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Abstract. We provide a new characterization of certain zero-knowledge proto-
cols as non-interactive instance-dependent commitment-schemes (NIC). To ob-
tain this result we consider the notion of V-bit protocols, which are very com-
mon, and found many applications in zero-knowledge. Our characterization re-
sult states that a protocol has a V-bit zero-knowledge protocol if and only if it has
a NIC. The NIC inherits its hiding property from the zero-knowledge property
of the protocol, and vice versa.

Our characterization result yields a framework that strengthens and simplifies
many zero-knowledge protocols in various settings. For example, applying this
framework to the result of Micciancio et al. [18] (who showed that some prob-
lems, including GRAPH-NONISOMORPHISM and QUADRATIC-RESIDUOUSITY,
unconditionally have a concurrent zero-knowledge proof) we easily get that arbi-
trary, monotone boolean formulae over a large class of problems (which contains,
e.g., the complement of any random self-reducible problem) unconditionally have
a concurrent zero-knowledge proof.

Keywords: zero-knowledge, commitment-schemes, random self-reducibility.

1 Introduction

Zero-knowledge protocols are two party protocols that enable one party (the prover) to
convince another party (the verifier) of an assertion, with the guarantee that the verifier
learns nothing but the truth of the assertion [14]. These protocols play a central role in
the theory of cryptography, and they are also interesting from a complexity theoretic
perspective because they facilitate the study of NP through interaction and randomness.

Zero-knowledge protocols and cryptography heavily rely on commitment-schemes.
For example, every language in NP has a computational zero-knowledge (CZK) pro-
tocol [13,5] if bit commitment-schemes (equivalently, one-way functions [15,20]) exit.
Consequently, many results about zero-knowledge protocols, and cryptography in gen-
eral, are based on unproven assumptions.

Recently, Vadhan [27] gave a characterization of CZK, called the SZK/OWF-
CHARACTERIZATION, which leads to the construction of a special scheme from any
zero-knowledge protocol. Utilizing this scheme and the techniques already known from
the conditional study of zero-knowledge, Vadhan was able to prove many results about
CZK without relying on any unproven assumptions. A similar approach was applied
by Nguyen and Vadhan [21] in the context of zero-knowledge proofs with efficient
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provers1, and by Ong and Vadhan [22] in the context of zero-knowledge arguments.
The works of [27,21,22] demonstrate that we can prove unconditional results about
zero-knowledge protocols. This can be done by characterizing zero-knowledge proto-
cols as special bit commitment-schemes, and then using these special schemes instead
of bit commitment-schemes2.

We continue this line of research. That is, we construct special schemes from a spe-
cific class of zero-knowledge protocols, and then we use the special schemes instead
of bit commitment-schemes. Our schemes are simply functions. That is, by restrict-
ing ourselves to a specific class of zero-knowledge protocols we are able to construct
very simple non-interactive schemes. In contrast, the schemes of Vadhan [27] can be
constructed from any zero-knowledge protocol, but they are interactive, and have an in-
volved definition (similar in flavor to that of zero-knowledge protocols). We stress that
although our schemes are constructed from specific zero-knowledge protocols, they can
be used in other zero-knowledge protocols, and in various settings. That is, our charac-
terization result yields a framework with wide applicability.

Our Results. We provide a new characterization of certain zero-knowledge protocols
as special bit commitment-schemes. To obtain this result we consider the notion of V-
bit protocols. Informally, in such protocols the prover sends the first message m1, the
verifier sends back a random bit b, the prover replies with a message m2, and the verifier
accepts or rejects. These protocols are very common in zero-knowledge. Examples in-
clude the perfect zero-knowledge (PZK) proof of [4] for GRAPH-ISOMORPHISM, the
statistical zero-knowledge (SZK) proof of [19] for certain lattice problems, the SZK
and PZK proofs of [24] for variants of STATISTICAL-DISTANCE (SD), and more.

We construct an efficient function f(x, b; r) from any V-bit zero-knowledge protocol
for a promise-problem Π def= 〈ΠY , ΠN〉. The inputs to f are a string x, a bit b, and
randomness r. The output y of f hides b when x is a YES instance, and binds to b when
x is a NO instance. More precisely, given y = f(x, b; r), if x ∈ ΠY, then b cannot be
determined from y, and if x ∈ ΠN, then y can be a commitment to either 0 or 1, but not
both (i.e., y �= f(x, 1−b; r′) for all r′). Notice that unlike bit commitment-schemes, the
hiding and the binding properties of f may not hold simultaneously. Since f is a non-
interactive commitment-scheme for Π, we call f a non-interactive instance-dependent
commitment-scheme (NIC). Using the techniques of [10,16] we get the following:

Main result (informal). A problem Π has a V-bit zero-knowledge protocol if and only
if Π has a NIC.

