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RGB-T Salient Object Detection via Fusing
Multi-level CNN Features

Qiang Zhang, Nianchang Huang, Lin Yao, Dingwen Zhang,
Caifeng Shan, Senior Member, IEEE, and Jungong Han

Abstract—RGB-induced salient object detection has recently
witnessed substantial progress, which is attributed to the su-
perior feature learning capability of deep convolutional neural
networks (CNNs). However, such detections suffer from challeng-
ing scenarios characterized by cluttered backgrounds, low-light
conditions and variations in illumination. Instead of improving
RGB based saliency detection, this paper takes advantage of the
complementary benefits of RGB and thermal infrared images.
Specifically, we propose a novel end-to-end network for multi-
modal salient object detection, which turns the challenge of
RGB-T saliency detection to a CNN feature fusion problem. To
this end, a backbone network (e.g., VGG-16) is first adopted to
extract the coarse features from each RGB or thermal infrared
image individually, and then several adjacent-depth feature
combination (ADFC) modules are designed to extract multi-level
refined features for each single-modal input image, considering
that features captured at different depths differ in semantic
information and visual details. Subsequently, a multi-branch
group fusion (MGF) module is employed to capture the cross-
modal features by fusing those features from ADFC modules for a
RGB-T image pair at each level. Finally, a joint attention guided
bi-directional message passing (JABMP) module undertakes the
task of saliency prediction via integrating the multi-level fused
features from MGF modules. Experimental results on several
public RGB-T salient object detection datasets demonstrate the
superiorities of our proposed algorithm over the state-of-the-art
approaches, especially under challenging conditions, such as poor
illumination, complex background and low contrast.

Index Terms—RGB-T salient object detection, Adjacent-depth
feature combination, Multi-branch group fusion, Joint attention
guided bi-directional message passing

I. INTRODUCTION

ALIENT object detection aims to identify the most visu-
S ally distinctive objects or regions in an image, and has
attracted lots of attention in recent years. As a preprocessing
step, salient object detection plays a critical role in many
computer vision tasks, including visual tracking [1], [2],
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recognition [3], [4], content based image compression [5], [6],
image fusion [7], [8] and so on.

While numerous salient object detection methods have been
presented [9]-[25], most of them are designed for RGB images
only, which may fail to distinguish salient objects from back-
grounds when being exposed to challenging conditions, such
as poor illumination, complex background, and low contrast.
To address such issues, we advocate a multi-modal salient
object detection method by fusing RGB and thermal infrared
(RGB-T) images considering the popularity of thermal infrared
sensors. More specifically, we present an end-to-end RGB-T
salient detection model by using the recently developed deep
convolutional neural networks (CNNs).

Unlike RGB cameras, thermal infrared cameras are a kind
of passive sensors that capture the thermal infrared radiation
emitted by all objects with a temperature above absolute zeros,
meaning that thermal infrared images are invariant to illumina-
tion conditions [26]—[28]. As a result, when applied to salient
object detection, thermal images tend to provide additional
saliency cues to boost the saliency detection performance.
Fig. 1 illustrates the validity of integrating RGB-T images for
salient object detection under challenging conditions.

In fact, RGB-T images have shown significant superiorities
over RGB images in many computer vision tasks, such as face
recognition [29] and video surveillance [26], [30]. Motivated
by that, a few works have already exploited RGB-T images
to boost the saliency detection performance. For example, Li
et al. [27] presented a robust salient object detection method
based on multi-task manifold ranking with cross-modality
consistency. Although the experimental results demonstrated
its performance superiority over the traditional RGB-induced
saliency detection methods, using low-level hand-crafted fea-
tures might be a bottleneck for further performance im-
provement in [27]. In [28], a deep CNNs based RGB-T
salient object detection method was developed, in which the
saliency map of each modality, i.e., RGB and thermal infrared,
was independently induced at the first stage. Afterwards, the
saliency map for each RGB or thermal infrared image was
first independently induced by using the deep CNNs. Then
the saliency maps of these two modalities were fused to
derive the final saliency map. However, such a fusion at
the saliency map level does not seem to well explore the
complementary information/features across RGB and thermal
images. In addition, the deep CNNs in [28] were pre-trained
for image classification on ImageNet dataset [31], rather than
for salient object detection, meaning that the saliency cues
might not be well explored.
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Fig. 1. Illustration of the validity for salient object detection by integrating RGB-T images. (a) RGB images; (b) Thermal infrared images; (c) Saliency maps
induced from the RGB images by [16]; (d) Saliency maps induced from the thermal images by [16]; (e) Saliency maps induced from the RGB-T images by
[27]; (f) Ground truth. The saliency maps in (c), (d) and (e) clearly demonstrate that thermal infrared images can provide complementary saliency cues for

RGB images under challenging scenes with poor illumination (the first row) or complex background (the second row).

In this paper, rather than integrating RGB-T information
only at the saliency map level [28], which might be already
too late, we propose a novel end-to-end deep neural network
for RGB-T salient object detection by fusing multi-modal
information at various stages. The proposed method turns the
challenging RGB-T salient object detection into a CNN feature
fusion problem, which covers the following three subproblems:
1) How to effectively extract the single-modal features from
the input RGB or thermal infrared images; 2) How to fuse
the extracted multi-modal features in a comprehensive way;
and 3) How to infer the final saliency map using the fused
features.

To address the first problem, we adopt a backbone network
(i.e., VGG-16 net [32] or Res-Net [33]) to extract the features
from each single-modal input image. Afterwards, an adjacent-
depth features combination (ADFC) module is employed
to capture the multi-level features of single-modal images,
considering that different-depth features capture varieties of
semantic information and fine visual details.

With respect to the second problem, motivated by the
group convolution in [34], a multi-branch group fusion (MGF)
module is put in place to fuse the features of RGB-T image
pairs, which consists of two branches at each level. One
branch contains several paths via group convolutions to reduce
the network parameters while the other branch has just one
path to capture the wholly cross-modal features. As a result,
MGF module is expected to capture the cross-modal features
between RGB and thermal infrared images effectively but at
a considerably lower computational complexity.

For the third problem, we introduce a joint attention guided
bi-directional message passing (JABMP) module for saliency
prediction via integrating the multi-level fused features ob-
tained from MGF modules. With the proposed JABMP mod-
ule, high-level semantic information in deeper layers will
be passed to shallower layers, and low-level spatial details
contained in shallower layers will also be passed to deeper lay-
ers. Accordingly, the cross-level complementary information
among the fused features will be well captured by using the
proposed module. Moreover, a joint channel-spatial attention
(JCSA) block, different from the gate function in [35], is

adopted to control the message passing in JABMP module.
By using JCSA, some important features with higher channel
attention as well as spatial attention will be selected and
propagated to the next level, and some superfluous features
will be suppressed during the message passing, which will
enhance the feature discriminability for the final RGB-T
saliency prediction.

In summary, the main contributions of this work are as
follows:

1) An end-to-end CNN based RGB-T salient object de-
tection method is proposed, which achieves the state-of-the-
art performance on several datasets, including [26], [27]. To
the best of our knowledge, it is the first end-to-end CNN
established for RGB-T salient object detection.

2) An ADFC module is dedicated to extract each single-
modal image features. By using multiple ADFC modules,
multi-level features of input images containing rich spatial
details as well as semantic information, rather than one specific
level of features as in the traditional methods [36]-[38], are
extracted for the subsequent fusion and saliency prediction
modules.

3) A MGF module, instead of the simple concatenation, is
presented to capture the cross-modal complementary informa-
tion between each RGB-T image pairs and reduce the number
of network parameters.

4) In order to effectively capture the cross-level complemen-
tary information among the fused features, a JABMP module
is employed for the final saliency prediction in the proposed
network. Especially, a JCSA block, rather than a gate function
as in [35], is adopted to control the message passing in the
proposed bi-directional message passing module.

The rest of the paper is organized as follows. Section II
briefly reviews some related work, and Section III illustrates
the proposed multi-modal salient object detection model in
detail. Experimental results and conclusions are given in
Section IV and Section V, respectively.
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II. RELATED WORK
A. RGB salient object detection

Over the past two decades, a considerable number of RGB
salient object detection methods have been developed [11]-
[25]. Early salient object detection methods utilized low-level
hand-crafted features with specific statistical priors, such as
color contrast [11], [12], object prior [13], [14], and back-
ground prior [15]-[17], to model and approximate human
saliency. A complete survey on RGB salient object detection
methods is beyond the scope of this paper and we refer the
readers to a recent survey paper [18] for details.

