X77 XT|XT,

P

—1.
XglXZ,

(30)
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Fig. 1. Entropy rate and erasure entropy rate of a binary Markov chain with
transition probability p.

P

Using the kth-order Markov property on both sides we can write
Xo|X ] X

(31)

Dropping the common term PXn X taking logarithms of
both sides, averaging with respect to the jointdistribution Px» ,
and taking the limit as n — oo, we obtain the desired result (29)
in view of Theorem 3. Note that the proof shows that for a ho-
mogeneous kth-order Markov source X, if & < n

X”PXle IPXn+ |Xk

H™(X) = H(Xo|XZ,, X7). (32)
O
For a general stationary Markov random field, the erasure en-

tropy is equal to the conditional entropy of the symbol given its

neighborhood. This conditional entropy plays a role in [16].

In parallel with Definition 1, it will be useful to consider the

conditional erasure entropy.

Definition 3: The conditional erasure entropy of a collection
of discrete random variables { X1, ..., X, } given a random ob-
ject Z is

In particular notice that

H™(Xi|X{7h) = H(X;|X{h). (34)

The following counterpart of the Shannon-Macmillan—
Breiman theorem [9] is useful in the universal estimation of
erasure entropy [43].

Theorem 5:
process X

For a stationary ergodic finite-alphabet

lim — Zlog /Py, x,, (Xi|X\;) = H™(X) as.

n— oo
i=1

(35)
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Proof: Define the functions f; : R" — R

fila b ) = Dog 1/ Py e o (alb ™ 64 )
and

fla,b7%,¢7%) =

By the ergodic theorem [35], it follows that

log 1/PX0|X;1X100 (a]b3°, ¢1°).

. 1 - 1—1 oo\ __ —
nlingoggf( i X, Xi1)=H™(X) as. (36)

Thus, by stationarity of X we need to show that since X is
ergodic

X7 X)) |=0as.

—00?

. 1 i— n
Jim 37X XL X ) =S (X
i=1

(37)
The convergence in (37) can be shown using the martingale con-
vergence theorem following the same steps as in the proof of the
Shannon—Macmillan—-Breiman theorem in [35, pp. 259-262]. [J

B. Erasure Divergence

For the joint distributions Px, . .
gence satisfies the chain rule

x..)

= ZD Px,|xi-1 || Qx,xi-1|Pxi-1), (38)

i=1

x, and Qx, . x,, diver-

an identity which is relevant to the following definition.

Definition 4: For the distributions Px,  x, and Qx, .. x, .
the erasure divergence D~ is defined in terms of the conditional
divergence as

D_(P\1 ------- ” Q)ﬂl )
- Z D (Pxyx, | @xx Px., ) - (39)
i=1
Note thatif Qx, ... x,, is the distribution of i.i.d. equiprobable
random variables on a finite set A, then
D™ (Px,,., x, ) =nlog|A| — H (X1,...,X,).
(40)

In the spirit of (3), erasure divergence can be written in terms
of the unconditional divergence by means of the following for-
mula.

Theorem 6:
D™ (Px,,., X,)
=nD(Px, . x, || Qx,..., X,I)_Z (Px,, | @x,,)- (4D
i=1

Proof: By the telescoping property of divergence we can
write for any 7 € {1,...,n}

..... X.)
=D (PXi|X\7 | QXilX\1

Px..) + D(Px,, (42)

Qx.;)-
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Upon summing both sides with respect to ¢ € {1,...,n}, the
result follows in view of (39). O

Erasure divergence may be strictly larger or strictly smaller
than conventional divergence. For example, let n = 2, Px, =
Qx,,. Px, = Qx,; then, using (41) we see that the erasure
divergence is twice the conventional divergence. When X; =
X5 under both P and @, the erasure divergence is zero, while
the conventional divergence is positive if P # Q.

The conditional erasure divergence is then defined in parallel
with the unconditional case.

Definition 5: For the distributions Pz, Px, . x|z, and
Qx,,...,x,|z» the conditional erasure divergence is

D_(PXl,....Xn|Z | Qx,...x,zIPz)

— ZD (PXilx\i,Z | QXi\X\ivzm‘*'\i’Z) - )

i=1

The special case of (43) where Qx, . x, 1z = Px, . . x,is
particularly important and merits Section II-C.

C. Erasure Mutual Information
Definition 6: The erasure mutual information between a

random object X and (Y1,...,Y,) is

I~(X;Y4,...,Y,) =D~ (Py,

) (44)

(45)

v x| Py y,

= 3 HX V).

i=1

From the natural generalization of Theorem 6 to conditional
erasure divergence, we get the following representation for era-
sure mutual information.

Theorem 7:
I (X;Y,.... ) =nl(X;Y1,...,Y,) — zn:I(X;Y\,L-).
) (46)
Proof: Sum fori € {1,...,n}
I(X;Y1,...,Y,) = I(X; V) + I(X;Y5|) 47)
and use (45). O

Erasure mutual information may be smaller or larger than mu-
tual information
I(Xaylvyn)

_I_(X;Ylv"wyn)

=D I(X; VYY) = I(X; Vi) (48)
i=1

Example 3: f X =Y, =--- =Y, then
I(X;Y1,...,Y,) =H(X) (49)
I~ (X;Yy,...,Y,) =0. (50)
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Example 4: U X =Y, 0 Yy B -
are i.i.d. equiprobable on {0, 1}, then

- @Y, where Yq,...,Y,

I(X;Yy,...,Y,) =1bit (51)
I~ (X;Y1,...,Y,) =nbits. (52)

Example 5: For finite-alphabet random variables
I (..., .)Y,)=H (Yh,...,Y,). (53)
Example 6: IfY; = X + N; where N;,7 = 1,...,n are inde-

pendent Gaussian with unit variance, independent of X which
is also Gaussian with variance vy, then
I(X;Yy,...,Y,)

= % log(1 + ny) (54)

I7(X:Ya,...,Y,) :glog <1+ ﬁ) . (55)

Definition 7: 1f the random processes (X ,Y) are jointly sta-
tionary, then the erasure mutual information rate is defined as

I (X,)Y)= lim lI_(Xl,...,

n—oo n,

= 1(X;Ys|Y\0)-

Xn;Ylw"vYn)

(56)

Example 7: It Y; = X,; + N; where X; and N; are indepen-
dent stationary Gaussian processes with power spectral densities
Sx(f) and Sn(f), respectively, then the erasure mutual infor-
mation rate is

-1/2 g
1 fdf
I (X.Y)=;log 1/2f 1/2 57)
f—l/z +SN(f))_1df
IfYy,...,Y, arediscrete random variables, it is easy to check

that the erasure mutual information can be expressed as

I (X;Y,....Y,)=H (Y1,...,Y,) — H (Y1,...,Y,|X).

(58)
Note that I~ is not symmetric in its arguments. For example, if
X3 = X» =Y is binary equiprobable independent of Y5, then

I_(Xl,XQ;Yl,YQ) =1 bit andI_(Yl,Yg;Xl,Xg) =0.

In parallel with the conventional mutual information, erasure
mutual information satisfies the following.

Theorem 8: If (Y1,...,Y,) are independent then

ZI (X::Y5)

with equality if and only if, condltloned on X;,Y; isindependent
of the remaining random variables, forall+ = 1,...,n.

Proof: Using the chain rule of mutual information twice, we
can write

I_(Xl,...,Xn;Yl,.... (59)

I(Yi; Xi) + 1(Y3; Xa, Y6 | XG)
= I(Y; X7, )
= I(Yi; Y\i) + 1(Yi;s XT'[V\:)

= I(Yi; X{') (60)
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where (60) follows from the assumed independence of
(Y1,...,Y,). The difference between the left and right sides of
(59) is equal to

n

ID(X73Y7) = ) I (X3 Vi)

i=1
=Y H(XT:Yi|V) = 1(Xi: V)
i=1
i=1
where (61) follows from (60). O

Theorem 9: If conditioned on X;, Y; is independent of the
remaining random variables, for all s = 1,...,n, then

sznj (Xi;Y5)

with equality if and only if (Y7, ... 7Yn) are independent.
Proof: Invoking the chain rule twice, we can write

(62)

I(Yi; XiIY\) + 1(Yi; Yos) = 1(Yi; Xi, Ys)
T(Yis Xi) + T(Yi; Vi | X)
I(Y;; Xi) (63)

where (63) follows from the assumption. The difference be-
tween the right and left sides of (62) is equal to

S (K1)
=1

- I (X157

= ZI(Xi;Yi) — I(XT:; YY) (64)

—ZIXZ,Y I(Y3; X3 )
- I(Y X\2|Y\z ) (65)
= ZI X3 V) — I(Yi X[ ,) (66)
(67)

31w
1=1

where (66) follows from the assumption of the theorem and (67)
follows from (63). O

Note that the condition in Theorem 9 and for the equality in
Theorem 8 is satisfied when (Y7,...,Y,,) are the output of a
memoryless channel whose input is (X1, ..., X,,).

In general, erasure mutual information does not satisfy a data
processing property: let X be independent of 71, ..., Z,, con-
ditioned on Y7, ...,Y,, then it does not follow that

I~ (X;Y,....Y) > 1 (X 21,...,Z,). (68)
For example, let X = Z; = Y, = ---Y, and Z5,..., 2,
independent of all other random variables. In this case,
I (X;Y,....Y,) =0,and I (X; Z1,...,Z,) = H(X).
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III. LOSSLESS COMPRESSION
For jointly distributed processes

X=(...X_1,X0,X1,...)

and

Z=(...,
let H(X|Z) denote the conditional entropy rate defined by
H(X|Z) = limsup — H(X"|Z")

n—0o0

Z—17Z07Z17 .- )

Theorem 10: Suppose that the source X goes through a dis-
crete memoryless erasure channel with erasure probability e,
and denote the output process by Z. If X is stationary

H(X|Z)>eH (X), forallee[0,1]
H(X|Z)=eH (X)+ o(e)

where o(z)/z — 0asx — 0.

(69)
(70)

The following lemma will be used to prove Theorem 10.

Lemma 1: Suppose that the source X goes through a discrete
memoryless erasure channel with erasure probability e > 0,
and denote the output process by Z. If X is stationary then, for
every k

H(X|Z .
B2 - noxixzl, x* 25.)
k
+ed I(Xos Xi|XZL, X1 2%, (7))
i=1
Proof: Since
H(X|Z) = (X0|X_1 Z)
=H(Xo|X_-L,75)
=eH (Xo|X ™%, %) (72)
we have
H(X|Z
BB p(xolxzs, z0) 73
=eH(Xo| X2, Z5°)+(1-e) H(Xo| X1, X1, Z5°)
(74)
=el(Xo; X1|X~L, Z5°)+ H(Xo| XL, X1, Z5°)
(75)

proving (71) for k = 1. Proceeding by induction, assuming the
validity of (71) for k, we have

H(X|Z) _

. H(Xo|XZ5, X*, Z51)
k
+e ) I(Xos Xi|XZh, X1 Z3%))
1=1
=eH (Xo| X2, X*, Z%,)
+(1_e) (X0|X7007Xk+17zko:j—2)
k
+ed I(Xos Xi|XZX, X1 23%))
1=1
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= eI(X(]; Xk+1|X:;o7Xk’ Z}Sj—2)
+ H(Xo|XZL, X1, 725,)

k
+e ) I(Xoi X[ XZX, X7 Z7%)

i=1
= H(X0|X:;o> Xk+1: Zgj—?)
k+1

+ eZI(XO;Xi|X:io7Xi_17 ioil)7
=1

establishing the validity of (71) for k& + 1. O

Proof: (of Theorem 10): For a set of indices S, use Xg to
denote {X;};cs. For an arbitrary realization Z" = 2", define
S = 8(z") = {i1,...,is;} C {1,...,n} as the collection of
all the indices for which the output is erased, namely z;, = e.
Then

H(X"|Z" = 2") = H(Xs|Xs) (76)
E
=Y H(X;|Xi,,...,Xi_,, Xse) (T7)
j=1
E
>N H(X; X)) (78)
j=1
> |S|H™(X) (79)

where the inequalities follow from the decrease of entropy upon
further conditioning. Dividing by n and averaging with respect
to 2", we get (69) since by definition E[|S|] = ne. Note that
(69) does not require that the channel be memoryless.