The NIC f inherits its hiding property from the zero-knowledge property of the V-
bit protocol, and vice versa. For example, the SZK protocols for the lattice problems
of Micciancio and Vadhan [19] yield a statistically hiding NIC for these problems, and
vice versa.

The notion of V-bit protocols is related to Cramer’s notion of Σ-protocols [7]. These
protocols are similar to V-bit protocols in that they are also 3-round public-coin

1 A prover is efficient if given witness for input x it runs in time polynomial in |x|.
2 The idea of replacing a bit commitment-scheme with a special scheme is due to Itoh et al. [16].

However, [16] construct a special scheme (different from that of [27,21]) for specific lan-
guages, whereas [27,21] provide a characterization result.
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protocols, but instead of sending a bit b, the verifier sends a string e. However, if we
consider V-bit zero-knowledge protocols, then the two notions are equivalent (the idea
is to let e be the bit b, followed by zeroes [11]). Thus, our characterization result applies
to Σ-protocols as well.

An immediate corollary to the characterization result is a transformation from V-
bit honest-verifier zero-knowledge protocols to dishonest-verifier V-bit zero-knowledge
protocols with efficient provers. The transformation preserves the zero-knowledge prop-
erty of the original protocol. When we apply it to, .e.g., the protocol of [24] for variants
of SD we immediately get a zero-knowledge protocol with an efficient prover for these
variants, a result previously proved in [19] using similar ideas.

To show that our characterization result yields a useful framework we prove that
NIC can be combined in a monotone boolean formula fashion (i.e., with AND and OR
connectors). For example, if f is a NIC for GRAPH-ISOMORPHISM, and g is a NIC for
the lattice problems of [19], then our lemma states that, e.g., f ∧ g and f ∨ g are also
NIC for the corresponding problems.

Second result (informal). The class of problems possessing NIC is closed under arbi-
trary monotone boolean formulae.

In addition, we prove that any random self-reducible (RSR) problem [2] has a per-
fectly hiding NIC. This folklore lemma follows from [26,25], but here we provide the
proof for completeness. Let us see how combining these lemmas with our characteriza-
tion result yields a very useful framework.

Removing computational assumptions. Our framework allows replacing the bit
commitment-scheme in the protocol of Barak [3] with a NIC. The protocol inherits its
zero-knowledge property from the hiding property of the NIC. For example, we get that
if a problem has a perfectly hiding NIC, then it has a public-coin, round-efficient proto-
col (i.e., constant-round, with a negligible soundness error, and perfect completeness).
The protocol is a PZK argument with a strict, polynomial-time non-black-box simula-
tor. Notice that our protocol applies to problems that have a NIC, whereas the protocol
of [3] applies to all of NP. As in [3], our protocol assumes the existence of collision-
resistent hash functions. However, our result yields PZK protocols (as opposed to CZK
in [3]), and it does not use bit commitment-schemes.

Abstraction and closure. Our framework strengthens and simplifies the result of Mic-
ciancio, Ong, Sahai, and Vadhan [18], who showed that a NIC with reversed properties3

can replace the bit commitment-scheme in the protocol of [23]. Unlike [18], since we
already have a characterization result, we do not need to construct such a NIC for
specific problems (e.g., GRAPH-NONISOMORPHISM) or to be familiar with their defi-
nition (e.g., the lattice problems of [19]). Also, our framework shows that such NIC are
closed under monotone boolean formulae. Thus, when we apply our framework to the
theorem of [18] we get that arbitrary, monotone boolean formulae over a large class of
problems (which contains, e.g., the complement of any random self-reducible problem)

3 By ”reversed” we mean that the hiding property holds on NO instances of the problem (instead
of YES instances), and the binding property holds on YES instances (instead of NO instances).
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unconditionally have a concurrent zero-knowledge proof. Similar improvements apply
to local zero-knowledge [17], and quantum zero-knowledge [28].

Unifying previous works. Our framework unifies under the theme of NIC the results
of Tompa and Woll [26], De Santis, Di Crescenzo, Persiano, and Yung [25], and Itoh,
Ohta, and Shizuya [16]. Actually, these works only consider the perfect setting, and
focus mainly on RSR problems. In contrast, our framework includes problems that are
not known to be RSR, and it also considers the statistical and the computational setting.
Hence, we get stronger and more general results under one simple theme.

