

Abstract. This document shortly describes powerJava, a Java

extension which provides the instructions to manage roles. After
defined the environment in which we have worked, we will
discuss the language’s new instructions and we will show an
example.

I. SOMETHING ABOUT ROLES
Object orientation is a leading paradigm in programming

languages, modeling, knowledge representation and
databases. When we think to an object, we do it in terms of
attributes and methods, and if we refer to object interaction,
we do it in terms of public attributes and public methods:
these are the only ways to realize it!

In computer science literature, other kinds of interaction
between entities have been proposed at levels higher than
programming languages. We can properly speak about
sessions, which contain the interaction state (as at web
services level), but a very important concept is that of role.
Steimann [1] provided an interesting role representation,
giving three types of “role as”: roles as named places, role as
specialization and/or generalization, roles as adjunct
instances. Our approach is to consider roles as affordances;
we consider roles as instances having a different identity
respect to the players that play them. Inspired by research in
cognitive science, this view sees the properties (attributes and
operations) of an object as something not independent from
whom is interacting with it. In this way, an object “affords”
different ways of interaction to different kinds of objects.

The notion of “affordance” has been made popular by
Norman [3] (p. 9): “The term affordance refers to the
perceived and actual properties of the thing, primarily those
fundamental properties that determine just how the thing
could possibly be used. A chair affords (‘is for’) support, and,
therefore, affords sitting.”

How can we use the concept of “affordance” to introduce
new modeling concepts in object oriented knowledge
representation? The affordances of an object are not isolated,
but they are associated with a given specie. So we have to
consider sets of affordances. We will call a role type the
different sets of interaction possibilities, the affordances of an
object, which depend on the class of the interactant
manipulating the object: the player of the role. To manipulate
an object it is necessary to specify the role in which the
interaction is made.

A given role type can be instantiated, depending on a
certain player of a role (which must have the required
properties), and the role instance represents the state of the

interaction with that role player. Just to better explain the
possible use of roles as affordances, we introduce the
following figures, which introduce different ways to interact
with an object through the roles it offers.

Figure 1 - An object interacts with another one by means of the role

offered by it.

Figure 2 - An object interacting in two different roles with another

Figure 3 - Two objects which interact with each other by means of the

roles of another object.

An implemetation of roles as affordances:
powerJava

Erik Arnaudo, Matteo Baldoni, Guido Boella, Valerio Genovese, and Roberto Grenna

Figure 4 - Two objects interact with each other, each one playing a role

offered by the other.

The idea behind affordances is that the interaction with an

object does not happens directly with it by accessing its
public attributes and invoking its public operations. Rather,
the interaction with an object happens via a role: to invoke an
operation, it is necessary first to be the player of a role offered
by the object the operation belongs to. The roles which can be
played depend on the properties of the role player (the
requirements), since the roles represent the set of affordances
offered by the object.

II. POWERJAVA AND ITS ENVIRONMENT

In order to translate the roles as affordances approach, we
realize powerJava.

What we did, simply was an extension of Java 1.4
grammar, implemented using JavaCC (Java Compiler
Compiler), which is a parser generator that returns in output
Java code.

This parser generator is a program which reads a grammar
specification and converts it in a Java program (parser) that
can recognize this grammar.

JavaCC offers other tools too. For example, JJTree, that
realizes (before obtaining the parser) a tree from the grammar
written by the user. By JJTree exists the possibility of
inserting code (written in Java, obviously), to “drive” the
behavior of the parser in some cases. It defines the Node
interface too. The Node interface is the interface that each
node of the tree has to implement, and it offers some methods
for setting the node parent or its sons.

JavaCC is a top-down parser, but JJTree generates the tree
in a bottom-up mode, using a stack to contain the nodes after
creating them.

The idea is that the tokens are serialized in a chain, but
from each of them is possible to reach its parents (father,
grandfather and so on). In this way it’s possible to manage
many events, and it’s clear that for each new token it’s
possible to define the correct behavior.

