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Abstract— Wearable inertial sensors have been widely 
investigated for fall risk assessment and prediction in older adults. 
However, heterogeneity in published studies in terms of sensor 
location, task assessed and features extracted is high, making 
challenging evidence-based design of new studies and/or real-life 
applications. We conducted a systematic review and meta-analysis 
to appraise the best available evidence in the field. Namely, we 
applied established statistical methods for the analysis of 
categorical data to identify optimal combinations of sensor 
locations, tasks and feature categories. We also conducted a meta-
analysis on sensor-based features to identify a set of significant 
features and their pivot values. The results demonstrated that with 
a walking test, the most effective feature to assess the risk of falling 
was the velocity with the sensor placed on the shins. Conversely, 
during quite standing, linear acceleration measured at the lower 
back was the most effective combination of feature-placement. 
Similarly, during the sit-to-stand and/or the stand-to-sit tests, 
linear acceleration measured at the lower back seems to be the 
most effective feature-placement combination. The meta-analysis 
demonstrated that four features resulted significantly higher in 
fallers: the root-mean-square acceleration in the mediolateral 
direction during quiet standing with eyes closed (Mean Difference 
(MD): 0.01 g; 95% Confidence Interval (CI95%): 0.006 to 0.014); 
the number of steps (MD: 1.638 steps; CI95%: 0.384 to 2.892) and 
total time (MD: 2.274 seconds; CI95%: 0.531 to 4.017) to complete 
the Timed Up and Go test; and the step time (MD: 0.053; CI95%: 
0.012 to 0.095; p=0.01) during walking. 

Index Terms— Inertial sensors, accidental falls, fall prediction, 
fall risk assessment, systematic literature review, meta-analysis 

I. INTRODUCTION

HE incidence of accidental falls among older adults, along 
with their impact in terms of morbidity and mortality, have 

turned them into a public health concern worldwide. It has been 
estimated that 28% to 45% of people aged 65 and over fall each 
year [1]. These events represent 18% to 40% of emergency 
department attendances and over 80% of all injury admissions 
to hospitals among the same age group. Among the most serious 
injuries resulting from falls are hip fracture and traumatic brain 
injury; the latter accounts for 46% of fatal falls among older 
adults [2].    
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Accidental falls have also a great impact in terms of costs for 
healthcare systems and for the society. Only in the United 
Kingdom, their annual cost to the National Health System has 
been estimated in £2.3 billion per year [3]. Moreover, falls lead 
to indirect costs, such as the loss of productivity of family 
members and other caregivers. The average lost earnings due to 
falls has been estimated in US$40,000 per year for the UK [1]. 

Nowadays, clinical fall risk assessment relies mostly on 
moderately to highly comprehensive medical, fall-risk specific 
and functional mobility assessment tools in the form of 
questionnaires, physical tests, gait analysis, and physical 
activity measurements [4]. Among the most popular assessment 
tests and tools are the Timed Up and Go (TUG) test [5], the 
Tinetti Assessment Tool [6], the STRATIFY score [7] and the 
Five-Times-Sit-to-Stand (FTSS) test [8].     

More recently, researchers have investigated the potential 
use of instrumented fall-risk assessment and prediction tools 
based on features extracted from inertial sensors (i.e. 
accelerometers and gyroscopes) attached to the subject’s body 
during specific assessment tasks (e.g. walking, quiet standing, 
sit-to-stand transitions) [9]–[11]. In those studies, machine 
learning methods were used to automatically identify fallers (F) 
and non-fallers (NF). Subjects were labelled as F/NF using at 
least one of the following methods: a fall-risk assessment test 
conducted in the clinical setting (e.g. TUG test), self-reported 
fall occurrence within a follow-up period from the assessment 
or fall history.  

Howcroft et al. [9] and Shany et al. [11] have presented 
insightful accounts of features, classification models and 
validation strategies related to sensor-based fall-risk testing 
(SFRT). In their investigations, these authors found large 
heterogeneity in terms of sensor placement, tasks assessed, and 
sensor-based features. Not surprisingly, they also found 
disparate levels of reported sensitivity (55-100%), specificity 
(15-100%) and accuracy (62-100%).  

To design effective interventions, it is crucial to identify the 
optimal combination of three factors: where to place the sensor, 
which task to be performed and which features should be 
extracted and analyzed. The latter is particularly relevant to 
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overcome the limitations imposed by the curse of 
dimensionality (i.e. the difficulty and risk of training learning 
algorithms to discriminate between non-fallers and fallers in a 
high-dimensional feature space on the basis of a small pool of 
available data) [11]. Increasing the sample size would seem to 
be the logical solution. Unfortunately, achieving large sample 
sizes is one of the biggest challenges for this research area. 
Consequently, Shany et al. propose, as a more realistic solution, 
reducing the number of features prior to model building as 
sensibly as possible [11]. 

The goal of this systematic review and meta-analysis was to 
synthetize the empirical evidence regarding inertial sensor-
based fall risk assessment and prediction in order to identify 
optimal combination of sensor placement, task and features 
aiming to support evidence-based design of new studies and 
real-life applications.  

II. METHODS

A. Literature Search  

Potentially relevant articles on the risk assessment or 
prediction of falls based on features extracted from wearable 
inertial sensors were identified through a literature search in 
PubMed, EMBASE, IEEEXplore, Cochrane Central Register 
of Controlled Trials (CENTRAL), ClinicalTrials.gov and the 
World Health Organization International Clinical Trials 
Registry Platform electronic databases.  

Articles were searched using Boolean combinations of the 
following keywords or equivalent Medical Subject Heading 
(MeSH) terms: accidental falls AND (risk assessment OR 
prediction) AND (sensor OR device OR wearable OR 
technology). No filter was applied at this stage.   

Additional papers were identified performing a linear search 
along the references of relevant review articles previously 
published [9]–[12]. 