Related work. We use the idea of Damgård [10] to obtain a NIC from any V-bit
zero-knowledge protocol. Feige and Shamir used a similar idea to construct a trapdoor
commitment-scheme from a bit commitment-scheme. Notice that the context of the
work of Damgård [10] was to investigate whether zero-knowledge imply bit
commitment-schemes. That is, [10] constructed an interactive bit commitment-scheme
(as opposed to a non-interactive, instance-dependent commitment-scheme) from a
proof of knowledge for any NP-hard relation, provided that the proof is a Σ-protocol.
In contrast, we construct a NIC from any V-bit zero-knowledge protocol, regardless of
whether the underlying problem is NP-hard. Also, the binding property of our NIC fol-
lows from the soundness of the underlying V-bit protocol, whereas in [10] the binding
property is computational, and follows from the hardness of the underlying problem.

Our lemma on the closure of NIC under monotone boolean formulae uses the ideas
of [25]. These ideas were also used in [24,27] to show closure properties. Our lemma
is related to the closure results of Damgård and Cramer [9], and Cramer, Damgård, and
Mackenzie [8]. All these results are proved by modifying the original protocols to obtain
the closure. In contrast, we prove our closure result in a simple combinatorial setting
(using NIC), and we always use the same underlying protocol of Blum [5] for NP. In
addition, the results of [9,8] change the properties of the original protocol. For example,
in [9] the protocol becomes a private-coin protocol, and in [8] the protocol becomes a
4-round protocol. In contrast, since we work with NIC, our underlying protocol does
not change.

Our NIC is related to versions of SD, a complete problem for SZK [24]. That is, a
problem has a perfectly (respectively, statistically) hiding NIC if and only if it Karp-

reduces to SD1,0 (respectively, SD1,1/2). The notion of a perfectly hiding NIC is im-
plicit in [4], and formalized in [16]. The notion of a statistically hiding NIC was for-
malized by [19]. Here we provide the computational analogue.

2 Non-interactive, Instance-Dependent Commitment-Schemes

We define non-interactive, instance-dependent commitment-schemes (NIC). Using the
technique of [16] we show that if a problem has a NIC, then it has a V-bit zero-
knowledge protocol (this holds for computationally hiding NIC if, in addition, the
problem is in NP). The protocol is also a proof of knowledge, and it inherits its zero-
knowledge property from the hiding property of the NIC.

Intuitively, a bit commitment-scheme allows a sender to commit to a bit b such that the
receiver cannot learn the value of b, yet the sender cannot change b. Informally, a NIC
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is a bit commitment-scheme in which the hiding and the binding properties depend on
a string x, and thus may not hold simultaneously. That is, instead of f(b; r) we consider
f(x, b; r), and the hiding and binding properties depend on whether x is a YES on a NO
instance of some problem Π. Formally,

Definition 2.1 (NIC). Let Π = 〈ΠY, ΠN〉 be a promise-problem, and let f(x, b; r) be
a probabilistic, polynomial-time Turing machine on inputs x and b ∈ {0, 1}. The string
r denotes the randomness of f .

We say that f is binding on ΠN if for any x ∈ ΠN, and for any r and r′ it holds
that f(x, 0; r) �= f(x, 1; r′). We say that f is perfectly (respectively, statistically, com-
putationally) hiding on ΠY if for any x ∈ ΠY and each b ∈ {0, 1} the ensembles
{f(x, 0)}x∈ΠY and {f(x, 1)}x∈ΠY are statistically identical (respectively, statistically
indistinguishable, computationally indistinguishable).

We say that f is a perfectly (respectively, statistically, computationally) hiding NIC
for Π if f is binding on ΠN, and perfectly (respectively, statistically, computationally)
hiding on ΠY.

When appropriate we will omit the random input r to f . Notice that if f is a perfectly
or a statistically hiding NIC for Π, then as a class of problems NP contains Π. This is
so because if x ∈ ΠY, then there is a pair 〈r, r′〉 such that f(x, 0; r) = f(x, 1; r), and if
x ∈ ΠN, then no such pair exists. However, Π may not be in NP if f is computationally
hiding . We give an example of a perfectly hiding NIC.

Example 2.1. NIC for the language GRAPH-ISOMORPHISM [4,16]. Let f(x, b; r) be
a function that given a pair of graphs x = 〈G0, G1〉 on n vertices uses r to define
a random permutation π over {1, . . . , n}, and outputs y = π(Gb). If the graphs are
isomorphic, then y is isomorphic to both G0 and G1, and b cannot be determined from
y. Conversely, if the graphs are not isomorphic, then y cannot be isomorphic to both G0
and G1. Thus, f is a perfectly hiding NIC for GRAPH-ISOMORPHISM.