The token concept (together with, for example, the skip
concept) is something of very powerful, that collocates
JavaCC at an higher level than other parsers.

JavaCC generate a LL(1) parser, but in some points of the
grammar the parser can works as a LL(k) one: defining some
lookaheads it’s possible to manage expressions made by k
words. In other cases, the parser works as a LL(1), with all
obvious advantages in terms of performances.

The use is very simple. The grammar files have a .jj or .jjt
extension. When we start from a .jjt file, we have simply to
perform:

C:\>JJTree filename.jjt

The next step is to execute:

C:\>JavaCC filename.jj

which generates all the .java files needed, including our

parser. All that we have to do is to compile all the .java files.
Before continuing, we have to say that we can customize a

lot of the generated classes, like SimpleNode.java, or
UnparseVisitor.java. “Visitor” is the pattern that JavaCC uses
for visiting the nodes.

After this short description of the environment, in Figure 5
is shortly described the extension of the grammar syntax to
obtain powerJava.

The system requirements to use powerJava environment
are very simple: you’ve only to have JDK 1.4 or later on your
pc.

Please note that the name powerJava is due to the fact that
we call the methods offered by roles “powers”, because they
offer the possibility to modify the private state and access
private methods of the institution which defines them, and the
state of the other roles defined in the same institution.

III. AN EXPLENATORY EXAMLPE

To make an example (see [4]), let’s suppose to model a
class Printer. The interaction possibilities offered by the class

Figure 5 - The first extension of the Java (1.4) syntax in powerJava.

rolespec ::= "role" identifier ["extends" identifier*] "playedby"
identifier interfacebody

classdef ::= ["public"|"private"|...] "class" identifier
["extends" identifier] ["implements" identifier*] classbody

classbody ::= "{" fielddef* constructors* methoddef* roleimpl* "}"

roleimpl ::= “class” identifier_1 "realize" identifier_2 rolebody

rolebody ::= "{" fielddef* constructors* methoddef* "}"

rcast ::= (expr.identifier) expr

keyword ::= that | ...

are different and depend on which objects invoke its methods.
For example, some objects have more privileges than other
ones, and thus they can invoke methods which are not
available to other objects interacting with the same printer.
Moreover, some methods keep track of the interaction with
each specific object invoking them. For example, print counts
the number of pages printed by each object invoking it to
check whether the quota assigned to the object is respected.
However, objects with more privileges do not have a quota of
printed pages.

The Printer can be seen as an institution which supplies
two different roles for interacting with it (the set of methods a
caller can invoke): one role of normal User, and the other role
of SuperUser. The two roles offer some common methods
(roles are classes) with different implementations, but they
also offer other different methods to their players (and there is
no direct way to interact with the Printer). For example,
Users can print their jobs and the number of printable pages is
limited to a given maximum; thus, the number of pages is
counted (the role associates new attributes with the player):
each User should be associated with a different state of the
interaction (the role has an instance with a state which is
associated with its player). The User can print since the
implementation of its methods has access to the private
methods of the Printer (the methods of the User access the
private attributes and operations of another object, the
institution). SuperUsers have the method print with the same
signature, but with a different implementation: they can print
any number of pages; moreover, they can reset the page
counter of Users (a role can access the state of another role,
and, thus, roles coordinate the interaction).

A role like SuperUser can access the state of the other User
roles and of the callee object (the institution Printer) in a safe
way only if it encapsulated in the institution Printer. Thus the
definition of the role must be given by the same programmer
who defines the institution (the class of the role belongs to the
same institution class namespace, or, in Java terminology, it is
included in it).

In order to interact as User or SuperUser it is necessary to
exhibit some requested behavior. For example, in order to be
a User a caller object must have an account (it must be an
Accounted), which is printed on the pages (returned by a
method offered by the player of the role). A SuperUser can
have more demanding requirements.

Finally, a role User can be played only when there is an
instance of Printer and an instance of a class implementing
Accounted which can play the role.