B. Inclusion and Exclusion Criteria 

Papers were considered suitable for this review if they met 
all of the following criteria: 
1) Original peer-reviewed journal articles published between 

January 2006 and December 2016 in English, Italian, 
Spanish or French languages (i.e. the languages on which 
the authors are qualified to understand a scientific text); 

2) Studies in which the subjects were labelled as fallers and 
non-fallers (alternatively, high and low fall-risk), based on 
retrospective fall history, prospective fall occurrence, 
clinical assessment (e.g. the TUG test) or a combination of 
these methods;  

3) A sample of at least 10 subjects with an average age of 60 
or over; 

4) Body-worn inertial sensors were used to characterize a 
physical task (e.g. walking or quiet standing) by extracting 
features from their signals, and; 

5) Group statistics, specifically mean and standard deviation, 
for sensor-based features, as well as statistical significance 
level for the difference between groups were reported.  

Papers were excluded if they included subjects with severe 

cognitive or motor impairment (e.g. Parkinson’s disease, 
dementia). 

Two authors independently assessed the suitability and 
methodological quality of the papers. A third author arbitrated 
when necessary. 

C. Paper Selection and Data Extraction  

Following the search strategy described above, all the records 
responding to the selected keywords were identified. After 
excluding duplicates (i.e. titles indexed in more than one 
database), studies were shortlisted according to 
inclusions/exclusions criteria by screening titles, abstracts and 
full-texts.  

Subsequently, relevant data were extracted from the 
shortlisted studies; namely: first author and year of publication; 
number of participants and proportion of fallers; subject 
labelling method with details (e.g. follow-up period for 
prospective fall occurrence); type, quantity and placement of 
inertial sensors; test or task characterized via sensor-based 
features (e.g. the TUG test or quiet standing, respectively). 

Finally, a listing of features reported in the shortlisted studies 
was compiled to enable further statistical analysis. For each 
feature the following items were included: name and category 
(i.e. linear acceleration, angular velocity, temporal, spatial, 
frequency, or non-linear features [9]), units, mean and standard 
deviation for each group (i.e. fallers and non-fallers), and trend 
over groups. A trend was represented with two arrows, ↓↓ (or 
↑↑), if the mean value of a feature significantly (p<0.05) 
decreased (increased) for fallers compared to the mean value 
for non-fallers. Similarly, one arrow ↓ (or ↑) was used if the 
mean value of a feature non-significantly (p>0.05) decreased 
(increased) for fallers compared to the mean value for non-
fallers. Sensor placement and assessed task for each feature 
were also included in the listing.  

D. Statistical Analysis of Inertial Sensor-Based Features  

Standard methods for the analysis of categorical data were 
applied on the feature listing with two objectives [13], [14]: 1) 
to investigate the level of association between trend 
significance status (i.e. non-significant or significant) and 
feature category, sensor placement and task, and; 2) to identify 
optimal triads of feature category, sensor placement and task.       

Firstly, Pearson’s chi-squared tests were performed in order 
to prove the association between trend significance status 
(dependent variable) and feature category, sensor placement 
and task (covariates). In other words, we aimed to prove that 
significant feature trends are dependent on feature category, 
sensor placement and/or task. A p-value < 0.05 was accepted as 
statistically significant evidence of a nonrandom association. 
Moreover, Pearson’s Contingency (C) and Cramer’s (V) 
coefficients were computed in order to quantify the level of 
association between each covariate and trend significance 
status. A C (V) coefficient of 0.1 (0.1), 0.287 (0.3) and 0.447 
(0.5) were considered as evidence of small, medium and large 
level of association, respectively, as suggested in [15]. 

Secondly, significant triads of feature category, sensor 
placement and task were identified as follows. A three-way 
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contingency table containing the abovementioned covariates 
was created using the subset of features containing only 
significant trends. Pearson residuals were computed for each 
triad in the table and used to characterize the strength (value) 
and nature (sign) of association for each triad. Large positive 
residuals are obtained when the observed frequency of 
significant features is substantially greater than the expected 
frequency, which would suggest significant features were more 
likely to arise from that specific triad. Conversely, large 
negative residuals are obtained when the observed frequency of 
significant features is substantially less than the expected, 
which would suggest significant features were less likely to 
arise from that specific triad. For interpretability, the following 
representation was used to report the results (instead of 
numerical values): two arrows, ↓↓ (or ↑↑), if the residuals were 
smaller (or larger) than -4 (or +4), revealing strong associations; 
one arrow, ↓ (or ↑), if the residuals were smaller (or larger) than 
-2 (or +2), revealing medium-associations, and; a dash, -, for 
residuals greater than or equal to -2 but smaller than or equal to 
+2, revealing weak associations. These thresholds are 
customarily used in the interpretation of Pearson residuals as a 
measure of strength of association [14]. A Pearson’s chi-
squared test of independence was performed to confirm the 
statistical significance of those associations (p-value < 0.05).        

The software R version 3.2.3 was used to write the scripts to 
run this analysis.       

E. Meta-Analysis of Inertial Sensor-Based Features  

A meta-analysis of the features extracted from the shortlisted 
studies was conducted to identify significant individual features 
and their pivot values. Features were pooled for meta-analysis 
if: [feature was reported in at least two studies] AND [feature 
was computed for the same task/subtask] AND [sensor 
placement and type was the same across studies OR feature was 
independent of sensor placement and type (e.g. number of steps 
or stride time)]. Standard methods for combining and reporting 
continuous outcomes were employed to pool the features [16]: 
pooled sample size, mean difference (MD) with 95% 
confidence intervals (95% CI) and statistical significance level 
(p-value). MDs and 95% CIs were considered significant if the 
p-value was found to be smaller than 0.05. 