To prove (70), use Lemma 1 to obtain, for every &k

H(X|Z

% < eklog|X|+ H(Xo|XZL,X*).  (80)
Thus
lims(w;lp @ < H(Xo|XZL, X%, (81)
J
completing the proof by the arbitrariness of k. O

The result in Theorem 10 holds even if the erasures have
memory: The above proof is readily verified to imply (69) for
any erasure channel whose expected fraction of erasures con-
verges to e. In the Appendix, we show that to establish (70), it is
enough to assume that the erasure process is stationary and that

11_1)1(1)P[Z1 £e ..., lrte|lZo=¢e =1, foranyk >0

) (82)
a condition which makes erasure bursts unlikely in the sporadic
erasure regime.

If X is ergodic, the Slepian—Wolf theorem [37], and its exten-
sion to stationary and ergodic sources [13], give an operational
characterization for H(X|Z), namely, the information rate that
an encoder needs to supply to the observer of Z in order to re-
cover the erased symbols almost losslessly even if the output of
the channel Z is not available to the encoder. Having Z avail-
able to the encoder does not save any rate but enables strictly
lossless recovery of the erasures. It also simplifies the achieving
schemes, cf. [10].
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In the regime of sporadic nonerasures, the fundamental limit
is given by the entropy rate even if the erasures have memory:

Theorem 11: 1f the process { X } is stationary, and {Z} is the
output of a stationary erasure channel with erasure rate e driven
by {X}, then

lim H(X|Z) = H(X). (83)

Proof: Fix an arbitrary integer k, and define the random
variables

kl+k

V= [ 1% =e}

j=k+1

(84)

Note that since the channel is stationary, {V,} are identically
distributed with probabilities satisfying

ke <kP[Ve=1]+ (k-1 - PVe=1]) (85
which implies that regardless of the value of k
lim P[V, =1] = 1. (86)

e—1

For convenience, restrict attention to n = mk for some integer
m. We can lower-bound

H{X gt t=0,....m—1, V, =1}|2")

(88)

A%

3
A

> ) PIVe= UH{XgIX Xl yae)

~N
Il
o

(89)

n
> P[Ve = 1] H(XT|X2 o, X75,) (90)

where (90) follows from the stationarity of X. Dividing both
sides by n and letting n — oo, we obtain

lim H(X|Z) > H(X5|X9m7xg1)1irqp[w:1] 91)
e— e—

H(X{|X°

—00!

_ X). (92)

El =

But since k is arbitrary, the left side of (91) is lower-bounded by
the limit of the right side of (92), which is equal to the entropy
rate. O

A general expression for H(X|Z) as a function of e appears
to be a challenging problem. For a Markov chain we have the
following.

Theorem 12: For a general stationary first-order Markov
chain,and 0 < e <1

H(X|Z) = (1—¢)S(e), (93)
where
S(e) =Y " H(X1|Xo, Xpp1)- (94)
k=1
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0.4

0.35

H™(X)

e
0.2 0.4 0.6 0.8 1

Fig. 2. H(X1Z) 45 a function of erasure rate for the binary symmetric

Markov chain with transition probability 0.1. H(X) = h(0.1) = 0.469 and
~(X) = h(0.1) = 0.238.

Proof: Using the Markov property, we can compute H (X |Z)
by considering each string of consecutive erasures separately.
Since the mean length of a string of erasures is 1/(1 — e)

oo k
H(X|2)=(1-¢2> e STHXIX]™ Xia) 95
k=1 7=1

(1—e 22&}1 X1|X07Xt)2ek’t (96)
t=1 k=t

=(1—¢)S(e) 97
where (97) follows because the summation over k is equal to
(1—e)~ L. O

Note that (97) extends the first-order expansion of H(X|Z)
around e = 0 (characterized for a general process in Theorem
10) to any number of terms when the process is first-order
Markov. If X is a first-order symmetric binary Markov chain
with transition probability p, S(e ( ) is defined as in (98) at the
bottom of the page. A plot of (X‘Z (number of required bits
of description per erasure) as a functlon of e for the binary
symmetric Markov source is given in Fig. 2. As is to be ex-
pected, limejo ZEZ) — (X)), limep; ZE2) = g(X),

d #X12) i increasing with e.

e g

Other operational characterizations of erasure entropy in the
setting of lossless compression are possible as the following ex-
ample illustrates.

Example 8: Let {Y;}4c[o,7) be a random telegraph signal: a
binary valued continuous-time Markov process with both tran-
sition rates equal to A; thus, the switching times are a Poisson
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sampled process is a first-order symmetric binary Markov chain
with transition probability

—2XT/n

2
T} requires (for large n) es-

— €

p = P[Poisson(AT/n) is odd] = 99)

Storage of {Y:}icqr/n,21/n,...,
sentially h (1_ o bits/sample. Suppose now that we
require a higher precision approximation of the random
telegraph signal by sampling it at twice the rate to ob-
tain {Y:}ie{r/2n,m/n, 3T/(2n),.... T} Given the knowledge of
{Yi}ie{r/n,21/n,..., T} it is not necessary to double the storage
requirements for the new n samples. It suffices to spend
h~ (%) bits/sample.

To conclude this section, we note that for other (nonerasure)
channels, the behavior of the conditional input entropy given
the output when the channel is almost noiseless can be quite
different from (70). Consider, for example, a finite-alphabet dis-
crete memoryless channel (DMC) whose transition probability
matrix has the form I — § M, where M is a square matrix whose
rows sum to 0 and whose off-diagonal entries are nonpositive
(so that I — 6M is a bona fide channel matrix for § > 0 suffi-
ciently small). Then, denoting the simplex of distributions on a
finite alphabet that assign to all letters probability at least ¢ by
M., we have the following.

Theorem 13: Let X be a stationary finite-alphabet process
satisfying the positivity condition
(100)

for some e > 0, and let Z denote its noisy version when cor-
rupted by the DMC with identical input/output alphabets whose
channel matrix is I — 6 M. Then

im X2 _ g x, X))
6—0 610g§

Px,x,, € M, as.

(101)

The proof of Theorem 13 can be found in Appendix B. We

note the following.

1. The condition (100) is rather benign, satisfied by any
Markov process of any order with no restricted sequences,
any dithered process that can be represented as some other
process going through a DMC of positive but arbitrarily
small transition probabilities, etc.

2. The limit in (101) depends on the process X only through
its first-order marginal.

3. The limit in (101) depends on the DMC only through the
diagonal of the transition probability matrix.

4. For a binary source corrupted by a binary symmetric
channel (BSC) with crossover probability 6, (101) be-
comes

point process of rate A. Suppose n uniformly spaced samples of H(X|Z) _ (102)
the signal {Y; }+c (7 /n,27/n,...,r} are to be losslessly stored. The 6—0 dlog %
iek 1+(1—2p) 1—(1—2p)k+t nly 1—(1—=2p)k \ 14 (1 —2p)ktt ©8)
— (1 — 2p)k+T 2 1+ (1= 2p)k+t 2
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IV. Lossy COMPRESSION

A problem that has received some interest in the literature
is that of reconstruction of erased information in audio, image,
and video applications. Universal algorithms have been devel-
oped based on the nonerased information and the redundancy of
the source, e.g., [6]. This problem can be cast as a special case
of the denoising setting, fully developed for memoryless chan-
nels in [39] (see also Section VI). Inevitably, in the absence of
additional information it is only possible to restore a distorted
version of the missing information. At the other extreme, the
additional amount of information to recreate the erased infor-
mation losslessly was explored in Section III. In this section,
we explore the fundamental limits of the intermediate setting
where both some additional information and some reconstruc-
tion distortion are allowed.

A. Erasure Rate—Distortion Function

As in Section III, suppose that the source X goes through a
discrete memoryless erasure channel with erasure probability e,
and denote the output process by Z. An encoder that knows the
realization of X and the location of the erasures wants to spend a
rate R per expected erasure to obtain a distortion D under some
distortion criterion.

More formally, a scheme for block length n and rate R
consists of an encoder, which is a mapping T' : A" x Z" —
{1,..., LZMRJ }, and a decoder, which is a sequence of map-
pings {X;}™,, where X; : {1,...,[2"¢f|} x 2" — X.
The scheme operates as follows: the encoder maps the
source and erasure sequences (X", Z™) into an index
T = T(X",Z™), and the decoder generates a reconstruc-
tion X" = (Xl,...,Xn,), where X; = )A(,;(T, Z™). The
performance of a scheme can be measured by its expected
distortion per erased symbol according to a given distortion
measure p : X X X — R.

Definition 8: A rate—distortion pair (R, D) is e-achievable if
for every ¢ > 0 and sufficiently large n there exists a scheme
for block length n and rate R with

1
{1 <i<n:Z =e} Z

1<i<n:Z;=e
(103)
The rate—distortion function Re(D) is the infimum of rates R
such that (R, D) is e-achievable. R.(D) is the minimum amount
of information required per erasure to achieve expected distor-
tion of D per erasure.

The setup in this subsection is one of lossy source coding
with side information Z available to both encoder and decoder.
Hence

1
Re(D) = ERX|Z(D -e) (104)
where Rx|z(-) is the conditional rate—distortion function for

encoding the source X in the presence of side information Z.
The 1/e and e factors in (104) are due to the fact that Rx |z (D)
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corresponds to rate in bits per source symbol, rather than per
erased symbol as in Definition 8.

Definition 9: For a stationary source X, define the erasure
rate—distortion function

R~ (D) = min I(Yo; Xo|X\o)
=H™(X) — max H(Xo|X\o, Yo)

(105)
(106)

where the optimization in (105)—(106) is over all Py Xeo_ such

It follows immediately from the conventional rate—distor-
tion theorem that for an i.i.d. source with distribution Px,
R(Px,D) = R(D) = R~ (D), where

R(Px,D) = Ignin' I(X;Y). (107)
For every positive integer k, define now

Ry(D) = min I(Yy; Xo|XZ}) (108)

R, (D) = min I(Yo; Xo|X_}, X7) (109)

where the minima in (108) and (109) are, respectively, over
all Py,xo and Py x« such that Ff [p(X0,Yy)] < D.Itis
a well-known consequence of the martingale convergence the-
orem that the simplex-valued random vectors Py |x~! xk con-
verge in distribution to PX0 IX~L X (in fact, this follows from
the almost sure convergence noted in (26)). Coupled with the
uniform continuity of the mutual information 7(X; Y") as a func-
tion of the distribution of X, Y (in the finite-alphabet setting),
this convergence implies

lim Ry (D)= R (D). (110)

We can now state the counterpart of Theorem 1 in the lossy case.

Theorem 14: Let R(D) and R~ (D) be the rate-distortion
and erasure rate—distortion functions of a stationary source X.
Then

R(D) > R~ (D). (111)

Proof: If S’ = f(.S) is some function of S, then the condi-

tional rate—distortion function of X given S is upper-bounded

by that of X given S’ (since the latter corresponds to lossy

coding based on less information at encoder and decoder). Since

X:; is a function of (X:,i, X{“), which is a function of X\O,
we obtain

Ri(D) > R; (D) > R™ (D). (112)
To conclude the proof, it suffices to show then, by (112), that

R(D) > lim Rg(D)

k—o00

(113)

where the limit exists since R (D) is monotone nonincreasing
in k. Towards this end, fix £ and an arbitrary sequence of
rate—distortion codes of block lengths n > k, rates < R,
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and distortions < D for the source X. Letting Y™ denote the
reconstruction of the n-block code

nR>H(Y") (114)
>I(X™Y™) (115)
=H(X") - HX"[Y") (116)
=Y HX|X"H-HX|IX"Ly") (117

=1
> D HXGXTY — H(X|X[5)
i=k+1
+ H(X;| X[ 7)) — H(X;| XHY™) (118)
=H(X") — H(X") = (n— k)H(Xo|X )
+ Z (X XI~h — H(X;) X1 Y™) (119)
1=k+1
> H(X") — H(X"*) = (n — k)H(Xo|X})
+ > H(Xi|X[Zh) — H(X:|X[Z, Vi) (120)
1=k+1
=H(X") - H(X*) - (n - k)H(Xo|X~})
T (6 by (121)
i=k+1
> H(X") - H(X") = (n = k)H(Xo| X ;)
+ Y Ri(Ep(X;, 7)) (122)
i=k+1
> H(X") — H(X"*) = (n— k)H(Xo|X~})

_— Z Ep(X:,Y;

i=k+1

+ (n— k)R, (n ! )) (123)

where

e (119) < stationarity of X;

e (120) < data processing inequality;

* (122) < definition of Ry (D) (recall (108));

e (123) < convexity of Ry (D).
Considering the limits of the normalized expressions on both
sides of (123) implies that if (R, D) is an achievable rate—dis-
tortion pair for the source X then

R > H(X) - H(Xo|X~}) + Ri(D). (124)

Hence
R(D) > H(X) - H(Xo|XZ}) + Ri(D) (125)
which implies (113) when taking k£ — oo. ]

The next result, which can be thought of as the analogue of
Theorem 10 for the lossy case, shows that R~ (D) is the function

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 11, NOVEMBER 2008

characterizing the best achievable rate—distortion tradeoff in the
rare erasure regime.