Our protocol follows the idea of [16], which uses the protocol of Blum [5] for the NP-
complete problem HAMILTONIAN-CIRUIT (HC). In the protocol of [16] the prover and
the verifier initially reduce the input x of the problem possessing a NIC to an instance
G of HC, and then execute the zero-knowledge protocol of [5] using the NIC as a
bit commitment-scheme. Notice that the prover can transform its witness for x into a
witness for G, and thus it is efficient. When x ∈ ΠY the scheme is hiding, and thus the
protocol is zero-knowledge. When x ∈ ΠN the scheme is binding, and thus the protocol
is sound. Our lemma follows. The proof is very similar to that of [16].

Lemma 2.1. If a problem Π has a perfectly (respectively, statistically) hiding NIC,
then Π has a public-coin PZK (respectively, SZK) proof with an efficient prover. If
Π ∈ NP, and Π has a computationally hiding NIC, then Π has a public-coin CZK
proof with an efficient prover.

Itoh, Ohta, and Shizuya [16] observed that if Π has a statistically hiding NIC, then
Π cannot be NP-complete, unless the polynomial hierarchy collapses [12,1,6]. In the
next section we show that V-bit zero-knowledge protocols and NIC are equivalent.
Thus, NP-complete languages cannot have V-bit SZK proofs, unless the polynomial
hierarchy collapses.
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3 Characterizing V-Bit Zero-Knowledge Protocols

We introduce the notion of V-bit protocols, and then show how to construct a NIC
from a simulator of any V-bit zero-knowledge protocol. Since the zero-knowledge pro-
tocols constructed in Section 2 for problems possessing NIC are V-bit zero-knowledge
protocols, we get our main theorem.

Theorem 3.1. A promise-problem Π has a V-bit PZK (respectively, SZK) proof if and
only if Π has a perfectly (respectively, statistically) hiding NIC. Similarly, Π has a
V-bit CZK proof if and only if Π ∈ NP and Π has a computationally hiding NIC.

We present the definition of V-bit protocols.

Definition 3.1 (V-bit protocol). Let Π = 〈ΠY, ΠN〉 be a problem, and let 〈P, V 〉 be a
protocol for Π with perfect completeness. We say that 〈P, V 〉 is V-bit if for any x ∈ ΠY
the interaction between P and V is as follows: P sends m1 to V , and V replies with a
uniformly chosen bit b. P replies by sending m2 to V , and V accepts or rejects x based
on 〈x, m1, b, m2〉.

Using the idea of [10] we show how to construct a NIC from a simulator S for any V-bit
zero-knowledge protocol 〈P, V 〉. The NIC will be hiding on YES instances, and binding
on NO instances. We start with the following idea to commit to a bit b: use randomness r
to execute S on input x, obtain a transcript 〈m1, b

′, m2〉 such that b = b′ and V accepts,
and output m1 as a commitment. If x is a YES instance, then the perfect completeness
property guarantees that we always obtain transcripts where V accepts, and since b
cannot be determined from such m1, the commitment is hiding. Conversely, by the
soundness of 〈P, V 〉, if x is a NO instance, then there are no transcripts 〈m1, 0, m2〉 and
〈m1, 1, m′

2〉 such that V accepts in both. The problem with this idea is that b′ may not
be equal to b. To overcome this issue we redefine the commitment to be 〈m1, b

′ ⊕ b〉.
That is, we execute S(x), obtain 〈m1, b

′, m2〉, and output 〈m1, b
′⊕b〉. Intuitively, since

b′ is hidden, the bit b′⊕b is also hidden. Thus, the scheme is hiding. Our lemma follows.

Lemma 3.1. Let Π = 〈ΠY, ΠN〉 be a promise-problem. If Π has a V-bit, public-coin
HVPZK (respectively, HVSZK, HVCZK) proof, then Π has a NIC that is perfectly
(respectively, statistically, computationally) hiding on ΠY and perfectly binding on ΠN.