Recently, to extract more sophisticated features, tremendous
deep learning based saliency detectors have been proposed
[19]-[25], [39]-[41], and achieved substantially better per-
formance than those previous methods. For example, Lee et
al. [23] proposed to first encode low-level distance map and
high-level sematic features of deep CNNs to form a new
feature vector, and then evaluate saliency by a multi-level fully
connected neural network classifier. Hou er al. [24] presented
a salient object detection method by introducing a series of
short connections between shallower and deeper side-output
layers. Zhang et al. [25] introduced a generic aggregating
multi-level convolutional feature framework for salient object
detection, which first integrated multi-level feature maps into
multiple resolutions and then adaptively learned to combine
these feature maps at each resolution to predict the saliency
maps. In [39], two pooling based modules, i.e., a global
guidance module (GGM) and a feature aggregation module
(FAM), aided to improve the performance for salient ob-
ject detection. A novel recurrent residual refinement network
(R3Net) equipped with residual refinement blocks (RRBs) was
presented in [40] to detect salient regions from an input image
more accurately.

However, most of these studies focus on the RGB salient
object detection. Under some challenging conditions, such
as poor illumination, complex background or low contrast,
these models may fail to distinguish salient objects from
backgrounds, as shown in Fig. 1 (c).

B. RGB-D salient object detection

As a departure from RGB images, depth images provide af-
fluent spatial structures and 3D information for salient objects
and backgrounds, which benefit the salient object detection
[42]. Therefore, RGB-D salient object detection has attracted
much attention in recent years. So far, a variety of RGB-D
salient object detection models have been presented to boost
the performance of saliency detection [42]-[48]. For examples,
Chen et al. [42] presented a progressively complementarity-
aware fusion network for RGB-D salient object detection
by adding the cross-level complementarity in the process of
cross-modal fusion. In [45], two saliency maps were first
pre-deduced from the source RGB and depth images via a
two-streamed CNN , respectively. Then a switch map was
generated by using a saliency fusion module to adaptively
fuse the two saliency maps. In [44], the depth information was
first enhanced by utilizing contrast prior into a CNNs based
architecture. Then the enhanced depth cues were integrated

with RGB features for salient object detection by using a fluid
pyramid integration.

C. RGB-T salient object detection

Recently, considering their complementary benefits, a few
works also attempted to exploit RGB-T images to boost the
saliency detection performance. For example, Li er al. [27]
proposed a robust multi-task manifold ranking based RGB-T
salient object detection method with cross-modality consis-
tency. Ma et al. [28] presented an adaptive RGB-T saliency
detection method by learning multiscale deep CNN features
and SVM regressors. In [49], a novel collaborative graph
learning algorithm was presented for RGB-T image saliency
detection. Specifically, superpixels were taken as graph nodes,
and hierarchical deep features were collaboratively used to
jointly learn the graph affinity and node saliency in a unified
optimization framework.

Although CNN based RGB-T salient object detection al-
gorithms are not well investigated yet, a large number of
deep neural networks with RGB-T inputs have been presented
for some other computer vision or image processing tasks,
such as pedestrian detection [36]-[38], image fusion [50],
object tracking [51]-[53]. For example, Wagner et al. [37]
presented an RGB-T pedestrian detection method by fusing
information with CNNs, where information from the RGB
and thermal infrared images was integrated via an early-
fusion and a late-fusion based CNN architecture. In addition
to early-fusion (also called low-level fusion in [38]) and late-
fusion (also called high-level fusion in [38]), another two
CNN architectures for information fusion, i.e., middle-level
fusion and confidence-level fusion, were explored for RGB-T
pedestrian detection. Their experimental results revealed that
the middle-level fusion provides the best performance among
the four fusion models on RGB-T pedestrian detection.

ITII. PROPOSED RGB-T SALIENT OBJECT DETECTION
MODEL WITH MULTI-LEVEL CNN FEATURE FUSION

In this section, we will discuss the proposed RGB-T salient
object detection model in detail. Fig. 2 shows the diagram
of the proposed network, which is composed of three com-
ponents: single-modal image feature extraction, multi-modal
image feature fusion, and saliency map prediction. These will
be described in detail in the following subsections.

A. Multi-level feature extraction for each single-modal image
using ADFC modules

The RGB-T salient object detection network may be in-
corporated with any basic network, such as VGG-16 net [32]
and Res-Net [33]. Here, we employ the VGG-16 net as the
backbone network to carry out the feature extraction from
RGB and thermal infrared branches, which is well known for
its elegance, simplicity, and good generalization. For saliency
detection, we make two modifications on the VGG-16 net
i.e.,removal of all the fully-connected layers and skip of the
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Fig. 2. The overall architecture of our proposed RGB-T salient object detection. Each colorful box is considered as a feature block. The solid arrows between
blocks indicate the information streams. RGB-T input images are assumed to have been well registered in advance and have been rescaled to the fixed sizes
(e.g., 256 x 256 in this paper). The RGB image and thermal infrared image are first fed into the backbone network, i.e., VGG-16 net, respectively. Based
on that, multi-level features are further generated for each RGB or thermal infrared image by using the proposed ADFC modules. Then the features from
ADFC modules that correspond to the same level in the two branches are fused by using MGF module. After that, JABMP module is performed on the fused
multi-level features to obtain the final saliency map, where a JCSA block is adopted to control the message passing.

pool5 layer to maintain more spatial information for the input
image. The modified VGG-16 net includes five convolutional
blocks.

After the RGB image or thermal infrared image is fed into
the backbone network, features at different levels/depths are
extracted for each single-modal input image, which capture
various semantic information and visual details. Shallower-
level features contain more visual details but lack some
semantic information, while deeper levels of features carry
more semantic information but are limited when it comes
to details. Therefore, features from different levels in the
backbone networks are complementary to each other.

In this work, we propose an adjacent-depth feature com-
bination (ADFC) module to integrate the multi-level fea-
tures of single-modal images. We select some middle-level
features from the backbone networks for each single-modal
input image by using multiple proposed ADFC modules to
obtain multi-level features and reduce the burden of network
parameters. More specifically, we first extract five layers of
RGB or thermal infrared image features from different depths
of VGG-16 net: convl-2 (containing 64 feature maps of size
256 x 256, denoted by F) , conv2-2(128 feature maps of size
128 x 128, denoted by F7'), conv3-3(256 feature maps of size
64 x 64, denoted by F73), conv4-3 (256 feature maps of size
32 x 32, denoted by F%) and conv5-3 (512 feature maps of
size 16 x 16, denoted by F}). Here, n=1 or 2 denotes RGB
or thermal infrared image, respectively.

Given the five layers of features, three levels of new
features {H};|d = 1,2, 3;n = 1,2} for each single-modal RGB
or thermal infrared image are obtained by using the proposed
ADFC modules, where d denotes the level number. The three
levels of features {HJj|d = 1,2,3;n = 1,2} contain the same
number of channels but vary in spatial resolutions. And each

concatenation
. convolution

deconvolution
—

Fig. 3. Generation of the first level features H% for RGB image by using
ADFC module.

level feature H}} is constructed by the following three layers
of features from the VGG-16 net, i.e., F};_;, F; and F}; 1
Fig. 3 illustrates the details of ADFC module for generating
the first level of RGB features H}. Likewise, other levels of
features can be generated in a similar way. As shown in Fig.
3, each ADFC module contains three convolutional blocks
and one deconvolutional block. More specifically, for the d-
th level, a 3 x 3 convolutional layer C(*,93’1,2),1 alxl1
convolutional layer C(*, 62’2, 1), and a 2 x 2 deconvolutional
layer D (x,77,1/2) are first performed on F}_,, F7 and F7},
respectively, to ensure the outputs of the three layers have
the same number of channels (i.e., 128) and the same spatial

IThe symbol C(*,G,k ) denotes a convolutional layer with pixel stride k&
and network parameters €. The same symbol is used in the rest of the paper.
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resolutions (e.g., 128 x 128 for d=1). Then, the features from
the three layers are concatenated. Finally, a 1 x 1 convolutional
layer C(*7 02’3, 1) is performed on the concatenated features
to obtain the d-th level of features Hj;. Mathematically, ADFC
module can be expressed by

H} = ¢(C(Cat(o(C(Fi_1: 07", 2)), 6(C(F; 0752, 1)),

o(D( sm;z1/2>>>;037371>>;1>

where Cat (-) denotes the cross-channel concatenation, and
¢ (+) is a ReLU activation function [54].