Theorem 15: 1f X is a stationary ergodic source then

hII(l) R.(D)= R~ (D). (126)
e—

The proof of Theorem 15, which can be found in Appendix C,
is somewhat analogous to that of Theorem 10, though the de-
tails are more cumbersome. The main idea is the following: Ac-
cording to (104), to prove Theorem 15 one must show that, for

small e, Rx|z(De) ~ e- R (D) or, equivalently

Rxz(D)~e-R (Dfe). (127)

Rate—distortion theory for stationary ergodic sources implies
(128) shown at the bottom of the page. As is the case with the
conditional rate distortion function, the minimum in (128) can
be performed greedily for every value of 2™ separately. On those
2™ that have about n - e erasures, most of which are at a distance
of at least k& symbols from other erased symbols, it follows from
the definitions of R~ and R, that
R™(D/e) < 2") < eRy (D/e).
(129)
s have negligible prob-

1
—min (X", Y"|Z" =
n

For k fixed and large 7., the remaining 2™’
ability, so we get overall

~ 1 ~
R™(D/e) < —minI(X™;Y"|Z") < eR; (D/e) (130)
" ;
which leads to (127) in the limits of large n, then large &, and
then small e.
In parallel with Theorem 11, we have the following result
(whose proof follows an idea similar to that of Theorem 11).

Theorem 16: 1f the process { X } is stationary, and {Z} is the
output of a stationary erasure channel with erasure rate e driven
by {X}, then

lim Re(D) = R(D). (131)

B. Erasures Unbeknownst to Encoder

The previous subsection was dedicated to the case where the
erasures were not only seen by the decoder, but also known at
the encoder. In this subsection, we examine the fundamental
limits when the encoder does not know the location of the
erasures (as would be the case in most audio, image, and video
applications). Analogously to the way we defined R.(D) in the
previous subsection, define Rwz (D) as the infimum of rates
R such that (R, D) is achievable, where achievability is defined
as in the previous subsection, the only difference being that
here the encoder is a mapping of the form 7" = T'(X™) rather
than T' = T(X™, Z"). The subscript in Rwz (D) stands for
“Wyner—Ziv,” which is appropriate since our setting is one of

1

min I(X™ Y™ Z2™). (128)

PO Py yxn gniy | Bllz=ey p(X:,Y3)|<nD
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lossy compression with side information (the erased sequence)
available at the decoder only, as considered in the seminal
paper [40].

We assume throughout this subsection that X' = X and that
the distortion measure satisfies, for all z, d(x,Z) > 0 for all &
with equality for some 2. This assumption is by no means essen-
tial to the derivations that follow, but simplifies the statement of
the results. The main result of this subsection is the following.

Theorem 17: 1f X is a stationary ergodic source then

lim Rwze(D) = R~ (D). (132)

Coupled with Theorem 15 of the previous subsection, The-
orem 17 tells us that, as in the lossless setting of Section III,
there is no penalty for the encoder’s ignorance of the erasure
locations. Note that unlike in the lossless setting, where the ab-
sence of encoder side information has been known since the
work by Slepian and Wolf [13], [37] to entail no penalty, in the
lossy setting this absence has been known since the publication
of [40] to, in general, entail a nonnegligible cost in the funda-
mental limit. It is thus surprising that in the case of sporadic
erasures there is no such cost, regardless of the (stationary er-
godic) source.

To get a feel for why Theorem 17 should hold, let us consider
first the case of a memoryless source. For an arbitrary joint dis-
tribution Px z, Wyner and Ziv characterized in [40] the funda-
mental tradeoff between rate and distortion for compressing the
source X based on side information Z at the decoder (more pre-
cisely, for compressing X™ with decoder side information Z™
where X;, Z; are i.i.d. drawings of the pair X, Z, in the limit
of large n). The Wyner—Ziv rate distortion function is given by
[40]

Rwz(D) = min I(X;W) = I(Z; W)
EBd(X,X(W,2))<D
- min  I(X;W]2) (133)

Ed(X,X(W,Z))<D

where W — X — Z, and X (W, Z) denotes the optimal estimate
(in the sense of minimizing the expected distortion) of X based
on W and Z. Up to now, there are only three cases where (133)
is known explicitly: the doubly binary symmetric setting [40],
the Gausssian setting [41], and the binary source with side infor-
mation equal to the source observed in additive Gaussian noise
[36]. In those cases, encoder side information is useful to lower
the required rate for a given distortion. In Theorem 18, we pro-
ceed to identify a fourth case where (133) can be solved, and
in which encoder side information is shown not to lower the re-
quired rate.

Letting Rx|z(D) denote the conditional rate distortion func-
tion corresponding to the availability of the side information at
the encoder as well, clearly

Rx|z(D) < Rwz(D) (134)
where the inequality may, in general, be strict. As it turns out,
however, when X and Z are the input and output of an erasure
channel, there is no penalty in the fundamental rate—distortion
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tradeoff for absence of the side information at the encoder. More
specifically,! we have the following.

Theorem 18: Let Z be the output of a memoryless erasure
channel with erasure probability e whose input is a memoryless
source X . Then

Rwz(D) = Rx|z(D) = eRx(D/e) (135)

where Rx (D) is the rate—distortion function of the source X.
Proof: The second equality in (135) follows directly from
noting that when the erasures are known to both encoder and
decoder, the problem reduces to regular rate—distortion coding

of the source symbols that were erased. It will thus suffice to
show that Rwz(D) = eRx(D/e):

Rwz(D) = min I(X;W|Z)  (136)
Ed(X,X(W,Z2))<D
= min el(X; W) (137)
eEd(X,X(W))<D
=  min el(X;X) (138)
Ed(X,X)<D/e
=eRx(D/e) (139)

where (136) follows from (133) and (137) follows from the facts
that I(X; W|Z) = eI(X; W) and

Ed(X,X(W,Z)) = eE[d(X, X (W, Z))|Z = €]
+(1 — &) E[d(X, X (W, Z))|Z = X] = eE[d(X, X(W))]

where the right-most equality is due to the optimality of X
(and our assumption on the distortion measure) which implies
d(X,X(W, X)) =0. O

From Theorem 18 it is a small additional step to deduce that
the Wyner—Ziv rate distortion function for an arbitrarily varying
source, that has fraction p(s) of its components drawn (indepen-
dently) from the random variable X,, is e _p(s)Rx, (D/e).
That is, for such a source too, there is no penalty for ignoring
the location of the erasures at the encoder. Returning to the case
of sources with memory, in the rare erasure regime, our problem
is essentially one of rate distortion coding where the role of the
state of the ¢th sequence component is played by the context
X\i- Thus, as Theorem 17 asserts, in the regime of sporadic era-
sures, the compressor’s ignorance of their location does not hurt.
For the formal proof of Theorem 17, which we now sketch, we
utilize the informational characterization of the Wyner—Ziv rate
distortion function for sources with memory.

Sketch of Proof of Theorem 17: Note that only the direct part

limsup Rwze(D) < R (D)

e—0

(140)

needs to be proven since the other direction is immediate from
the fact that Rz e(D) > Re(D) and Theorem 15. Analogously
as in (104)

1
Rwze(D) = —Rwz x)2(D - ) (141)

LA similar result was obtained independently and contemporaneously in [34].
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where Rz x|z(-) is the Wyner—Ziv rate—distortion function
for encoding the source X in the presence of side informa-
tion Z available only at the decoder. Rwz x|z(D) can be ex-
pressed as (142), shown at the bottom of the page, which fol-
lows by a straightforward extension of the achievability argu-
ment in [40] to stationary ergodic sources (the converse is trivial
for this “multiletter” characterization). For fixed k < 1/e < n
construct Py x= by letting the components of W; be condi-
tionally independent given X", with Py, x» = Py, itk =
Py x+ o where the rightmost conditional probability is the one
that achieves the minimum in the definition of R, (D). Under
this Pyy» |xn,0n those z™ that have about n - e erasures, most of
which are at a distance of at least £ symbols from other erased
symbols, we have

1 ~
—I(X™W™Z" =2") < eRp (D) (143)
n

where < is an approximate inequality that becomes increasingly

precise as e — 0. Since the remaining z™’s have negligible
probability, we get overall

1

—I(X™; W"|Z") < eR;, (D). (144)
n

As for the distortion, the “symbol-by-symbol” reconstruction
mapping
if Zi ;é &

A Z;
Xi(Wi, 2) = { if Z; = e

W;
would give
Ep(X™, X"(W", Z")) ~ eD, (145)

implying, when combined with (144), that Rwz, x|z (eD) <
eRR, (D) or equivalently

ERWLX,Z(eD) < R (D). (146)
The combination of (141) and (146) implies
Rwz..(D) < R (D) (147)
ie.,
lim sup Rwz (D) < By (D) (148)
e
implying (140) by the arbitrariness of k. ]

The formal proof of Theorem 17 makes the foregoing argu-
ments precise and proceeds in a path parallel to that of the proof
of Theorem 15 in Appendix C, where the limit in (128) is re-
placed any the limit (142).

To conclude this subsection we note that, similarly to The-
orem 16 (and in fact as a corollary of it), if the process {X}
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is stationary, and the erasure channel is stationary with erasure
rate e, then

lim Rwz (D) = R(D). (149)

C. Shannon Lower Bound for R~ (D)

For simplicity, assume here that X’ is either finite or X =
R. Also assume X' = X and that d is a difference distortion
measure (i.e., d(xz,2) = d(z — &)), where, when X is finite,
addition and subtraction of elements is modulo the size of the
alphabet (for some assumed ordering of the elements of X’). This
is the setting in which the Shannon lower bound (SLB) applies.
The SLB (e.g., [4]) states that for any stationary and ergodic
process X

R(D) > H(X) — ¢(D)
where ¢(D) is the maximum-entropy function defined by

D) = H(N),
¢(D) R S (N),

(150)

(151)

the maximization being over random variables N taking values
in X (and H (N) stands for differential entropy if X is not count-
able). Note the concavity of ¢, which is a consequence of the
concavity of entropy. Equality in (150) holds if and only if X
has the decomposition

Xi=Yi+N; (152)
where N is an i.i.d. process with components achieving the
maximum in (151), independent of the process Y.

We now proceed to develop a parallel bound for R~ (D). To
this end, let Np denote the achiever of the maximum in (151)
and define the set of all distributions that can be attained at the
output of an additive-noise channel with noise Np for some
input distribution

S(D)={P € M(X):3Py € M(X) s.t. P =Py x Py, },
(153)

where * denotes (discrete—when X is discrete) convolution.
The SLB for R~ (D) is given by the following.

Theorem 19: For any stationary source X

R (D)= H (X) - ¢(D) (154)
with equality if and only if
PXo\X\o € 8(D) as. (155)

Note that whenever the source X has the decomposition in
(152), it certainly satisfies (155), since any distribution satis-
fying (152) satisfies also

PX0|X\0 = PY0|X\0 * PNd a.s. (156)

i 1
Rwz x1z(D) = lim —

(X" W™ |2 (142)

min

=00 N Pyn | xn:Ep(X™,X"(Wn,Z"))<D
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Thus, Theorem 19 implies the following observation.

Observation 1: When the SLB for R(D) holds with equality,
the SLB for R~ (D) holds with equality as well.

The converse of Observation 1 does not hold. As examples
below show, the SLB for R~ (D) may hold with equality even
when the SLB for R(D) does not. Furthermore, there are many
cases (cf. [21], [22]) where the SLB for R(D) is known to hold
with equality for a distortion region of the form D < D*. On
the other hand, in such cases the threshold value for tightness of
the SLB for R~ (D) (which by Observation 1 is larger than D*)
is explicitly characterizable, as in examples to follow.