Random or fixed effect models were selected based on 
heterogeneity across studies, assessed using the Q-statistic 
(computed via a Chi-squared test) and the I2 statistic. A 
significant Q-statistic is indicative of dissimilar effect sizes 
across studies; a threshold significance level of 0.1 was selected 
as statistically significant value as suggested in [16]. The I2

statistic indicates the percentage of the variability in effect sizes 
due to heterogeneity across studies, and not due to sampling 
error within studies. An I2 from 30% to 60%, 50% to 90% and 
75% to 100% represent moderate, substantial and considerable 
heterogeneity, respectively [17].  

The R package meta_4.8-4 was used to conduct the meta-
analysis [18]. The default options for both fixed and random 
models were used; i.e. the inverse variance method for study 
weighting and the DerSimonian-Laird estimate for the random 
effects model [19].  

F. Quality Appraisal of Shortlisted Studies 

The methodological quality of the studies was assessed using 
the checklist provided in the supplementary material 
(Document S1). This checklist was adapted from Downs and 
Black [20]. It contains 15 questions that are scored “yes” or 
“no/unclear”. These questions are organized in 3 dimensions:  
 Reporting (11 items) – which assessed whether the 

information provided in the paper was clear and sufficient 
to replicate the study and appraise its validity.    

 External validity (2 items) –which addressed the extent to 
which the findings of the study could be generalized to a 
wider population and context.   

 Internal validity (2 items) –which assessed whether the 
evidence at hand suggests that the study was designed and 
conducted to minimize bias and confounding. 

A summary of the main findings is provided in this paper in an 
attempt to reveal the methodological issues that future studies 
in the field should address in order to produce more valid 
scientific evidence. 

III. RESULTS

According to the search strategy described above, 481 
records were identified through database search and 18 through 
linear search. After removing 51 duplicates, 448 titles were 
screened by title and 257 were excluded as they did not meet 
the inclusion/exclusion. From the remaining 191 titles, 127 
were removed after screening the abstract against 

Fig. 1.  Flowchart indicating the results of the systematic review with 
inclusions and exclusions. 
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inclusion/exclusion criteria, which left 64 papers to be read in 
full-text. After reading the full-text, 51 were excluded due to 
inclusion/exclusion criteria. Therefore, 13 studies were 
shortlisted for this review [21]–[33]. A flowchart of the study 
selection process is shown in Fig. 1. 

Importantly, there were some papers among the excluded 
ones which are noteworthy for the novelty of their approaches 
to the problem, their methodological quality and their results, 
but that failed to meet inclusion criterion 5. This is the case of 
the papers by Toebes et al [34] and Riva et al [35], who 
investigated the association between fall history and gait 
dynamic stability non-linear features (e.g. the Maximum 
Lyaponuv exponent, Multiscale entropy and Recurrence 
quantification analysis). Moreover, Rispens et al [36] and van 
Schooten et al [37] investigated the association of fall history 
and ambulatory (i.e. daily-life) gait measures. Finally, van 
Schooten et al [38] used survival models to describe the 
association of daily-life gait measures and prospective falls.        

A. Characteristics of Shortlisted Studies 

The 13 studies enrolled from 17 to 349 subjects each (mean 
± standard deviation: 93.15 ± 86.18 subjects), for a cumulative 
population of 1,211. Overall, the studies included 565 
fallers/high-risk subjects, i.e. 47% of the cumulative 
population. However, this proportion ranged from 14 to 71% 
across the 13 selected studies. The majority of studies (92%) 
included both men and women, except for one study which 
included only women [24]. Subjects were enrolled in a clinic as 
part of a larger clinical research project in 4 studies [23], [26], 
[27], [30], in a community center in 1 study [31], in a hospital’s 
physiotherapy service in 1 study [22], and via letter sent to 
members of the community in 1 study [24]; details about the 
recruitment process were not provided in 6 studies [21], [25], 
[28], [29], [32], [33]. 

Additional details about the shortlisted studies are reported 

in Table I.  
Subjects were labelled as (non-)fallers using retrospective 

fall history in 10 studies, with a recall period of one year for 8 
studies and 5 years for 2 studies; prospective fall occurrence 
through a one-year follow-up period in 2 studies; and a clinical 
assessment tool (the Tinetti scale) in one study. 

Tri-axial accelerometers and gyroscopes were the only type 
of inertial sensor used in 10 and 1 studies respectively; a 
combination of sensors were used in 2 studies. In 7 studies, only 
one sensor was used; in 5 studies two sensors were used; and 1 
study used four sensors.  

The most common sensor placement was the lower back (i.e. 
approximately on L3) with 10 studies, followed by shins and 
feet with 2 studies each. Other placements were knee, ankle, 
thigh, sternum and upper back (i.e. approximately on C7), with 
one study each. If placements are grouped in upper body (trunk) 
and lower body (lower limbs), there were eleven (91.7%) and 
seven (58.3%) studies, respectively.  

Inertial signals were acquired during the following tasks: 
walking otherwise than a standardized test (7 studies), quiet 
standing (3 studies), the TUG test (2 studies), the 10-Meters 
Walking test (10MWT) (1 study), and the Five-Times Sit-to-
Stand (FTSS) test (1 study). A brief description of these tasks 
is presented in Table II; for a more detailed description the 
reader may refer to the referenced paper. 