Proof. Fix a public-coin, V-bit HVPZK (respectively, HVSZK, HVCZK) proof 〈P, V 〉
for Π, and fix a simulator S for 〈P, V 〉. Without loss of generality we can assume that S
either outputs transcripts in which V accepts, or it outputs fail. Using S we define a
NIC f for Π as follows. Let f(x, b; r) be the function that executes S(x) with random-
ness r. If f obtains a transcript 〈x, m′

1, b
′, m′

2〉 such that V (x, m′
1, b

′, m′
2) = accept,

then f outputs 〈m′
1, b

′ ⊕ b〉. Otherwise, f outputs b.
We show that f is binding on ΠN. Let x ∈ ΠN. Notice that for any r and b it

holds that f(x, b; r) outputs one bit if and only if f(x, b; r) = b. Thus, if f outputs
one bit, then there are no r and r′ such that f(x, 0; r) = f(x, 1; r′). For the case
where f(x, b; r) outputs a pair 〈m̃1, b̃〉, recall that b̃ = b′ ⊕ b, where b′ is taken from
some transcript 〈x, m′

1, b
′, m′

2〉. Thus, by the definition of f , for any m̃1, b̃, r and r′ it
holds that f(x, 0; r) = f(x, 1; r′) = 〈m̃1, b̃〉 if and only if there are m2 and m′

2 and
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such that V (x, m1, 0, m2) = V (x, m1, 1, m′
2) = accept. However, 〈P, V 〉 is public

coin, and by the soundness property of 〈P, V 〉 there are no m1, m2 and m′
2 such that

V (x, m1, 0, m2) = V (x, m1, 1, m′
2) = accept. Hence, if f does not output one bit,

then there are no r and r′ such that f(x, 0; r) = f(x, 1; r′). We conclude that f is
perfectly binding on ΠN.

The rest of the proof shows that f is hiding on ΠY. Starting with the statistical set-
ting, we calculate the statistical distance between commitments to 0 and commitments
to 1 over x ∈ ΠY. The following probabilities are over the randomness r for f .

Δ(f(x, 0), f(x, 1)) =
1
2

∑

α

|Pr[f(x, 0) = α] − Pr[f(x, 1) = α]|

=
1
2

∑

m1

|Pr[f(x, 0) = 〈m1, 0〉] − Pr[f(x, 1) = 〈m1, 0〉]| +

1
2

∑

m1

|Pr[f(x, 0) = 〈m1, 1〉] − Pr[f(x, 1) = 〈m1, 1〉]| +

1
2

∑

b

|Pr[f(x, 0) = b] − Pr[f(x, 1) = b]| .

For any x we define px
def= Pr[S(x) = fail], where the probability is over the random-

ness to S. In addition, when S is a HVPZK simulator we are assuming that px = 0. By
the definition of f , the above sum over b equals px. It remains to deal with the sums over
m1. We show that the first sum is upper bounded by Δ(〈P, V 〉(x), S(x)) − px/2, and
since a symmetric argument applies to the second sum, the total will be upper bounded
by 2 ·Δ(〈P, V 〉(x), S(x)). The following probabilities for 〈P, V 〉(x) and S(x) are over
the randomness to P, V and S, respectively.

1
2

∑
m1

|Pr[f(x, 0) = 〈m1, 0〉] − Pr[f(x, 1) = 〈m1, 0〉]| =
1
2

∑
m1

|
∑

m2

Pr[S(x) = 〈m1, 0, m2〉] −
∑

m2

Pr[S(x) = 〈m1, 1, m2〉]| =

1
2

∑
m1

|
∑

m2

Pr[S(x) = 〈m1, 0, m2〉] −
∑

m2

Pr[〈P, V 〉(x) = 〈m1, 0, m2〉]

−(
∑

m2

Pr[S(x) = 〈m1, 1, m2〉] −
∑

m2

Pr[〈P, V 〉(x) = 〈m1, 1, m2〉])| ≤

1
2

∑
m1,m2

(|Pr[S(x) = 〈m1, 0, m2〉] − Pr[〈P, V 〉(x) = 〈m1, 0, m2〉]| +
|Pr[S(x) = 〈m1, 1, m2〉] − Pr[〈P, V 〉(x) = 〈m1, 1, m2〉]|) =
Δ(〈P, V 〉(x), S(x)) − px/2 .

Above we used the fact that S outputs transcripts in which V accepts, and then we
used the fact that 〈P, V 〉 is public-coin (which implies that for any m1 the proba-
bility to choose an element of 〈P, V 〉(x) whose prefix is 〈m1, 0〉 equals the proba-
bility to choose an element of 〈P, V 〉(x) whose prefix is 〈m1, 1〉). We conclude that
Δ(f(x, 0), f(x, 1)) ≤ 2 · Δ(S(x), 〈P, V 〉(x)). Hence, if S is a HVPZK (respec-
tively, HVSZK) simulator, then Δ(S(x), 〈P, V 〉(x)) is 0 for any x ∈ ΠY (respectively,
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negligible on ΠY), which implies that f is perfectly (respectively, statistically) hiding
on ΠY.