Proof of Theorem 19: Under any Py, |x such that Ed(X,—
Yy) < D we have

I(Xo; Yo|X\0)

= H™(X) — H(Xo|X\0,Y0) (157)

= H™(X) — H(Xo — Yo|X\0, Yo0) (158)
> H™ (X) — H(Xo — Yol X\0) (159)
— H(X) - / H(Xo — Yoloro)dP (o) (160)
> H=(X) /¢ (E[d(Xo — Yo)|zo])dP(2\0) (161)
> H™(X) — ¢(E[d(Xo — Yo)]) (162)
> H™(X) - ¢(D) (163)

where

* (159) < conditioning reduces entropy;

¢ (161) < definition of ¢;

e (162) < concavity;

* (163) <= monotonicity.
This proves (154). To prove the condition for equality assume
without loss of generality that D is a point of increase of ¢, i.e.,
that ¢(D’) < ¢(D) for D’ < D.2 Inequalities (161)—(163) are
then seen to hold with equality if and only if

PXo—Yo\a:\o = Py,, for PX\0 — almost every z\o. (164)

Inequality (159) holds with equality if and only if the Markov
relationship (Xo — Yp) — X\o — Yo holds or, equivalently, if

Xy — Yy and Y) are independent given X \0- (165)

By definition of S(D), the existence of a conditional distribu-
tion Py, x under which both (164) and (165) hold is equivalent
to the requirement that the conditional distribution Py, be-
long to S(D) for Py, ,-almost every . O

lz\o

D. R~ (D) for Binary Sources and Hamming Distortion

Consider R~ (D) for a binary source, under Hamming loss.
For p € [0,1], let Ry, (p, D) denote the rate distortion function
of the Bernoulli(p) source

Ry, (p, D) = max{h(p) — h(D), 0}. (166)
The following theorem presents R~ (D) explicitly in parametric

form.

2To see that this entails no loss of generality note that D does not satisfy the
increase requirement occurs only in the finite alphabet setting, only for D >
dmax = max, d(z), for which the assertion of the theorem holds trivially.
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Theorem 20: Let X be a binary stationary source and define
the [0, 1/2]-valued random variable

U = min{P(Xy = 1|X\o), P(Xo = 0[X\0)}.  (167)

The curve R~ for the source X is given in parametric form by

D = D(A) = E [min {U,A}] (168)

and
R = R(A) = E[R, (U, A)] = E [max{h(U) — h(A),0}]
(169)
where the parameter A varies in [0, 1/2].

Note that the representation given in the theorem is amenable
to a water-flooding interpretation as follows: Writing explicitly

U(z\o) = min{P(Xo = L|z\o), P(Xo = 0|z\o)}  (170)

the parametric representation in the theorem can equivalently be
given as

R(D) = / (U (210)) — h(Da ldPyro(mr0)  (171)

where D the “distortion spectrum,”

P if U(20) > A
U($\0)7

otherwise
and where we choose the “water level” A so that the total dis-
tortion is D:

T is given by

172)

D = /Dx\odPX\O(x\O)- (173)

Note that here D, the “volume” of the water at level A, is
obtained as a weighted sum, according to Px\q. This water
flooding interpretation is illustrated in Fig. 3. The “spectrum”
of the process is the collection {U(z\¢)},,, where the higher
the spectral value U(z\o) the higher the source entropy at
the context z\o (and the more rate will be required to cover
it to within a given distortion). Regarding the water flooding
interpretation, we make the following remarks.

1. D(A) = E[U] and R(A) = 0 for A > esssup U.3 Thus,
A need only be varied in [0, esssup U] to obtain the whole
R~ curve.

2. Theorem 19, applied to the binary case, implies that the
SLB for R~ (D) is tight if and only if D € [0, essinf U].
This is consistent with Theorem 20 as, for 0 < A <
essinf U, D(A) = A and R(A) = H—(X) — h(A).

3. When X is a kth-order Markov source, U, as defined in
(167), is discrete, assuming at most 22* different values.
The characterization in Theorem 20 gives R~ (D) explic-
itly for any such source (cf. Example 9 below). This is
in contrast to the case for R(D), which is not explicitly
known even for the binary symmetric first-order Markov
process [22].

4. When X is not Markov, e.g., a hidden Markov process, U
may have no point masses and, in fact, have a singular dis-
tribution. In such cases, the distribution of U can be arbi-
trarily precisely approximated by expressing it as a solu-
tion to an integral equation, of the type obtained by Black-

3The fact that R—(D) = 0 for D > E[U] is to be expected since an error
rate equal to E[U] can be achieved by reconstructing the erased information
solely on the basis of its context, with no additional encoded information.
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max

D (001)

max

P[X,=001]
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D (011)

Fig. 3. The water flooding solution for R~ (D) of a binary source. The x-axis presents the different effective values of x\ o (this example may correspond to a

symmetric second-order Markov sources whose 16 contexts are reduced to 8).

well in [7]. This then leads to arbitrarily precise approxima-
tions for R~ (D) via the characterization in Theorem 20.

Proof of Theorem 20: Note first that for any A € [0,1/2],
both min {u, A} and R; (u,A) are bounded and continuous
functions of 0 < w < 1/2. It follows that, for an arbi-
trarily distributed U € [0,1/2], there exists a sequence of
discrete, finite-alphabet, random variables U,, € [0,1/2],
such that both F [min{U,,A}] — FE[min{U,A}] and
E[Ry (U,,A)] — E[Ry (U, A)]. It will thus suffice to prove
the assertion assuming U is discrete, with a finite support.
Assume then that U is distributed as

U=u;wp.p;, 1<i<n (174)

where 0 < u; < 1/2,and p; > 0 with Y., p; = 1. It follows
from the first part of Lemma 3, similarly as in Observation 2
(Appendix), that

R™(D) =min Y _ Ry (ui, Di) p; (175)
=1
where the minimum is over all {D;}"_; satisfying
Z D;p; = D. (176)
i=1

Since Ry, (u;, D;) = max{h(p) — h(D), 0}, we obtain, equiva-
lently,

R™(D)

n

[h(ui) =h(D;)]pi.
' (177)

= min
{{Di}r:] 12;2:1 D;p;=D,D; S“i}i=

The Lagrange multiplier functional is

J(Dy.....D.) = S [h(us) = h(D)lpi + A (Z Dipi

i=1 i=1
(178)
from which the Kuhn-Tucker conditions are readily checked to
be satisfied by

D; = min{u,;, A}, (179)
where A is chosen so that (176) holds. In other words, the rela-
tion between D and A is given by

D= E Dip; = E p; min{u;, A} = E [min {U, A}].
i=1 i=1
(180)

On the other hand, under {D;}!'_; of (179)

>

1<i<nu; <A

>

1<i<niu; >A

= 2

1<i<n:u; <A

D>

1<i<n:u; >A

= Z Ry (ui, A) Di

1<i<nu; <A

>

1<i<niu; >A

= ZRb (ui, A) p;
— B[R, (U, A)

ZR,, (ui, D;)p; = Ry, (ui, D;) pi
=1

Ry (us, D;) pi
Ry (us, u;) pi

Ry (ui, A) p;
Ry (ui, A)p; (181)

(182)

where (181) follows since Ry, (u;, u;) = Ry (u;, A) foru; < A.

O

Example 9: Consider the binary symmetric Markov source,

as in Example 2, with transition probability p € [0, 1]. Let

Pmin = min{p, 1 — p}. In this case, U in (167) is distributed
as

Pomin 2 2
U= { i WP P+ (1-p) (183)
1/2, w.p. 2p(1 — p).
Consequently, D(A) in (168) is given by
2
A, for0 < A < pg_:)(n%p)z
— 2

D(A) = Ponin + A2p(1 = p),  for pﬂf(n{iip)z <A<1/2

PDimins forA=1/2 (154)

while R(A) in (169) is given by

h_(pmin) - h(A)/ for 0 S A < pz_&i%p)z
R(A) =3 2p(1 = p)[1 = h(A)), for rlanr <A< 1/2
0, for A =1/2.
(185)
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R
h(1/8);,
0.5

.
’

h=(1/8)

Dt D* 0.1 D

Fig. 4. Binary symmetric Markov source with pmin = 1 / 8. Solid curve is
R~(D); Dashed curve is the SLB for R~ (D). Dotted curve is the rate—dis-
tortion function of the Bernoulli(1/8) source, which is the SLB of the binary
symmetric Markov source with py,in = 1 / 8.

Solving for R as a function of D gives (186) at the bottom of
the page. A plot of R~ (D) for the case ppyin = 1/8 is given in
Fig. 4. The SLB for R~ (D) is tight up to D* = sz(T”z =
0.02, whereas the SLB for R(D) is tight only up to

Dt = % (1 /1o ((1/8)/(7/8))2) ~ 0.0051

(cf. [21]). In this example, erasure entropy and entropy are
h~(1/8) ~ 0.329 and h(1/8) =~ 0.544, respectively. Note that,
in agreement with Observation 1, D™ < D*. R(D) for this
source is not explicitly known.

E. R~ (D) for Other Sources

1) R~ (D) for Gaussian Sources: Let X be a stationary

Gaussian process with a bounded and strictly positive spectral
density Sx(e/™). Then

2
1 T —
R (D)={ zlog =5, for0<D<op (187)
0, D > 0926,
where
1 [" dw -1
2
_=|— _— . 188
T [QW ./_7r Sx(eﬂ”)] (188)

To see why this follows from Theorem 19 note that in this case
Xy, conditioned on X \0- 18, with probability one, Gaussian with
variance ai,. So, in particular, Px,|x,, € S (D) a.s. for every
D < o2_.Thus, R~ (D) satisfies the SLB with equality in the
whole range of positive rates.

In comparison, the rate—distortion function in this case is well
known to be given by water-pouring (cf, e.g., [5]) and satisfies
lo %7 for0 < D < D* (189)
1 =

1
R(D){_ f i
3 D>D
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where

1 [" .
02 = exp {— / In SX(e]“’)dw} (190)
21 |

—T

and D*, the point until which the SLB is tight, is given by D* =
min,, Sx(e/*). Indeed, in compliance with Observation 1

2 _ i/”dfw _1> inS (jw)_D*
o L] 2 =0
(191)
Further, equality in (191) holds if and only if Sx (e/*) is con-
stant with frequency, implying that, for Gaussian sources, the
curves R(D) and R~ (D) are identical if and only if X is mem-
oryless.

2) R (D) for Random Fields: The foregoing framework
and results for R~ (D) carry over to the case where X is a
stationary (shift invariant) random field (with index set 7%).
Markov random fields (MRFs) can be characterized by the set
of conditional distributions { Px, = (~(i)) }«(N (i), Where N (4) is
the neighborhood of i, i.e., the smallest subset of 7%, that does
not contain ¢, for which the Markov relation X; — X (N(4)) —
X (Z%\ (N (i) U {i})) holds.

Example 10: Let X be a shift-invariant binary MRF spec-
ified by { Px,|z(n(0)) }2(N(0))- Then Theorem 19 implies that
R~ (D), under Hamming loss, is given by H ~ (X ) — h(D) for
all

0 S D S essinf min{PXU:”X(N(O)), PX@:O\X(N(O))}
and is strictly larger than H~(X) — k(D) for larger D.

A key point to note is that, when the MRF satisfies the benign
(and easily verifiable) positivity condition P(xz(N(0))) > 0 for
all z(N(0))

essinf nlin{Ponl\X(N(O))7 PX0:0|X(N(0))}

= inf min{Px,—12(N(0)), Pxo=0/2(N(0)) }5

z(N(0))
where  the  right-hand side depends only on
{Pxy=(N(0) }=(N(0)). and mnot on the probabilities

P(z(N(0))).4 Thus, the threshold for the tightness of the
SLB for R~(D) is explicitly obtained for any MRF. This
is in contrast to R(D), whose threshold for the tightness of
the SLB is not known even for the simplest binary MRFs,
cf. [24], [42]. Furthermore, the explicit form of R~ (D) at
distortions larger than the SLB threshold (and thus at all
distortions) can, in principle, be obtained via the prescription
in Theorem 20. This prescription requires the distribution
of U = Inin{PX0=1|X(N(O))7PX0=0|X(N(O))} which is un-

4Typically, a stationary MRF is given in terms of its specification

{Pxg)=(n(0)) }=(n(0)). but the probabilities P(z(N(0))) are hard to
compute and, in fact, known only for very few MRFs.

h_(pmill) - h(D)7

RE=(D) =9 2p(1 = p) [1 —h (%)} ;

0

Piin
p?+(1-p)?
2
Pmin
e < P S Pmin
otherwise.

for0 < D <
(186)
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fortunately known for very few MRFs, but can be readily
approximated to yield approximations of R~ (D). We next
illustrate this for the Ising model with no external field.