B. Inertial Sensor-Based Features and Their Trends 

The full listing of features extracted from inertial sensors that 
were reported in the 13 selected papers is provided as 
supplementary material (Table S1). Green et al. [23] reported 
features for all the subjects included in their analysis as well as 
for some subgroups separately (i.e. males, females < 75 year 
old and females ≥ 75 years old). However, only the results for 
all the subjects were included in this review. Moreover, Doheny 
et al. [26] performed an instrumented gait assessment four 

TABLE I 
DESCRIPTION OF SHORTLISTED STUDIES

Author, Year 
Subjects 
(Fallers) 

Mean age ± 
SD (years) (Non-)Faller labelling method Type of sensor # of sensors Location Task 

Kojima, 2008 153 (22) 71 ± 7.7 Retrospective fall history b Accelerometer 1 Lower back Walking 
O'Sullivan, 2009 17 (12) 77 ± 7.5 Retrospective fall history c Accelerometer 1 Lower back Quiet standing 

Greene, 2010 349 (207) 72.4 ± 7.4 Retrospective fall history c Gyroscope 2 Shins Timed Up and Go test 
Paterson, 2011 97 (54) 68.7 ± 7.1 Prospective fall occurrence Accelerometer 2 Feet Walking

Weiss, 2011 41 (23) 78.2 ± 6.2 Retrospective fall history b Accelerometer 1 Lower back Timed Up and Go test 
Doheny, 2012 40 (19) 71.4 ± 7.3 Retrospective fall history c Accelerometer 

and Gyroscope 
2 Shins / 

Lower back 
Walking and 

Quiet standing 
Greene, 2012 120 (65) 73.7 ± 5.8 Retrospective fall history c Accelerometer 

and Gyroscope
1 Lower back Quiet standing 

Itoh, 2012 30 (7) 75 ± 5.7 a Retrospective fall history Accelerometer 4 Lower back, 
Knee, Ankle, 

Big toe 

Walking 

Senden, 2012 100 (50) 76.5 ± 5.7 Risk assessment tool Accelerometer 1 Lower back Walking 
Doheny, 2013 39 (19) 71.5 ± 6.6 Retrospective fall history Accelerometer 2 Thigh, 

Sternum
Five-Times Sit-to-

Stand test
Doi, 2013 73 (16) 80.7 ± 7.8 Prospective fall occurrence Accelerometer 2 Lower back, 

Upper back 
10-m Walk test 

Weiss, 2013 71 (32) 78.4 ± 4.7 Retrospective fall history b Accelerometer 1 Lower back Walking 
Cui, 2014  81 (39) 78.4 ± 4.8 Retrospective fall history b Accelerometer 1 Lower back Walking 

a Estimated from the data reported in paper
b Two or more falls within the recall period 
c One or more falls within the recall period, or one fall resulting in injury or requiring medical attention
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times along the same day. However, only the results of the first 
assessment (between 9:00 and 9:30 am) were included in the 
review.  

In summary, 93 distinct features were identified in the 
selected studies and categorized similarly to [9]: linear 
acceleration (15 features, 16.1%), angular velocity (28 features, 
30.1%), spatial (4 features, 4.3%), temporal (24 features, 
25.8%), frequency (21 features, 22.6%) and non-linear (1 
feature, 1.1%). 

These features were reported 175 times in the selected studies 
out of which 84 times (48%) they exhibited a significant trend.  

Table III summarizes the frequency of features per feature 
category, task and sensor placement for the complete listing of 
features (column A) and for the subset of features showing 
significant trends (column B). 

C. Statistical Analysis of Inertial Sensor-Based Features  

The results from the Pearson’s chi-squared tests and the 
measures of association revealed statistically significant 
associations between feature significance and feature category, 
sensor placement and task (Table IV).  
 Furthermore, the computed Pearson residuals for the three-
way table containing feature category, task and sensor 
placement as covariates revealed strong to very strong 
associations for 9 triads. Table V summarizes these results. As 
an example, the double arrow, ‘↑↑’, for the triad ‘angular 
velocity-walking-shins’ means that significant features are 
much more likely to arise from this combination. Conversely, 
the single arrow, ‘↓’, for the triad ‘angular velocity-walking-
lower back’ means that significant features are less likely to 
arise from this combination. The ‘-’ symbol indicated that the 
significance of a feature is not particularly affected by its 
category, sensor placement or task. 

D. Meta-Analysis of Inertial Sensor-Based Features  

Based on the selection criteria for the meta-analysis, 20 
features were pooled using the methods described above. Table 
VI shows the trend and values for those features, as well as the 
number of subjects in each group. It also shows the task and the 

TABLE II 
DESCRIPTION OF TASKS CHARACTERIZED USING INERTIAL SENSORS

Test / Task Description 
Walking The individual is instructed to walk: 

 8 to 10 steps on a straight trajectory at comfortable and maximum speeds [21] 
 7 minutes at self-selected speed around a continuous walking circuit comprised by two straight sections (12 meters long) 

placed 3 meters apart [24] 
 3 meters at comfortable speed along a straight trajectory [26] 
 10 meters at a self-selected pace on a straight course which included stepping over six obstacles separated by 1.5 m [28] 
 20 meters on a straight course and back to the starting point at preferred speed [29] 
 1 minute or longer walking bouts during daily life activities [32] 
 1 minute under 3 different conditions: 1) baseline, usual walk; 2) baseline, usual walk with harness; 3) an obstacle course 

walk with harness [33] 
Quiet standing The individual was instructed to stand still for:  

 30 seconds with eyes open (EO), eyes closed (EC) and on a mat with eyes open (MAT EO) and closed (MAT EC) [22], [26] 
 40 seconds with eyes open (EO) in a semi tandem stance and 30 seconds with eyes closed (EC) [27] 

Timed Up and Go test The individual is instructed to rise from a chair, walk 3 meters at comfortable speed on a straight trajectory, turn around, walk back 
to the chair and sit down. [23], [25]      

10-Meters Walking 
test 

The individual is instructed to walk 10 meters at comfortable speed on a straight trajectory. A common practice is to use the 
intermediate 6 meters to allow for acceleration and deceleration. [31]   

Five-Times-Sit-to-
Stand test 

The individual is instructed to keep her arms folded across her chest for the duration of the test and to fully stand up and sit back 
down five times as quick as possible. [30] 