It remains to deal with the case that S is a HVCZK simulator. The analysis is ana-
logues to the statistical setting, but in reverse. We define the function f ′(·, b) just like f ,
except that instead of executing the simulator, f ′ receives a transcript 〈m1, b

′, m2〉 and
outputs 〈m1, b

′ ⊕ b〉. Thus, f ′(S(x), b) and f(x, b) are identically distributed for any
b ∈ {0, 1}. Assume towards contradiction that there is a probabilistic, polynomial-time
Turing machine D that distinguishes {f(x, 0)}x∈ΠY and {f(x, 1)}x∈ΠY . Thus, D dis-
tinguishes {f ′(S(x), 0)}x∈ΠY and {f ′(S(x), 1)}x∈ΠY , and the following expression is
non-negligible:

|Pr[D(f ′(S(x), 0)) = 1] − Pr[D(f ′(S(x), 1)) = 1]| ≤
|Pr[D(f ′(S(x), 0)) = 1] − Pr[D(f ′(〈P, V 〉(x), 0)) = 1]| +
|Pr[D(f ′(S(x), 1)) = 1] − Pr[D(f ′(〈P, V 〉(x), 1)) = 1]| .

Above we used the fact that 〈P, V 〉 is V-bit, which implies that f ′(〈P, V 〉(x), 0) and
f ′(〈P, V 〉(x), 1) are identically distributed for any x ∈ ΠY. It follows that there is
b ∈ {0, 1} such that D distinguishes {f ′(〈P, V 〉, b)}x∈ΠY and {f ′(S(x), b)}x∈ΠY .
Since f ′ is efficient, this contradicts the fact that S is a HVCZK simulator. We conclude
that f is computationally hiding on ΠY. The lemma follows.

Theorem 3.1 presented in the beginning of this section immediately follows from Lem-
mas 2.1 and 3.1. Thus, we get a characterization of V-bit zero-knowledge protocols as
NIC. We remark that Theorem 3.1 can be extended to arguments, and to relaxed notions
of V -bit protocols.

4 Random Self-reducibility Implies NIC

We prove the folklore theorem that if a problem Π is random self-reducible, then Π
has a perfectly hiding NIC. Our proof uses the idea behind the construction of the
subroutine in the protocol of [25] (see Section 3.3 in [25]). Combining this theorem
with our closure result from the next section allows us to strengthen and unify the
results of [26,25,16], and achieve all the improvements claimed in the introduction. We
define random self-reducibility.

Definition 4.1 (Random self-reducible language [2]). Let N ⊂ {0, 1}∗ be a count-
able set such that Rx is an NP-relation for each x ∈ N . The domain of Rx is denoted
d(Rx) def= {z|∃w 〈z, w〉 ∈ Rx}. The language L def= {〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx} is
random self-reducible (RSR) if there are polynomial time algorithms G, A1, A2, and S
such that S(x, z; r) = y ∈ d(Rx) for any x ∈ N , z, and r, and the following conditions
hold.

1. If z ∈ d(Rx), and r is uniformly distributed, then y is uniformly distributed in
d(Rx).

2. A witness for y yields a witness for z, and vice versa. That is, 〈z, A1(x, y, r, w′)〉 ∈
Rx for any 〈y, w′〉 ∈ Rx, and 〈y, A2(x, z, r, w′′)〉 ∈ Rx for any 〈z, w′′〉 ∈ Rx.
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3. G(x; r) = 〈z′, w′〉 ∈ Rx, and if r is uniformly distributed, then z′ is uniformly
distributed in d(Rx), and w′ is uniformly distributed in {w|〈z, w〉 ∈ Rx}.

We prove that random self-reducible problems have a perfectly hiding NIC. Given N
and Rx as in Definition 4.1 we define the problem ΠL def= 〈ΠL

Y, ΠL
N〉, where ΠL

Y
def=

{〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx}, and ΠL
N

def= {〈x, z〉|x ∈ N , ∀w 〈z, w〉 /∈ Rx}.

Lemma 4.1. If L is a random self-reducible language, then ΠL has a perfectly hiding
NIC.