F. R~ (D) for the Ising Model With No External Field

Consider the Ising model on 72, with no external field [20],
[23]. The energy function is of the form

E = —,H Z TiTj
(7]>

where x; € {—1,1} and the summation is over nearest neighbor
pairs. We wish to obtain R~ (D) (under Hamming loss) for this
field. Symmetry implies that, for this field, the random vari-
able U = min{Px,—1|x(n(0))s Px,=0/X(~N(0))} assumes one
of three possible values, according to whether all the sites in the
(four nearest neighbor) neighborhood X (N (0)) are the same,
one differs from the remaining three, or two have one value and
two the other. Specifically

(192)

o418

iy, WP p1(f)
_ 2181
U - W—{—ZQW'/ Wp pQ([i) (193)
1 w.p. 1 —p1(B) — p2(B)

where p; () is the probability that all the sites of X (N (0))
share the same value and py((3) is the probability that one site
in X(N(0)) differs from the remaining three. It is now a direct
application of the waterpouring characterization in Theorem 20
to deduce I; (D) shown in (194) at the bottom of the page,

where we let

e—418] e 218l
a1 (f) = o—4181 1 cA1dl and  ax(f) = e—218] 1 ¢218

and H~ (/) denotes the erasure entropy of this field, given ex-
plicitly by

H™(B) = pr(B)h(1(8))+p2(B)(2(8))+1=p1(8) —p2(B)-

Note that this provides R (D) in closed form, up to p; (/) and
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half of the source symbols. Assuming both the lossless and
lossy parts of this scheme are done optimally, achieving overall
distortion D with this scheme requires a rate

Rub(D)

% [R™(2D) + H(X2|X)] for 0 < D

1
< §E [man[p(Xo,iﬂX_l,Xl]} (195)
where the subscript in Ry, (D) signifies that this is an upper
bound on the rate—distortion function of the source. Note that
the distortion level

1
D= §E [man[p(Xo,:%ﬂXth]]

corresponds to zero rate coding of the second subsequence.
Thus, the suggested scheme is not relevant for distortion
values exceeding that level. Of course, higher distortion
working points can be achieved by time-sharing with other
schemes, such as the trivial zero-rate scheme. Note also that
R~(0) = H(Xo|X_1,X1) and hence

Rup(0) = < [H(Xo| X1, X1) + H(X2|X0)]

[H(Xo|X—1,X1) + H(X1]X_1)]

H(Xo, X1|X_1)

[H(Xo|X-1) + H(X1|Xo, X_1)]

[H(Xo|X_1) + H(X1]X0)]
= H(X1|Xo)
= H(X). (196)
Evidently, the suggested scheme is optimal in the low-distortion
limit.
For a concrete example, consider the binary symmetric

Markov source, under Hamming loss, for which (195), which
we denote below by R,1,(D), assumes the form

NN =N =N =N =

p2() which are unknown explicitly but can be numerically ap- D
proximated for any value of [ to arbitrary precision using, e.g., Ru(D) = 9 [R (2D) + h(2p(1 — p))] (197)
i 1
Markov chain Monte Carlo methods [3]. _ . [h_(pmin) — h(2D) + h(2p(1 — p))] (198)
G. Upper Bound on R(D) Via R~ (D) for Markov Source 1
PP (D) (D) for b — h(p) — =h(2D) (199)
Consider the following lossy compression scheme for a 2
first-order Markov source: lossless compression of every other =h(p) — Dlog1/D
source symbol, and then rate—distortion coding of the remaining +o(Dlog1/D)as D — 0 (200)
((H=(B) = h(D), 0<D<an(p)

pa(B) [h(aa(®) — h (Pl |
+(1=pi(B) = pa(B)) [1 = b (P52

a1(B) < D < ax(B)(1 = p1(B)) + pr(B)ar(B)

0,

(1= p1(B) — pa(B)) [1 = b (2= B (oa2))]

a2 (B)(1 = p1(B) + p1(B)ar (B) < D

< a1 (B)p(B) + aa(B)pa(B) + 2 G=r=(D)

D > ay(B)p1(B) + aa(B)pa(B) + 12 B)=p2(8)
(194)
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Rup(D)

D

Fig. 5. Binary symmetric Markov chain with transition probability 1/3. The
upper bound on the rate—distortion function curve is R, (D) from (195), and
the lower curve is the SLB.

where p is the source transition probability and R~ (D) is given
in (186). On the other hand, the SLB gives R(D) > h(p) —
h(D), implying

R(D) = h(p) — Dlog1/D + o(Dlog1/D), as D — 0.
201)
Thus, Ry,(D) is optimal in the low-distortion regime not only
in the sense, implied by (196), that limp_.o R, (D) = R(0) =
H(X), but in the stronger sense of attaining the second-order
term in the expansion of R(D) around 0. Fig. 5 shows (197)
and the SLB.

H. Almost Lossless Compression of Nonerased Symbols

To conclude this section, we briefly consider the setting where
a source X is connected to a memoryless erasure channel with
erasure rate e. The compressor only has access to the output
of the erasure channel Z, and the decompressor must output a
reproduction X so that any symbol X; that has not been erased
must be reproduced almost losslessly, i.e.,

lim P <U{Zi =X; # Xi}> =0. (202)

n—oo .
=1

For symbols that have been erased, we naturally must allow
lossy reproduction since the compressor does not have access to
X. The problem is to find the optimum rate—distortion tradeoff
when (202) is satisfied and the distortion is gauged as in (103)
by

1 N
XiaXi
{1<i<n:Z =e) >, XXy

1<i<n:Z;=e

The simplest case is a binary nonredundant source with Ham-
ming distortion. This setup is identical to a conventional mem-
oryless rate—distortion problem where the source has alphabet
{0, ¢, 1} and the reproduction alphabet is {0, 1} with distortion
,0(070) = p(L 1) = 0; p(e, 1) = p(€70) = 1/2’ p<170) =
p(0,1) = 1. No distortion smaller than 1/2 per erasure (or e/2
per reproduced symbol) is achievable since even if the decom-
pressor were to have access to Z, it does not have any informa-
tion about those symbols of X that have been erased. Moreover,
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because of the requirement (202), distortion higher than e/2 per
reproduced symbol is not allowed. Reproducing the nonerased
symbols almost losslessly requires rate 1 — e bits per repro-
duced symbol. In fact, solving for the rate—distortion function
in this problem, we see that the optimum achievable point is
(R,D) = (1 — e,1/2) (where distortion is gauged per erased
symbol). Thus, there is no penalty for the location of the era-
sures being unknown to the decompressor.

What about sources with memory? For low e, we argue that
the optimum rate distortion point for a stationary ergodic source
is

(R, D) = (H(X), Dmax), (203)

where D, is the lowest value of D for which R~ (D) = 0,
namely

Dinax = E |min E [p(Xo, )| X\0] (204)

xr

To see that the pair in (203) is achievable note that separate de-
scription of the nonerased source and the erasure pattern by the
compressor requires rate no larger than H(X) + h(e). The de-
compressor, now knowing the erased sequence, employs a de-
coder from the setting of Section IV-A corresponding to zero
rate (as we assume no additional description rate from the en-
coder). The achieved distortion is then Dfs)ax, where Dsrf)ax is the
lowest value of D for which R.(D) = 0. Thus, for any value of
0 < e < 1, the pair

(H(X) + h(e), DE)) (205)

max
is achievable. Noting that, ase — 0, h(e) — 0 and, by Theorem
15, Dfﬁ?lx — Dyax, shows that the rate distortion pair in (203)
is achievable in the small e regime.

For a lower bound, consider a genie-aided scheme where
the decompressor knows the erasure locations. The compressor
needs to convey the nonerased symbols (but not the location
of the erased ones), which requires rate R lower-bounded
by H(X) — elog|X]|, since the savings relative to the case
where the erased symbols would also need to be described
cannot exceed e log |X|. The expected distortion in estimating
each erased symbol is lower-bounded by D, (the distortion
achieved by a genie that estimates every erased symbol on
the basis of all other source symbols rather than only on the
nonerased ones). Thus, one can do no better than (203) in the
low erasure regime.

V. CHANNEL CAPACITY

In this section, we study the decrease in channel capacity due
to erasures of the channel outputs. The capacity of the concate-
nation of a noisy channel with an erasure channel with erasure
rate e is denoted by C(e) (Fig. 6). Thus, C(0) = C, the capacity
of the noisy channel. Throughout, the erasures are independent
of the noisy channel. For simplicity, we restrict our attention to
finite-alphabet channels without cost constraints.
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NOISY CHANNEL

X Y

Fig. 6. Noisy channel observed through an erasure channel.

We first deal with the case where the noisy channel is mem-
oryless.>

Theorem 21: Suppose that the erasures are independent of the
inputs and outputs of the noisy channel and that the proportion
of erasures converges in probability to e (the erasure channel
may have memory), and let the noisy channel be memoryless
with capacity C'. Then

Ce)=C—eC. (206)
This result remains true if the encoder has noncausal (and hence
causal) knowledge of the location of the erasures.

Proof: To show the converse under noncausal knowledge
of the location of the erasures at the encoder, we note that it is
immaterial what the encoder chooses to send at the erased sym-
bols. At the decoder, the erasures are discarded and the non-
erased outputs are fed to the noisy channel decoder. Thus, the
problem is equivalent to one of coding for the noisy channel
except that now the effective coding length (i.e., the number
of nonerased symbols) is a random fraction of the number of
transmitted symbols. Still, by the definition of e, the rate of the
resulting scheme converges to R(1 — e), where R is the rate
of the noisy channel code. The result follows from the conven-
tional converse of the memoryless channel. To show the achiev-
ability of (206), in the absence of any knowledge at the encoder
of the location of the erasures, it is enough to follow the con-
ventional random coding reasoning with codebooks whose rate
is (1 — e)C — € and a decoder that simply discards the erasures.
Averaging with respect to the codebook selection, the noisy
channel randomness and the erasures, the block error probability
vanishes just as it does in the case where the erasures are mem-
oryless. Thus, there must exist a good codebook (independent
of the erasure realization), similarly as is the case in the absence
of the noisy channel. O

Theorem 21 gives an example of a channel which may have
memory, but for which noiseless feedback does not increase ca-
pacity.6 The memoryless Gaussian channel followed by a mem-
oryless erasure channel has been shown to have the capacity of
the Gaussian channel times (1 — e) [27]. It is tempting to gener-
alize Theorem 21 to the case where both the noisy channel and
the erasure channel have memory. However, in that situation,
(1 — e)C need not be either an upper or a lower bound.

Example 11: Consider a binary channel where Y; =
Y,_1 = X, when ¢ is even, and suppose that every other output

5The special case of this result where the erasure process is stationary and
weakly mixing is given in [18].

6See [1] and [2] for other examples of channels with memory for which feed-
back does not increase capacity.

A\ 4

ERASURE CHANNEL

symbol is erased. Then, regardless of the probability that the
erased symbols are even or odd, C(0.5) = C' = bit.

Example 12: Suppose N; is a sequence of fair coin flips in-
dependent of the input, and consider the binary channel where
Yo = Xo; @ N; and Ys; 11 = N;. The capacity of this channel
isC = %bit, while with the same erasure channel as in Example
11, we get C(0.5) = 0.

In the remainder of this section, we restrict our attention to
the memoryless erasure channel. Before giving the capacity of
the cascade of noisy channel and erasure channel we give the
following auxiliary result.

Theorem 22: Let (X,Y) be jointly stationary finite-alphabet
processes and let Z be the output of a memoryless erasure
channel with erasure rate e driven by Y. Then

I(X;Y|Z)=el"(X;Y) + o(e). (207)
Proof: Because of stationarity and the expression for era-
sure mutual information rate (56), we need to show

I(X;Yo|Y L, Z) = el(X;Yo|Yyo) + ofe).

—o0s (208)
Now, fix an arbitrary integer k. Since the process of erasures is
i.i.d. independent of Y we can write for any erasure rate

1

—I(X;YolY21, Z)

e

—00?

