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ABSTRACT

The article offers a new approach towards the construction of recognition features independent of images’
displacement or linear deformation. The distinguishing characteristics of the group of features under study
is representing each of them as a sequential composition of three functionals acting upon the function of
one variable. The process to construct the new features suggested  boasts of the advantages as follows: a)a
host of new features can be easily constructed; b) the features obtained can be structurized along with
parallel computations. Great many new features have been constructed to successfully solve the task of
recognizing coloured images in biological systems, for instance, blood cells in gematology.
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1. INTRODUCTION
In the field of pattern recognition we traditionally dis-
tinguish feature construction and decision procedure.
In literature on cybernetics a vast majority of works on
the pattern recognition have been historically devoted
to decision rules, there actually being no works on fea-
ture construction. There has been general agreement
that it could be explained by the fact that the process
of constructing features is empirical and dependent on
the intuition of the recognition system designer.
The approach of stochastic geometry, developed in
[Fedtv90b], allows us to bridge the gap and create proc-
esses to generate great many new features for image
recognition, along with a constitutive theory of fea-
tures. Such a prominent shift of stress from decision
procedures to new recognition features  gives the ap-
proach a strong resemblance to neuro-computing.
In [Fedtv90b], the author suggests using probabilities
of geometrical events understood as the result of
geometrical objects interaction (intersections,
overlapping and so on), as image recognition
features. Geometrical objects here are, on the one
hand, complex scanning trajectories with random
parameters (segments, lines, curves, figures, etc.),
and on the other hand, fragments of an image being
recognized. The structure of similar recognition
systems and examples of particular technical imple-

mentations, are considered. Possible extensions of
the fundamental recognition process on stochastic
geometry are considered as well. One of the exten-
sions deals with a complication of observing a
random event (an intersection of a scan trace and an
image), i.e. with the application of more complicated
recognition features.
The article presents the basics of a new theory to con-
struct recognition features and shows its applicability
to the recognition of classes of images, the latter being
dependent neither on image motions, nor on affine
transformations. The present paper is an extention of
[Fedtv90f]. The theory suggested has been devoted on
the basis of [Fedtv94c] , [Fedtv94b], [Fedtv94d],
[Fedtv94a].
 Preservation of lines within the image is known to be
a feature common for the affine transformations. An
affine transformation could be defined as a one-to-one
continual transformation of a plane where lines lengthen
into lines. The distinguishing feature of the group of
transformations being considered is that each of them
can be represented as a sequential composition of three
functionals, each acting upon the function of one
variable.
As we are interested in images’ motions, and here we
mean sliding along certain lines, we should be natu-
rally interested in the functionals’ reaction to the slid-



ing of the kind.
We can establish two types of reactions, namely:
functionals’ independence of shifts, and their depen-
dence (or sensitivity), where the shift could be
distinguished as a separate addend. For each of
the three functionals one could easily find tens of
various concretizations satisfying the conditions
required (they are to be found further).
Hence, we can immediately obtain thousands of new
features which are invariant to motion. To recognize

2n  objects we need about n   features, so, there

exists a possibility to recognize samples characterized
by a multiple alphabet, and, for the practical purposes,
to diagnose a large number of diseases.
To diagnose cases, modern medicine uses microphotoes
of tissues, and, in particular, those of blood specimen.
The peculiarities blood cells popssess make it possible
to make a diagnosis. But when lots of photoes are to
be studied, a researcher cannot avoid making mistakes
for the reason of fatigue. Moreover, the diagnosis is
not to be made if you have tested only one cell. It is
possible only after you’ve analysed the statistics of the
cell’s peculiarities distribution. It means that you are
to analyse great many microobjects to build a solid
foundation for statistically meaningful samples and
tables. It is extremely difficult for a researcher to
analyse large amounts of information manually. Hence
the task of machine analysis of blood micriphotoes and
tissue sections comes topical. Theortical methods of
recognition involving the features invariant to images’
motion, become especially important. Advantages of
new theory are shown when distinguishing features of
blood cells.
Let  us consider an input retina of a recognizing de-
vice. By the retina we mean an image plane section
which is being scanned. Within the plane section there
is an image, the rest of the plane being background.
Thus, the image is finite. Consider a random straight
line l , which may intersect the image. Supposing, in-

tersection of    l    with the image allows us to compute

a certain g characterizing their location as to each

other. While tossing   l   randomly onto the plane sev-
eral times, we could obtain a sample for random value
g . Then we could define an empirical characteristic

n of the random valueg . There whole procedure de-
scribed could be implemented in a radio-electronic sys-
tem, which performs image recognition [Fedtv90b].
Mathematical apparatus of the procedure considered
has been researched intensively by stochastic geom-
etry. It has been established that under certain
conditions n  might have an explicit geometrical
meaning. It is important for us that, being easily imple-
mented in devices, the idea may provide a starting point
to get new features for pattern recognition both in theory
and in practice.