TABLE III
FREQUENCY TABLES FOR FEATURES BY TASK, SENSOR PLACEMENT

AND FEATURE CATEGORY

(A) All features 
(N=175) 

(B) Significant 
features (N=84)  

Count %  Count % 

Task 

Walking a 110 62.9  61 72.6 

Quiet standing 48 27.4  15 17.8 
Sit-to-Stand / 
Stand-to-Sit b 14 8  5 6 

TUG c test 3 1.7  3 3.6 

Sensor placement 

Lower back 98 56  49 58.3 

Shins 60 34.3  33 39.3 

Foot 7 4  0 0 

Sternum 4 2.3  0 0 

Upper back 3 1.7  2 2.4 

Knee 3 1.7  0 0 

Feature category 

Linear acceleration 48 27.4  20 23.8 

Temporal 45 25.7  19 22.6 

Frequency 42 24  16 19 

Angular velocity 32 18.3  25 29.8 

Spatial 7 4  4 4.8 

Non-linear 1 0.6  0 0 
a Including walking tasks carried out as part of a test, e.g. the Timed Up 
and Go test 
b Including sit-to-stand and stand-to-sit tasks carried out as part of a test, 
e.g. Timed Up and Go test 
c Timed Up and Go test

TABLE IV 
MEASURES OF ASSOCIATION BETWEEN 

FEATURE SIGNIFICANCE STATUS AND COVARIATES

Covariate χ2 p-value C V Association 
level a

Task 11.94 < 0.01 0.253 0.261 Medium 
Sensor placement 14.68 0.01 0.278 0.290 Medium 
Feature category 15.82 < 0.01 0.288 0.301 Medium 

χ2: Pearson’s chi-squared statistic for the association test in which the null 
hypothesis is ‘no association’ 
C: Pearson’s contingency coefficient 
V: Cramer’s coefficient 
a A C (V) of 0.100 (0.1), 0.287 (0.3) and 0.447 (0.5) are considered as 
evidence of small, medium and large association, respectively 
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sensor placement for each feature.  
Linear acceleration features included in the meta-analysis 

were: Root Mean Square (RMS) value (expressed in g-force 
units) of acceleration signal in the mediolateral (ML) direction 
assessed at the lower back during quiet standing with both eyes 
open and eyes closed (ML RMS of acceleration). This feature 
is related to postural stability during standing.   

Spatial features included in the meta-analysis were: number 
of steps during the Timed Up and Go (TUG) test, and step 
length as estimated from inertial signals measured during the 
walking stage of the TUG test or other walking task.  

Temporal features included in the meta-analysis were: 
cadence (i.e. steps per minute); gait speed; step time; stance 
time; swing time; stride time; total time to complete the TUG 
test; single and double support time, i.e. the time during which 
only one foot and both feet are in contact with the walking 
surface, respectively, expressed as a percentage of a gait cycle; 
and the Coefficient of Variation (CV) for step, stance, swing, 
stride, single and double support times. The CV is the ratio of 
the standard deviation and mean for a given feature, expressed 
as a percentage; hence, it is a standardized measure of 
dispersion of the distribution of feature values.  

All the spatial and temporal features included in the meta-
analysis are widely used in clinical gait analysis [39]. 

One frequency feature was included in the meta-analysis: the 
Harmonic Ratio (HR) of trunk acceleration in the vertical (VT) 

direction. The HR has been defined as the ratio of even to odd 
signal harmonics extracted from the spectrum of the 
acceleration signal and has been suggested as a measure of the 
stability and smoothness of trunk movement during gait [31].  

Neither angular velocity nor non-linear features were 
included in the meta-analysis, as none of them met the criteria 
to be pooled; i.e. either they were reported only in one study or 
they were measured during different tasks or at different sensor 
body placements. 

The relative pooling weight of each study is reported in Table 
VI. The results of the pooling are reported in Table VII, where 
also the trend of the pooled features is shown.  

Four out of twenty pooled features showed a statistically 
significant trend associated to fallers. A significantly higher 
RMS value for the ML acceleration signal (MD: 0.01 g; CI95%: 
0.006 to 0.014; p<0.01) during quiet standing with eyes closed. 
Additionally, a significantly higher number of steps (MD: 
1.638 steps; CI95%: 0.384 to 2.892; p=0.01) and a significantly 
higher total time to complete the TUG test (MD: 2.274 seconds; 
CI95%: 0.531 to 4.017; p<0.01). Finally, a significantly higher 
step time (MD: 0.053; CI95%: 0.012 to 0.095; p=0.01). 

E. Quality Appraisal of Shortlisted Studies 

All the studies reported aim of the study; experimental 
protocol (i.e. task, sensor quantity and placement); technical 
specifications of the sensor; methods for signal processing, 
feature extraction and statistical analysis; and features’ 
summary statistics per group (non-fallers and fallers). 
However, only 7 studies reported actual p-values (e.g. 0.035 
rather than <0.05) for the feature values’ differences between 
groups [22], [25], [29]–[33].  

Moreover, only 7 studies reported inclusion/exclusion 
criteria of participants and distribution of potential confounders 
per group (e.g. age and comorbidities) [24], [25], [27], [29], 
[31]–[33]. Therefore, the internal validity of 6 studies remains 
unclear, as unreported (or unobserved) variables could explain 
feature differences between fallers and non-fallers.  

Finally, external validity was found for all shortlisted studies, 
as their samples were representative of the population under 
investigation and the task was representative of clinical fall-risk 
assessment protocols or daily-life activities.         

IV. DISCUSSION

This systematic review analyzed the scientific literature 
focusing on the use of wearable inertial sensors for risk of fall 
assessment and prediction, exploring the sensitivity sensor-
based features to sensor placement, task and feature category. 