=I(X;Yo|Y L, Zo = e, Z5°) (209)
= I(X; Y|V L, 79°) (210)
>I(X;Yo|YoL Y Zi # e ..., 2k # e, Z35)
X P|Z1 #e,...,Z, # €] (211)
=(1-e)"I(X;Yo|Y L, Y, Z25) (212)
= I(X; Yo Y20, Y, Z750) + o(1) (213)
for any integer k. So we must have that
lim — I(X Yo|Y=1.2) > Jim I(X:;YolYZ L, YF, Z35)
(214)
= I(X;Yo[Y\0)- (215)
On the other hand, again fixing an arbitrary integer k
I(X;Yo|YL, Z9°) (216)
= H(YO|Y__010, ) — H(Yo|X, Y"1, Z°)  (217)
H(Yo|Y_, Z3°) — H(Y,| X, Vo) (218)
H(Y, |Y:§o, 1) — H(Yo|X, Yyp) (219)
H(Yo|Y_4,YF)(1 —e)* — H(Yo|X,Y\o) (220)
+(1-(1-e"H(Y) (221)
Thus
lim LI(X:Yo|YZL, 2)
< H(Yo|YZL, V) — HYo|X, Y7L, Y7°). (222)
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So we must have

hm— (X5YolY2, Z)
= klfioH(YdY—tilk)
— H(Yo|X, YL, ¥ (223)
= I(X;Yo[Y\0)- (224)
O

Theorem 23: Assume that the erasure channel is memoryless,
and that the noisy channel has finite input/output alphabets, is
stationary, information stable, with capacity given by

1
C= lim — maXI(X" Ym

n—oo N n

(225)

which is achieved by a unique stationary process X=X %

C=I(X:Y) (226)
=I(X;Yo|V1). (227)

Then
Cle)=C —el~(X;Y) + ofe). (228)

Proof: The general framework in [38] implies that the
capacity of the concatenation of the information stable noisy
channel and the DMC is given by

1 n, n
C(e) = nh_I)I;O E max I(X™zZm) (229)
= lim —I(X(e)”‘; ASED) (230)
n—oo N,
=1(x©; 2891297 (231)

where X © s a stationary process. Note that by definition
X0 _x , Y(O) =Y; furthermore, the response of the erasure
channel to Y is denoted by Z = Z ). Since the channel
input X™ and the erasure channel output Z" are conditionally
independent given the noisy channel output Y
I(X™Z2")=1(X"Y"™) - (X" Y™ Z"). (232)

Considering the normalized limits of the two sides of (232) im-
plies that, when X is stationary

I(X;Z01225) = I(X; Yo Y20 )~ I(X; Yo|Y 4, Z). (233)
We can lower-bound the capacity of the cascade of the noisy
channel and the erasure channel by

Cle) =1(X" z<‘*>|z<e>*1> (234)
> I(X; Zo|2-%,) (235)
=I(X; Y|V L) - I(X:YolV2L.Z)  (236)
=C - I(X;Y,|Y"L,2), (237)
=C —el (X;Y) + ofe) (238)

where
. (234)=(231);
* (235) <« X is stationary;
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. (236) < (233);
. (237) < (231);
. (238) < (207)
On the other hand, we can similarly upper-bound
Cle) =I(X; 2§71 297 (239)
=Xy Iy
— (XY 20) (240)
< H}E(%XI(X;YMY—_OIO)
—I(X©, vyt 20 (241)
=C - I1(XO; vyt 2O (242
<C—el(X YY) + ofe) (243)
=C —el(X;Yo|Yo) + ofe) (244)
=C —el (X;Y) +ofe) (245)
where
. (240) < (233);

* (242) < the scope of channels considered in the theorem;

* (243) « the chain (209)—(213) holds even if the input
process X is allowed to depend on e;

* (244) < the uniqueness of X as the capacity achieving
input for the case e = 0. O

In the regime of sporadic nonerasures, the capacity vanishes
linearly with the nonerasure rate:

Theorem 24: Assume that the erasure channel is memoryless,
and that the noisy channel is information stable with capacity
given by (225). Then

c 1 "
(e) = lim — max
n—oon Xmn

k=1

I(X™: Yy). (246)

Proof: Let Vj, = 1{Z}, = e}. Since V}, are i.i.d., indepen-
dent of the channel input and P[V}, = 1] = e, we can write for
any X"

I(X™; Z™) = I(X™; Z" V™) (247)
=" M1—e)) I(X™Y)+ ) e (1 -e)f

k=1 =2
X Z I(X™; Ys). (248)

Sc{l,..,n},|S|=¢
The second term in the right side of (248) can be upper-bounded
by

n

Z e" (1 —e)f

(=2

I(X™Ys)

2.

Sc{l,..n},|S|=¢

< log |B| Z ( ) f(1—e) (249)
=[1- e)n —e" (1 — e)n] log |B| (250)
= (1—-e""") (1 —e)nlog|B| (251)
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where B is the output alphabet. Denote the right side of (246)
by C*. Fix € > 0 and let ng be such that for all n > ng

n

1
C* — e < —max I(X™Y) <C*+e.
n Xn» P

(252)

Putting together (229), (248), (251), and choosing n = ng + 1

(C* = )em < 10 Eel (253)
< (C*4e)e™ 4+ (1—e")log|Bl. (254)

In view of the arbitrariness of €, (246) follows by taking the limit
ase T 1of (253) and (254). O

An application of Theorems 23 and 24 is the discrete sym-
metric channel with memory:

Theorem 25: Consider a discrete channel whose input/output
alphabet is a finite field A endowed with addition &

Yi=X;®N; (255)

where the stationary ergodic error process N has entropy rate
H(N) and erasure entropy rate H ~(N). Then

C =log|A| — H(N) (256)
Cle)=(1—e)C—e(H(N)—H (N))+o(e) (257
C(e) = (1 —e)(log |A| — H(N1)) + o(1 —e). (258)

Proof: The capacity without erasures (256) is well known
(e.g., [38]). In the absence of erasures, for every n, independent
equiprobable inputs Xn uniquely maximize the mutual infor-
mation, yielding capacity (256). For those inputs, applying (58)
we obtain

I(X™Y") =n—H (Ny,...,N,) (259)

and (258) follows from (225) and the definition of erasure en-
tropy rate. To show (258), we apply Theorem 24 and use

Ir{’z%XI(X"; Yi) = log | Al — H(Ng) (260)

and the stationarity of the error process. O

Note that Theorem 25 provides a counterexample to the state-
ment that if the erasures are memoryless then

(1—¢)C(0) < Ce).

VI. DENOISING

The setting of Section IV dealt with the scenario where the
source to be encoded is corrupted by a memoryless erasure
channel, and the decoder’s task is to recover the erased symbols
to within the lowest possible distortion on the basis of its
observations, and the additional description of the source from
the encoder. In this section, we look at the denoising problem,
where there is no additional description of the source by an
encoder, but the corruption may be by a channel other than
the erasure channel. We develop relationships between the
information measures introduced in Section II, in particular
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erasure entropy and divergence, and the fundamental limits of
denoising.

Discrete denoising deals with the minimization of the distor-
tion achieved by an algorithm that observes the output of the
channel but, in contrast to the settings in Sections III and IV,
has no other information on the input realization.

Concretely, an n-block denoiser Xnisa sequence of map-
pings X = {X;(-)}™,, where X,(-) takes the noisy n-tuple
Y™ into its reconstruction X, +(Y™). We denote the per-symbol
cumulative loss of the denoiser X™ when observing the noisy
sequence y" while the underlying clean one is " by

n

Liula™ ") = = 3 Al Xuly™).

t=1

(261)

Letting D,, denote the set of all n-block denoisers, we define the
denoisability of the process pair X,Y by

D(X,Y) =limsup min E[Ly,. (X", Y")].

n—oo X"eD,

(262)

A filter is a causal denoiser, i.e., one whose tth reconstruction X t
depends on Y™ only through Y. Letting F,, denote the subset
of D,, consisting of all the filters, we define the filterability of
the process pair X,Y by

F(X,Y) =limsup min E[L, (X", Y")].

A (263)
n—oo X"eF,

The limit suprema both in (262) and in (263) are, by a standard
subadditivity argument, in fact limits when X, Y are jointly sta-
tionary. We also use the notation D(X,II) and F(X,II) to de-
note D(X,Y) and F(X,Y) when Y is the output of the DMC
with transition matrix II whose input is X.

A. Relationship Between D(X,Y) and H=(Y)

Intuitively, one can expect that the higher the entropy rate
of a noise-corrupted process the more difficult it is to estimate
its components. This intuition was made precise for some spe-
cific filtering problems in [12] which, among other things, es-
tablished a relationship between the filterability of the process
pair X, Y, whenY is the BSC-corrupted version of X, and the
entropy rate of the noisy process Y. In this subsection, we show
that an analogous relationship holds for the denoisability of the
pair X, Y, when the entropy rate is replaced by the erasure en-
tropy rate. We do this in the generality of a stationary noise-free
process X corrupted by a DMC with full row-rank II, which is
the setting we assume throughout the remainder of this section.

A distribution P on a noisy (channel output) n-tuple Y™ will
be said to be “bona fide” if there exists a distribution on X ™ that
gives rise to P when corrupted by the channel, i.e., for all y™

n

Py™) = Z Pxn (z™) HH(:LL Yi)-

i=1

(264)

Invertibility of the channel implies uniqueness of the Px~ sat-
isfying (264) for a given bona fide P. Furthermore, this invert-
ibility guarantees the existence of an inverse (linear) transfor-
mation to the one in (264) that maps a bona fide P into the
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channel input distribution Px~ (cf. [17], [45] for its explicit
form). Thus, to determine whether a given P is bona fide we
can simply apply it to the inverse transformation and verify that
all the components of the resulting probability vector are non-
negative (the components will sum to 1 even if P is not bona
fide).

Consider first the problem of estimating a single random vari-
able X on the basis of its DMC(II)-corrupted observation Y.
Note that, due to the invertibility of the channel, the distribution
of Y, Py, uniquely determines the channel input distribution
Px and, hence, the joint distribution of X, Y. Thus, the min-
imum attainable expected loss for such an estimation problem,
under the loss function A, can be expressed as a function of
the channel output distribution, which we denote by fu(Py ).
Specifically, fi(Py ) is expressed as

fu(Py) = 1;21)1 E[AX,X(Y))) (265)
=Y Pr(y) min B[A(X, £)]Y = y] (266)
= zJ: Py(y)miny | Pxjy (ely) Az, &) (267)
- Ey: min 3~ Py (Z:)H(x, y)A(z, 3) (268)
— 2:: min z::[(HHT)_IHPy](:L’)H(z, y)A(z, %)
(269)

where the expectation on the right-hand side of (265) is
under the (unique) distribution of X, Y consistent with Py,
[(TIIT)~'TIPy](z) in (269) stands for the zth component of
the (column) vector (HHT)_IHP)/, and equality (269) follows
from the relationship Px = (HHT)_ll'IPy (cf. [39, Sec. 4]).
The expression in (269) is the explicit form of fri( Py ). Define
now

€ = min max (270)

Py) — [aH (P
nin max {f(Py) = [aH (Py) +1)

where C(IT) C M()) denotes the set of all bona fide channel
output distributions (of a single-channel output symbol)

C(Il) = {HTPX . Py € M(X)}. @71)
en quantifies the extent to which the (single-letter) channel de-

noisability can be approximated by an affine function of the
channel output entropy.

Example 13: With slight abuse of notation let f5 and €5 stand
for fi1 and eqg, when II is the BSC of crossover probability § <
1/2. Specializing (269) and (270) to this case gives

fs(Py) = min { min{Py(ll)_J;g(o)} -0

,0 } 272)
and
(273)

€5 = min max

ab §<a<l/2 |fs(a) — [ah(a) + b]]

where h denotes the binary entropy function. It is easy to bound
es for specific values of ¢. For example, 9,25 < 0.03.

For any stationary process X, it is shown in [12] that
[F(X,8) = [as H(Y) + bs]| < es.
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This fact is used in [12] to bound the sensitivity of the filtering
performance to the order in which a multidimensional data array
is scanned into a one-dimensional signal. As the following the-
orem shows, a similar bound holds for the denoising problem,
upon replacing entropy rate with erasure entropy rate.

Theorem 26: Let ag, by be achievers of the minimum in
(270). For any stationary process X

ID(X,I0) — [afH (Y) + biy]| < en-

Proof: Consider

1 & .
~ min E- Z A(Xy, X (Y™)) (274)
Xi(-),1<t<n T4
1< N
==Y min EA(X;, Xy(Y™)) (275)
=1 X0
I . .
== minE [E (A(Xt, Xt(Y”))|Y\t)] (276)
s X0
1 & .
=~ E |minE (A(Xt, X(Yt))|Y\t) Q77)
" t=1 X0
1 n
== Z;E [fn (Pmy\t)} (278)
1 - * *
<- ; E [anH (Pyt,y\t) b+ 61-[} (279)
1 n
=~ apH (Vi|Y,) + b +en (280)
t=1
1
:ai"-IEH_(Y")—}—bi'f[—i—sn (281)
where
* (278) <« definition of f;
* (279) « definitions of agy, by, and em;
* (280) < E[H(Py,v,,)] = H (Yi|Yys).
Taking the limits of both sides of (281) gives
D(X,I0) < a; H(Y) + by + en. (282)

A similar argument, where the inequality in (279) would be re-
versed upon replacement of ey by —eqp would lead to

D(X,6) > afH ™ (Y) + biy — enn (283)

which completes the proof when combined with (282). O

Thus, the entropy and erasure entropy determine the filter-
ability and denoisability, respectively, to within ey. In partic-
ular, two noisy processes with the same erasure entropy rate can
differ in their denoisability by no more than 2e7;.