As discussed above, the d-th level of constructed features
H; contains the features F; as well as those from its adjacent
layers F;_, and Fj ;, which means that Hj contains more
rich and accurate semantics because it integrates different-
resolution information. In addition, H}; has much less amount
of data than the simple combination of Fj ,,F; and Fy,
. As a result, the redundancy among F;_,,F; and Fj | are
reduced from HJ; by using the proposed ADFC module.

Finally, it should be noted that the idea of ADFC is similar
to those of the feature pyramid network (FPN) [55] and the
hierarchical feature integration mechanism (HIFI) [56]. All of
the three modules investigate the integration of multi-level
features to improve the saliency detection performance. But
in HIFI, the features from all convolutional layers of different
levels are integrated. While, in ADFC and FPN, only the
features from the last convolutional layers of different levels
are integrated, considering that the features from the deepest
layer of each level are the strongest [55]. As a result, HIFI has
much more to-be-learned parameters than ADFC and FPN,
and thus has higher computational complexity. In addition,
the integration of large numbers of features by HIFI will also
introduce much more redundant information and degrade the
subsequent saliency detection performance. In FPN, only the
features from two adjacent levels (i.e., the current level and
its deeper level) are integrated. Differently, in ADFC, features
from three adjacent levels (i.e., the current level, its deeper
level and its shallower level) are integrated. Accordingly, more
spatial details will be captured by ADFC than by FPN, which
will improve the subsequent salient detection results. This will
be verified in the later experimental part.

B. Fusion of multi-modal image features using MGF modules

Given the features {H}j|d = 1,2,3;n = 1,2} of RGB and
thermal infrared images generated from ADFC modules, most
of existing models capture the cross-modal features between
the two modalities by first simply concatenating H); and H?
at the same level d and then performing the Conv+ReLU
operators on the concatenated features, as shown in Fig. 4. This
may well capture the wholly cross-modal correlations among
the concatenated features. However, some salient features from
individual single-modal image may also be drowned in the
concatenated features because of the large numbers of features,
which will diminish the discriminability of the subsequent
fused features [57]. In addition, under the premise of multi-
level features, direct concatenation may increase the network

©

H,,128

Fig. 4. Traditional feature fusion module.

parameters, which is not desirable for the training of multi-
modal methods.

Such problems can be solved by using group convolution,
which may date back to the AlexNet [58] or even earlier
and is supported by Caffe [59], PyTorch [60], and so on.
The basic idea behind group convolution is split-transform-
merge, similar to the Inception models [61]-[63]. In group
convolution, the input features are first divided into a few small
groups along the channel. Then, a set of regular 3x3 or 5x5
convolutions are performed on these small groups. All of the
outputs from these small groups are concatenated as the final
output. But different from Inception models, where each path
may be carefully customized, group convolution shares the
same topology among all the paths. More specifically, Xie et
al. [34] proposed to use stacked group convolutions in the pro-
cess of transformation to reduce complexity and model sizes.
Although group convolution may greatly reduce parameters,
it can only capture the partly cross-modal correlations among
the features within the same group, which may weaken the
cross-modal correlations among all of the feature maps.

In this work, we propose a multi-branch group fusion
(MGF) module to fuse the features {H}l|d: 1,2,3} and
{Hj|d =1,2,3}. MGF is expected to effectively capture
the cross-modal features between RGB and thermal infrared
images but at a considerably lower computational complexity.

As shown in Fig. 5, the proposed MGF consists of two
branches for feature fusion at each level. One branch (named
multi-group fusion branch) has M (e.g., M=8 in this paper)
paths via group convolutions to reduce the network parameters
while the other branch (named single-group fusion branch) has
just one path to capture the wholly cross-modal features as
in the traditional fusion module in Fig. 4. The two branches
produce the same number of feature maps (e.g., 64 in this
paper), so the number of the finally fused feature maps is
doubled (e.g., 128 in this paper).

The details of the proposed MGF module are described
as follows. In the multi-group fusion branch, the in-
put single-modal features H}, H? are first divided into M
groups along the channel, resulting in two sets of features
{H},,lm=1,2,..,M} and {Hj, |m=1,2,..,M} with
the same number of channels (i.e., 8/M), respectively. Then
the features Hé,m and H? , with the same group index m are
concatenated and fused by two stacked convolution layers ,
i.e., a 1 x 1 convolutional layer with 64/M channels followed
by a 3x 3 convolutional layer with 64/M channels. Both layers
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. Convolution layer

- - - Feature map ,

Illustration of the proposed MGF module. The left part is the multi-group fusion branch, where the concatenated input features are first divided

into M groups along the channel and then fused at each group by using several convolutional layers. The right part is the single-group fusion branch, where
two stacked regular convolutional layers are directly performed on the concatenated input features to obtain the fused features. The finally fused features are

obtained by concatenating the outputs from the two branches.

adopt a ReLU activation function. Finally, the outputs from the
M groups are concatenated to obtain the fused features Hj 4
via the multi-group fusion branch. Mathematically, the multi-
group fusion branch is expressed as

H, 4 = Cat(Z; (Cat(HY 1, H21);041), oo
ZM (Cat(HiM, HZ,M); @d,M))’

where 7., (*, god’m) denotes the stacked convolutions with
ReLU activation function mentioned above, and ¢ ,,, denotes
the network parameters in the m-th path.

The single-group fusion branch in MGF module can be seen
as a special case of the multi-group fusion branch with M =
1. Therefore, the single-group fusion branch can be simply
expressed by

2

Ho = Z*(Cat(HY, HY); ¢}), 3)

where Hy 4 is the d-th level of fused features from the
single-group fusion branch, and Z*(*,¢}) consists of two
stacked convolution layers (a 1 X 1 convolutional layer with
64 channels followed by a 3 x 3 convolutional layer with 64
channels). Similarly, the two convolutional layers also have a
ReLU activation function. ¢, denotes the network parameters
for Z*.

The final fused features H, for the d-th level are obtained
by simply concatenating H; 4 and, Hy 4 i.e.,

Hd = Cat (Hl,d»HQ,d)- (4)

As discussed above, MGF module can capture the wholly
cross-modal correlations among the features of RGB-T images
via the single-group fusion branch. As well, it can extract
more salient features from each single-modal input image via
the multi-group fusion branch. As a result, the proposed MGF
module can potentially better capture the cross-modal features
of RGB-T images than those exiting fusion methods [36]-[38].
By using multiple MGF modules, different levels of fused
features containing semantic information as well as visual
details can be extracted for RGB-T salient object detection.
More importantly, due to the employed group convolution,
MGF module requires much fewer network parameters® than
the traditional fusion method shown in Fig. 4, which first con-
catenates HY, and, HZ and then performs a 1 x 1 convolutional
layer with 128 channels and a 3 x 3 convolutional layer with
128 channels.

C. Saliency map prediction using JABMP module

With multiple MGF modules, three levels of fused features
{Hg4|d = 1,2,3} are obtained, which will be used to predict
the final saliency map. A straightforward method is to perform
the side output on each level H; independently, and then derive
the final saliency map by adding a new convolutional layer

2Assume that 128-channels of fused features are generated by using two
sets of 128 channels of single-modal features. The number of parameters in
traditional fusion method is a; = (128 +128) x 128 x 1 x 1 + 128 X
128 x 3 x 3 = 180224, and the number of parameters in MGF is az =
8% (128 +128) /8x64/8x1x1+64/8x3x3+64/8x1x1 = 54080.
For each level fusion, the number of parameters is reduced by about 130000.
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to fuse these side outputs of different levels. Although this
method can detect salient objects with features at different
levels, the inner correlations among different levels of features
are missing. As a result, the prediction may not be optimal,
and some post-processing may be further needed as in [64]. To
facilitate the interaction among multiple predictions, a series
of connections from deeper side output layers to shallower
ones were suggested in [24]. This method only considered
the information transmitted from deeper layers to shallower
ones, but ignored the information flow from shallower layers
to deeper ones. Thus, the deep side outputs still lack the low-
level details contained in the shallow layers. For that, Zhang et
al. [25] proposed a bi-directional message passing module for
salient object detection by concatenating feature maps from
both high levels and low levels. However, their module just
used simple concatenation operations to integrate multi-level
features without considering their importance. As the multi-
level features are not always equally useful for every input
image, this aggregation method would lead to information
redundancy. Considering that, a gated bi-directional message
passing module was presented in [35], where a gate function
was employed to transmit the useful features and suppress the
superfluous features.