Proof. Let L def= {〈x, z〉|x ∈ N , ∃w 〈z, w〉 ∈ Rx} be a random self-reducible language.
Consider the algorithms S and G from Definition 4.1. Let G′(x; r) be the algorithm that
executes G(x; r), obtains 〈z′, w′〉, and outputs z′. We use S and G′ to commit to 0 and
1, respectively. Formally, we define our NIC to be the probabilistic, polynomial-time
Turing machine f(x, z, b; r) that on input 〈x, z〉 ∈ ΠL

Y ∪ ΠL
N, bit b, and randomness r

outputs S(x, z; r) if b = 0, and G′(x; r) if b = 1.
The efficiency of f follows from the efficiency of S and G. We show that f is per-

fectly hiding. By Definition 4.1, S(x, z; r) = y is uniformly distributed over d(Rx) if
r is uniformly distributed, and 〈x, z〉 ∈ ΠL

Y. Similarly, G(x; r) = 〈z′, w′〉, and z′ is
uniformly distributed over d(Rx) if r is uniformly distributed and x ∈ N . Since the
output of f is uniformly distributed over d(Rx) for any b and 〈x, z〉 ∈ ΠL

Y, the ensem-
bles {f(x, z, 0; r)}〈x,z〉∈ΠL

Y
and {f(x, z, 1; r)}〈x,z〉∈ΠL

Y
are statistically identical, and

therefore f is perfectly hiding on ΠL
Y.

We show that f is binding on ΠL
N. Let 〈x, z〉 ∈ ΠL

N. Assume towards contradic-
tion that there are r and r′ such that S(x, z; r) = f(x, z, 0; r) = f(x, z, 1; r′) =
G′(x; r). Let y = S(x, z; r). By the definition of G′, there is w′ such that G(x; r) =
〈G′(x; r), w′〉 = 〈y, w′〉 ∈ Rx. By the property of A1 from Definition 4.1, it follows
that 〈z, A1(x, y, r, w′)〉 ∈ Rx. Hence, 〈x, z〉 ∈ ΠL

Y, in contradiction to the choice of
〈x, z〉 ∈ ΠL

N. Thus, f is binding on ΠL
N.

Notice that in the above proof we did not use Algorithm A2 from Definition 4.1. Neither
did we use the fact that A1 runs in polynomial time, nor did we use the witness outputted
by G.

5 Closure of Problems Possessing NIC Under Monotone Boolean
Formulae

We use the technique of [25] to show that the class of problems possessing NIC is
closed under arbitrary (as opposed to fixed) monotone boolean formulae. For perfectly
hiding NIC the analysis is simple, but for statistically and computationally hiding NIC
the analysis is more complicated.

Motivation. Let f be a perfectly hiding NIC for a problem Π. Consider a prover and
a verifier who are given instances x0, . . . , xn ∈ ΠY ∪ ΠN, and suppose that the prover
wants to prove to the verifier that more than half of the xi’s are in ΠY. This statement
can be expressed using the logical connectorsAND (denoted ∧) and OR (denoted ∨). The
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prover can prove this statement if we can construct a NIC f ′ that is hiding when more
than half of the xi are in ΠY, and binding otherwise. This is so because the statement is
an NP statement, and the prover can use f ′ in the protocol of Blum [5] (as in Section 2).
Later we will give a general construction that yields such f ′. For now we consider the
simple case where n = 2. That is, the prover proves that both x0 and x1 are in ΠY.

To formulate the fact that the statement being proved is x0 ∈ ΠY ∧ x1 ∈ ΠY
we define the common input as 〈φ, x0, x1〉, where φ = a ∧ b. Recall that we want
to use the NIC f for Π to construct a NIC f ′ which is hiding when x0 ∈ ΠY ∧
x1 ∈ ΠY, and binding otherwise. We can construct such f by defining f ′(x0, x1, b)

def=
〈f(x0, b), f(x1, b)〉. Thus, if x0, x1 ∈ ΠY, then both f(x0, b) and f(x1, b) hide b, which
implies that f ′ is hiding, and if xi ∈ ΠN (for some i ∈ {0, 1}), then f(xi, b) binds to b,
and f ′ is binding. Notice that we omitted the randomness of f ′ from the notation, but
the intention is that f ′ uses independent randomness in each execution of f .