The statistical analysis of features reported in the 13 
shortlisted studies revealed significant, very strong, positive 
associations in 3 different triads of feature category, task, and 
sensor placement: 
 Angular velocity – Walking – Shins 
 Linear acceleration – Quiet standing – Lower back 
 Linear acceleration – Stand to sit/Sit to stand – Lower 

back 
These results suggested that these are optimal combinations 

when using inertial sensors to discriminate between fallers and 

TABLE V 
ASSOCIATION TREND AND STRENGTH FOR ALL POSSIBLE TRIADS OF

FEATURE CATEGORY, TASK AND SENSOR PLACEMENT   

Task 

Quiet 
standing 

SS TUG Walking 

F
ea

tu
re

 c
at

eg
o

ry

Angular 
velocity 

- - - ↓ Lower back 

S
en

so
r p

la
cem

en
t

- - - ↑↑ Shins 

- - - - Upper back 

Frequency 

- - - ↑ Lower back 

- - - ↓ Shins 

- - - ↑ Upper back 

Linear 
acceleration 

↑↑ ↑↑ - - Lower back 

- - - ↓ Shins 

- - - - Upper back 

Spatial 

- - - - Lower back 

- - - - Shins 

- - - - Upper back 

Temporal 

- - - - Lower back 

- - ↑ - Shins 

- - - - Upper back 

 SS: Sit-to-Stand / Stand-to-Sit; TUG: Timed Up and Go test 
↓↓ (↑↑): substantially stronger negative (positive) association for a 
specific triad of feature category, task and sensor placement  
↓ (↑): strong negative (positive) association for a specific triad of feature 
category, task and sensor placement  
-: either negative  or positive non-significant association for a specific 
triad of feature category, task and sensor placement
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non-fallers. Other potentially good combinations, given their 
strong, positive associations are: 
 Frequency – Walking - Lower back 
 Frequency – Walking - Upper back 
 Temporal - TUG - Shins 
Conversely, our findings suggested that the use of following 

combinations should be avoided as they are less discriminative 
of fall status:  
 Angular velocity – Walking - Lower back 
 Frequency – Walking - Shins 
 Linear acceleration – Walking - Shins 

As for the meta-analysis, the results demonstrated that 4 
features significantly increased (p<0.05) among fallers: the 
RMS acceleration in the mediolateral direction during quiet 
standing with eyes closed (MD: 0.01 g; CI95%: 0.006 to 0.014); 
the number of steps (MD: 1.638 steps; CI95%: 0.384 to 2.892) 
and total time (MD: 2.274 seconds; CI95%: 0.531 to 4.017) to 
complete the Timed Up and Go test; and the step time (MD: 
0.053; CI95%: 0.012 to 0.095; p=0.01) during walking. These 
results suggest that these combinations of task and features may 

TABLE VI 
INERTIAL SENSOR-BASED FEATURES INCLUDED IN META-ANALYSIS

Non-Fallers Fallers 

Feature (units) Author, Year Task 
Sensor 

location 
Trend 

Weight 
(%) 

N Mean SD N Mean SD 

Linear acceleration features 
ML RMS acceleration (g) Doheny, 2012 Quiet standing (EO) Lower back - 50.7 21 0.03 0.01 19 0.03 0.01 

Greene, 2012 Quiet standing (EO) Lower back ↑↑ 49.3 55 0.04 0.01 65 0.06 0.03 

ML RMS acceleration (g) Doheny, 2012 Quiet standing (EC) Lower back ↑↑ 44.3 21 0.03 0.01 19 0.04 0.01 
Greene, 2012 Quiet standing (EC) Lower back ↑ 55.7 55 0.04 0.01 65 0.05 0.02 

Spatial features 
Number of steps (steps) Weiss, 2011 TUG (Walking) Lower back ↑ 43.6 18 10.61 1.80 23 11.52 1.82

Greene, 2010 TUG (Walking) Shins ↑↑ 56.4 142 10.60 2.40 207 12.80 3.80 
Step length (m) Weiss, 2011 TUG (Walking) Lower back ↓ 49.8 18 0.56 0.08 23 0.53 0.08 

Senden, 2012 Walking Lower back ↑↑ 50.2 50 0.51 0.13 50 0.66 0.09 
Temporal features 

Cadence (steps/min) Greene, 2010 TUG (Walking) Shins ↓↓ 50.2 142 108.00 19.30 207 99.20 19.30 
Senden, 2012 Walking Lower back ↑↑ 49.8 50 101.40 13.80 50 111.60 10.20

Gait speed (m/s) Doi, 2013 10MWT Lower back ↓↓ 32.3 57 0.98 0.34 16 0.63 0.27 
Weiss, 2011 TUG (Walking) Lower back ↓↓ 34.1 18 0.68 0.10 23 0.60 0.09 

Senden, 2012 Walking Lower back ↑↑ 33.6 50 0.86 0.26 50 1.23 0.22 
Step time (s) Greene, 2010 TUG (Walking) Shins ↑↑ 26.5 142 0.60 0.10 207 0.70 0.10 

Weiss, 2011 TUG (Walking) Lower back ↑↑ 23.8 18 0.50 0.06 23 0.56 0.05 
Weiss, 2013 Walking Lower back ↑↑ 25 39 0.56 0.04 32 0.60 0.07

Doheny, 2012 Walking Shins ↑ 24.6 21 0.57 0.05 19 0.58 0.05 
Stance time (s) Greene, 2010 TUG (Walking) Shins - 71.1 142 0.80 0.20 207 0.80 0.10 

Doheny, 2012 Walking Shins ↑ 28.9 21 0.68 0.10 19 0.70 0.08 
Swing time (s) Greene, 2010 TUG (Walking) Shins - 96.3 142 0.50 0.10 207 0.50 0.10 

Doheny, 2012 Walking Shins ↓ 3.7 21 0.47 0.25 19 0.43 0.04 
Stride time (s) Greene, 2010 TUG (Walking) Shins - 51.6 142 1.20 0.20 207 1.20 0.20