Formulas are presented in [Fedtv90b] to serve the ba-
sis for recognition criteria. Only binary images (black
figures against a white background) are being
considered.
1. Consider an image as a piecewise smooth curve,

which may be a boundary of a figure. Let   g    the
number of intersections of the curve with a random

l . Then mathematical expectation  Mg    is pro-

portional to the length of the curve.
2. Consider an image as a convex figure. It may be a

convex hull of another figure. Let  g  be the length

of the convex figure intersection with l . Then the

average values  Mg 0  ,  Mg1     and    Mg2   are

proportional to the perimeter, square and eigen-
        potential of the uniform domain, respectively.

2. TRACE-TRANSFORMATION
The above-considered formulas and their multiple
analogues possess the following limitations as to
pattern recognition: 1) their number proves limited,
for explicit geometrical characteristics are few, and
we need thousands of, and even more, features; 2) the
formulas apply to binary images only. Possibilities of
parallel computation (with several straight lines being
processed simultaneously) and those of stochastic
implementation, should be considered advantageous.
Stochastic implementation makes it possible to cut
the process, a required accuracy having been
reached. Features are normally known to be strongly
dependent on object rotation and shift, the latter
being totally uninformative for a host of recognition
problems.
Within the article, we put forward a generalization
of the approach mentioned, to cope with its
limitations and preserve the advantages, the
generalization being complete in a certain aspect.
Let  F  denote a finite image. Given straight line l  ,

g  characterizing the location of  l  and the image as
to each other, is to be computed according to a

certain rule T :  g l F= T( , ); map   T    is called a

functional.
Just like in stochastic geometry, random value

g l F= T( , )is defined, its distribution being

independent of image shifts and rotations. Therefore,
numeric characteristics of the random value may
again serve as image features, which are to be
established with the help of special engineering
devices and systems. The limitation of the new family
of features is that they originally lack an explicit
geometrical meaning, and their differentiating
capability is a priori unknown. However for  pattern
recognition, it proves not very important,
experimental testing being decisive.
Let us note yet another property of a totally invariant



functional   T  (Trace): it is not necessarily to be
defined by a cross-section of a straight line with an
image only. Other information, say, characteristics of
the cross-section vicinity could be used for
computation as well.
To understand that the generalization proposed in a
certain aspect exhausts its own possibilities, we are
going to state the theory of Trace-transformation (or
 Tr-transformations). Polar coordinates introduced to
 the plane, l   is characterized by distance p    from

the origin to l   , and by angle θ    (up to 2π   ) of its

directional vector:

l x y x y p l l p= + = ={( , ): cos sin }, ( , ),θ θ θ
where    x y,  are Cartesian coordinates on the plane.

If we allow p     to take  negative values, too, then

l p l p( , ) ( , )θ θ π= + − .

Thus, a set of all directed straight lines intersecting a
circle of radius  R    with the center in the origin (the
«retina»), is unambiguously parameterized by set

Λ = ≤ ≤ − ≤ ≤{( , ): , }θ θ πp R p R0

which provided parameters  ( , )0 p   and  ( , )π − p

define the same straight line. The set of straight lines
The set of  straight lines on the retina are clearly seen
to be topologically nothing but a Möbius band. Thus,

the set of numbers  Τ( ( , ), )l p Fθ  , depending on a

point on Möbius band   Λ  , is a certain image trans-
form, which we may call a Trace-transform. If, for
instance, a matrix represents a Trace-transform in
numerical analysis, we may call it a Trace-matrix. If

axis 0θ   is directed horizontally, and axis 0p  verti-

cally, matrix element, indicated ( , )i j  , i.e. value

Τ( ( , ), )l p Fj iθ   , is in point   θ j   ,  pi  .  θ j    and

pi  are here certain values of uniform discrete grids on

the axes mentioned. Along the horizontal axis, matrix
is  2π -periodic, its columns rotating within each in-

terval of length π .

In addition, let us consider, that if  l  does not intersect

the image, Τ( , )l F  is a given number (say, 0) or

another fixed element, if   Τ   is nonnumeric. In this

case, a new image Tr (F ) corresponds to the original

imageF  ,  Τ( ( , ), )l p Fθ   may be treated as an im-

age which characteristics at ( , )θ p are its Tr-image).