Inspired by the work in [35], we propose a joint attention
guided bi-directional message passing (JABMP) module for
saliency map prediction by effectively integrating the multi-
level features from MGF modules. The module can capture
the cross-level complementarity among the fused features in
two directions. With the proposed module, high-level semantic
information in deeper layers will be passed to shallower layers
and low-level spatial details contained in shallower layers
will also be passed to deeper layers. As is well known, each
convolutional layer has multiple channels of feature maps. But
not all these channels are effective for saliency prediction.
Similarly, in each feature map, features from different spatial
positions may play different roles in salient object detection.
Therefore, a joint channel-spatial attention (JCSA) block,
instead of a gate function as in [35], is introduced to control
the message passing in the proposed JABMP module.

Fig. 6 illustrates the architecture of the proposed JABMP
module, which consists of two directional connections. One is
the bottom-up information stream, where the features from the
current level and the weighted features from the previous level
are integrated to produce the current level of attentive features
via the JCSA block. The other is the top-down information
stream, where we hierarchically propagate the predictions
from higher-level to lower-level to obtain more accurate side
outputs. Next,we discuss each step in detail.

1) Bottom-up information stream with joint channel-
spatial attention: Given the multi-level fused features
{Hq4|d = 1,2,3} from MGF modules, the attentive features
at different levels are sequentially generated by using the
introduced JCSA block. Mathematically, the process of the
message passing from shallower layer to deeper layer is

described by

Hi= {A(<Hd+¢<c (Ausi002))) 57) d=2.3

(Hd,s T),d

bl

®)
where C (*,g_d, 2) denotes a 3 x 3 convolutional layer to
ensure the adjacent-level features have the same number of
channels (i.e., 128) and the same spatial resolutions. ¢ (-) is
a ReLU activation. A (x,s,7) is the joint attention function
to weight the features. s = [s1, 82, ...,SQ]T € R? is a set of
channel-wise weights, and 7 € R" *#! denotes the importance
of each local spatial position in the feature maps. Q, W, and
H represent the number of channels, width and length of
the input features for the JCSA block, respectively. Detailed
implementation of JCSA will be described as follows.

As shown in the bottom of Fig. 6, the proposed JCSA
block consists of a “Squeeze-and-Excitation” (SE) block [65]
and a “Spatial Attention” (SA) block [66]. The SE block
reflects the global channel-wise importance of each feature
map by introducing some channel-dependent weights, and the
SA block indicates the local spatial importance of features by
introducing some position-dependent weights.

Suppose that the input features H = [hy,hy, ..., hg] €
RW*HXQ for JCSA contain Q channels of feature maps, and

h, € R"*H is the g-th feature map . H= [hl,hg,.. hQ} €

RW*HXQ is the output of JCSA, i.e., H=A (H,s, 7).

Similar to that in [65] , a global average pooling is first
performed on H to generate a set of channel-wise statistical
features v = [v1,va, ..., vQ]T € R? in the SE block. Then two
fully connected (FC) layers and a simple sigmoid activation
function are performed on v, and a set of channel-wise weights
s are obtained. The output H' = [h{, h}, ... h{,] € RV *Hx@
of the SE block can be obtained by the following channel-wise
multiplication

b, = s, % hy, (6)

where s, is the g-th element of s, and h; is the g-th feature
map in H'.

The output H' of the SE block is further fed into the
subsequent SA block. More specifically, in the SA block, a
1 x 1 convolutional operation and a simple sigmoid activation
function are performed on H' to obtain the spatial weight map
7. Then the output of the SA block, i.e., the final output
H = [Hl,ﬂg,...,ﬁQ} of JCSA block, is obtained by the
element-wise product between each feature map in H' and
the spatial weights (or importance) , i.e

Hq =7'0hfz, @)

where o represents element-wise product, and Eq is the g¢-th
feature map in H.

As shown in Eq. (6) and Eq. (7), some important features
with higher channel attention (or weights) as well as spatial
attention (or weights) will be selected and transmitted to the
next level, and some superfluous features will be suppressed
in the bottom-up information stream by using the proposed
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Fig. 6. Illustration of the proposed JABMP module. This module consists of two directional connections. One is the bottom-up information stream and the
other is the top-down information stream. In the bottom-up stream, the features from the current level and the weighted features from the previous level are
integrated to produce the current level of attentive features via a joint channel-spatial attention (JCSA) block. In the top-down stream, the predictions from

higher-level to lower-level are hierarchically propagated to obtain more accurate saliency detection results.

JCSA block. This will boost the discriminability of the fused
features when predicting the saliency maps.

2) Top-down information stream: Having obtained the at-
H,ld = 1,2,3}, the multiple side outputs
{Pq|ld =1,2,3} for different levels can be sequentially ob-
tained in a deep-to-shallow manner, i.e.,

tentive features

C(((C(D(Haivg, (1/2)7);04,1)) + Pas1);62,1),

P, = d=1,2

C (D (A7, (1/2)"):63,1) d =3

(®)
where D (*;'yd, (1/2)d) is a 2¢ x 27 deconvolutional layer
to ensure the features to be fused have the same spatial
resolutions, C (x;65,1) and C (x;63,1) denote two 1 x 1
convolutional layers, which are used to fuse features and obtain
side outputs, respectively. It should be noted that all of the side
outputs {P4|d =1, 2,3} have the same spatial resolutions as
those of the input images because of the employed deconvo-
lution layers.

3) Saliency map prediction: Let {Sy|d = 1,2, 3} denote the
side output maps, and they can be computed by S; = o (Py).
o (+) is a sigmoid activation function.

These side outputs are further fused to obtain the fusion
output Py by using a 1 x 1 convolutional layer C (x;6°,1)
ie.,

Py = C(Cat (P1,P5,P5);6% 1) . 9)

Thus, the fusion output map S can be computed by Sy =
o (Py), and we take S as the final saliency map of our model.
Then, the proposed model is trained end to end using the cross-
entropy loss L between the ground truth and the predicted
results {S;|t = 0,1,2,3}, which is defined as [67]

3
L=—=8 Y Gij)log(S: (i)
i=0 ij
3
—(1=B)Y> (1 =G (i) log (1 -8 (i,j),

i=0 ij

where G (i,j) € {0,1} is the label of the pixel (i,j) in the
ground truth, and S; (i,j) is the probability of pixel (i,))
belonging to the foreground in the predicted saliency map
S:. To increase the detection accuracy for salient objects of
various sizes, a class-balancing weight [ is used to balance
the foreground and background, and is set to the ratio of the
number of background pixels to that of all the pixels in the
ground truth.

(10)

IV. EXPERIMENTS

In this section, we first describe the experimental setup
and the employed evaluation metrics. Afterwards, we compare
the proposed RGB-T salient object detection model with the
state-of-the-art (SOTA) methods on some publicly available
datasets. Finally, we perform several sets of ablation experi-
ments to show the validity of each component in our proposed
saliency detection model.

A. Experimental setup

1) Datasets: We train and evaluate our approach on
three public datasets, including RGB-thermal dataset [27],
Grayscale-thermal dataset [26] and MSRA-B dataset [68].

RGB-thermal dataset [27] contains 821 aligned RGB-T
image pairs under different conditions to ensure the diversity
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and richness of data scenarios, such as multiple salient objects,
low illumination, and similar appearances.

Grayscale-thermal dataset [26] includes 25 aligned
grayscale-thermal video pairs with high diversity. However,
this dataset is collected for object tracking rather than for
salient object detection. For object tracking, only moving
objects need to be detected, while for salient object detection,
stationary objects may also be salient. Moreover, moving
objects sometimes are too small or occluded so that they may
not be salient objects. Considering these, we selected 843 pairs
of images from the dataset in our experiments, which can be
divided into two sets, i.e., a pedestrian set with 537 frame pairs
from 10 aligned video pairs and a car set with 306 frame pairs
from another 10 aligned video pairs.

MSRA-B dataset [68] contains 5000 RGB images (2500
images as training set and 2500 images as testing set) and is
widely used for single-modal image salient object detection.

2) Training: We start with the backbone VGG-16 nets in
our proposed model, whose convolutional layers are initialized
with the weights that are pre-trained on the ImageNet dataset
[31]. Then we adopt a 3-step training strategy to ensure that
our proposed network is converged quickly. First, we train
the RGB branch by using the cross entropy loss between the
predicted saliency map and the ground truth. For that, we
remove the MGF modules from the whole network, i.e., the
outputs from the ADFC modules in the RGB branch model
are directly fed into the JCSA block in the proposed JABMP
module for saliency prediction. Secondly, we train the thermal
infrared branch in a similar way as that in the training of
RGB branch. Finally, the whole multi-modal salient object
detection model is trained, where the network parameters for
each single-modal feature extraction branch, including the
VGG-16 net and the ADFC modules, are initialized by using
their corresponding pre-trained ones in the first two steps.