Weiss, 2013 Walking Lower back ↓↓ 28.2 39 1.12 0.09 32 1.20 0.15 
Doheny, 2012 Walking Shins ↑ 20.2 21 1.11 0.11 19 1.13 0.11 

Total time (s) Weiss, 2011 TUG Lower back ↑↑ 52 18 8.68 1.62 23 10.10 1.61 
Greene, 2010 TUG Shins ↑↑ 48 142 12.40 5.10 207 15.60 6.50 

Single support time (%) Greene, 2010 TUG (Walking) Shins - 68.9 142 80.00 10.00 207 80.00 10.00 
Doheny, 2012 Walking Shins ↓↓ 31.1 21 78.39 5.59 19 75.53 4.67 

Double support time (%) Greene, 2010 TUG (Walking) Shins ↓↓ 55.4 142 50.00 20.00 207 40.00 20.00 
Doheny, 2012 Walking Shins ↓ 44.6 21 24.67 17.08 19 24.47 4.67 

CV of step time (%) Greene, 2010 TUG (Walking) Shins ↑ 43.3 142 40.30 22.90 207 42.00 21.00 
Doheny, 2012 Walking Shins ↑ 56.7 21 4.92 4.39 19 6.20 8.18 

CV of stance time (%) Greene, 2010 TUG (Walking) Shins ↓ 65.6 142 45.00 20.40 207 43.30 19.30
Doheny, 2012 Walking Shins ↑ 34.4 21 6.03 8.67 19 7.40 10.16 

CV of swing time (%) Greene, 2010 TUG (Walking) Shins ↓ 43 142 31.00 22.00 207 28.10 19.90 
Doheny, 2012 Walking Shins ↑↑ 57 21 5.06 2.97 19 7.26 4.94 

CV of stride time (%) Greene, 2010 TUG (Walking) Shins ↑ 58.8 142 23.40 14.70 207 24.00 13.20 
Doheny, 2012 Walking Shins ↑ 41.2 21 4.19 5.56 19 4.96 6.01 

CV of single support time (%) Greene, 2010 TUG (Walking) Shins ↑ 38.8 142 21.10 19.20 207 22.90 15.70
Doheny, 2012 Walking Shins ↑ 61.2 21 4.08 4.51 19 5.41 5.21 

CV of double support time (%) Greene, 2010 TUG (Walking) Shins ↓ 52.6 142 82.60 27.80 207 80.70 26.60 
Doheny, 2012 Walking Shins ↑ 47.4 21 10.02 9.61 19 16.54 12.39 

Frequency features 
VT Harmonic ratio (n.u.) Doi, 2013 10MWT Lower back ↓↓ 50.3 57 2.69 0.93 16 2.07 0.64 

Senden, 2012 Walking Lower back ↑↑ 49.7 50 2.18 1.09 50 3.09 1.25

EO: Eyes Open; EC: Eyes Closed; TUG: Timed Up and Go test; 10MWT: 10-Meters Walking Test 
↓↓ (↑↑): significantly lower (higher) for subjects in the fallers (high-risk) subgroup  
↓ (↑): lower (higher) for subjects in the fallers (high-risk) subgroup 
-: No difference between subgroups 
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be useful more effective for fall risk assessment. 
Additionally, 5 features exhibited a consistent trend across 

the selected studies. These features were: step time, CV for step 
time, CV for stride time and CV for single support time, which 
showed a higher value for fallers when compared to non-fallers; 
and double support time, which showed a lower value for the 
same group. However, these trends were not found statistically 
significant when pooled in the meta-analysis. It may be 
explained by the high values of standard deviation reported by 
Green et al [23], which was included in the pooling for these 
features. No clear explanation for such variability within that 
study can be inferred from the paper.  

In contrast, 7 features showed an opposite trend across the 
selected studies: step length, cadence, gait speed, harmonic 
ratio in the vertical direction, CV for stance time, CV for swing 
time, and CV double support time. Importantly, for 4 of these 
features the methods used to classify subjects as (non-)fallers 
were also inconsistent between studies: step length and cadence 
were pooled from [25] and [29], in which the classification 
methods were retrospective fall history and fall risk assessment 
tool (Tinetti scale), respectively. Gait speed was pooled from 
[25], [28] and [31], the latter adding prospective fall occurrence 
to the diversity of classification methods. Finally, harmonic 
ratio on the vertical direction was pooled from [29] and [31], 
combining subjects classified as fallers via two different 
methods as well. This fact may represent an important source 
of between-study heterogeneity, as reflected by the high values 

of I2 (>95%) and low significance levels (p < 0.01) obtained in 
the heterogeneity test for these features. Unfortunately, the low 
number of studies reporting on the same feature made 
unfeasible to explore possible sources of heterogeneity using 
quantitative approaches (e.g. via subgroup analysis stratified by 
study and/or patient characteristics). 

Moreover, 5 features showed an ambiguous trend across the 
selected studies, as they were reported with no mean difference 
between non-fallers and fallers in one study, while exhibiting a 
trend (significant or not) in another study. These features were: 
the RMS value of acceleration in the mediolateral direction with 
eyes open, and stance time, swing time, stride time, and single 
support time during walking.

All in all, the evidence gathered in this review suggests that 
assessing the Timed Up and Go test using wearable sensors 
located on the shins through angular velocity, temporal (e.g. 
total time and step time) and spatial (e.g. number of steps) 
features may represent an optimal combination to discriminate 
fallers from non-fallers. Additionally, the triad “linear 
acceleration-quiet standing-lower back” seems to be a sensible 
choice as well.