We can formulate other statements too. For example, consider a prover and a verifier
who are given x0, x1, and the prover wants to prove that either x0 ∈ ΠY or x1 ∈ ΠY.
Again, we can formulate this statement by defining 〈φ, x0, x1〉 as the input, where φ =
a ∨ b. Recall that we want to use the NIC f for Π to construct a NIC f ′ which is
hiding when x0 ∈ ΠY ∨ x1 ∈ ΠY, and hiding otherwise. We can construct such f by
defining f ′(x0, x1, b)

def= 〈f(x0, b0), f(x1, b1)〉, where b0 is uniformly chosen, and b1 is
chosen such that b0 ⊕ b1 = b. Thus, if x0, x1 ∈ ΠN, then both f(x0, b) and f(x1, b)
bind to b, which implies that f ′ is binding, and if xi ∈ ΠY (for some i ∈ {0, 1}), then
f(xi, b) hides bi, and thus f hides b. Based on these ∧ and ∨ cases we can give a general
construction of a NIC f ′ from a NIC f .

Construction 5.1. Let f be a NIC, and let b ∈ {0, 1}. Let φ be a monotone boolean
formula over the variables a1, . . . , am, and let �x = 〈x1, . . . , xn〉 be a vector of n
strings, where n ≥ m. Let r ∈ {0, 1}∗ be a uniformly distributed input to f ′.

The recursive function f ′(φ, �x, f, b; r) is defined as follows.

1. If φ = ai for some 1 ≤ i ≤ m, then return f(xi, b, r).
2. Otherwise, there are monotone boolean formulae φ0 and φ1 such that φ = φ0 ∧φ1

or φ = φ0 ∨ φ1. Partition r into r0 and r1.
3. If φ = φ0 ∧ φ1, then return 〈f ′(φ0, �x, f, b, r0), f ′(φ1, �x, f, b, r1)〉.
4. If φ = φ0 ∨ φ1, then return 〈f ′(φ0, �x, f, b0, r0), f ′(φ1, �x, f, b1, r1)〉, where b0 ∈

{0, 1} is uniformly distributed, and b1 is chosen such that b0 ⊕ b1 = b.

Our next step is define a problem that allows the prover to prove arbitrary (as opposed
to fixed) monotone, boolean formula statements. We need the following definitions. A
boolean variable is a variable that can only take the values 0 or 1. We say that φ is a
monotone boolean formula if φ is a boolean variable, or φ is φ0 ∧ φ1 or φ0 ∨ φ1, where
both φ0 and φ1 are monotone boolean formulae. Let Π = 〈ΠY, ΠN〉 be a promise-
problem, and let x ∈ ΠY ∪ ΠN. The characteristic function χΠ of Π is defined as
follows: if x ∈ ΠY, then χΠ(x) = 1, and if x ∈ ΠN, then χΠ(x) = 0. Let φ be a
boolean formula over a1, . . . , am, and let x1, . . . , xn ∈ ΠY ∪ΠN for some n ≥ m. The
evaluation of φ in �x = 〈x1, . . . , xn〉 is denoted φ(�x), and equals 1 if and only if φ is
satisfied when ai is assigned χΠ(xi) for each 1 ≤ i ≤ m.
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We say that a class C of problems is closed under arbitrary, monotone boolean
formulae if Π ∈ C implies that Φ(Π) ∈ C, where Φ(Π) is defined as follows.

Definition 5.1. Let Π = 〈ΠY, ΠN〉 be a problem. The problem Φ(Π) def= 〈Φ(Π)Y ,
Φ(Π)N〉 is defined as

Φ(Π)Y
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1}

Φ(Π)N
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 0},

where φ is a monotone boolean formula over a1, . . . , am such that m ≤ n, and xi ∈
ΠY ∪ ΠN for all 1 ≤ i ≤ n. We define Φ(Π)k def= 〈Φ(Π)kY , Φ(Π)N〉, where Φ(Π)kY is
defined as

Φ(Π)kY
def= {〈φ, x1, . . . , xn〉|φ(χΠ(x1), . . . , χΠ(xn)) = 1 ∧ ∀i |xi|k ≥ |φ, x1, . . . , xn|}.

The definition of Φ(Π) allows the prover to prove arbitrary (as opposed to fixed) mono-
tone, boolean formula statements, and so does the definition of Φ(Π)k. This formulation
has the advantage that the formula does not have to be hardwired into the protocol, or
known in advance. Our theorem follows.

Theorem 5.2. Let Π = 〈ΠY , ΠN〉 be a promise-problem with a NIC f , and let f ′ be
the function constructed from f , given in Construction 5.1. Let k ∈ N.

1. If f is a perfectly hiding NIC for Π, then f ′ is a perfectly hiding NIC for Φ(Π).
2. If f is a statistically (respectively, computationally) hiding NIC for Π, then f ′ is a

statistically (respectively, computationally) hiding NIC for Φ(Π)k.
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