Due to the lack of large RGB-thermal image datasets, we
have to use different training data during the network training,
which is similar to that in [36] [37]. Concretely, we randomly
select 410 RGB-thermal image pairs from the RGB-thermal
dataset and 200 RGB-thermal image pairs from the selected
Grayscale-thermal dataset (i.e., the car and pedestrian sets) as
the training set. The rest of RGB-thermal image pairs in RGB-
thermal dataset and Grayscale-thermal dataset are used as the
testing set. Then, 830 samples are randomly selected from the
training set of the MSRA-B as an auxiliary set to train the
RGB/thermal branch of the proposed model.

Subsequently, in the first training step, the RGB images in
the training set and those in the auxiliary set are employed
to fine-tune the RGB branch model. In the second training
step, the thermal images in the training set and the red color
channels of RGB images in the auxiliary set are used to fine-
tune the thermal infrared branch model. In the third training
step, the RGB-thermal image pairs in training set are used to
fine-tune the whole multi-modal saliency detection network.

3) Implementation: The proposed network model is im-
plemented on the MATLAB R2014b platform with the Caffe
toolbox [59] and a NVIDIA 1080Ti GPU (with 11G memory).
The stochastic gradient descent (SGD) method is adopted to
train the proposed network with a momentum 0.9 and a weight

decay 0.0001. The base learning rate is set to 108, and then
turned into a tenth of the previous set when the training loss
reaches a flat. During training and testing, all the input images
are rescaled to the spatial resolution of 256 x 256.

B. Evaluation metrics

We adopt six widely used metrics [11]-[25], including the
precision-recall (PR) curves, F-measure curves, average F-
measure (F,,.), mean absolute error (MAE), S-measure (S,)
[69] and weighted F EJ -measure (F’ EJ ) [70], to objectively
evaluate different saliency detection models.

Given a predicted saliency map S of size W x H, a binary
mask B is first obtained by using a threshold. Then precision
and recall can be, respectively, computed by Precsion = |BN
G|/|B| and Recall = BN G|/|G|, where G is the ground-truth
and |-| denotes the non-zero entries in a mask. F-measure is a
weighted harmonic mean of precision and recall, and is defined
by

(1 + ﬁZ) X Precision X Recall
32 x Precision + Recall

where (32 is set to 0.3 as suggested in [16] and [25]. With
different thresholds, the PR and F-Measure curves are thus
obtained. F,. is the mean of all the Fg values obtained by
different thresholds.

Weighted Fi3’-measure (F7') is an intuitive generalization of
the F-measure, which is computed by

Fs= , (11)

Precision” - Recall”
B2 - Precision® + Recall®’

Fy = (1+8%) = (12)
where Precision” and Recall® are weighted precision and
recall, respectively. Here, B2 is also set to 0.3 as default. More
details are seen in [70].

MAE is computed by

13)

S-measure (S,) [69] is employed for the important structure
information evaluation, which combines a region-aware (S,)
and an object-aware (S,) structural similarity as their final
structure metric:

Sa=axS,+(1—a)=*S,, (14)

where « € [0, 1] is the balance parameter and is set to 0.5 as
default.

C. Comparison with the state-of-the-art methods

To validate the proposed RGB-T salient detection model, we
compare our model with 10 SOTA methods, which are further
divided into three types, i.e., (1)RGB salient object detection
methods: PoolNet [39], R3Net [40], and CPDNet [41]; (2)
RGB-D salient object detection methods: AFNet [45], TSAA
[46], PDNet [47], and SSRC [48]; and (3) RGB-T salient
object detection methods: MFSR [28], GCL [49], and MRCM
[27].
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Fig. 7. Illustrations of the saliency detection results by some RGB methods and their modified multi-modal versions. (a) RGB images; (b) Thermal infrared
images; (c) and (d) Saliency maps for RGB and RGB-T images obtained by R3Net and R3Net+, respectively; (e) and (f) Saliency maps for RGB and
RGB-T images obtained by PoolNet and PoolNet+, respectively; (g) and (h) Saliency maps for RGB and RGB-T images obtained by CPDNet and CPDNet+,
respectively; (i) Saliency maps for RGB-T images obtained by our proposed method; (j) Ground truth.

For fair comparisons, we modify these RGB and RGB-
D salient object detection methods for RGB-T saliency de-
tection. For those RGB methods, their original networks are
seen as single-modal branches for RGB or thermal infrared
image feature extraction. The outputs before the final saliency
predictions in these networks for RGB and thermal infrared
images are first concatenated and then fed into the saliency
prediction layers to obtain the final multi-modal saliency maps.
Those RGB-D methods are also re-trained for RGB-T saliency
detection, where the input channels of depth images are
replaced by the thermal images. These multi-modal versions
(PoolNet+, R3Net+, and CPDNet+, for short, respectively)
modified from the RGB models and those re-trained RGB-
D models are fine-tuned in the same way as described in
Subsection IV-A.

1) Visual Evaluation: Fig. 7 illustrates some saliency de-
tection results by those RGB methods and their multi-modal
versions. As shown in Fig. 7, compared with those single-
modal salient detection methods for RGB images, their multi-
modal counterparts generally perform better, especially when
the input RGB images have poor visual quality (e.g, low
contrast or much more noise). This further indicates that the
use of the complementary information between the input RGB-
T image pairs can improve the saliency detection performance.

Fig. 8 illustrates some visual comparisons of different meth-
ods in various cases, including large objects, small objects,
simple background, complex background, poor illumination,
and low contrast. As shown in the first four rows of Fig.
8 , under the condition of simple background and sufficient
illumination, most of these methods work well for small salient
objects, but poorly for large objects. Differently, our method
can detect objects of various sizes effectively. Comparing
the results in the fifth and sixth rows, we can also see that
our method can effectively capture saliency information from
RGB-T images when the infrared image or the RGB image
has low contrast. As shown in the last four rows of Fig. 8, for
those images with poor illumination and complex background,
some SOTA methods cannot achieve desirable results. For
example, some salient objects are not uniformly detected and
even mistakenly detected. Parts of the backgrounds are not
well suppressed during the saliency detection. In contrast, our
proposed method still works well for these images. This may

be attributed to the good collaborations among the different
modules in our proposed network, i.e., ADFC for multi-level
feature extraction of each single-modal image, MGF for cross-
modal feature fusion of RGB-T images, and JABMP for final
saliency prediction.

2) Quantitative Evaluation: PR and F-measure curves of
different methods are shown in Fig. 9°. F,,., Fg, S, and
MAE values of different methods are listed in Table 1. In
Table I, the type of ‘RGB’ means that these methods are
specifically designed for RGB salient object detection, which
have been fine-tuned by using the RGB images in our RGB-T
datasets. The evaluation values for these methods are obtained
by performing these RGB salient object detection methods
just on the RGB images in our RGB-T datasets. The type of
‘RGB—RGB-T’ means that these methods are modified from
the RGB salient detection methods, as discussed previously.
The type of ‘RGB-D—RGB-T’ means that these methods are
re-trained versions of those RGB-D salient detection methods.
Finally, the type of ‘RGB-T’ means that these methods are
designed for RGB-T salient object detection. As shown in
Fig. 9, the proposed method scores the best on both PR
and F-measure curves among these methods. Similar con-
clusions can also be drawn from Table I. It can also be
found from Table I that their multi-modal versions of those
RGB salient object detection methods significantly outperform
their original versions that are designed for RGB images.
In addition, the processing time of different methods is also
provided in Table I, which indicates that the computational
complexity of the proposed method is acceptable. Especially,
it has the highest computational efficiency among the four
RGB-T salient detection methods.