B. Mismatched Denoising: the Role of Erasure Divergence

Let P be a bona fide distribution of a noisy channel n-tuple
Y ™. Throughout the remainder of this section expectations are
assuming that the channel output sequence distribution is P.
Thus, we write E[L, (X™,Y™)] to denote the expected loss
of the filter/denoiser X™ when the noisy sequence Y™ is dis-
tributed according to P (which uniquely determines the joint

Authorized licensed use limited to: Stanford University. Downloaded on January 19, 2010 at 18:32 from IEEE Xplore. Restrictions apply.



5052

distribution of X", Y™). Let further L{,(2",y™) denote” the

normalized loss incurred with input #™ and output y™ attained

by a filter that is optimal for the noisy source P in the sense of

achieving the minimum min ¢, cF. E [LX (Xm, Y”)] ,i.e.,
E[LL(X™,Y™)] = min EpLg, (X", Y").

XneF,

It was shown in [31] that, for bona fide P, Q)

(284)

E [Lg(XmY") - L{D(X",Y")}

< VEA oKy TD(PQ) - (285)

where K7y is the squared Frobenius norm of I The implica-
tion of inequality (285) is that if one assumes the noisy source to
be (), and operates optimally under this assumption, then one’s
performance will be close to optimum, provided () is close to
the true noisy source distribution in the sense of normalized di-
vergence. This result is the filtering analogue of the result on
mismatched prediction in [30]. The bound in (285) motivates
the following approach for the construction of a universal filter:
find a probability assignment for the noisy source (), which is
universal in the sense that 2 D(P||Q) — 0 for the sources in
the uncertainty set. Inequality (285) guarantees that the filter in-
duced by the “source” () (i.e., which is optimal for that source)
is a universal filter. For example, the filter in [33] can be thought
of as the filter induced by the Lempel-Ziv (LZ) probability as-
signment which, in turn, is induced by the LZ data compression
scheme [46] known to be universal with respect to stationary
sources or, equivalently, to satisfy £ D(P||Q) — 0 for all sta-
tionary P.

We shall now see that erasure divergence plays a key role in
bounding the loss due to denoising a source using a denoiser
which was tailored for a different source. This role is analogous
to the role played by regular divergence in the filtering problem
(cf. (285)). Analogously to Lf,(x" y"), let LL(z™, y™) de-
noted the normalized loss of a denoiser which is optimal for
the noisy source P in the sense of achieving the minimum
min ¢, EL¢ (X™Y"™),1e

en, BLgn(

E[LH(X™Y™)] = min ELg, (X™Y"). (286)

Xn GD
Theorem 27: For any pair P, () of bona fide distributions
onY"

E[LL(X™, V") = LE(X™,Y™)]

Like (285), the implication of Theorem 27, whose proof
is deferred to the Appendix, is that if one finds a probability
assignment for the noisy source (), which is universal in the
sense that £ D= (P||Q) — 0 for the sources in the uncertainty
set, then the denoiser induced by ) will be a universal denoiser.
Unlike the case with filtering, however, even when a universal
Q is found, obtaining the induced denoiser can be a computa-
tional challenge. Whereas ( is likely to be specified in terms of

(287)

"The superscript f indicates that this is a filtering loss.

8The superscript d indicates that this is a denoising loss.
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the conditional distributions @ x,|x:-1, which lend themselves
to a simple derivation of the induced filter, the induced denoiser
requires the conditional distributions Qx| X, The problem of
computing Qx,|x,, and approximations thereof, as induced
by sequential probability assignments, was considered in [32],
[44].

APPENDIX

A. Proof of (70) Assuming the Condition in (82)

In this proof, for a set of indices S, we use X (S) to de-
note { X, }ies. For A, C {1,...,n}, denote for brevity AS =
{1,...,n}\ A, and A, k] = {i € A, : min{|i — j| : j #
i,j € Ap} > k} and note that for any positive integer & small
enough that 2k + 1 < n

H(X(A,)[X (A7)

= Y H(Xi|X(A5),{X;:j € Ay, j < i}) (A1)
1€EA,

< Y HXIXIZILXTH+ ) H(X) (A2
i€ A, (K] 1€A,\An[K]

< JAWH (X0 X 7, XT) + |An \ Au[K][H(X0).  (A3)

For ¢ > 0 and positive integer k let .A5*¢ denote the collec-

tion of subsets A,, C {1,...,n} that satisfy the following two
properties:
An
L. e—eguge—}—a; (A4)
n
2.
|4 \ Anlk]| < |An |(ae(k) +¢) (A5)
where ao(k) = e Yr_o(1 — e)".
Note that, by (82)
P{l1<i<n:Zi=e} € A5 — lasn — oo (A6)

and (A4) and (AS5) when combined with the upper bound (A3),
imply that

LH(x(a,)|x(42))
< (e+e) H(Xo|X~1, X5) + (e +e)

X (ae(k) +¢e)- H(Xo)V A, € ASFe. (A7)
Recalling that S(Z") = {1 < i < n : Z; = e}, we can
write %H (X™|Z™) as shown in (A8)—(A10) at the top of the
following page,where the inequality follows from (A7). Taking
the limit as n — oo of both sides of (A10) gives, when com-
bined with (A6)

H(X|Z) < H(Xo| Xy, XT)

+(e+e)(a

(e+e)-
(k) +¢) - H(Xo)

implying, by the arbitrariness of ¢ > 0, that

H(X|Z) <e-H(Xo|X 7}, X{) + eae(k) - H(Xo). (All)
Noting that lime_,¢ ae(k) = 0, we obtain
H(X\|Z
lim sup % < H(Xo| X1, XT) (A12)
e—0
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(A8)

H(X(A)|X(A))P[S(2") = Ax] - (A9)

>

A gALTe

< [(e+e) - H(Xo| X2, XT) + (e + €)(ce(k) +¢) - H(Xo)] P[S(Z") € ALE] + H(Xo)PIS(Z") & AL

(A10)

implying, by the arbitrariness of k&,

H(X|Z)

lim sup < H (X). (A13)

e—0

B. Proof of Theorem 13
The proof is based on the following lemma.

Lemma 2: Consider the single-letter problem where Z is
the noisy version of X corrupted by the DMC with channel
matrix I — 6M. Then

H(X]2)

= E[M(X, X
P

(A14)

where, for any € > 0, the convergence in (A14) is uniform over
Px € M..

Proof: For v € [0,00)/¥I71 let P, s be a parametrized
family of distributions on {1, ..., |X|} that satisfies

N~ J1=06llv|lx + 0(8), ifi=io,
11“”—{vuw+owy if i # ig (A1)
for any 79 € X. It is easy to check that
H(P,
Jim 14 ”’f) = ||v||1 (A16)
6—0 610g3

where the convergence in (A16) is uniform over ||v||; < B, for
any B > 0.
Returning to the problem at hand note that

Py(b) = Px(b) =8 Y Px(a)M(a,b). (A17)
aceX

Since Py € M., we can write

Peia |b)_{1—6M(b7b)—|—o(6)7 a=" (AL8)
XIZA = —6M (a, ) FG +0(8), a #b.
Applying (A16) to (A18) we obtain

lim %leb) = M(b,b). (A19)

§—0 610g 5

Averaging the numerator in the left side of (A19) with respect
to Pz and using (A17) we obtain (A14) uniformly in M..

Proof of Theorem 13: To obtain the corresponding be-
havior of H(X|Z), for a stationary input that satisfies (100),
we can simply notice that

H(X|Z) = H(Xo|XZ%. Z°) (A20)

and proceed as we did in the proof of Lemma 2 with 7, taking
the role of Z and substituting Px by PX0| Xl gt

00 _poo
=a__ 4 =b3

which also belongs to M_.. Thus, we obtain
H(Xo|XZ5 = aZi, Z5° = b°)
0log %

lim
5—0

= M(bo,bo). (A21)

The average with respect to the distribution in (A17) where Px
is substituted by PXO‘X:;ZG:;,Z?, b is
H(Xo|Zo, XZ3, = aZi,, Z7° = bY°)
6log %
= E[M (X0, Xo)|X\o = (aZL..b7°)].

lim

6—0

(A22)

Finally, averaging with respect to the infinite past/future of the
input the desired result follows.

C. Proof of Theorem 15

For Px» € M(X™), let R(Px~, D) denote the rate-distor-
tion function in (107) under the association Px « Px» and
pXY) = p(X"Y"), e,

R(Pxn,nD) =min{I(X™;Y")

cEp(X",Y™) <nD, X" ~ Px»} (A23)

where p(X™,Y") =" | p(X;,Y;). For Px s € M(X xS),
let Rs1(Px,s, D) denote the conditional rate distortion function
when the source and side information are i.i.d. ~ Px g

RSI(PX,S7 D) = min{I(X; Y|S)

. Ep(X,Y,S) < D,(X,S) ~ Px.s}. (A24)

The following lemma collects some observations that will be
used in the proof of Theorem 15.

Lemma 3: Rsi(Px g, D) has the following properties.
1.

Rsi(Px,s,D)

= min PS(S)RS(PX S7DS)
{DS}SES:ZS PS(S)Ds:Dg |

where R, is the rate—distortion function defined in (107),
under distortion function p(-, -, s).

2. For fixed Px|s, Rsr(Ps X Px|s, D) is uniformly con-
tinuous as a function of Pg in the following sense:
There exists §(¢) (dependent on |X|,|S|,p) such that
lim._, 6(¢) = 0 and

|Rs1(Ps x Px|s, D) — Rsr(Pg x Px|s,D)| < é(e),
for all D and all Ps, P§ with |Ps — P&|| < e.
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3. Let Xj,..., X, be independent, X; ~ Px|s=s,, where
s; €S,8" =(s1,...,5,) being a deterministic sequence.
Letting ps» denote the empirical distribution of s™

1
gR(PXn’nD) = RSI(ps” X PX|S,D)

The first and third properties in the lemma are direct conse-

quences of the definitions of the functions Rgsy, R, and R. The

second property follows from the uniform continuity of the mu-
tual information I(X; S) in the distribution Px s when X and

S take values in finite alphabets (cf., e.g., [15]).

Before we proceed to the proof of Theorem 15, we make the
following observation.

Observation 2: For every k, R; (D), as defined in (108),
satisfies
R~ (D) = min Z P(z=,,v¥)R (PX0|1" Lo k,Dz:iyzr)lc)
z:i,z’f
(A25)
where the minimum is over all distortion values indexed by con-
texts {Dm*i ,a:’i'} that yield an overall distortion D when aver-

aged over the contexts, i.e.,
Zsz,xl M”f:D'

To verify the validity of the observation note that R; (D) is
nothing but Rg;(Px s, D) in (A24) with the association X «
Xpand S « (XZ}, X¥). Equality (A25) is then a consequence
of the first part of Lemma 3.

We are now in a position to prove Theorem 15.

Proof of Theorem 15: Throughout the proof let X be a
stationary and er%odlc source. Noting that, by the weak law of
large numbers, JESISnZiZell o in probability, it follows
that replacmg the condltlon in (103) with

1

ne E[l{z_"} p(X“X)}SD-f-E

=1

will result in the same rate distortion function R(D). Evidently
1
Re(D) = gRX|Z(De) (A27)

where Rx|z(-) is the conditional rate—distortion function for
encoding the source X in the presence of side information Z,
under the distortion function d(z, , 2) = 1;.—.} - p(, ) (the
1/e factor on the right-hand side is due to the fact that Rx |z (D)
corresponds to rate in bits per source symbol, rather than per
erased symbol as in the definition of R.(D)). Rate—distortion
theory for stationary ergodic sources [4], [19] implies (A28) at
the bottom of the page. Now, for any fixed &, see (A29)—(A41)
on the top of the following page, where
¢ (A30) < definition of Rgy (in (A24)) with the associa-
tion X <« X" Y < Y™ S — Z"and p(X,Y,S) <
Y1 Yzi=ey - p(Xi, Vi)

(A26)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 11, NOVEMBER 2008

¢ (A31) < second item in Lemma 3;
(A32) « taking D.» = D for all 2™ in lieu of the {D_n }
that achieve the minimum.
* (A33) < letting Px({1<i<n:z; =e})|[{Xi=2;,1<i<n:z; e} de-
note the conditional distribution of X ({1 < i <m:z =
e}) given the event {X; = z;,1 < i < n:z # e}, and
noting that Pyn|.n = Pxn|{x,=2, 1<i<n:z e} (thus, in
particular, conditioned on {X; = z;,1 <i < mn:z; # e},
X({1 <i<mn:z #e})is deterministic).