In the following figure there is the code of our example.
First, we have to import package to manage roles (Figure

6-[1]), then, we define the class for the Login (Figure 6-[2])
and the class for the Job (Figure 6-[3]).

User (Figure 6-[5]) and SuperUser (Figure 6-[6]) are roles,
both played by an AccountedPerson (Figure 6-[4]).

import it.unito.di.javarole.*; [1]
class Login [2]
{
 private String ID;

 public Login(String ID)
 {
 this.ID = ID;
 }
}
class Job [3]
{
 private int ID;
 private int numberOfPages;

 public Job()
 {
 this.ID = -1;
 this.numberOfPages = 1;

 }

 public Job(int ID, int n)
 {
 this.ID = ID;
 this.numberOfPages = n;
 }

 public int getID()
 {
 return this.ID;
 }

 public int getNumberPages()
 {
 return this.numberOfPages;
 }
}
interface AccountedPerson [4]
{
 Login getLogin();
}
role User playedby AccountedPerson [5]
{
 int print(Job job);
 int getPrintedPages();
}
role SuperUser playedby AccountedPerson [6]
{
 int print(Job job);
 int getTotalPages();
}
class Person implements AccountedPerson [7]
{
 private Login login;

 public Login getLogin()
 {
 return login;
 }

 public void setLogin(String ID)
 {
 login = new Login(ID);
 }
}

Figure 6 – Our example’s code – Part 1 of 3

Then we have to write the code for the Person class (Figure
6-[7]), which implements AccountedPerson; what we have
now to do is to write our institution class: Printer (Figure 7-
[9]). In Printer we write two inner classes, U (Figure 7-[9])
and S (Figure 7-[10]), which are the roles offered by it.

 (Figure 8-[11]) showes the code for the main, in which we
can also see the .transfer method (Figure 8-[12]). In last build
of our environment, in fact, we have also implemented
methods to transfer and to remove a role. When Sergio
transfers his SuperUser role to chris, he will irremediably lose
it. In this way, he is having no role, so that an opportune
exception will be thrown if he would to play it.

Once we’ve written the code, we simply have to compile
(better, pre-compile) it, in order to obtain a standard Java
program. To do it, it’s enough to run:

C:\>java JavaRolePreCompiler <MyFile.java>

TargetFile.java

where MyFile.java is the source we’ve written few minutes

ago, while TargetFile.java is the file that we will compile
once we have it. It’s a good choice to name the class that
contain the main with TargetFile name.

Let’s suppose that we saved our file as Test1.java, so we
have to write:

C:\>java JavaRolePreCompiler <Test1.java> TestOne.java

Now we can compile TestOne.java, obtaining the

executable:

C:\>javac TestOne.java

And, finally, we can execute:

C:\>java TestOne.java

You can download this (really working!) example (within

all the work environment) from the website
http://www.powerjava.org.

IV. JUST AN IDEA OF THE PRE-COMPILING RESULT

Only for give a track about the target of pre-compiling
operations, we write an interesting example involving the
User role.

In Figures 9, 10, 11 you can see the original code (before
pre-compiling) and the pre-compiled code (in italic).

First, let’s consider the User role definition (Figure 9-[13])
and it’s corresponding pre-translation (Figure 9-[14]).

Following, we focus on the the class Printer (Figure 9-[15],
10-[16]), and in a particular way to those variables and
structures added by the pre-compiler. We can see the

HashTable rolelist (Figure 10-[17]), that will contain the class
offering role definitions.

We defined an inner class U (Figure 10-[18]), realizing
User, inside class Printer (which translation is in Figure 10-
[19] – Figure 11).