D. Ablation analysis

1) Validity of multi-level feature extraction using ADFC:
As shown in Fig. 3, multiple levels of features can be extracted
from each single-modal input image by using several ADFC
modules. In order to verify the validity of multiple levels
of extracted features for saliency detection, we compare our
proposal with another six schemes with different numbers of

3PR and F-measure curves of the RGB salient detection methods are not
provided in Fig. 9 for better displaying.
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TABLE I
PERFORMANCE OF DIFFERENT SALIENCY DETECTION METHODS ON THE THREE DATASETS. THE BEST RESULTS ARE SHOWN IN BOLD.
Methods ‘ Type ‘ RGB-thermal Car Pedestrian Runtime(s)
‘ Fave F‘[‘; MAE Sa Fave F‘g MAE Sa Fave Fﬁ MAE Sa
R3Net RGB 0.803 0.755 0.046 0.831 | 0.602 0.528 0.022 0.661 | 0.274 0249 0.047 0.572 0.16
R3Net+ RGB—RGB-T 0.852 0.785 0.049 0.838 | 0532 0358 0.014 0591 | 0492 0307 0.015 0.574 0.33
PoolNet RGB 0.674 0.645 0.070 0.763 | 0.119 0.025 0.013 0.498 | 0.035 0.031 0.019 0.489 0.09
PoolNet+ RGB—RGB-T 0.716  0.654 0.051 0.863 | 0.183 0.307 0.029 0.699 | 0209 0217 0.099 0.601 0.19
CPDNet RGB 0.788 0.768 0.041 0.861 | 0.199 0.301 0.055 0.668 | 0.165 0.154 0.079  0.578 0.08
CPDNet+ RGB—RGB-T 0.860 0.838 0.028 0.889 | 0319 0481 0.016 0.811 | 0.341 0463 0.018 0.750 0.16
AFNet RGB-D—RGB-T | 0.700 0.682 0.062 0.841 | 0.143 0.044 0.162 0495 | 0.070 0.044 0338 0412 0.18
PDNet RGB-D—RGB-T | 0.803 0.750 0.048 0.869 | 0.561 0399 0.016 0.751 | 0451 0.286 0.041 0.658 0.11
TSAA RGB-D—RGB-T | 0.817 0.778 0.040 0.882 | 0.642 0.532 0.013 0.793 | 0529 0453 0.021 0.730 0.13
SSRC RGB-D—RGB-T | 0.750 0.694 0.055 0.833 | 0.309 0.068 0.189 0.507 | 0.635 0.573 0.014 0.773 0.24
MRCMC RGB-T 0.661 0428 0.109 0.688 | 0.078 0.048 0.072 0501 | 0.319 0.065 0.074 0.613 1.99
MFSR RGB-T 0.701  0.673 0.073 0.823 | 0.177 0.155 0.046 0.613 | 0.201 0.138 0.106  0.569 0.18
CGL RGB-T 0.771 0.585 0.086 0.765 | 0.103 0.088 0.033 0.455 | 0.109 0.062 0.117 0.495 2.33
Ours RGB-T 0.873 0.858 0.025 0911 | 0.708 0.620 0.007 0.795 | 0.745 0.667 0.010  0.838 0.12
ADFC modules in our proposed network. Seven schemes as TABLE 11

well as their corresponding saliency detection results on the
RGB-thermal dataset are listed in Table II. In the first three
schemes, only a pair of ADFC modules are employed. One is
used to extract a specific level of features from RGB images
(e.g., H%), and the other is used to extract the corresponding
level of features from thermal infrared images (e.g., H3).
In the fourth, fifth and sixth schemes, two pairs of ADFC
modules are employed to extract two specific levels of features
from RGB images (e.g., H% and H%) and thermal infrared
images (e.g., H2 and H3), respectively. In the last scheme,
i.e., the scheme employed in our proposed network, three pairs
of ADFC modules are employed to extract the RGB image
features (e.g., H%, H%, and Hé ) and thermal infrared image
features (e.g., Hf,H2 , and Hg), respectively.

From the experimental results in Table II, it can be con-
cluded that higher saliency detection performance can be
obtained by those schemes extracting multiple levels of fea-
tures than those just extracting one specific level of features.
Especially, the proposed scheme that extracts three levels of
features achieves the best performance among the schemes
mentioned here.

Furthermore, we compare the proposed ADFC module with
several SOTA feature extraction modules for RGB images,
including resolution based feature combination (RFC) struc-
ture in Amulet [25], Hierarchical feature integration(HIFI)
module in [56] and FPN in [55]. For that, we first design
a baseline method, where the ADFC modules are removed
from our proposed method and the features from the backbone
networks are directly fed into the subsequent feature fusion
and saliency inference modules. Then several versions of our
proposed methods are compared by replacing ADFC with the
other feature extraction modules mentioned above, while the
rest modules in our proposed method are kept unchanged. The
experimental results in Table III demonstrate that the saliency
detection performance can be improved via performing multi-

PERFORMANCE OF DIFFERENT SCHEMES IN THE PROPOSED FEATURE
EXTRACTION MODULE FOR SINGLE-MODAL INPUT IMAGE ON
RGB-THERMAL DATASET.

Schemes Extracted features Fave MAE Sa
1 {Hi, HZ} 0.810 0.041 0.877
2 {H}, HZ} 0.823 0.038 0.883
3 {Hi,H3} 0.820 0.039 0.887
4 {Hi,H}} {H} HZ} 0.851 0.029 0.891
5 {H},H3}.{H},H3} 0.858  0.027  0.906
6 {Hi,H?} {H} HZ} 0.856  0.030  0.896
7 {H} H2},{H} H3}.{H},HZ} 0873 0.025 0911

TABLE III
PERFORMANCE OF USING DIFFERENT FEATURE EXTRACTION MODULES
ON RGB-THERMAL DATASET.

Schemes Module Fave MAE Sa Runtime (s)
1 baseline  0.739  0.052 0.863 0.19
2 +FPN 0.752  0.037 0.872 0.14
3 +HIFI 0.747  0.071 0.821 0.23
4 +RFC 0.817 0.038 0.873 0.52
5 +ADFC 0.873 0.025 0911 0.12

level feature extraction modules on the backbone networks. In
addition, the proposed ADFC module achieves higher saliency
detection performance than the other feature extraction mod-
ules. It also has the highest computational efficiency among
the four feature extraction modules.

2) Validity of multi-modal image feature fusion using MGF
: In order to verify the validity of the proposed MGF module,
we also provide six fusion schemes for multi-modal image fea-
tures. Specifically, in the first two schemes (ADD and MGFI,
for short, respectively), only the single-group fusion branch
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TABLE IV
PERFORMANCE OF DIFFERENT SCHEMES IN THE PROPOSED FEATURE FUSION MODULE FOR MULTI-MODAL IMAGES ON RGB-THERMAL DATASET.

. MGF2 MGF_4 MGF_8 MGF_16 MGF_32
Metrics ADD  MGF1 (M=8) (M=4) (M=8) (M=16) (M=32)
Fave 0.749  0.843 0.849 0.853 0.873 0.854 0.860
MAE 0.039  0.033 0.030 0.030 0.025 0.031 0.028
Sa 0.867 0.898 0.899 0.899 0.911 0.900 0.907
TABLE V Bi_SA, Bi_JCSA, for short, respectively) of the proposed bi-

PERFORMANCE OF DIFFERENT VERSIONS OF THE PROPOSED
BI-DIRECTIONAL MESSAGE PASSING MODULE ON RGB-THERMAL

DATASET.
Metrics No_Bi Bi_NA Bi_CA Bi_SA Bi_JCSA
Fave 0.818 0.845 0.855 0.850 0.873
MAE 0.037 0.032 0.030 0.032 0.025
Sa 0.868 0.895 0.899 0.897 0.911

is employed. Simple element-wise addition and concatenation
are first performed on the features from the input images,
respectively, in the two schemes. Then the regular convolution
is applied to obtain the fused features. In the third scheme
(MGEF2, for short), only the multi-group fusion branch with
M=8 is employed. In the rest of schemes, the two branches
are jointly employed but with different numbers of groups
(MGF_4 with M=4, MGF_8 with M=8, MGF_16 with M=16
and MGF_32 with M=32, for short, respectively). The output
channels of these models are all set to 128 for fair comparison.

The performance of different schemes is given in Table IV.
By comparing ADD and MGF]1, it can be easily found that the
simple concatenation fusion strategy significantly outperforms
the element-wise addition fusion strategy for multi-modal
RGB-T images salient object detection. This may be attributed
to the fact that simple element-wise addition may easily
weaken the discriminability of the fused features because of
the polarity inverse between the RGB and thermal image
intensities. The experiment also demonstrates that multi-group
fusion schemes can obtain better results than the traditional
single-group fusion schemes. The performance can be further
improved by combining the two schemes. Especially, when the
number of groups M is set to 8 in the proposed MGF module,
the best saliency detection performance can be obtained. As
discussed in [57], some salient features from individual single-
modal image may be easily drowned in the concatenated
features because of the large number of features. It is hard
for single-group fusion scheme (i.e., the regular convolution)
to boost those salient features from all of the input features.
When the group numbers are too large (e.g., M > 8), the
correlations among the feature maps will be weaken, since
fewer channels of input features will be fed into each convo-
lutional filter. This will also diminish the discriminability of
the subsequent fused features [71]. Therefore, in our proposed
MGF module, M is set 8.