Fig. 1,a explains the computation of a Trace - transfor-
mation. It shows how to obtain a binary function

f p t( , , )θ of a real  variable for a scanning line l .

Functionf p( , , )θ •  equals 1 within the interval

( , )t t1 2
 and ( , )t t3 4

. Within other precise it equals

0. Let  Τ  stand for a functional applied to the function

, its independent variable being designated by t . Thus

we get g p f p t( , ) ( , , )θ θ= Τ  . We call function g

result of trace – transformation (trace – transform).

Fig. 1,a

For instance, let Τf p t( , , )θ be maximum interval

within function  f p( , , )θ • domain. In Fig.1,a it is the

value of t t2 1−  (max G).If we determine a similar

Τf p( , , )θ •  for an aggregate of scanning lines inter-

secting  the image of a erythrocyte in Fig. 1,a, at vari-

ous angles θ   and various distances p , we can get its

Trace – image in Fig.1,b.

Fig. 1,b

Note that the famous Radon transformation can be
viewed as an example of a Trace – transformation. For



a two–level image, such a Trace–transformation could

be obtained in case Τf p( , , )θ •  is the total of all the

intervals from the domain of the function to be defined.

For Fig.1,a it is the value of t t2 1−   and   t t4 3−
segments’ total.

3. TRIPLE FEATURES
Let us consider formation of triple features which are
a consecutive composition of three functionals:

Π Θ Ρ Τ( ) ( ( , , ))F F L p t= o o o θ .

Each functional (Θ , Ρ and  Τ ) effects the function

of one variable (θ , p and t ) correspondingly.

Each functional (Θ ,Ρ and Τ ) effects the function

of the variable (θ , p and t  ) correspondingly.

We call functional Τ  invariant to all shifts (or just

invariant, to be short) if  Τ Τ( ( )) ( ( ))h t a h t+ =
for any  and an admissible a R∈ function h . An

average value of function h  could serve as an
example here.
We call functional Τ  sensitive to all shifts, if

Τ Τ( ( )) ( ( ))h t a h t a+ = + for each a R∈ . The

functional of the value of the argument of maximum
functionh  could be taken as an example

(in case function h  has actual values).

The same definitions hold for functionals Ρ  and Θ .

Òhå Theorem 1 that follows is proved: if functionals

Τ , Ρ and Θ are invariant, then value F  is

independent of the image motions and affine
transformations. (To make it short, we have put the
problem of Domain (Τ ), etc., aside).

Functional Τ  , corresponding to a Tr-transforma-
tion, has been above considered in detail. In a
discrete variant of computation the result of the
transformation, or the Tr-transform,

Τ( ( , , ))F L p to θ is a matrix, which elements are,

say, values of brightness parameter for image F  at

the intersections with the scanning line l p( , )θ .

Parameters of the scanning linep  specify the
position of the element within the matrix.
Computation of feature to follow involves a
consecutive processing of the matrix columns with
the help of functional Ρ  , which we call diametrical.

Functional “Variation” Ph p h p
Mh p

( ) ( )
( )

= σ

 has been used as functional Ρ , other instances of
diametrical functionals applied may be the functional
called “Min”, which is the minimum value of the

function in a trace–matrix column.
The result of applying Ρ  (“Variation”) functional to

a trace – matrix (Fig.1,b) is a 2π - periodic curve
shown in Fig.1,c.

Fig. 1,c

Next stage is to perform transformations on the curve

with the help of Θ  functional which we call a circus

within N. The functional “ Norm”, a standard

Euclidean norm, has been used as a variant of Θ
 functional, being computed through

Θh h d( ) ( )θ θ θ= ∫ 2
.

The triple recognition features considered may be
computed through a highly parallel process.  Like fea-
tures formed by neuron nets, the given features have
no pre-assigned meanings, their selection being realized
during a machine experiment, considering their being
useful for classification only.

4. THE FEATURES USED IN NUMERIC EX-
PERIMENTS
Trace-functional has been used in six variations.
Their numbers are 1, 2, 3, 5, 6, 7 (number 4
missing). It is connected with the fact that the
working program disposes of a standard
classification of functionals. It has been empirically
established that the above listed trace-functionals are
applicable for the recognition of blood cells, or
eritrocites, better than the rest of them within the
program. Some of the below listed functionals could
be computed for binary images only (functionals 2,
3, 5, namely). That is why the image is first to be
transformed into a binary one according to the
following rule.
We are having 16 shades of colour (from black to
white) in the image. A binary image could be
obtained if we use threshold Colour Triger=5,5.
Here are the Trace-functionals:
1. Integral taken along the line (such a transforma-
tion results in Radon transformation.