It’s very interesting to note the use of keyword that. It
refers to that object is playing the role at issue, and it’s used
only in role implementation. An example is the invocation of
that.getLogin() as a parameter of the print method in the
previous code.

class Printer [8]
{
 private int totalPrintedPages = 0;
 private int MAX_PAGES_USER = 100;
 private void print(Job job, Login login)
 {
 System.out.println("Printed job " + job.getID());
 totalPrintedPages += job.getNumberPages();
 }
 class U realizes User [9]
 {
 int counter = 0;

 public U(){}
 public U(int i){}
 public int print(Job job)
 {
 if (counter > MAX_PAGES_USER)
 //throw new IllegalPrintException();
 {
 System.out.println("Too many pages printed!");
 return 0;
 }
 else
 {
 counter += job.getNumberPages();
 Printer.this.print(job, that.getLogin());
 return counter;
 }
 }
 public int getPrintedPages()
 {
 return counter;
 }
 }
 class S realizes SuperUser [10]
 {
 public int print(Job job)
 {
 Printer.this.print(job, that.getLogin());
 return totalPrintedPages;
 }
 public int getTotalPages()
 {
 return totalPrintedPages;
 }
 }
}

Figure 7 – Our example’s code – Part 2 of 3

V. FUTURE DEVELOPMENTS
Our next goal is to implement features that make

powerJava able to model all the cases represented in Figures
1-4; we will work to implement something of more
collaborative too, and we can’t exclude to try interactions
between powerJava and other environments. We will surely
work focusing on relations, as defined in [5] and [6], and
sessions, as defined in [7].

 public class TestOne [11]
{
 public static void main(String[] args)
 {
 Job j1 = new Job(1, 57);
 Job j2 = new Job(2, 160);
 Job j3 = new Job(3, 94);
 Job j4 = new Job(4, 211);
 Printer hp8100 = new Printer();
 Person chris = new Person();
 Person sergio = new Person();
 hp8100.new U(chris);
 hp8100.new S(sergio);
 ((hp8100.U)chris).print(j2);
 ((hp8100.S)sergio).print(j4);
 ((hp8100.U)chris).print(j1);
 ((hp8100.S)sergio).transfer(chris); [12]
 ((hp8100.U)chris).print(j1);
 ((hp8100.S)sergio).print(j3);
 System.out.println("Chris printed "
+ ((hp8100.U)chris).getPrintedPages() + " pages.");
 System.out.println("The printer printed "
+ ((hp8100.S)sergio).getTotalPages() + " pages.");
 }
}

Figure 8 – Our example’s code – Part 3 of 3

class Printer implements ObjectWithRoles [16]
{
 private java.util.Hashtable rolelist = new java.util.HashTable(); [17]
 private int totalPrintedPages = 0;
 private int MAX_PAGES_USER = 100;
…
…
}

class U realizes User [18]
{
 int counter = 0;

 public U(){}
 public U(int i){}

 public int print(Job job)
 {
 if (counter > MAX_PAGES_USER)
//throw new IllegalPrintException();
 {
 System.out.println("Too many pages printed!");
 return 0;
 }
 else
 {
 counter += job.getNumberPages();
 Printer.this.print(job, that.getLogin());
 return counter;
 }
 }

 public int getPrintedPages()
 {
 return counter;
 }
}

class U implements ObjectWithRoles, RoleInterface, User [19]
{
 private AccountedPerson that;
 public void destroy()
 {
 ((ObjectWithRoles)this.that).removeRole(this, Printer.this);
 this.that = null;
 }
 public void transfer()
 {
 ((ObjectWithRoles)this.that).removeRole(this, Printer.this);
 this.that = (AccountedPerson)req;
 ((ObjectWithRoles)this.that).setRole(this, Printer.this);
 }
 … // Code defining the possibility for
 … // the class to offer roles
 int counter = 0;

Figure 10– Pre-compiling example – Part 2 of 3

role User playedby AccountedPerson [13]
{
 int print(Job job);
 int getPrintedPages();
}

interface User [14]
{
 int print(Job job);
 int getPrintedPages();
}

class Printer [15]
{
 private int totalPrintedPages = 0;
 private int MAX_PAGES_USER = 100;
…
…
}