3) Validity of the proposed JCSA block for saliency pre-
diction: In this part, five versions (No_Bi, Bi_NA, Bi_CA,

directional message passing module are compared to test the
validity of the JCSA block. In No_Bi, the proposed JABMP
is removed from our proposed network. Instead, as in [55],
simple up-sampling and concatenation strategies are employed
to integrate the multi-level fused features for the final saliency
prediction in a coarser-to-finer way. In Bi_NA, no attention
guidance is employed in the bi-directional message passing
module. In Bi_CA, only the channel-wise attention mechanism
(i.e., SE block in [65]) is employed to control message passing
in the bi-directional message passing model. Similarly, only
the spatial attention mechanism (i.e., CA block in [66]) is
employed in Bi_SA, and the joint channel-spatial attention
(JCSA) mechanism is employed in Bi_JCSA (i.e., the pro-
posed attention guided bi-directional message passing module,
shown in Fig. 6). The experimental results in Table V indicate
that the attention mechanism, especially the joint channel-
spatial attention mechanism, can greatly improve the saliency
detection results.

V. CONCLUSION

In this paper, we have presented a novel end-to-end deep
neural network model for RGB-T salient object detection,
where the multi-modal saliency detection is formulated as a
CNN feature fusion problem. The proposed model consists
of three components, i.e., multi-level feature extraction of
single-modal images using multiple adjacent-depth feature
combination (ADFC) modules, cross-modal feature fusion of
RGB-T image pairs using multi-branch group fusion (MGF)
modules, and saliency prediction using a joint attention guided
bi-directional message passing (JABMP) module. A joint
channel-spatial attention (JCSA) mechanism is further em-
ployed in the proposed message passing module to focus on
those important features with high channel attention as well
as spatial attention but suppress those superfluous features.
Experimental results demonstrate that the proposed RGB-T
salient object detection method performs better than the state-
of-the-art methods, especially for those challenging scenes
with poor illumination, complex background or low contrast.
One possible future work is to ap- ply our saliency detector to
industrial applications, such as image classification [72], object
tracking [73], [74] and instance-level object retrieval [75],
[76].

REFERENCES

[1] H. Wu, G. Li, and X. Luo, “Weighted attentional blocks for probabilistic
object tracking,” The Visual Computer, vol. 30, no. 2, pp. 229-243, 2014.



JOURNAL OF IEEE TRANSACTIONS ON IMAGE PROCESSING

[2]

[3]

[4]

[6

=

[7

—

[8]

[9]

[10]

[11]

[12]

[13

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

F. Wang, Y. Zhen, B. Zhong, and R. Ji, “Robust infrared target tracking
based on particle filter with embedded saliency detection,” Information
Sciences, vol. 301, pp. 215-226, 2015.

D. Gao, S. Han, and N. Vasconcelos, “Discriminant saliency, the
detection of suspicious coincidences, and applications to visual recogni-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 6, pp. 989-1005, 2009.

A. Abdulmunem, Y. Lai, and X. Sun, “Saliency guided local and
global descriptors for effective action recognition,” Computational Visual
Media, vol. 2, no. 1, pp. 97-106, 2016.

C. Guo and L. Zhang, “A novel multiresolution spatiotemporal saliency
detection model and its applications in image and video compression,”
IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 185-198,
2010.

L. Shen, Z. Liu, and Z. Zhang, “A novel H. 264 rate control algorithm
with consideration of visual attention,” Multimedia Tools and Applica-
tions, vol. 63, no. 3, pp. 709-727, 2013.

B. Cheng, L. Jin, and G. Li, “General fusion method for infrared
and visual images via latent low-rank representation and local non-
subsampled shearlet transform,” Infrared Physics & Technology, vol. 92,
pp. 68-77, 2018.

D. P. Bavirisetti and R. Dhuli, “Two-scale image fusion of visible
and infrared images using saliency detection,” Infrared Physics &
Technology, vol. 76, pp. 52—64, 2016.

J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep
learning techniques for salient and category-specific object detection: A
survey,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 84-100,
2018.

R. Quan, J. Han, D. Zhang, F. Nie, X. Qian, and X. Li, “Unsupervised
salient object detection via inferring from imperfect saliency models,”
IEEE Transactions on Multimedia, vol. 20, no. 5, pp. 1101-1112, 2018.
M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu, “Global
contrast based salient region detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 3, pp. 569-582, 2015.
J. Kim, D. Han, Y. Tai, and J. Kim, “Salient region detection via high-
dimensional color transform and local spatial support,” IEEE Transac-
tions on Image Processing, vol. 25, no. 1, pp. 9-23, 2016.

F. Huang, J. Qi, H. Lu, L. Zhang, and X. Ruan, “Salient object detection
via multiple instance learning,” IEEE Transactions on Image Processing,
vol. 26, no. 4, pp. 1911-1922, 2017.

H. Lu, X. Li, L. Zhang, X. Ruan, and M. H. Yang, “Dense and sparse
reconstruction error based saliency descriptor,” IEEE Transactions on
Image Processing, vol. 25, no. 4, pp. 1592-1603, 2016.

C. Yang, L. Zhang, H. Lu, X. Ruan, and M. H. Yang, “Saliency
detection via graph-based manifold ranking,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013, pp.
3166-3173.

H. Peng, B. Li, H. Ling, W. Hu, W. Xiong, and S. J. Maybank,
“Salient object detection via structured matrix decomposition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 4, pp. 818-832, 2017.

T. Zhao, L. Li, X. Ding, Y. Huang, and D. Zeng, “Saliency detection
with spaces of background-based distribution,” IEEE Signal Processing
Letters, vol. 23, no. 5, pp. 683-687, 2016.

A. Borji, M. M. Cheng, H. Jiang, and J. Li, “Salient object detection: A
benchmark,” IEEE Transactions on Image Processing, vol. 24, no. 12,
pp. 5706-5722, 2015.

D. Zhu, Y. Luo, L. Dai, X. Shao, Q. Zhou, L. Itti, and J. Lu, “Salient
object detection via a local and global method based on deep residual
network,” Journal of Visual Communication and Image Representation,
vol. 54, pp. 1-9, 2018.

X. Li, L. Zhao, L. Wei, M. H. Yang, F. Wu, Y. Zhuang, H. Ling,
and J. Wang, “Deepsaliency: Multi-task deep neural network model
for salient object detection,” IEEE Transactions on Image Processing,
vol. 25, no. 8, pp. 3919-3930, 2016.

P. Zhang, D. Wang, H. Lu, H. Wang, and B. Yin, “Learning uncertain
convolutional features for accurate saliency detection,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
212-221.

G. Li and Y. Yu, “Visual saliency detection based on multiscale deep
CNN features,” IEEE Transactions on Image Processing, vol. 25, no. 11,
pp. 5012-5024, 2016.

G. Lee, Y. W. Tai, and J. Kim, “Eld-net: An efficient deep learning
architecture for accurate saliency detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 7, pp. 1599—
1610, 2018.

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr, “Deeply super-
vised salient object detection with short connections.” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 41, no. 4, p. 815,
2019.

P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan, “Amulet: Aggre-
gating multi-level convolutional features for salient object detection,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 202-211.

C. Li, X. Wang, L. Zhang, J. Tang, H. Wu, and L. Lin, “Weighted low-
rank decomposition for robust grayscale-thermal foreground detection,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 27, no. 4, pp. 725-738, 2017.

C. Li, G. Wang, Y. Ma, A. Zheng, B. Luo, and J. Tang, “A unified
RGB-T saliency detection benchmark: dataset, baselines, analysis and a
novel approach,” arXiv preprint arXiv:1701.02829, 2017.

Y. Ma, D. Sun, Q. Meng, Z. Ding, and C. Li, “Learning multiscale
deep features and SVM regressors for adaptive RGB-T saliency detec-
tion,” in Proceedings of the International Symposium on Computational
Intelligence and Design, 2017, pp. 389-392.

S. Gundimada, V. K. Asari, and N. Gudur, “Face recognition in multi-
sensor images based on a novel modular feature selection technique,”
Information Fusion, vol. 11, no. 2, pp. 124-132, 2010.