Nevertheless, it should be stressed that these results are 
limited, as they are based only on features reported in the 13 
papers included in the review. Hence, they are unable to provide 
a representative inference of all features used and all studies 
published, but not included in the review. It means that there 
might be some other sensor-based features that are discriminant 

TABLE VII 
POOLED INERTIAL SENSOR-BASED FEATURES

Heterogeneity Weighted Mean Difference 

Feature (units) I2 (%) Q p-value Model Subjects MD CI95% p-value Trend 

Linear acceleration features 
ML RMS of acceleration, EO  (g) 93.6 15.57 < 0.01 Random 160 0.010 (-0.001; 0.030) 0.32 ↑
ML RMS of acceleration, EC (g) 0 0 1 Fixed 160 0.010 (0.006; 0.014) < 0.01 ↑↑ 

Spatial features 
Number of steps (steps) 73.9 3.83 0.05 Random 390 1.638 (0.384; 2.892) 0.01 ↑↑ 
Step length (m) 96.5 28.58 < 0.01 Random 141 0.060 (-0.116; 0.237) 0.50 ↑

Temporal features
Cadence (steps/min) 97.1 35.01 < 0.01 Random 449 0.661 (-17.958; 19.281) 0.94 ↑
Gait speed (m/s) 97.6 84.47 < 0.01 Random 214 -0.016 (-0.376; 0.345) 0.93 ↓ 
Step time (s) 88.1 25.18 < 0.01 Random 501 0.053 (0.012; 0.095) 0.01 ↑↑
Stance time (s) 0 0.35 0.55 Fixed 389 0.006 (-0.024; 0.036) 0.71 ↑
Swing time (s) 0 0.5 0.48 Fixed 389 -0.002 (-0.022; 0.020) 0.89 ↓ 
Stride time (s) 57.3 4.68 0.09 Fixed 460 0.026 (-0.004; 0.057) 0.09 ↑
Total time (s) 79.6 4.91 0.03 Random 390 2.274 (0.531; 4.017) < 0.01 ↑↑ 
Single support time (%) 53.3 2.14 0.14 Fixed 389 -0.888 (-2.662; 0.885) 0.33 ↓ 
Double support time (%) 79.4 4.85 0.03 Random 389 -5.625 (-15.174; 3.924) 0.25 ↓ 
CV of step time (%) 0 0.02 0.90 Fixed 389 1.462 (-1.649; 4.572) 0.36 ↑
CV of stance time (%) 0 0.69 0.41 Fixed 389 -0.643 (-4.095; 2.809) 0.71 ↓ 
CV of swing time (%) 73 3.7 0.05 Random 389 0.005 (-4.945; 4.954) 1 ↑
CV of stride time (%) 0 0.01 0.94 Fixed 389 0.670 (-1.641; 2.981) 0.57 ↑
CV of single support time (%) 0 0.04 0.85 Fixed 389 1.512 (-0.863; 3.887) 0.21 ↑
CV of double support time (%) 69.9 3.32 0.07 Random 389 2.095 (-6.146; 10.336) 0.62 ↑

Frequency features
VT Harmonic ratio (n.u.) 95.9 24.44 < 0.01 Random 173 0.140 (-1.359; 1.640) 0.85 ↑

EO: Eyes Open; EC: Eyes Closed 
↓↓ (↑↑): significantly lower (higher) for subjects in the fallers (high-risk) subgroup  
↓ (↑): lower (higher) for subjects in the fallers (high-risk) subgroup 
MD: Mean difference; CI95%: Confidence Interval at 95%; n.u.: dimensionless 
Bold values indicate statistically significant trends (p < 0.05) 
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between non-fallers and fallers but were not included in this 
systematic review as they were not reported as required by the 
inclusion criteria. This may be the case of some features 
reported in [34]–[38].   

Finally, a comment regarding heterogeneity in “hit rate” (i.e. 
the ratio of all features to significant features expressed as a 
percentage) reported in the shortlisted studies is deemed 
relevant to this review. In some studies reporting a relatively 
high number of features (i.e. 28 or more) a hit rate ranging from 
25 to 66%  was achieved [23], [26], [27]. In contrast, some 
studies reporting a low number of features (i.e. 7 or less) 
achieved hit rates above 85%, with two studies reporting a 
surprising 100% [29], [31], [33]. From these studies, it was not 
clear if the authors investigated a low number of features or if 
they investigated a large number of features but only reported 
the most significant ones. Even if reporting bias (a.k.a. selective 
reporting) should not be concluded from this finding, it should 
at least make us aware of the potential presence of this practice 
in our field. This practice could undermine the findings of 
future studies, making more difficult to converge to meaningful 
conclusions. 

V. CONCLUSIONS

In conclusion, this paper demonstrated that there are high and 
significant interactions among sensor placement, task and 
feature category to assess the risk of falling. This systematic 
review provided a framework for future study design, 
highlighting dependences among those factors. In addition, the 
review generated a comprehensive inventory of the features 
reported so far from inertial sensors for fall risk assessment in 
older adults, summarizing their trends and whether these were 
found statistically significant or not in each study. The 
statistical analysis of those features demonstrated that the triad 
‘angular velocity-walking-shins’ has shown more 
discriminative power between non-fallers and fallers than 
others. Finally, the meta-analysis demonstrated that 4 features 
resulted significantly different between non-fallers and fallers. 
However, most features were not included in the meta-analysis 
because they were not reported with sufficient homogeneity in 
at least 2 studies, suggesting that future studies are required to 
produce more evidence that allows to conduct a more 
comprehensive meta-analysis. Future studies should consider 
the evidence resulting from our review, in particular for: 1) the 
selection of the features to be further explored; 2) the sensor 
placement; and 3) the task used to assess the risk of falling. 
Those studies could also benefit from the adoption of some 
practices more common in clinical research, such as the 
definition of participant inclusion/exclusion criteria, inclusion 
of potential confounders in the analysis and ultimately the ex-
ante publication of the full study protocol prior to the study 
conduction. These practices aim to reduce the risk of bias and 
confounding, thus giving more validity to the study.                 
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