Figure 9 – Pre-compiling example – Part 1 of 3

REFERENCES
[1] F. Steimann. “On the representation of roles in object-oriented and

conceptual modeling”. Data & Knowledge Engineering, 35:1 (2000) 83-106
[2] M. Baldoni, G. Boella, and L. van der Torre. “Modelling the

interaction between objects: roles as affordances”. In J. Lang, F. Lin, and J.
Wang, editors, Knowledge Science, Engineering and Management: First

International Conference, KSEM, volume 4092 of LNCS, pages 42-54,
Guilin City, China, August 5-8 2006. Springer.

[3] D. Norman. “The Design of Everyday Things”. Basic Books, New
York (2002)

[4] M. Baldoni, G. Boella, and L. van der Torre. “Interaction between
Objects in powerjava.” Journal of Object Technology, Special Issue OOPS
Track at SAC 2006, 6(2), 2007.

[5] M. Baldoni, G. Boella, and L. van der Torre. “Relationships Define
Roles, Objects Offer Them.” Roles07 workshop at ECOOP, pages 4-14.

[6] M. Baldoni, G. Boella, and L. van der Torre. “Relationships meet their
roles in object oriented programming.” Procs. of the 2nd International
Symposium on Fundamentals of Software Engineering 2007 Theory and
Practice (FSEN ‘07).

[7] V. Genovese. “A Meta-model for Roles: Introducing Sessions.”
Roles07 workshop at ECOOP.

Eric Arnaudo is student at the Dipartimento of Informatica, Università di

Torino, Corso Svizzera 185, 10149, Torino, Italy.
Matteo Baldoni is Associated Professor at the Dipartimento of

Informatica, Università di Torino, Corso Svizzera 185, Torino, 10149, Italy.
E-mail: baldoni@di.unito.it.

Guido Boella is Associated Professor at the Dipartimento of Informatica,
Università di Torino, Corso Svizzera 185, 10149, Torino, Italy. E-mail:
guido@di.unito.it.

Valerio Genovese is student at the Dipartimento of Informatica, Università
di Torino, Corso Svizzera 185, 10149, Torino, Italy.

Roberto Grenna is PhD student at the Dipartimento of Informatica,
Università di Torino, Corso Svizzera 185, 10149, Torino, Italy E-mail:
grenna@di.unito.it.

 public U(AccountedPerson that)
 {
 int alreadyPresent = 0;
 try
 {
 if(((ObjectWithRoles)that).getRole(Printer.this, “U”) != null)
 alreadyPresent = 1;
 }
 catch (Exception e){}
 if (alreadyPresent == 1)
 this.that = (AccountedPerson)
((ObjectWithRoles)that).getRole(Printer.this, “U”);
 else
 this.that = that;
 ((ObjectWithRoles)this.that).setRoles(this.Printer, this);
 }
 public U(int i)
 {
 int alreadyPresent = 0;
 try
 {
 if(((ObjectWithRoles)that).getRole(Printer.this, “U”) != null)
 alreadyPresent = 1;
 }
 catch (Exception e){}
 if (alreadyPresent == 1)
 this.that = (AccountedPerson)
((ObjectWithRoles)that).getRole(Printer.this, “U”);
 else
 this.that = that;
 ((ObjectWithRoles)this.that).setRoles(this.Printer, this);
 }
 public int print(Job job)
 {
 if (this.that == null)
throw new RunTimeException(“Reference to that is null”);
 if (counter > MAX_PAGES_USER)
//throw new IllegalPrintException();
 {
 System.out.println("Too many pages printed!");
 return 0;
 }
 else
 {
 counter += job.getNumberPages();
 Printer.this.print(job, that.getLogin());
 return counter;
 }
 }

 public int getPrintedPages()
 {
 if (this.that == null)
throw new RunTimeException(“Reference to that is null”);
 return counter;
 }
}

Figure 11 – Our example’s code – Part 3 of 3