V. N. Gangapure, S. Nanda, and A. S. Chowdhury, “Superpixel-based
causal multisensor video fusion,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 28, no. 6, pp. 1263-1272, 2018.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, vol. 115, no. 3, pp. 211-252, 2015.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
1492-1500.

L. Zhang, J. Dai, H. Lu, Y. He, and G. Wang, “A bi-directional message
passing model for salient object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
1741-1750.

D. Konig, M. Adam, C. Jarvers, G. Layher, H. Neumann, and
M. Teutsch, “Fully convolutional region proposal networks for multi-
spectral person detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 49-56.

J. Wagner, V. Fischer, M. Herman, and S. Behnke, “Multispectral
pedestrian detection using deep fusion convolutional neural networks,” in
Proceedings of 24th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2016, pp. 509-514.
J. Liu, S. Zhang, S. Wang, and D. N. Metaxas, “Multispectral deep
neural networks for pedestrian detection,” in Proceedings of the 27th
British Machine Vision Conference, 2016, pp. 1-13.

J.-J. Liu, Q. Hou, M.-M. Cheng, J. Feng, and J. Jiang, “A simple pooling-
based design for real-time salient object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 3917-3926.

Z. Deng, X. Hu, L. Zhu, X. Xu, J. Qin, G. Han, and P-A. Heng,
“R3net: Recurrent residual refinement network for saliency detection,”
in Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 2018, pp. 684-690.

Z. Wu, L. Su, and Q. Huang, “Cascaded partial decoder for fast
and accurate salient object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3907-3916.

H. Chen and Y. Li, “Progressively complementarity-aware fusion net-
work for RGB-D salient object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
3051-3060.

D. P. Fan, Z. Lin, J.-X. Zhao, Y. Liu, Z. Zhang, Q. Hou, M. Zhu, and
M.-M. Cheng, “Rethinking RGB-D salient object detection: Models,
datasets, and large-scale benchmarks,” arXiv preprint arXiv:1907.06781,
2019.

J. X. Zhao, Y. Cao, D. P. Fan, M. M. Cheng, X. Y. Li, and L. Zhang,
“Contrast prior and fluid pyramid integration for RGB-D salient object
detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 3927-3936.



JOURNAL OF IEEE TRANSACTIONS ON IMAGE PROCESSING

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

N. Wang and X. Gong, “Adaptive fusion for RGB-D salient object
detection,” IEEE Access, vol. 7, pp. 55277-55284, 2019.

H. Chen and Y. Li, “Three-stream attention-aware network for RGB-
D salient object detection,” IEEE Transactions on Image Processing,
vol. 28, no. 6, pp. 2825-2835, 2019.

C. Zhu, X. Cai, K. Huang, T. H. Li, and G. Li, “PDNet: Prior-
model guided depth-enhanced network for salient object detection,” in
Proceedings of the IEEE International Conference on Multimedia and
Expo, 2019, pp. 199-204.

Z. Liu, S. Shi, Q. Duan, W. Zhang, and P. Zhao, “Salient object
detection for RGB-D image by single stream recurrent convolution
neural network,” Neurocomputing, vol. 363, pp. 46-57, 2019.

Z. Tu, T. Xia, C. Li, X. Wang, Y. Ma, and J. Tang, “RGB-T image
saliency detection via collaborative graph learning,” arXiv preprint
arXiv:1905.06741, 2019.

Y. Liu, X. Chen, J. Cheng, H. Peng, and Z. Wang, “Infrared and visible
image fusion with convolutional neural networks,” International Journal
of Wavelets, Multiresolution and Information Processing, vol. 16, no. 3,
pp. 1-20, 2018.

C. Li, X. Wu, N. Zhao, X. Cao, and J. Tang, “Fusing two-stream convo-
lutional neural networks for RGB-T object tracking,” Neurocomputing,
vol. 281, pp. 78-85, 2018.

C. Li, H. Cheng, S. Hu, X. Liu, J. Tang, and L. Lin, “Learning
collaborative sparse representation for grayscale-thermal tracking,” IEEE
Transactions on Image Processing, vol. 25, no. 12, pp. 5743-5756, 2016.
C. Li, X. Liang, Y. Lu, N. Zhao, and J. Tang, “RGB-T object tracking:
Benchmark and baseline,” arXiv preprint arXiv:1805.08982, 2018.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th International Conference
on Machine Learning, 2010, pp. 807-814.

T.-Y. Lin, P. Dollér, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 2117-2125.

K. Zhao, W. Shen, S. Gao, D. Li, and M. M. Cheng, “Hi-fi: Hierarchical
feature integration for skeleton detection,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence, 2018, pp. 1191—
1197.

Y. Liu, J. Han, Q. Zhang, and C. Shan, “Deep salient object detection
with contextual information guidance,” IEEE Transactions on Image
Processing, vol. 29, pp. 360-374, 2019.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097-1105.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM International
Conference on Multimedia, 2014, pp. 675-678.

PyTorch, “Pytorch: Tensors and dynamic neural networks in python with
strong gpu acceleration,” Website, http://pytorch.org/ .

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1-9.

S. Toffe and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of the
32nd International Conference on International Conference on Machine
Learning, 2015, pp. 448-456.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2818-2826.

G. Li and Y. Yu, “Deep contrast learning for salient object detection,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 478-487.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7132-7141.

L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, and T.-S. Chua,
“Sca-cnn: Spatial and channel-wise attention in convolutional networks
for image captioning,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 5659-5667.

S. Xie and Z. Tu, “Holistically-nested edge detection,” International
Journal of Computer Vision, vol. 125, no. 1, pp. 3-18, 2017.

T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H. Y. Shum,
“Learning to detect a salient object,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 2, pp. 353-367, 2011.

[69] D.-P. Fan, M.-M. Cheng, Y. Liu, T. Li, and A. Borji, “Structure-measure:
A new way to evaluate foreground maps,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 4548-4557.
R. Margolin, L. Zelnik-Manor, and A. Tal, “How to evaluate foreground
maps?” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2014, pp. 248-255.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848-6856.

G. Ding, Y. Guo, K. Chen, C. Chu, J. Han, and Q. Dai, “Decode: Deep
confidence network for robust image classification,” IEEE Transactions
on Image Processing, vol. 28, no. 8, pp. 3752-3765, 2019.

B. Zhang, W. Yang, Z. Wang, L. Zhuo, J. Han, and X. Zhen, “The
structure transfer machine theory and applications,” IEEE Transactions
on Image Processing, 10.1109/TIP.2019.2954178.

J. H. Han, E. Pauwels, P. de Zeeuw, and P. de With, “Employing a
rgb-d sensor for real-time tracking of humans across multiple re-entries
in a smart environment,” IEEE Transactions on Consumer Electronics,
vol. 58, no. 2, pp. 255-263, 2012.

G. Wu, J. Han, Y. Guo, L. Liu, G. Ding, Q. Ni, and L. Shao,
“Unsupervised deep video hashing via balanced code for large-scale
video retrieval,” IEEE Transactions on Image Processing, vol. 28, no. 4,
pp- 1993 — 2007, 2019.

G. Wu, J. Han, Z. Lin, G. Ding, B. Zhang, and Q. Ni, “Joint image-text
hashing for fast large-scale cross-media retrieval using self-supervised
deep learning,” IEEE Transactions on Industrial Electronics, vol. 66,
no. 12, pp. 9868 — 9877, 2019.

[70]

[71]

[72]

(73]

[74]

[75]

[76]

Qiang Zhang is a professor with the Automatic Control Department at Xidian
University, China. His research interests include image processing and pattern
recognition.

Nianchang Huang is currently pursuing the Ph.D. degree in School of
Mechano-Electronic Engineering at Xidian University, China. His research
interests include deep learning and multimodal image processing in computer
vision.

Lin Yao is currently working towards the M. S. degree in Control Theory
and Control Engineering at Xidian University, China. Her current research
interests include deep learning and multimodal image based salient object
detection.

Dingwen Zhang is currently an associate professor at Xidian University.
His research interests include computer vision and multimedia processing,
especially on saliency detection, co-saliency detection, and weakly supervised
learning.

Caifeng Shan is currently a Senior Scientist and Project Leader with Philips
Research, Eindhoven, The Netherlands. His research interests include medical
image processing, and computer vision.

Jungong Han is currently an associate professor with WMG Data Science
at University of Warwick, UK. His research interests span the fields of video
analysis, computer vision and applied machine learning.