2. The length of the maximum segment where line l
intersects the image F , the intersection being
considered if only the image shade excesses number
Colour.
3. The number of segments where the line intersects
the image (Colour Triger is used).
5. The length of the segment between image first and
last tangency. Mathematically, it is the length of the
function support’s (or bearer’s) convex shell (Colour
Triger is used).
6. Variance of the function, which has been
normalized on its integral. The normalization is
performed to apply the notion of variance itself,
which is specified for nonnegative function only, its
integral being 1. If the function has been identical
zero, we consider variance equals 0. It is necessary
to provide for the trace-transformation continuity
(though normally a zero function variance is
considered to qual infinity.)
7. Function variance computed as above and then
multiplied by the function integral. It is performed to
consider the function infinitesimal, and to assign a
small weight to random noise or distortions.
The matrix to deduce transform (or trace-matrix) has

the following dimensions. Along variable  θ    axis is

horizontal, range of variable is 0, ...,2π ; number of

discret being 70. Along variable p axis is vertically
spaced, range of variable is - 100, ..., 100, number of
discret being 50.
Diametrical functionals. For a diametrical functional
five options have been used:
1. Gilbert norm of func-

tionΡh p h p dp( ) ( )= ∫ 2 ;

2.  Maximum value of function;
5.  Measure of the function carrier (for the functions
assigned in the table it is the number of nonzero
components multiplied by the step of discretization;
6.  Maximum of the first variable absolute value;
9.  Variation of function.
Circus functionals. For a circus functional four
options have been used:
7.  Amplitude of second harmonic of Fourrier
function divided by function maximum;

10. Euclidean norm (i. e. Gilbert norm of space L2 );

12. Euclidean norm divided by the function varia-
tion;
14. Amplitude of fourth harmonic of Fourrier
function divided by the function Euclidean norm.
In total, we dispose of 6 * 5* 4 = 120 different
functionals. The number of pictures to be processed
is 35. Thus, there shoud be 120 * 35 = 4200 numbers
which are features. Some of the features are not
informative, others, little informative to be applied to
he problem of recognizing pathological erythrocytes.
Still when used in the aggregate, they solved the

recognition task completely.
Thus, each image is characterized by a set of 120
numbers which constitute a vector. Then we have to
compute the average distance in a 120D space to the
representatives of each class of images. The class
distance to, which is minimum, is to be considered
the result of the process to recognize the image under
study.

5. DESCRIPTION OF THE MATERIAL FOR
COMPUTATION. ERITHROCYTES
Fig. 2 shows erythrocytes and other blood cells. Five
classes of images have been selected here: a, b, e, g,
h. Each class is represented by seven samples, i. e.
we get images:
à1, à2, à3, à4, à5,  à6, à7 - class à,

b1, b2, b3, b4, b5, b6, b7- b,
e1, e2, e3, e4, e5, e6, e7 - e,
g1, g2, g3, g4, g5, g6, g7 - g,
h1, h2, h3, h4, h5, h6, h7 - h.
Moreover, we distinguish sets. These are images:
à1, b1, e1, g1, h1 - set 1,
à2, b2, e2, g2, h2 - 2,
à3, b3, e3, g3, h3 - 3,
à4, b4, e4, g4, h4 - 4,

à5, b5, e5, g5, h5 - 5,

à6, b6, e6, g6, h6 - 6,
à7, b7, e7, g7, h7 - 7.

The task is to assign each image to one of the
classes.

6. THE RESULT OF COMPARING THE SETS
For comparing the images sets we calculate distances
for recognition images a, b, e, g, h different sets
(1..7). Table 1 demonstrates the exsample of
competition the images features of set 1and set 5
used only one Trace functional.

Table 1.

 

,b,asegaminoitingocerrofsecnatsiD
5tesh,g,e

1tesh,g,e,b,asnrettapgnisu

1a 1b 1e 1g 1h

5a 23,0 82,0 46,0 43,0 63,0

5b 73,0 23,0 46,0 92,0 52,0

5e 93,0 83,0 56,0 62,0 83,0

5g 26,0 98,0 04,0 17,0 16,0

5h 53,0 04,0 95,0 23,0 62,0



In the reseach computations, we used 1 * 5 * 4 = 20
features (a fixed Trace-functional, 5 Diametrical
functionals and 4 Circus functionals). The results’
correlation makes about 80% when using 20 fea-
tures.