(A34) holds for any set BS'*¢ C 2",

(A35) <« defining Bf—;”“e as the set of z™’s for which:

1.

{1<i<n:z=e}e Al (A42)
where A% "¢ was defined in the proof of Theorem 10 as
the collection of subsets of {1,...,n} satisfying (A4)
and (AS),

2. for all (z7},2%) € X%*, see (A43) at the bottom of
the following page
Note, in particular, that the two properties defining A%*-¢
(A.4), (A.5) imply that if 2" € BS** then see (A44) also
the bottom of the following page implying (A45) at the
bottom of the following page, since omitting no more than
(e + &)n(ae(k) + €) terms from the mutual information
defining the rate—distortion function in (A45) can decrease
it by no more than (e + €)n(ae(k) + ¢) log | X|. Inequality
(A45) accounts for (A35). We also note, for future refer-
ence, that the law of large numbers (which implies (A6)),
combined with the ergodicity of X implies
lim P(Z" € Bb) = 1.

* (A37) « letting .~ denote the empirical distribution
shown in (A47) at the bottom of the following page,
and noting that for all 2™ we get (A48) at the top of the
subsequent page, since the right-hand side corresponds to
a suboptimal solution from the feasible set associated with
the optimization problem defining R(-) on the left-hand
side, whereby the reconstruction symbols are independent
with a conditional distribution, given the source, that
depends on a window of radius k£ source symbols.

+ (A38) <« by definition of BSFe, 2" € BSFe implies
(A42) which, in turn, implies
Hl1<i<n:z=emin{l|i—j|:j#1iz =e} >k}

<H1<i<n:z=e} <n(e+e).

* (A39) < by definition of BS%¢, 2" € BS%¢ implies
(A43) or, equivalently, ||Q .~ — \,_1 X || < e.Thus (A38)
follows from the second item in Lemma 3 with the associ-
ation Pg < PX:L}_’X{. and P§ < Q,n .

* (A41) < R, (D): as defined in (108), is nothing but
Rsi(Px,s,D) with the association X « X, and
S e (X_p, XT).

(A46)

n
n_)OOnPY |xn,zn: E .
nld i=1

min I(X™Y™|2™). (A28)

E[lz,=cyp(X:,Yi)|<nD
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- min (XY™ Z") (A29)
n P(yn\zn,zn):ZLl E[1{z,=} p(X:,Yi)|<nD
1
= ERSI(PX“,Z";'”D) (A30)
1
= min PZn PXn amy nDZ7z) (A31)
N {D.n}:y" , Pzn(:")D. 77.—DZ I
<= ZPZn R(Pxn|sn,nD) (A32)
= Z Pzn(2")R (Px({1<i<nizime})|{ Xsmzi 1 <i<n:zse}» VD) (A33)
1
< E Z Pzn (Zn)R (PX({lgiSn:zize})HXi:zi,1§i§n:zi;ﬁe}7 ’I’LD) + P(Zn ¢ Bz’k’e> IOg |X| (A34‘)
sneBhe
1 n
<= Z Pz (2") [R (Px({1<i<n:zime,min{Jivj|jski,z;me} >k} { Xi =21 1 <i<nizi e} D) (A35)
aneByke
+(e+ e)n(ae(k) + ) log |X|] + P(Z" & By"*)log | X|
1
< E Z Pzn (Zn)R (PX({ISiSn:zz=e,min{|i—j|:j;éi,zj-=e}>k})|{Xz=21,1§i§n:2ﬁée}7TLD) (A36)
z"GBi’k €
+ [(e+e)(aelk) + ¢) + P(Z" & B )] log ||
1
< - Z Pr.(z"){1<i<n:z =emin{li — j|: j #4,2; = e} > k}| (A37)
n
zneBERe
nD
R X P
X st (Q XX XX |{1<L<7’L zi = e,min{|i — j| : j # i, z]—e}>k}|>
+ [(e +e)(ae(k) +¢) + P(Z" & BY™)] log |X|
<ete)| 3 PrleRsr (@ x P D (A38)
<(e+e 70 (") Bt ( Qe X Pyt xt
ameBLhe
+ [(e+e)(ae(k) + ) + P(Z" & By"*)] log | X|
D
<(ete) > Pa(a") [R51< e Pyt xt Ty ) —I—é(s)} (A39)
sne RSk
+ [(e+&)(ae(k) + &)+ P(Z" & Bfl’k’e)] log | X|
D
S (e+5) |:RSI <PX_)17Xf X PXOIX_R,X{»7 e+€> + 6( ):|
+ [(e+e)(ae(k) +¢) + P(2" & BY™)] log |¥| (A40)
D
=(e+e) {R; <e+—e> + 6(6)] + [(e+e)(ae(k) +¢) + P(Z" & BZ**)] log | X| (A41)
1<i<n:z;=emin{li—j|:j#1iz2; =e} >k, 2?71,2?4“]“ =(z 1,3:’“
{1<is ghis G| I 702 = Vo b s = (o D) — Pyor i (zThab) <e. (A43)
Hl1<i<n:z=emin{l|i—j|:j#1iz2 =e} >k} !
Hi<i<n:zi=e}|<|{1<i<n:zi=emin{|i —j|:j#i,2 =e} >k} + (e+e)n(ae(k)+¢) (A44)
R (PX({lgign:zizs})HXi:zi,1§i§n:zi;ﬁs}7nD)
< R (PX({ISiSn:zize,min{\i—j\:j;éi,z]'=e}>k})|{Xi=zi,lgign:zi;ée}7 nD)
+ (e + e)n(ae(k) + ¢) log | X| (A45)
1<i<mn:z =e min{|i — 1,2 =e} >k, zl,sz:xl,a:k
Qo (2~ llc’lef) |{ {| J| J# J } ( k 1—1—1) ( —k 1)}| (A47)

Hl1<i<n:z=emin{l|i—j|:j#1iz2 =e} >k}
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R (Px ({1<i<nizime,min{|i—j|:j iz, =e} >k D) {Ximz,1<i<niz e} D)
<H1<i<n:z;=emin{li—j|:j#i,z2 =e} >k}

nD
R zZn P -1 k5 3 A B B B B A4
X st <Q’ X XXXy Hl1<i<n:z,=emin{|i—j|:j#iz2 =e}> k}|> (A48)
. ete De e+e 1 n che
Re(D) < lim o —— By | o7 ) T0()| + | ——(ae(k) +e) + T P(27" & B log | X
e+e| _ ([ De et+e
20 o (B2 +ae)] + S5ttty + ool (A%9)
%I(X";Y”|Z") :%[ (X™|Z") — H(X™Y™, Z2M)] (AS4)
:lZH X;| X1, 2" — H(X;| X1, Y™, Z") (A55)
=1
1 & . )
> ;ZH(XZ-|X1_1,X{‘+1,Z”) — H(X;| X1, 2 (A56)
> % S OH(XG|X L X, Zi) — H(XG XY, 204 (AS7)
1 — o ;
H(Xo|X~L, X, Zy) — £ZH(XZ<|XL Ly;, Zitk) (A58)
=1
1 n
:H_(X)-e—EZH(X | XLY;, 2 Zi=e) e (A59)
[ 1o~ (1E[l{z - po(X:,Y)
>e —gz¢< { 1}_ek ] — eklog |X]| (A60)
L =1
L &2 Blz.=e - p(Xi,Y5)]
>e |H™(X) =9 | - =1 — — eklog |X| (A61)
1 De
Ze <E ) — ek10g|X|} (A62)

The combination of (A27), (A28), and (A41) gives (A49) atthe Then, for fixed n and k < n, we get (A54)—(A62) at the top of

top of the page, where the equality is due to (A46). The arbitrari- the page, where

ness of ¢ > 0, continuity of R, (), and fact that lim._,( 6(¢) * (A57)

imply < H(X;| X1 X N, Z") > H(Xi|X'i_1,X,?_f1,Z”)
Re(D) < R, (D) + ae(k)log|X]| (A50) = H(X;| X1 XH_1 Z);

e (A58) « statlonarlty,

hich, since lime_, k) = 0, impli _
which, since lime_,¢ ae(k) implies . (A59) < H(X0|X X, )= H(X0|X_;O7Xf°)-e

lim Sélp R.(D) < R, (D) (A51) = H (X)-eand
e—
and, therefore, by the arbitrariness of &k and (110) H(X;| xi-ly. Zi+k)
thSlPRe(D) <R (D). (A52) = H(X;| X7V Y;, 20, Zi =€) -e; (A63)
e—

For the lower bound fix any joint distribution of * (A60) < defining
(X", Y™, Z") (i.e., a conditional Py xn z») under which
n (D) = max H(Xo| X1
ST E[1{z,2e) - p(Xi,Y3)] < nDe. (A53) Pryixes 1 Bp(Xo, Vo) <P
= (A64)

XlooaYU)

—00?
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H(Xi| XN Y3, ZIT  Zi = e) (A65)
< H(X| XL Y XD P(ZET = X{T) + P(ZE # X)) log | X (A66)
<o (B [p(X0Yi)|Zi = e, 211 = X)) P(ZEy = XE) + P(ZET # X)) log | X (A67)
1 7 7 1 7 1 7
=1 (EE [Lizi=e) - p(X0 YOI ZiET = X,;i{“]) P(Z31 = Xi§7) + P(ZI1 # Xi17) log || (A68)
1 i 7
<1 (gE [L(z,=ey - p(Xi, YD Z]ET = Xiﬂ) +eklog |X| (A69)
1FE|1 i=e} ’ X'i7 }/1
<9 (- [ {2~} 4 i 1) 4 ekog ) (A70)
e P(Ziy =X7Y)
1FE|1 i=e} ’ X'i7 }/1
< (E [ {Zl—l L epk( ) + eklog | X| (A71)

and noting that, for ¢ > k, we have (A65)—-(A71) at the top
of the page, where (A67) follows by the definition of ),
(A70) follows since

Xtk

E [1{Zi:5} : p(X'i7Yi)|Z"i+k i+1

1+1 =

< E [z, - p(Xi,Y5)]

itk itk
P(Zij—_l = Xi-—ii——l)

(A72)

and in the other steps we assume ek < 1 and use the crude
inequality P(Z{f # X/If) < ek (which follows from
the union bound);
* (A61) < concavity of v;
* (A62) < monotonicity of 1) and (A.53);
Thus, (A27), (A28), and (A62) imply

Re(D) = - Rxjs(De)

>H(X)— < ) — eklog |X|. (A73)

1—ek

The continuity of 1) now further implies

lim i(I]lf R.(D)> H (X)—1% (D)= R (D) (A74)
e—
where the equality follows as in (106). Combining (A74) with

(A52) completes the proof. O

D. Proof of Theorem 27

We use the following lemma, on the penalty of mismatched
estimation, which follows by specializing [31, Lemma 4], to the
case ¢ = 0.

Lemma 4: Consider the problem of estimating the random
variable X on the basis of its DMC (II)-corrupted observation
Y. Let X7 (-) denote the optimal estimator in the sense of min-
imizing the expected loss Ep, A(X, X(Y)), where Ep, de-
notes expectation when the noisy observation Y is distributed

according to Py~ (which uniquely determines the joint distribu-
tion of X, Y due to the invertibility of II). Then, for any Qy

EP)'A(X7 XQY (Y)) - EP)'A(X7 XPY (Y))
S Am(m:KHHPY - QYHI-

Proof of Theorem 27: Let { XF'(-)}7_, denote the denoiser
achieving the minimum in (286), i.e., which is optimal for the
noisy source P. Then we get (A75)—(A82) at the top of the fol-
lowing page where

* (A78) < Lemma 4;
* (A79) < Pinsker’s inequality;
* (A80) <« Jensen’s inequality.
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