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ABSTRACT 
Recently social collaboration projects such as Wikipedia and 
Flickr have been gaining popularity, and more and more social tag 
information is being accumulated. In this study, we demonstrate 
how to effectively use social tags created by humans to find 
similar items. We create a query-by-example interface for finding 
similar items through offering examples as a query. Our work 
aims to measure the similarity between a query, expressed as a 
group of items, and another item through utilizing the tag 
information. We show that using human-generated tags to find 
similar items has at least two major challenges: popularity bias 
and the missing tag effect. We propose several approaches to 
overcome the challenges. We build a prototype website allowing 
users to search over all entries in Wikipedia based on tag 
information, and then collect 600 valid questionnaires from 69 
students to create a benchmark for evaluating our algorithms 
based on user satisfaction. Our results show that the presented 
techniques are promising and surpass the leading commercial 
product, Google Sets, in terms of user satisfaction.   

Categories and Subject Descriptors 
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: 
Information Search and Retrieval – clustering, information 
filtering, retrieval models, selection process.  

General Terms 
Algorithms, Experimentation 

Keywords 
World Wide Web (WWW), Social tags, Information retrieval, 
Entity resolution, Folksonomy 

1. INTRODUCTION 
The dominant interface of search engines today requires users to 
pinpoint their information needs with a few keywords. However, 
users sometimes find it difficult to identify the keywords that best 
describe their needs. For example, a user who plans to apply for a 
graduate school in California may issue the query “outstanding 
universities in California”. Many outstanding schools, such as 
Stanford University, are missing in the top results of all major 
search engines, because the keywords “outstanding” and 

“California” are not presented in the web pages of those schools. 

As a potential solution to this problem, we study methodologies 
for providing a “query-by-example” interface. In this interface, 
users provide a few representative examples of the ultimate 
information they seek. The system then returns search results most 
similar to the examples provided; for instance, to find outstanding 
graduate schools, a user may issue a query like “Caltech, UC 
Berkeley” and expects that the system will return similar 
outstanding schools in California such as UCLA and Stanford 
University. 

The major challenge in building such a system is to identify 
similar items based on the user-provided set of examples. In this 
study, we leverage the tag clouds that are collaboratively created 
by web users in defining and measuring the similarity between 
multiple items. To verify the effectiveness of our solutions, we 
conduct experiments on one of the largest social collaboration 
projects, Wikipedia. In the Wikipedia dataset, we consider a wiki 
page or entry as an entity and a category label of a page as a tag. 
We aim to identify and rank entities that are similar to the user-
provided examples based on tag information.  

As other researchers [9] have noted, the uncontrolled nature of 
user-generated metadata, such as free-form tagging in Wikipedia, 
often causes problems of imprecision and ambiguity when these 
tags are used as a foundation of designing algorithms. In our 
study, we identify and deal with two challenges associated with 
free-form uncontrolled tag clouds: popularity bias and the missing 
tag effect (Section 3.2). 

We propose several approaches to overcome the challenges and 
subsequently build a prototype website allowing users to issue a 
query by examples. Our results show that our techniques are able 
to return a sizable number of high-quality similar items even when 
the user provides only a few examples in the query. The proposed 
approaches are evaluated against a benchmark dataset that is built 
based on 600 valid questionnaire responses from 69 students. In 
terms of user satisfaction, the questionnaire responses show that 
our techniques outperform Google Sets. 

In summary, we highlight our contributions as follows: 

 We investigate how to extract a set of similar items through 
analyzing noisy social tags created by human beings, and 
show that the tag information is effective in identifying 
relevant similar items. 

 We identify and solve two challenges in tag-based search 
frameworks: popularity bias and the missing tag effect.  

 We propose and compare several models based on tag 
information. We build algorithms on top of these models, 
and study their advantages and disadvantages. 
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social tag data and pointed out that it was a fundamentally chaotic. 
Shirkly [12] also argued that using tag information is difficult 
because a user has the freedom of choosing any word he or she 
wants as a tag. Later, Gloder et al. [5] analyzed the structure of 
collaborative tagging systems on top of Del.icio.us data and 
concluded that tag data follow a power law distribution. Their 
studies back up our argument that some tags are extremely 
popular while others are rarely used. 

Despite the challenges in using tag-entity information, many 
researchers continue to work in the field and have shown the 
potential of social tag clouds. Tso-Sutter et al. [14] used 
relationships among tags, users, and entities to recommend 
possible interesting entities to users. Penev et al. [10] used 
WordNet to acquire terms relating to a tag and applied TFIDF 
[11] similarity on both the tags and their related terms for finding 
similar entities (pages in their research). They used WordNet to 
interpret the meaning of tags, trying to measure the similarity 
between entities based on keywords through expanding tags with 
WordNet. Although we aim to solve similar problems, our 
approaches focus on using only tag information, because we 
believe, as Strohmaier et al. [13] suggested, that users use social 
tags for categorizing and describing resources.  

We believe that our study can benefit many applications. For 
example, Givon et al. [4] showed that social tags can be used in 
dealing with recommendations in large-scale book datasets. 
Moreover, the keyword generation task can be considered as a 
similar problem, for example, Fuxman et al [3] draw an analogy 
from a keyword to a url and an entity to a tag. Finding similar 
entities based on shared tags is similar to finding related keywords 
based on shared urls that users click on.  

Many researchers also work on tag ranking or tag aggregation. 
Recently, Wetzker et al. [15] focused on creating a mapping 
between personal tags to aggregate tags with the same meaning, 
Heymann et al. [7] used tag information to organize library data, 
Wu et al. [16] explained how to avoid noise and compensate for 
semantic loss, Liu et al. [8] studied how to rank tags based on 
importance, and Dattolo et al. [2] studied how to identify similar 
tags through detecting relationships between them. 

8. CONCLUSION 
In this paper, we investigated the problem of finding similar items 
with query-by-example interface on top of social tag clouds. We 
introduced three approaches, and built a search engine on top of 
them, creating a benchmark for evaluating the users’ satisfaction 
through collecting 600 questionnaires. The experiment results 
suggest that social tag data, even though they are uncontrolled and 
noisy, are sufficient for finding similar items. Finally, we show 
that both the voting model and the one-class probabilistic model 
reach high user satisfaction. 

We explain two important challenges of utilizing tag information: 
popularity bias and the missing tag effect, and explain how to 
overcome these difficulties through partial weight strategies and 
probability utilization. We show that, in terms of users’ 
satisfaction, our algorithms are superior or at least compatible to 
Google Sets and TFIDF model. Our approaches return hundreds 
of relevant entities without sacrificing the quality in the top 
results. Moreover, our models rely on only social tag information. 

Our proposed framework not only provides an ability to find 
similar items, but also shows the application potential of social tag 
information. We demonstrate that the task can be accomplished 
through providing a query consisting of entities and using only tag 
information, even though the tag information is uncontrolled and 
noisy. Through this study, queries for finding similar items, such 
as “Honda or Toyota or similar”, are handled properly. Our 
research also highlights the value of using social collaboration 
data, tag clouds, to refine existing search technologies. 
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