7. THE RESULT OF RECOGNITIONS OF
SEPARATE IMAGES CLASSES
For the determination of classes each set is compare
to all other (different from it) sets, which act as
standards. We can achieve it a simple finding of root-
mean-square all results, which are refer to the
recognition of given set. After we calculate sums of
distances for recognition images a, b, e, g, h different
sets using all other patterns of clases  a, b, e, g, h.
The results of comparing the clases are shown in
Table 2 and Table3.

Table 2.

Sums of distances for recognition images 

a b e g h

a1 1,03 1,18 1,83 1,34 1,24

b1 0,98 0,82 2,17 1,17 1,04

e1 1,67 1,69 1,21 1,86 1,66

g1 0,94 1,06 2,36 0,8 1,1

h1 1,32 1,22 1,87 1,24 0,93

Sums of distances for recognition images 

a b e g h

a2 0,83 0,85 2,29 0,9 1,11

b2 1,01 0,82 2,19 1,18 1,04

e2 1,67 1,83 1,17 1,92 1,6

g2 1,16 1,16 2,29 0,99 1,21

h2 1,13 1,15 2,01 1,2 0,97

Sums of distances for recognition images 

a b e g h

a3 0,79 0,9 1,84 1,02 1,08

b3 0,83 0,78 2,2 0,96 1,03

e3 3,29 3,22 1,72 3,29 2,9

g3 0,94 1,06 2,21 0,8 1,1

h3 1,29 1,1 1,8 1,32 0,86

a, b, e, g, h set 3 using all other patterns

a, b, e, g, h  and all trace functionals

a, b, e, g, h set 2 using all other patterns

a, b, e, g, h  and all trace functionals

a, b, e, g, h set 1 using all other patterns

a, b, e, g, h  and all trace functionals

Table3.

Sums of distances for recognition images 

a b e g h

a4 0,82 0,86 2,08 0,93 1,1

b4 1,07 0,91 2,37 1,12 1,22

e4 1,93 2,05 0,95 2,13 1,78

g4 0,99 1,04 2,3 0,81 1,19

h4 1,17 0,98 2,05 1,07 0,97

Sums of distances for recognition images 

a b e g h

a5 0,76 0,89 2,06 1 1,11

b5 0,87 0,72 2,16 1 0,98

e5 2,11 2,27 1,11 2,21 1,9

g5 0,92 1 2,37 0,79 1,14

h5 1,07 1,12 1,97 1,15 0,91

Sums of distances for recognition images 

a b e g h

a6 0,79 0,93 2,28 0,92 1,24

b6 0,89 0,82 2,08 1,13 1,12

e6 2,65 2,81 1,34 2,91 2,46

g6 1,19 1,21 2,25 1 1,29

h6 1,16 1,03 1,98 1,1 0,9

Sums of distances for recognition images 

a b e g h

a7 0,82 0,9 2,17 0,96 1,12

b7 0,88 0,83 2,1 1,03 1,08

e7 2,06 2,15 1,07 2,27 1,91

g7 1,06 1,2 2,18 0,92 1,16

h7 1,07 1,05 1,8 1,14 0,92

a, b, e, g, h  and all trace functionals

a, b, e, g, h  and all trace functionals

a, b, e, g, h set 6 using all other patterns

a, b, e, g, h  and all trace functionals

a, b, e, g, h set 7 using all other patterns

a, b, e, g, h set 4 using all other patterns

a, b, e, g, h  and all trace functionals

a, b, e, g, h set 5 using all other patterns

8. ANALYSIS OF THE EXPERIMENT
RESULTS
A conclusion can be made that most features listed in
the present paper can successfully solve the set
problem of distinguishing erythrocytes. Certain
features work successfully even if the researcher is



unable to note evident distinctions. It has been
demonstrated, besides, that there exist features which
prove finer than a given concrete task
requires. The recognition system suggested, thus,
proves promising. As the result of the experiment,
having recognized classes 35 of images, we got no
errors.

9. CONCLUSION
It has been established that he features suggested
can successfully distinguish the classes of
erythrocytes suggested for the analysis. It proves
the usefulness of the theory in question for medical
practice.
We consider essential that great many new good
features, actually about a hundred of them, have been
introduced at once. Certain vector components,
characteristic of the image, may be independent of
certain transformations of the image, others may
depend upon such transformations in a simple way,
which makes it possible to establish the image
parameters. Hence, the theory developed helps not
only recognize a great number of standard images,
but to establish similar parts of the image fractal
structure. The process suggested could be easily
transferred to gray-tone and full-colour images.
The theory is not sensitive to the quality of image
outline. Computations can be performed in parallel.
The results of work prove that the theory developed
could be used for recognition in biological systems
for self-acting or computer – aided recognition of
biological microobjects.
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